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ABSTRACT 

This study aimed to investigate the climate impacts of carbon sequestration in forests, and the 

substitution of fossil energy (e.g., coal, oil) and fossil-based materials (e.g., concrete, steel, 

plastic) with harvested energy biomass and timber (pulpwood, sawlogs) under Finnish boreal 

conditions. The study employed forest ecosystem model simulations and a life cycle assessment 

tool to calculate the net CO2 exchange for the forest-based biosystem. The effects of stocking in 

thinning, nitrogen fertilization, and the use of varying rotation lengths (Papers I–III) and harvest 

intensities in final felling (timber, logging residues, with and without coarse roots and stumps) 

(Papers I, III) on the climate impacts and economic profitability of biomass production (Papers I, 

III) were studied. Current Finnish forest management recommendations for thinning, aimed at 

timber production, were used as a baseline. In addition, the sensitivity of climate impacts to 

displacement factors and timber use efficiency was studied (Paper II). This work was conducted 

at the stand level, with a mature stand as a starting point (Paper I), at the landscape level, under 

alternative initial forest age structures (Paper II), and at the regional level, using national forest 

inventory data in southern Finland (Paper III).  

This study revealed that the best option for increasing the climate impacts of biomass 

production and utilization was through maintaining up to 20% higher stocking, nitrogen 

fertilization, and using 80–100-year rotations, since they increased carbon sequestration and 

timber and energy biomass yields (Papers I–III). However, there was a tradeoff between the 

greatest climate impact and the economic profitability of biomass production (Papers I, III). Sawn 

wood products were the best option for long-term substitution and increasing carbon stocks of 

wood products (Papers I–III). It was also found that the effects of substitution and timber use 

efficiency on climate impacts were higher than those of the thinning regimes (Paper II). 

Consequently, the greatest climate impacts were found when intensified biomass harvesting was 

performed, and the prominent regions for increasing climate impacts over the next 40-year period 

were the southern and eastern sub-regions of Finland (Papers I, III). Furthermore, the climate 

impacts were found to be sensitive to the initial conditions set for the analyses, which affected 

the timing of the climate impacts and the preference of forest management in climate change 

mitigation. This indicates that management measures, together with the initial conditions of the 

forests, should be considered when evaluating efficient options for increasing climate impacts by 

forests and substitution. 

 

 

 

 

Keywords: carbon sequestration, carbon stock, climate impact, displacement factor, emissions, 

fossil-based materials, life cycle assessment, net present value 
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simplicity, showed me the path for being better human. No words are enough for my parents and 

two elder brothers (journalists), Sanath Baul and Pranab Baul. From the beginning, my beloved 

elder brothers, sister (Susmita), brother-in-law (Shomen), sisters-in-law (Shaptarshi & Sumi), 

charming nephews, nieces, and enthusiastic cousins have always been with me with their 

everlasting love and mental support, helping me to reach this position. I owe everything to all of 
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head of the school, and all the administrative staff, for their supportive roles in dealing with the 
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Kauppinen, and Toni Sanio are worthy of mention. All of my friends and well-wishers, at home 

and abroad, inspired me to proceed with this dissertation, and all of them are remarkably 
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ABBREVIATIONS AND DEFINITIONS 

Symbol/Term Definition 

 

a Year 

BN Logging residues (top parts of stems, branches, and needles) 

BNR Logging residues (top parts of stems, branches, and needles), 

coarse roots, and stumps 

CO2  Carbon dioxide 

Cnet (Climate impact) Net CO2 exchange of the forest-based biosystem, based on 

summation of the NEE, the stock change in wood products (Chwp) 

(inflow-outflow), the carbon emissions from the combustion of 

energy biomass (Ceb) and processing waste (Cwaste), from 

management (Cman) and manufacturing of wood products from 

timber (Cmanu), and the substitution impact (Csubst). Negative values 

of Cnet indicate climate benefits 

CCME (Climate change 

mitigation efficiency) 

Total cumulative radiative forcing (CRF) was divided by the total 

amount of harvested timber, and expressed as nW m-3 of timber 

DBH Tree breast height diameter at final felling 

DF Displacement factor (tC tC-1) for wood products, energy biomass 

and processing waste 

EC European Commission  

EU European Union 

FF Final felling 

GHG Greenhouse gas 

ha Hectare  

I (Net climate impact) Difference in annual net CO2 exchange caused by emissions and 

sequestration between the biosystem (IBIO) and the fossil system 

(IREF). Negative values of I indicate climate benefits 

IEA International Energy Agency  

IPCC Intergovernmental Panel on Climate Change 

LCA Life Cycle Assessment 

LULUCF Land Use, Land Use Change and Forestry 

Mg Megagram (ton)  

N Nitrogen 

n Nano  

NFI National Forest Inventory 

NPV Net present value 

NEE (Net ecosystem 

CO2 exchange)  

Difference between sequestration of CO2 in biomass growth (Cseq) 

and emissions from decomposition of soil organic matter (Cdecomp). 

Sequestration and decomposition are expressed as negative (-) and 

positive (+) values, respectively 
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RF (Radiative forcing)  The impacts of CO2 on the atmosphere (i.e., change in the balance 

of incoming and outgoing energy in the Earth–atmosphere 

system). Negative values of RF indicate a cooling climate impact 

T Timber 

t Ton (Megagram) 

UNFCCC United Nations Framework Convention on Climate Change 

W Watt 

Energy biomass Logging residues, coarse roots, and stumps from final felling 

Forest biomass Timber and energy biomass 

Fossil-based materials Steel, concrete, plastic 

Fossil energy Coal, oil 

Processing waste Pulping (black liquor) and sawing (bark, sawdust) residues 

Timber Pulpwood and sawlogs 

Timber use efficiency The share of wood products (in %) manufactured from timber 

Wood products Pulp/paper products and sawn wood obtained from pulpwood and 

sawlogs, respectively 
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1 INTRODUCTION 

1.1 Background of the study 

An increase in atmospheric greenhouse gas (GHG) concentrations, particularly carbon dioxide 

(CO2), is warming global climate (Intergovernmental Panel on Climate Change [IPCC] 2014a). 

Keeping the temperature increase below 2oC, compared to the pre-industrial level, requires a 

reduction in CO2 and other GHG emissions by 40–70% by 2050, based on 2010 concentrations, 

and emissions should be near zero or negative by 2100 (IPCC 2014a; UNFCCC 2015). The IPCC 

emphasizes an integrated strategy for climate change mitigation that involves reducing the use of 

fossil energy and fossil-based materials, and enhancing carbon sinks in the land use, land use 

change, and forestry (LULUCF) sector (IPCC 2014a, 2014b). Forests offer possible pathways for 

climate change mitigation through the sequestration and storage of carbon in forests and harvested 

biomass, and the use of harvested biomass as a substitute for fossil energy and fossil-based 

materials, so as to reduce atmospheric CO2 emissions (e.g., Canadell and Raupach 2008; 

Lemprière et al. 2013; IPCC 2014b; Kurz et al. 2016).  

