%0 Articles %T Leaf optical properties and dynamics of photosynthetic activity %A Olascoaga, BeƱat %D 2018 %J Dissertationes Forestales %V 2018 %N 247 %R doi:10.14214/df.247 %U http://dissertationesforestales.fi/article/9953 %X
Photosynthesis requires a balance between its light-dependent and light-independent reactions so that the energy input through photochemistry matches its consumption. Biochemical and physiological processes help to achieve this balance, as certain processes regulate the activity of light-dependent photochemical reactions, whilst others regulate the activity of temperature-dependent biochemical processes. Biochemical and physiological processes also modulate the absorbed energy available for photosynthesis by diverting a fraction into non-photochemical pathways that dissipate energy as heat and fluorescence. Interestingly, certain biochemical and physiological processes behind the dynamics of photosynthesis correlate with leaf optical properties (LOPs), which represent and approach to characterising the dynamics of photosynthesis. Yet, how solid is our knowledge concerning the biochemical and physiological processes influencing LOPs, and how accurately do LOPs and the biochemical and physiological processes behind the photosynthetic dynamics correlate when investigated across various spatio-temporal scales? This thesis investigated whether reflectance-based and fluorescence-based LOPs adequately correlate with the biochemical and physiological processes behind photosynthetic dynamics, and whether their correlations hold true at various spatio-temporal scales.
This thesis demonstrates the validity of reflectance-based and fluorescence-based LOPs as optical proxies for investigating the dynamics of photosynthesis. However, it also identifies sources of variability that cause the correlations between photosynthesis and LOPs to break down. This thesis classifies the sources of variability in terms of methodological (i.e. over-simplification and technical/instrumental constraints) and spatio-temporal limitations. The over-simplification of processes behind the dynamics of photosynthesis and LOPs was addressed by studying the absorption of photosynthetically active radiation (PAR) by conifer needles. PAR absorption is generally considered to be chlorophyll concentration-dependent, yet this thesis shows it to be additionally modulated by the effect that waxes have on needle PAR reflectance. Due to difficulties of directly measuring needle PAR absorption, PAR reflectance was used as a proxy of PAR absorption. To solve this technical/instrumental constraint, this thesis presents a new methodology that facilitates the direct estimation of PAR absorption. This thesis also demonstrates that certain LOPs appear to be insensitive to detecting the dynamics of certain biochemical and physiological processes over time. This was true for the photochemical reflectance index (PRI), which failed to detect zeaxanthin-independent processes behind the thermal dissipation of the absorbed PAR. Lastly, this thesis shows that LOPs can also be influenced by leaf morphology, which could affect the optically-based monitoring of larger-than-leaf scales. Despite the caveats highlighted in this thesis, the potential to monitor the dynamics of photosynthetic activity by optical means is unquestionable, and the results presented here can contribute to reducing uncertainty in the characterisation of photosynthesis by optical means at varying spatio-temporal scales.