%0 Articles %T Tree growth dynamics and ecological recovery in Kitulangalo miombo woodlands Morogoro, Tanzania %A Njoghomi, Elifuraha E. %D 2021 %J Dissertationes Forestales %V 2021 %N 313 %R doi:10.14214/df.313 %U http://dissertationesforestales.fi/article/10554 %X

This research focuses on stand dynamics and ecological recovery in miombo woodlands, Morogoro, Tanzania. The study uses the Kitulangalo Permanent Sample Plots (PSPs) to analyse tree species’ site-specific growth, regeneration dynamics, and stand development using empirical and modeling approaches. The high number of tree species in miombo necessitated the formulation of three species groups involving 1) trees that grow relatively rapidly to be dominants in top canopy layers 2) trees that stay mainly in the lower and middle canopy levels and 3) trees that grow slowly but persistently and may eventually rise to dominant and codominant canopy positions applied in studies I and III. Study III also applies three harvesting alternatives, which align with the recommended harvesting practices for these woodlands.

Diameter increment varied with the change in basal area growth across species groups, reaching a maximum of 3.2 cm (group 1) during 2008-2016. Density-dependent mortality and ingrowth also varied with species group as higher mortality rates dominated the lower and middle canopy layers due to asymmetrical competitions. Fencing the plots prompted thick grass cover. The drop in the total number of regeneration stems and the simultaneous increase in the number of main stems in fenced areas and dense plots indicated a self-thinning process induced by competition. This is linked to multi-stem regeneration undergoing a morphological transformation into single-stem saplings (main stems) and eventually becoming small trees. Harvesting intensity, density-dependent mortality, and ingrowth regulated stand basal area and therefore stand growth and development during the simulation. Stand structural development was dominated by species groups 1 and 2, indicating sustainability in species composition and structures.  Stand development was affected by the addition of new stems of each species in each simulation year.

Miombo stands have demonstrated the potential to attain a steady-state condition over the medium-term under-regulated stand conditions and silvicultural treatments. The developed models, treatments, and harvesting alternatives may be limited in application to Kitulangalo and similar lowland miombo woodlands in Tanzania. Future studies concerning stand conditions, silvicultural treatments, and harvesting alternatives are vital for a better understanding of stand dynamics in miombo woodlands in Tanzania.