The European Union’s (EU) policy of climate change mitigation aims to raise the share of 

renewable energy to 27% and 55% in final energy consumption by 2030 and 2050, respectively, 

with a vision of 40% and 80–95% emissions reductions, compared to 1990 (European 

Commission [EC] 2011a, 2016). In the EU, an increased use of forest biomass is seen as one of 

the fundamental strategies for climate change mitigation (EC 2011b; EU 2015). The Nordic 

countries, with their extensive forest resources, are a potential source of biomass and industrial 

by-products (e.g., black liquor, bark, sawdust, wood chips, other wood residues) that could be 

used in energy generation and achieving the targets set in climate policy for climate change 

mitigation (Rytter et al. 2015, 2016; International Energy Agency [IEA] 2016). Currently, in 

Finland and Sweden, for example, timber (sawlogs and pulpwood) is widely used in the sawing, 

pulping, and paper industries for the manufacture of wood-based products (Gustavsson and Tullin 

2014; Koponen et al. 2015; Natural Resources Institute 2017a) that act, in addition to industrial 

by-products, as substitutes for fossil-based materials and fossil energy (Portin et al. 2013; IEA 

2016).   

Finland’s commitment to the EU policy of climate and energy is an 80% emissions reduction 

by 2050, relative to 1990 levels (Climate Change Act 609/2015, Ministry of the Environment 

2015). Accordingly, it aims to raise the share of total renewable energy to 38% by 2020 and to 

50–60% by 2050 (Ministry of Employment and the Economy 2014). The annual share of total 

renewable energy in total energy consumption was, on average, 33%, with an 80% share of forest-

based renewable energy in the form of industrial by-products (65%) and energy biomass (15%) 

(Statistics Finland 2016). Energy biomass, in the form of small-sized stem wood, logging 

residues, roots/stumps (in final fellings), and small-sized trees (in early/energy wood thinnings), 

is being used in power generation and district heating (Koponen et al. 2015; IEA 2016). In final 

fellings, coarse roots and stumps are harvested, mainly from Norway spruce (Picea abies L. 

Karst) stands, and in energy wood thinnings, small-sized trees are harvested from Norway spruce, 

Scots pine (Pinus sylvestris L.), and broadleaved species stands. The annually harvested yields of 

timber and energy biomass were 62 and 8 million m3, respectively, in 2016 (Natural Resources 

Institute 2017b). The amount of timber harvested is set to be increased by 10–30 million m3 in 

the near future, however, to contribute to the Finnish bioeconomy (Ministry of Economic Affairs 

and Employment 2014).  

Current Finnish forest management recommendations aimed at producing mainly timber 

(Äijälä et al. 2014) may need to be modified to potentially utilize existing forest resources to 
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increase carbon sequestration and integrated biomass (timber and energy biomass) production for 

mitigating climate change (Matala et al. 2009; Routa et al. 2011a; Pyörälä et al. 2014; Hynynen 

et al. 2015). Over a stand rotation, carbon sequestration, stocks, and energy biomass can be 

increased by using higher stocking in forests than currently recommended in thinnings (Garcia-

Gonzalo et al. 2007a; Nunery and Keeton 2010; Alam et al. 2012; Kilpeläinen et al. 2016a). 

However, the delayed thinnings, and a consequent decrease in the share of sawlogs, may decrease 

the economic profitability of forest production (Torssonen et al. 2016). Conversely, annual timber 

production could be increased by using lower thinning thresholds, regardless of species, but this 

may decrease carbon sequestration and stocks (Alam et al. 2008). Using short rotations of 30–60 

years may increase both annual biomass production and economic profitability, but long rotations 

of 80–100 years may increase carbon stocks in forests (Pyörälä et al. 2012; Routa et al. 2012; 

Kilpeläinen et al. 2016b). Intensified biomass harvests from final fellings (timber, in addition to 

logging residues and stumps/roots) in Norway spruce stands decrease carbon stocks in forests 

(Mäkipää et al. 2015), but nitrogen fertilization increases both carbon sequestration, stocks, and 

biomass production, as well as the economic profitability of forest production in boreal conditions 

(Sathre et al. 2010; Routa et al. 2011b; Bergh et al. 2014; Hedwall et al. 2014).  

The management measures required to produce the desired amount of carbon sequestration 

and harvestable biomass depend also on the initial conditions of the forests (e.g., age structure) 

(Garcia-Gonzalo et al. 2007b; Alam et al. 2010; Malmsheimer et al. 2011; Eliasson et al. 2013), 

and may have subsequent effects on the timing of the climate impacts of biomass production and 

utilization (Kilpeläinen et al. 2016a, 2017; Zubizarreta Gerendiain et al. 2016). Carbon 

sequestration is highest in middle-aged stands and lowest in mature stands, which is opposite to 

timber production. The highest timber yields for a landscape consisting of Norway spruce and 

Scots pine stands have been found over a 100-year study period when the initial age structure was 

dominated by mature stands (Garcia-Gonzalo et al. 2007b). A landscape consisting of Norway 

spruce, and initially dominated by middle-aged stands, produced the lowest CO2 emissions for 

energy biomass, in comparison to using coal, when using a 120-year rotation (Routa et al. 2012), 

whereas a landscape dominated initially by young stands produced the lowest CO2 emissions 

when using 60–80-year rotations (Routa et al. 2012; Kilpeläinen et al. 2017). The interactive 

effects of forest management and initial conditions on the climate impacts of biomass production 

and utilization (Mitchell et al. 2012; Kilpeläinen et al. 2017) can be studied by applying model 

simulations. These offer the means to study the development of carbon sequestration, forest 

carbon stocks, and timber and energy biomass production over any given study period (Hynynen 

et al. 2015; Heinonen et al. 2017; Pilli et al. 2017). 

The utilization of wood products (e.g., sawn wood and pulp/paper products) mitigates climate 

change by avoiding carbon emissions from the use of fossil-based materials (e.g., concrete, steel 

and plastic) (Gustavsson et al. 2006, 2017; Eriksson et al. 2007; Lundmark et al. 2014; Smyth et 

al. 2017a). The retention of carbon in the wood products depends on the type of product and its 

lifespan (Pingoud et al. 2010; Werner et al. 2010). The substitution impacts of using wood 

products and energy biomass depend on the timing of their entry into the technosystem 

(Gustavsson and Sathre 2011; Sathre and Gustavsson 2011, 2012; Mitchell et al. 2012; Lundmark 

et al. 2014; Smyth et al. 2017a, 2017b). For example, the combustion of energy biomass produces 

an instantly higher amount of carbon emissions per energy unit than that of fossil fuels (Repo et 

al. 2012, 2015a; Gustavsson et al. 2015), and may therefore have a lower substitution potential 

than the use of wood products to replace fossil-based products (Pingoud et al. 2010; Jasinevičius 

et al. 2015; Kilpeläinen et al. 2016a). The climate impacts of using wood products also vary, 

however, depending on the differences in emissions of the substituted materials and the functional 

unit used in the study of these (Sathre and O′Connor 2010; Ter-Mikaelian et al. 2015a; Smyth et 

al. 2017a).   
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 Displacement factors (i.e., one ton of fossil carbon emissions avoided per ton of carbon used 

in wood products, tC tC-1) are used to evaluate the substitution impacts of using wood products 

in place of fossil-based materials and fuels (Schlamadinger and Marland 1996). A wide range of 

displacement factors can be found in previous reviews of wood products; for example, 0.25 to 

5.6 (Geng et al. 2017) and -2.3 to 15.0 (Sathre and O′Connor 2010), which varied with differences 

in application (e.g., wood vs steel, wood vs concrete) and the final wood products (Werner et al. 

2005; Knauf et al. 2015; Cintas et al. 2016). The magnitude of displacement factors also depends 

on the development of new wood products that substitute for fossil-based materials (Werner et 

al. 2015; Rüter et al. 2016; Suter et al. 2017). 

Life cycle assessments (LCAs) can be used to study the climate impacts of forest biomass 

production and biomass utilization (Kilpeläinen et al. 2011; Ter-Mikaelian et al. 2015b). All of 

the emissions and sequestration of carbon can be studied by means of an attributional LCA 

(ALCA) in a biosystem, whereas the consequential LCA (CLCA) considers both the direct and 

indirect impacts between the compared systems through time (Cherubini et al. 2011; Lippke et 

al. 2011; Kilpeläinen et al. 2012; Plevin et al. 2013; Ter-Mikaelian et al. 2015b). The results from 

LCAs vary due to the different temporal and spatial (e.g., stand, landscape, regional scale) system 

boundaries set for each study, and different assumptions made in the calculations (Helin et al. 

2013; Buchholz et al. 2014, 2016; Klein et al. 2015). The timing of emissions and sequestration 

of carbon affect the climate impacts of energy biomass and wood products (e.g., Sathre et al. 

2010; Sathre and Gustavsson 2011, 2012; Kilpeläinen et al. 2012, 2017; Cherubini et al. 2013). 

Therefore, climate impact assessments that include the temporal dynamics of carbon exchange 

can be studied by using different time periods (McKechnie et al. 2011; Helin et al. 2016). When 

a dynamic forest-based biosystem is compared to the fossil system, the forest land use option in 

the fossil system should also be quantified (Haus et al. 2014).  

1.2 Aims of the study 

In this work, the main aim was to investigate the climate impacts of carbon sequestration in 

forests, and the substitution of fossil energy (e.g., coal and oil) and fossil-based materials (e.g., 

concrete, steel and plastic) with forest biomass (energy biomass, pulpwood and sawlogs) under 

the boreal conditions in Finland. The study was conducted under varying forest management 

scenarios at stand, landscape and regional levels. The specific objectives were: 

(i) to investigate the net climate impact and economic profitability of biomass production 

and utilization in fossil fuel and fossil-based materials substitution in a Norway spruce 

stand under alternative forest management over 60–100-year rotations (Paper I); 

(ii) to analyze whether the thinning regime affects the climate impacts of forest biomass 

production and utilization less than timber use efficiency and substitution impacts in 

Norway spruce forest areas with alternative initial age structures over a 80-year period 

(Paper II); and 

(iii) to investigate the impacts of alternative forest management scenarios and harvest 

intensities on the climate impacts of forest biomass production and utilization in 

southern Finland over a 40-year period (Paper III).  
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2 MATERIALS AND METHODS 

2.1 System boundaries of the study 

 

Figure 1 System boundaries of the study. 

Figure 1 shows the system boundaries, with flows of carbon in the forest-based biosystem and 

technosystem when forest biomass replaces fossil-based materials and energy in the fossil system. 

In Paper I, the climate impacts of forest biomass production and utilization were calculated by 

employing the CLCA, and were expressed as a difference in net CO2 exchanges (Cnet) between 

the biosystem and fossil system. In Papers II and III, an ALCA was used. The Cnet included carbon 

sequestration in the growth of trees, emissions from soil decomposition, emissions from the 

combustion of processing waste (Papers I–III) and energy biomass (Papers I, III), emissions from 

forest management operations, and from the manufacturing of final wood products (Papers I, II). 

The change in the wood product stocks in use was also considered (Papers I–III). The substitution 

impacts of forest biomass were quantified by using displacement factors (tC tC-1; Papers II, III). 

The climate impacts were calculated under alternative management (Papers I–III) and harvesting 

scenarios (Papers I, III).  

The modelling work strictly obeyed the management scenarios, and therefore, the potential of 

produced biomass in substituting for fossil materials and fossil fuels should be considered as a 

maximum biological potential. The modelling work was conducted at the stand level, with a 

mature stand as a starting point (Paper I), at the landscape level, under alternative initial forest 

age structures (Paper II), and at the regional level (Paper III), for various study periods and 

rotations. The effects of alternative management and harvesting scenarios in the biosystem were 

used to study the sensitivity of climate impacts to the changes in the biomass production (Papers 

I-III). In Paper I, alternative reference managements in the fossil system were used to study the 

sensitivity of climate impacts to indirect impacts of biomass production and utilization.    
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2.2 Outlines of the models used 

2.2.1 SIMA ecosystem model  

A gap-type forest ecosystem model (SIMA) (Kellomäki et al. 2005, 2008) was utilized to simulate 

the net ecosystem CO2 exchange (NEE), and production of timber (pulpwood and sawlogs) and 

energy biomass, in Papers I–III. The NEE refers to the balance between carbon sequestration in 

growth (above- and below-ground living biomass) and carbon emissions from decaying soil 

organic matter (humus and litter).  

In the SIMA model, the growth and development of a tree stand are simulated under the 

influences of the temperature sum (+5˚C), sunlight availability, soil moisture, nitrogen 

availability, atmospheric CO2 concentration, and forest management. The growth of a single tree 

is based on stem diameter growth at breast height (1.3 m above ground level), and is a product of 

potential diameter growth and species-specific multipliers for environmental factors.  

The dynamics of the forest ecosystem is determined by the number and mass of trees as a 

function of their regeneration, growth, and death, based on the availability of resources. Trees 

may die either due to competition for resources or randomly. In addition to dead trees, the litter 

from different components of living trees (foliage, branches, and fine roots) are decomposed in 

the soil system and converted to humus. The decomposition rate of litter and humus is dependent 

on evapotranspiration and the chemical components content (nitrogen, lignin, and ash) of the litter 

and humus. The decomposition of humus controls the mineralization of nitrogen, which makes 

nitrogen bound in humus available for tree growth. 

Management includes planting of a given species at a desired spacing, thinning, nitrogen 

fertilization, final felling, and a varying length of rotations. Timing and frequency of thinning 

over a rotation are determined based on the thresholds for a basal area (cross-sectional area of 

stems of all trees in a stand), which are a function of the dominant height of the trees (i.e., the 

average heights of the 100 tallest trees) in the stand. Whenever a given upper threshold for the 

basal area is reached, at a given dominant height, thinning is triggered, and the basal area is 

reduced to the recommended level. In harvesting, timber production is considered in thinnings 

and final fellings. Pulpwood includes logs with a top diameter of 6.5 to <17 cm, and sawlogs 

include logs with a top diameter of 17 cm and above. Energy biomass denotes for logging residues 

(the tops of stems not suitable for timber, branches, and needles) and coarse roots, and stumps 

that were harvested in final fellings.  

 

2.2.2 Life cycle assessment (LCA) tool 

The LCA tool utilized the SIMA model outputs (i.e., the NEE, and timber and energy biomass 

yields) to estimate annual net CO2 exchange (Cnet, g CO2 m2 a-1), as caused by all the main phases 

included in forest production and biomass utilization in substitution of fossil-based materials and 

fuels (Kilpeläinen et al. 2011; Alam et al. 2017). In addition to NEE, the Cnet included CO2 

emissions from the forest management, manufacturing of wood products from timber, the 

degradation of wood products, and combustion of energy biomass and of the processing waste of 

timber (Papers I–III). The annual stock change in wood products (Papers II, III) was calculated 

as the annual difference between inflow of wood products into the technosystem and outflow of 

wood products (emissions from degradation) (Karjalainen et al. 1994). The substitution impacts 

were quantified by using product-specific displacement factors (Papers II, III), the default values 

of which were 0.5, 1, and 2 for processing waste/energy biomass, pulp/paper products, and sawn 

wood (tC tC-1), respectively (Schlamadinger and Marland 1996; Sathre and O´Connor 2010; 
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Geng et al. 2017). In addition, the timber use efficiency (a proportion of roundwood used for 

wood products) was also used in the calculation of the Cnet (Paper II).   

The LCA tool considers Cnet as giving negative (-) values when CO2 flow was from the 

atmosphere into the ecosystem, and positive (+) values for the reverse direction of CO2 flow. The 

values for carbon sequestration in growth, increasing stock in wood products, and substitution 

benefits were considered to be negative (-). The Cnet was further used to calculate radiative forcing 

(RF, nW m-2; Ramaswamy et al. 2001) (Paper II) to quantify the impacts of forest biomass 

production and utilization on atmospheric CO2 concentrations (Kilpeläinen et al. 2012). 

2.3 Management and harvesting scenarios of model-based simulations  

In Paper I, the effects of forest management on the net climate impacts of forest biomass 

production and utilization in fossil fuel (coal and oil) and fossil-based material (concrete, steel 

and plastic) substitution were investigated in a Norway spruce stand on a medium fertile site in 

central Finland (Joensuu region) over 60–100-year rotations (Table 1). In the simulations, current 

business-as-usual Finnish forest management recommendations for thinning, aimed at producing 

timber (Äijälä et al. 2014) and maintaining an initial stand density of 2,500 stems ha-1, were used 

as a baseline. Alternative management scenarios included 10–30% higher or lower stocking in 

thinnings than in the baseline, and/or nitrogen fertilization (150 kg N ha-1 in thinnings). Harvest 

intensities included harvesting of only timber and timber with logging residues, coarse roots, and 

stumps in final fellings (Table 1). For the net climate impact calculations, either baseline or 

unthinned scenarios of the biosystem were used as a reference management in the reference fossil 

system. In addition, the fossil system was considered without the NEE of CO2 (Paper I).  

In Paper II, the effects of the thinning regime, substitution impacts, and timber use efficiency 

on climate impacts of biomass production and utilization were analyzed in model forest areas in 

central Finland (Joensuu region) over a 80-year period (Table 1). The area consisted of 80 pure 

Norway spruce stands on a medium fertile site type, and it had alternative initial age structures at 

the beginning of the simulations (Table 1). The initial age structures of the forest area were: i) 

right-skewed (mostly young stands); ii) normally distributed (mostly middle-aged stands); and 

iii) left-skewed (mostly mature stands). The current business-as-usual thinning recommendations 

to produce timber (Äijälä et al. 2014) were used as a baseline. Alternative thinning regimes 

included 20% higher or lower stocking in thinnings than in the baseline. Only timber was 

harvested in the thinnings and final fellings (Table 1). 

In Paper III, the climate impacts of forest biomass production and utilization were investigated 

in southern Finland (old Forest Centre Units 1–10). The effects of alternative forest management 

scenarios and harvest intensities were studied in three sub-regions (namely southern, western, 

and eastern Finland) over a 40-year period (2016–2055), using the 10th (2004–2008) National 

Forest Inventory (NFI) forest data for upland mineral soils as input for the simulations (Table 1). 

Forest site fertility ranged from poor (CT) to fertile (OMT) site types (Table 1). The current 

business-as-usual thinning recommendations to produce timber (Äijälä et al. 2014), and a final 

felling made at a tree breast height diameter (DBH) of 26 cm, were used as a baseline. Alternative 

management scenarios included 20% higher or lower stocking in thinnings than in the baseline, 

and the use of final felling made at a DBH of 22 cm (Table 1). In alternative harvest intensities, 

logging residues, with and without coarse roots and stumps, were harvested, in addition to the 

timber in the final fellings (Table 1).  
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Table 1 Parameters and methods used in the simulations and forest management scenarios used 

in Papers I–III. T = only timber, T+BN = timber and logging residues, T+BNR = timber, logging 
residues, coarse roots, and stumps.  

Parameter/method Paper I Paper II Paper III 

Simulation location Middle boreal zone, 

central Finland, 

Joensuu (62°39'N, 

29°37'E) 

Middle boreal zone, 

central Finland, 

Joensuu (62°39'N, 

29°37'E) 

Southern Finland 

(between 60° and 

64° N) 

Simulation approach Stand level Landscape level Regional level 

Tree species Norway spruce  Norway spruce  Norway spruce, 

Scots pine, birch  

Forest site type Medium fertile (MT) Medium fertile (MT) All site fertility types  

(CT, VT, MT, OMT) 

Initial data Mature stand Age structures 

(normal-, right-, left-

skewed) 

10th NFI  

Initial stand density  

(seedlings ha-1) 

2,500 2,000 2,000 (Norway 

spruce, Scots pine), 

1,600 (birch) 

Pulpwood top diameter 

(cm) 

6.5 to <17  6.5 to <17  6.5 to <17  

Sawlog top diameter (cm) ≥17 ≥17 ≥17 

LCA method Consequential  Attributional  Attributional 

Management scenarios    

Business-as-usual 

management (baseline) 

Yes Yes Yes 

Unthinned (as a 

reference) 

Yes No No 

Increase in stocking in 

thinning (%) 

± 10, 20, and 30 ± 20 ± 20 

Nitrogen fertilization (kg 

N ha-1) 

150 kg in thinning 

years 

No No 

Timing of final felling (FF) Fixed rotation 

length 

Fixed rotation length FF done at DBH 

26/22 cm 

Simulation time (years) 60, 80, and 100 80 40 (2016–2055) 

Harvest intensity    

Harvest of timber (in 

thinning and final felling) 

and energy biomass (in 

final felling) 

T 

T+BNR 

T T 

T+BN 

T+BNR 
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2.4 Analysis of simulation outputs  

The effects of alternative forest management and harvesting scenarios on forest biomass 

(pulpwood, sawlogs, and energy biomass) yield were calculated over the study period (Table 2; 

Papers I, III). The economic profitability of biomass production was quantified, based on the net 

present value (NPV, 3% interest rate) under alternative forest management scenarios, and in 

different sub-regions (Table 2; Papers I, III). Additionally, in Paper I, the sensitivity of the annual 

NPV to variable interest rates (2% and 4%) was analyzed (Table 2).  

The climate impacts were analyzed at stand level (Paper I), landscape level (Paper II), and 

regional level (Paper III) under alternative forest management and/or harvesting scenarios (Tables 

1, 2). The effects of forest management and/or harvesting scenarios on the NEE, and the 

substitution impacts of using biomass and carbon stock changes in wood products, were analyzed 

annually (Paper II), and over the study period or varying rotation periods (Papers I, III) (Table 2). 

In Paper II, the climate impact was calculated for the 80-year study period, and expressed as 

cumulative radiative forcing (CRF, nW m-2). It was also used to calculate the climate change 

mitigation efficiency (CCME, nW m-3) (Braun et al. 2016) of the biomass production and 

utilization (Table 2).  

The sensitivity of climate impacts to the varying displacement factors used in substitution was 

analyzed by changing the default values (0.5, 1, and 2) of the displacement factors (tC tC-1) for 

energy biomass and/or processing waste, pulp/paper products, and sawn wood, respectively 

(Papers II, III). In the analysis, the default displacement factors were doubled (to 1, 2, and 4) 

(Papers II, III), halved (0.25, 0.5, and 1) (Paper II), and lowered (0, 0.5, and 1) (Paper III) for the 

respective components of the biomass. The sensitivity of climate impacts to timber use efficiency 

was also analyzed by increasing/decreasing the default efficiency (i.e., 50% of wood products). 

High efficiency denoted a 70% use of wood products and low efficiency denoted a 30% use of 

wood products (Paper II). 

 

Table 2 Included parameters, with units, for calculations used in Papers I–III. t = ton (i.e., 

Megagram, Mg). 

 

Parameter Paper I Paper II Paper III 

Sawlog yield m3 ha-1 a-1 m3 ha-1 a-1 Mg ha-1 a-1 

Pulpwood yield m3 ha-1 a-1 m3 ha-1 a-1 Mg ha-1 a-1   

Energy biomass yield t ha-1 a-1 − Mg ha-1 a-1 

Processing waste t CO2 ha-1 a-1 g CO2 m-2 a-1 Mg ha-1 a-1 

Net present value (NPV)  € ha-1 a-1 (2–4% 

interest rates) 

−  € ha-1 (3% 

interest rate) 

Net ecosystem CO2 exchange (NEE) t CO2 ha-1 a-1 g CO2 m-2 a-1 Mg CO2 ha-1 a-1 

Climate impact (Cnet) t CO2 ha-1 a-1 g CO2 m-2 a-1, 

g CO2 m-2 

Mg CO2 ha-1 a-1  

Substitution impacts t CO2 ha-1 a-1 g CO2 m-2 a-1 Mg CO2 ha-1 a-1 

Annual stock change in wood 

products  

t CO2 ha-1 a-1 g CO2 m-2 a-1 Mg CO2 ha-1 a-1 

Cumulative radiative forcing (CRF) − nW m-2  − 

Climate change mitigation efficiency 

(CCME) 

− nW m-3  − 
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 3 RESULTS 

3.1 Effects of forest management on biomass yield and the economic profitability of forest 

production 

In Paper I, maintaining 10–30% lower stocking, compared to the baseline (with timber harvest), 

increased mean annual pulpwood yields by up to 15% and decreased sawlog yields by up to 17% 

under 60–100-year rotations (30% lower stocking under 60-year rotation as an exception). 

Maintaining 10–30% higher stocking, compared to the baseline, increased mean annual sawlog 

yields and decreased pulpwood yields under 80–100-year rotations (60-year rotation as an 

exception). Nitrogen fertilization with lower stocking increased pulpwood yields by up to 14%, 

but it could not increase sawlog yields, in comparison with the baseline. Nitrogen fertilization 

alone, and simultaneously with higher stocking, increased the mean annual sawlog yield by up to 

6%, compared to the baseline. The mean annual yield of energy biomass (logging residues, 

together with coarse roots and stumps) increased by up to 46% by maintaining higher stocking, 

compared to baseline (with energy biomass harvest), and applying nitrogen fertilization, and 

combining both under all rotations. In general, the highest mean annual yields of pulpwood and 

energy biomass resulted over a 60-year rotation, and the highest annual yields of sawlogs resulted 

over 80–100-year rotations (Paper I).  

At the regional level (Paper III), maintaining 20% lower stocking produced higher yields of 

sawlogs and pulpwood (by up to 80% and 48% higher, respectively), during the initial two 

decades of the 40-year (2016–2055) study period, compared to the baseline. In the last two 

decades, the yields of sawlogs and pulpwood decreased mostly in the final 10-year period (by up 

to 38% and 15% lower, respectively), compared to the baseline. Maintaining higher stocking also 

decreased sawlog yields in the last two decades, and increased pulpwood yields in the final 10-

year period. Maintaining lower stocking resulted in higher energy biomass yields during the 

initial two decades, but produced lower yields during the last two decades. Maintaining higher 

stocking increased energy biomass yields during the last two decades of the study period (Paper 

III).  

At the regional level (Paper III), mean annual total biomass (pulpwood, sawlogs, and energy 

biomass together) yields over the 40-year study period increased by up to 61% by maintaining 

lower stocking, compared to the baseline. The final felling made at a DBH of 22 cm resulted in 

higher total biomass yields than that of the final felling made at a DBH of 26 cm. Biomass yield 

was, on average, higher in the southern and eastern sub-regions than in the western one (Paper 

III). 

In general, producing timber (pulpwood and sawlogs) together with energy biomass (logging 

residues, with coarse roots and stumps) provided higher mean annual economic profitability 

(NPV, interest rates 2–4%), compared to the baseline with only a timber harvest (30% higher 

stocking as an exception) (Paper I). The NPV (with a default interest rate of 3%), over 60-, 80-, 

and 100-year rotations, increased by up to 14, 12, and 11%, respectively, compared to the baseline 

(Paper I). The corresponding ranges of increasing NPV with 2% and 4% interest rates were 11–

21%, 10–18%, and 8–18% for the rotations, respectively. On average, the highest NPV was 

gained by maintaining 10–30% lower stocking than the baseline and nitrogen fertilization 

simultaneously (Paper I); however, with a 2% interest rate, maintaining lower stocking associated 

with production of both timber and energy biomass together decreased NPV over a 100-year 

rotation (Paper I). 

 At the regional level (Paper III), producing timber together with energy biomass provided 

higher NPV (interest rate of 3%), compared to the baseline, over the 40-year study period (20% 
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higher stocking under final felling made at a DBH of 26 cm as an exception). Maintaining 20% 

lower stocking produced higher NPV, compared to the baseline, and up to 30% higher NPV 

resulted when final felling was made at a DBH of 22 cm. NPV was, on average, higher in the 

southern and eastern sub-regions than in the western one (Paper III). 

3.2 Climate impacts of carbon sequestration and the substitution of fossil materials and 

energy 

Maintaining lower stocking (Papers I–III), compared to the baseline, and final felling made at a 

DBH of 22 cm (Paper III) decreased both net carbon sequestration and climate impacts (Table 3). 

Maintaining higher stocking (Papers I–III) and using nitrogen fertilization (Paper I), which could 

enhance net carbon sequestration, also increased the climate impacts (lower absolute values), 

compared to the baseline (Table 3). At the landscape level, higher stocking also increased climate 

impacts in all of the initial age structures (Table 3), and the climate impacts were down to -33.5 

nW m-2 over the 80-year study period (Paper II). At the regional level (Paper III), climate impacts 

over the 40-year study period were the greatest under final felling made at a DBH of 26 cm (Table 

3), and the contribution of the net carbon sequestration to total climate impact was between 7 and 

25%, depending on the management scenario (Paper III). 

The substitution impacts of using wood products (sawn wood and pulp/paper products), and 

processing waste (Papers I–III) and energy biomass (Papers I, III) generated climate benefits.  

The larger share of sawlogs in higher stocking, compared to that in the baseline, enhanced the 

climate benefits over the 80–100-year rotations (Paper I). Contrarily, a larger share of pulpwood 

than sawlogs in lower stocking produced the lowest substitution impacts, especially over the 60-

year rotation (Paper I). An increased production of pulpwood and sawlogs also enhanced the 

cumulative climate impacts during the initial two decades of the 80-year study period in the 

initially left-skewed age structure at landscape level (Paper II). This was opposite to the right-

skewed age structure, in which a high initial growth rate increased annual climate impacts in the 

initial half of the study period. The greatest cumulative climate impacts were finally generated in 

the initially right-skewed age structure, due to cumulative substitution impacts and the lowest 

emissions from the stock change of wood products (Paper II).  

At the regional level (Paper III), the substitution impacts of using timber began from the start 

of the 40-year study period, and accumulated during the initial two decades, when higher amounts 

of sawlogs and pulpwood entered the technosystem, in the case of lower stocking under final 

felling made at a DBH of 22 cm, compared to the baseline. Additionally, a larger share of sawlogs 

than pulpwood in lower stocking generated higher substitution impacts, compared to the baseline 

over the study period. The substitution impacts were most enhanced when final felling was made 

at a DBH of 22 cm (Paper III). The contributions of the substitution impacts, and the increase of 

carbon stock in sawn wood and pulp/paper products to climate impacts, were 33–43%, 10–15%, 

and 7–15%, respectively, depending on the management over the study period. Both the 

substitution impacts and climate impacts were greater in the southern and eastern sub-regions, 

compared to the western one (Paper III). 

The harvesting of timber, together with logging residues, coarse roots, and stumps, increased 

the climate impacts (Papers I, III), compared to harvesting only timber in the final fellings (Table 

3). Energy biomass production with timber initially caused higher emissions, compared to the use 

of fossil counterparts; however, over the rotation, the use of energy biomass with timber 

production generated climate benefits against the fossil counterparts (Paper I). 

The climate impacts were also affected by the reference management used in the fossil system 

(Paper I). The greatest climate benefits were found over 80–100-year rotations, when using the 



21 

 

 

 

baseline as a reference, as opposed to over a 60-year rotation using unthinned as a reference. 

When the fossil system was considered without the NEE of a forest stand, all the management 

scenarios and rotations (60–100 years) provided greater climate impacts, compared to the other 

two references (Paper I).  

3.3 Sensitivity of climate impacts to displacement factors and timber use efficiency 

In Paper II, the doubled displacement factors (1, 2, and 4 tC tC-1) produced 114% greater cooling 

climate impacts (negative CRF) when maintaining 20% higher stocking, compared to the baseline 

with default factors. Halved factors (0.25, 0.5, and 1 tC tC-1) produced 64% lower cooling climate 

impacts when maintaining 20% lower stocking, compared to the baseline with default factors. 

Both these greatest and least cooling climate impacts were found under the initially left-skewed 

age structure over the 80-year study period. Similarly, with the high (70% of wood products) and 

low (30% of wood products) timber use efficiency, the cooling climate impacts when maintaining 

20% higher or lower stocking were 59% higher and 61% lower, compared to the baseline with 

default timber use efficiency, respectively, under the same initial age structure (Table 3) (Paper 

II).  

The highest and lowest CCMEs over the 80-year study period were found in higher stocking 

with doubled displacement factors, and lower stocking with halved factors, respectively (Paper 

II). However, the CCME of maintaining higher stocking was higher, compared to the substitution 

impacts, between years 2 and 46, depending on the initial age structures. In general, the magnitude 

of the CCME was greater in the initially right-skewed and normal age structures, compared to the 

left-skewed age structure, when using the default and halved factors. However, the greatest 

CCME over the whole study period was found in the initially left-skewed age structure when 

using higher stocking with doubled factors, which was 125% greater, compared to the baseline 

with default factors (Paper II). Similarly, the management scenarios with high and low timber use 

efficiency followed a trend similar to the case of the displacement factors, although with a smaller 

magnitude of CCME (Paper II).  

 In Paper III, the use of doubled (1, 2, and 4 tC tC-1) displacement factors increased climate 

impacts up to 84%, and the use of lower factors (0, 0.5, and 1 tC tC-1) decreased it up to 58% over 

a 40-year study period. Doubled displacement factors produced the greatest climate impacts when 

maintaining 20% higher stocking under final felling made at 22 cm, and harvesting timber 

together with logging residues, coarse roots, and stumps. Lowered factors produced the lowest 

climate impacts when maintaining 20% lower stocking under final felling made at 26 cm, and 

harvesting timber only. The relative contribution of the substitution impacts to the climate 

impacts shifted up to 60% and down to 22% when the default displacement factors were doubled 

and lowered, respectively. The use of variable displacement factors, as a consequence, led to 

changes in the relative contributions of net carbon sequestration (NEE) and carbon stock of sawn 

wood and pulp/paper products to the total climate impacts (Paper III).  
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Table 3 Relative change (%) in climate impact under alternative management scenarios and 

harvest intensities, compared to the baseline with timber harvest in Papers I–III. + = positive, - = 

negative impact, ↔ = no change in climate impact, compared to that of the baseline. Relative 

increases (%) are denoted as follows: in Paper I, 1–100% = +, 101–200% = ++, and 201–300% = 

+++; in Paper II, 1–50% = +, 51–100% = ++, and 101–150% = +++; in Paper III, 1–4% = +, 5–8% 

= ++, and 9–12% = +++. The same ranges also corresponded to the relative decreases (%). T = 

only timber, T+BN = timber and logging residues, T+BNR = timber, logging residues, coarse roots, 

and stumps, DF = displacement factor, FF = final felling, DBH = tree diameter at breast height. *In 

Paper I, climate impact denotes net climate impact averaged over three rotations (60, 80, 100 

years). 

 

4 DISCUSSION AND CONCLUSIONS 

4.1 Evaluation of the modelling approaches  

This study aimed to investigate the climate impacts of carbon sequestration in forests, and the 

substitution of fossil energy (e.g., coal and oil) and fossil-based materials (e.g., concrete, steel, 

and plastic) with harvested biomass (energy biomass, pulpwood, and sawlogs) under Finnish 

boreal conditions, using varying forest management and harvesting scenarios. The implications 

of forest management and harvest intensity in the final felling were studied, in terms of how this 

would affect the climate impacts and economic profitability of biomass production. The study 

was undertaken at stand, landscape, and regional levels by integrating forest ecosystem model 

simulations (SIMA) and a LCA tool. The impacts of climate change on carbon sequestration in 

forests and consequent effects on mitigation were excluded from the analysis.   

Harvest 

intensity

Paper I

10 20 30 10 20 30 10 20 30 10 20 30

T ++ ++ ++ ++ ++ ++ - - - - - -

T+BNR ++ ++ +++ +++ +++ +++ + - - + + +

Paper II

Initial age 

structure

Default 

values

Doubled 

DF

Halved 

DF

High 

efficiency

Low 

efficiency

Default 

values

Doubled 

DF

Halved 

DF

High 

efficiency

T Normal + ++ - ++ - - ++ - - + - -

Right-skewed + ++ - + - - ++ - + -

Left-skewed + +++ - ++ - - +++ - - + - -

Paper III

Sub-regions 26 22 26 22

T South + ↔ - - - -

West + ↔ - - - - - -

East + ↔ - - - - - -

T+BN South + ↔ - - - -

West + - - - - - - -

East + + - - - - - -

T+BNR South + + - - - -

West + + - - - -

East + + - - - -

FF at DBH (cm)

Low 

efficiency

20% lower stocking

Without fertilization

FF at DBH (cm)

% changes compared to baseline (T)

20% higher stocking

20% higher stocking

Management scenarios

With fertilization Without fertilization With fertilization

Higher stocking (%) Lower stocking (%)

20% lower stocking

Management scenarios

Management scenarios
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The LCA tool (Kilpeläinen et al. 2011) has previously been used to study the Cnet of forest 

biomass production and utilization, inside and outside forest ecosystems (Routa et al. 2011a; 

Alam et al. 2012, 2013, 2017; Kilpeläinen et al. 2012, 2014, 2016b; Torssonen et al. 2016). In 

this work, the ALCA (Papers II, III) utilized all the flows of ecosystem and technosystem carbon 

in calculating Cnet for management and harvesting scenarios. The CLCA (Paper I) was used to 

study both the direct and indirect impacts of biomass production and utilization on climate 

impacts, starting from a mature stand, with alternative reference managements in the fossil 

system. The tool enabled assessment of the climate impacts of forest biomass production and 

utilization in substituting for fossil-based materials and energy, for different time periods and 

initial conditions of forests. Radiative forcing (Paper II), calculated based on the Cnet, provided a 

further assessment of the time dynamics of the climate impacts, based on the change in 

atmospheric CO2 concentrations. 

The performance of the SIMA model (Kellomäki et al. 2005, 2008) has been previously 

documented (Kellomäki et al. 2008; Routa et al. 2011a), and the simulated growth from that was 

in agreement with the measured volume growth, based on NFI data of permanent sample plots in 

Finland. The simulated growth data of the SIMA model showed a good correlation with that of 

the empirical growth and yield model, Motti, in the case of volume growth in Norway spruce and 

Scots pine (Routa et al. 2011a). Moreover, simulated data regarding the response in growth of 

Norway spruce to nitrogen fertilization is in good agreement with the measured data derived from 

long-term experiments (Mäkipää et al. 1998).  

4.2 Effects of forest management on biomass yield, and the economic profitability of forest 

production 

At the stand and regional levels, changes in thinning intensity (higher/lower stocking in thinning) 

(Papers I, III), nitrogen fertilization (Paper I), earlier final felling (Paper III), and intensified 

harvest in final felling (Papers I, III) could increase the mean annual biomass yield, compared to 

the baseline, but the effects of management on the yield of biomass components (e.g., pulpwood 

and sawlogs) varied among the management scenarios. For example, maintaining lower stocking, 

compared to baseline, resulted in higher annual pulpwood yields, but the annual yield of sawlogs 

was the highest when higher stocking, compared to baseline, was maintained in combination with 

nitrogen fertilization and using long rotations (80–100 years) (Paper I).  

Maintaining lower stockings and intensifying biomass harvesting were able to increase 

economic profitability (NPV), compared to the baseline, due to earlier income from thinning, and 

additional income from energy biomass (Paper I), as also shown by previous studies (Routa et al. 

2011b, 2012; Zubizarreta Gerendiain et al. 2016). In absolute terms, the NPV (default interest 

rate 3%) increased by up to 5 € ha-1 a-1 with lower stocking, compared to the baseline (Paper 1). 

This was also the case at the regional level (Paper III), but the values were about three times 

higher than those obtained at the stand level, especially when 20% lower stocking was used. This 

was mainly because of using a short study period (i.e., 40 years) in the regional analysis. Other 

reasons may include tree species and site fertility, which differed between stand- and regional-

level studies, and affected the NPV considerably (Routa et al. 2011b; Hedwall et al. 2014). 

Although higher stocking delayed harvest and income, it was found that maintaining up to 20% 

higher stocking with an intensified biomass harvest could increase NPV by up to 3 € ha-1 a-1, 

compared to the baseline (Paper I), mainly due to the additional income generated from increased 

yields of sawlogs. Also, at the regional level, maintaining 20% higher stocking increased NPV, 

compared to the baseline, when earlier final felling was performed, but later final felling 
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decreased NPV, owing to lower incomes from decreased and delayed timber yields, compared to 

the baseline (Paper III). 

The use of a higher interest rate (e.g., 4%) tended to favor shorter rotation over long rotation, 

because the higher interest rate has a smaller effect on future costs and income, thus it decreases 

the present value of the forests (e.g., Brukas et al. 2001; Grege-Staltmane and Tuherm 2010; Repo 

et al. 2015b). In this study, using 2–4% interest rates, the annual NPV was found to be generally 

higher when using short rotations (60 years) compared to long rotations of 80–100 years (Paper 

I). This was due to earlier income from the timber and energy biomass (Routa et al. 2012). In the 

case of long rotations, the income from increased yields of sawlogs, due to fertilization, could not 

be compensated for by the costs associated with fertilization (up to four applications) under an 

increased rate of interest (e.g., 3–4%). This was contrary to the case of the short rotations with a 

high interest rate, in which the costs for fertilization (up to two applications) decreased and the 

NPV from timber increased over the studied period (Paper I).  

4.3 Climate impacts of biomass production and utilization 

The climate impacts of biomass production and utilization were decreased by maintaining lower 

stocking in forests (Papers I–III), and making final fellings earlier (Paper III), compared to the 

baseline (Table 3). This was caused by decreased net carbon sequestration and increased decay 

of logging residues from earlier thinnings and final fellings (Kallio et al. 2013; Mika and Keeton 

2015; Noormets et al. 2015). Maintaining higher stocking, on the other hand, increased net carbon 

sequestration in forests and enabled the logging residues to decay later, due to delayed thinnings, 

eventually increasing the climate impacts, compared to the baseline (Table 3) (Papers I–III). 

Nitrogen fertilization with higher stocking increased the climate impacts further (Paper I), but 

using up to 20% higher stocking and an earlier final felling may be the best option to increase 

both the climate impacts and economic returns, compared to the baseline (Papers I, III). 

Previously, it has been suggested that cost-effective climate benefits of forest biomass could be 

generated by increasing the growing stock of forests (Richards and Stokes 2004; Eriksson 2015; 

Vass and Elofsson 2016).  

 Generally, young forest landscapes have the potential to increase the climate benefits of the 

biosystem, when harvested wood products and energy biomass are used for substitution of fossil-

based materials and fuel (e.g., Hennigar et al. 2008; Gustavsson and Sathre 2011). In the initially 

right-skewed (mostly young) and normal (mostly middle-aged) forest age structures, it was found 

that using higher stocking increased the net carbon sequestration and climate impact most, i.e., 

by up to 8 and 11%, respectively, compared to the baseline (Paper II). A regional study (Paper 

III) revealed a similar trend. For example, forests in the southern and eastern sub-regions in 

Finland, consisting mainly of younger stands (Ylitalo 2014), increased climate impacts by up to 

34%, compared to that in western sub-regions.   

The substitution impacts were generally higher when using 80–100-year rotations, compared 

to a 60-year rotation, due to the increased production of sawn wood (Paper I). A previous study 

has also found the greatest climate impacts of forest biomass over long rotations (ca. 100 years) 

in Norway spruce forest, with increased sawlog production for fossil-based material substitution 

(Pingoud et al. 2010). At the landscape level (Paper II), both the substitution impacts and the 

lowest emissions from wood product stocks produced the greatest climate impacts in the last half 

of the 80-year study period for a right-skewed age structure. Conversely, in an initially left-

skewed age structure, the substitution impacts and increased stocks of wood products 

compensated for the impacts of decreasing net carbon sequestration, and caused the greatest 

cumulative climate impacts in the initial two decades of the study period (Paper II). This was also 
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the case during the initial two decades of the 40-year study period in a regional-level analysis, 

when the stock of wood products increased and the substitution impacts accumulated forward 

from the increased amount of timber (Paper III). At the regional level, the substitution impacts 

increased by up to 29% over the study period, when maintaining lower stocking with earlier final 

felling, compared to the baseline. In this case, the contribution of a carbon stock of sawn wood 

to the climate impacts was higher than for pulp/paper products, regardless of the timing of final 

felling (Paper III). Sawn wood products retained carbon out of the atmosphere for longer than 

pulp/paper products (Bowyer et al. 2010; Pingoud et al. 2010; Bergman et al. 2014), and the 

substitution impacts of wood products, along with increased carbon stocks, enhanced the climate 

impacts further, which is in line with previous studies (Jasinevičius et al. 2015; Nepal et al. 2016; 

Gustavsson et al. 2017; Xu et al. 2017).  

When logging residues, coarse roots, and stumps as energy biomass, together with timber, 

were harvested in final fellings, the climate impacts increased the most, compared to the 

harvesting of only timber (Table 3) (Papers I, III). This was because the intensified harvest of 

logging residues and roots decreased CO2 emissions, due to the avoidance of their onsite decay 

and their use in offsetting fossil fuels, which has been found to increase their climate impact in 

the long term, instead of them being left in the forest (e.g., Sathre and Gustavsson 2011, 2012; 

Repo et al. 2012, 2015a; Gustavsson et al. 2015). Using energy biomass initially produced higher 

emissions compared to that of fossil fuels, however, in the long term, climate benefits were gained 

due to carbon sequestration and the use of wood products (Paper I). Maintaining 20% lower 

stocking in thinning is an exception (Paper I), since it decreased carbon sequestration in forests, 

due to increased thinnings, that could not produce the climate benefits of substitution in the long 

term.  

Using high displacement factors and high timber use efficiency increased cooling climate 

impacts under higher stocking in all of the initial age structures of forests (Table 3) (Paper II). In 

addition, the effects of forest management on climate impacts were small, compared to those of 

the displacement factors. The CCME per cubic meter of forest biomass was higher for about 2–

46 years when maintaining higher stocking in forests, after which, maintaining lower stocking 

with high displacement factors, or timber use efficiency, increased the CCME, depending on the 

initial age structure of the forests (Paper II). This was because the use of high displacement 

factors, or timber use efficiency, compensated for the loss of carbon sequestration in lower 

stocking, but they lowered the climate benefits of carbon sequestration by using higher stocking. 

Use of high displacement factors also favored earlier final fellings and the use of energy biomass 

in substitution (Paper III). Therefore, in assessing the climate impacts of forest-based biosystems 

in the long term, the short-term development of sinks, integrated with substitution impacts and 

stocks of wood products, should be considered (Eriksson et al. 2007; Lippke et al. 2011; Alam et 

al. 2017; Smyth et al. 2017a, 2017b).  

The magnitude of the default values for the displacement factors used in this study was in line 

with those of previous studies (e.g., Sathre and O’Connor 2010; Knauf et al. 2015; Geng et al. 

2017), but the development of wood-based products, and their uses in substituting for fossil-based 

materials in the textile, furniture, and construction sectors, may affect the magnitude of the 

displacement factors currently used (Werner et al. 2015; Rüter et al. 2016; Suter et al. 2017). For 

example, the use of wood-fibre-based viscose as a substitute for oil-derived fibers in textiles is 

expected to increase the factors up to 2.2 tC tC-1 (Rüter et al. 2016). In the case of sawn wood as 

a substitute for concrete and aluminium, the factors have been found to be 2.74 and 5.1 tC tC-1, 

respectively (Cintas et al. 2016; Suter et al. 2017). On the other hand, the development of fossil 

systems, and the use of different functional units, will affect the displacement factors of wood 

products (Sathre and O’Connor 2010; Ter-Mikaelian et al. 2015a; Smyth et al. 2017a). In 

addition, the assumption that all wood products substitute fossil-based materials, which may not 

be the case all the time, may exaggerate the substitution impacts (Soimakallio et al. 2016). In this 
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work, the same displacement factors were used across the scenarios to study the effects of 

management and harvest intensity on climate impacts of biomass production and utilization. 

Therefore, the use of different displacement factors affected only the level of climate impacts and 

did not change the conclusion on the preference of forest management. 

The climate impacts of forest biomass production and utilization were also dependent on the 

reference forest management used in the fossil system (Paper I). When the fossil system was 

considered only with the emission factors for fossil materials and fuels, the biosystem generated 

the greatest climate benefits, and over long rotations. When unthinned was selected as a reference, 

climate benefits for the biosystem were, in general, lower than in the case of the baseline as a 

reference, and the greatest climate benefits were gained for the 60-year rotation. When the 

baseline management was used as a reference, long rotations (80–100 years) generated the 

greatest climate impacts (Paper I). Variations in climate benefits in the biosystem, in comparison 

to the fossil system, could be explained by the fact that an increased number of thinnings (up to 

four) over long rotations resulted in a higher loss of carbon stocks in the forests than in the short 

rotations (60 years), where the number of thinnings was up to two. In addition, higher mortality 

occurred in the unthinned stand over longer time periods, which benefitted the biosystem in the 

net climate impact calculation. In the long term, unthinned stands may be vulnerable to abiotic 

and biotic risks, and natural mortality (Blennow et al. 2010; Lundmark et al. 2014), which also 

affects the climate impacts.  

In Finland, the total emissions, excluding the LULUCF sector, in 2015 were about 56 million 

Mg CO2 eqv (Official Statistics of Finland 2017). Conversely, the LULUCF sector acted as a 

carbon sink (26 million Mg CO2 eqv), albeit harvested wood products were excluded. According 

to Paper III, by including harvested wood products, forests in southern Finland would have the 

potential to achieve climate impacts (5.1–5.8 Mg CO2 ha-1 a-1, i.e., 45–51 million Mg CO2 a-1 

scaling up to the total study area), on average, over the next 40 years, by maintaining higher 

stocking in thinnings and intensifying the biomass harvest in final fellings. Maintaining higher 

stocking produced the greatest climate change mitigation impact per harvested timber (1.0, 1.1, 

and 0.9 Mg CO2 m-3) in the normal (mostly middle-aged), right-skewed (mostly young), and left-

skewed (mostly mature) forest structures, respectively (Paper II) (data not shown in Figures). 

This is somewhat higher than values documented in other studies (0.47–0.72 Mg CO2 m-3, Werner 

et al. 2010; Lundmark et al. 2014; Braun et al. 2016), in which the harvesting of logging residues 

and/or stumps was included, although this was not included in Paper II. The results of the climate 

impacts in Paper III are also comparable to the ranges of 2.3 to 8.1 Mg CO2 ha-1 a-1, depending 

on management, in the national-level studies of Sweden and Switzerland (Werner et al. 2010; 

Lundmark et al. 2014).  

4.4 Conclusions   

This study found that the greatest climate impacts of forest biomass production and utilization 

under Finnish boreal conditions were gained by maintaining up to 20% higher stocking in 

thinnings, and using nitrogen fertilization and 80–100-year rotations. These measures increased 

carbon sequestration, along with timber (especially production of sawlogs) and energy biomass 

yields, that could be used in substituting for fossil-based materials and energy. There was a 

tradeoff between management scenarios, however, between the greatest climate impacts and the 

economic profitability of biomass production. The greatest climate impacts were found when 

intensified biomass harvesting in final felling (timber, together with logging residues, coarse 

roots, and stumps) was performed, and the prominent regions for increasing climate impacts over 

the next 40-year period were the southern and eastern sub-regions of Finland. It was also found 

that the effects of substitution and timber use efficiency on climate impacts were higher than 
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those of thinning regimes. Furthermore, the climate impacts were also found to be sensitive to 

the initial conditions set for the analyses, which affected the timing of the climate impacts, and 

the preference for forest management in climate change mitigation. This indicates that 

management measures, together with the initial conditions of forests, should be considered when 

evaluating efficient options for increasing climate impacts in forests, and in substituting fossil-

based materials and energy with forest biomass. 
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