Artikkelit jotka sisältävät avainsanan 'Nepal'.

Md Parvez Rana. (2016). Selection of training areas for remote sensing-based forest above-ground biomass estimation. https://doi.org/10.14214/df.227

Tämän työn tavoitteena oli arvioida puuston maanpäällistä biomassaa (AGB) – yhtä keskeistä REDD ja REDD+ MRV -mekanismien metsäinventointiin liittyvistä muuttujista. Tämä tutkimus tarkasteli opetusaluekonseptia kaksivaiheisessa AGB-arvioinnissa käyttäen laserkeilausta (ALS) ja RapidEye -satelliittiaineistoa itä-Suomessa (tutkimus I), opetusalueen sijainnin vaikutusta (tutkimus II) ja (tutkimus II) ja maastoaineiston otoskoon vaikutusta (tutkimus III) käyttäen ALS-, RapidEye- ja Landsat-aineistoa etelä-Nepalissa. AGB-malli sovitettiin käyttäen yksinkertaista lineaarista regressiota (tutkimus I) ja ”sparse bayesialaista” menetelmää (tutkimukset II-III). AGB-mallin tehokkuus testattiin käyttämällä riippumatonta validointiaineistoa ja tehokkuus arvioitiin määrittämällä keskineliövirheen neliöjuuri (RMSE) ja keskipoikkeama. Tutkimuksen I tulokset osoittavat, että RapidEye-mallilla oli lupaava tarkkuus 20%:n suhteellisella RMSE:lla suhteessa riippumattomaan validointiaineistoon. Tutkimuksen II tulokset osoittivat, että etäisyydellä tiestä ja opetusalueen kaltevuudella oli huomattava vaikutus AGB-arvion tarkkuuteen, koska metsän rakenne vaihteli saavutettavuuden mukaan. Tutkimuksen II tulokset osoittavat, että riittävä puuston pituuden ja tiheyden vaihtelevuuden kattavuus oli tärkeä edellytys opetusalueiden valitsemisiin. Suhteellisessa RMSE:ssa havaittiin vain vähäistä nousua, kun opetusalueiden kokonaismäärää pienennettiin. ALS-perusteinen ennustaminen vaati pienimmän määrän opetusalueita verrattuna RapidEye- ja Landsat-aineistoon.

Yhteenvetona: (i) ALS-simuloidut opetusalueet voisivat toimia vaihtoehtona kalliille kenttäkoealueille käyttäen kaksivaiheista lähestymistapaa; (ii) opetusalueen pitäisi kattaa laaja vaihtelevuus suhteessa saavutettavuustekijöihin ja metsän rakenteeseen kuten pituus ja tiheys; (iii) ALS-pohjainen ennustaminen onnistui paremmin kuin satelliittimateriaalipohjaiset (RapidEye- ja Landsat) menetelmät. Nämä arvioidut AGB-inventoinnin konseptit ja tekijät ovat hyödyllisiä tukemassa tulevaisuudessa metsävarojen kestävään käyttöön ja REDD-mekanismiin liittyvää metsien monitorointia ja päätöksentekoa.

  • Rana, University of Eastern Finland, School of Forest Sciences ORCID ID:Sähköposti parvez.rana@uef.fi (email)
Md Parvez Rana. (2016). Selection of training areas for remote sensing-based forest above-ground biomass estimation. https://doi.org/10.14214/df.227

Tämän työn tavoitteena oli arvioida puuston maanpäällistä biomassaa (AGB) – yhtä keskeistä REDD ja REDD+ MRV -mekanismien metsäinventointiin liittyvistä muuttujista. Tämä tutkimus tarkasteli opetusaluekonseptia kaksivaiheisessa AGB-arvioinnissa käyttäen laserkeilausta (ALS) ja RapidEye -satelliittiaineistoa itä-Suomessa (tutkimus I), opetusalueen sijainnin vaikutusta (tutkimus II) ja (tutkimus II) ja maastoaineiston otoskoon vaikutusta (tutkimus III) käyttäen ALS-, RapidEye- ja Landsat-aineistoa etelä-Nepalissa. AGB-malli sovitettiin käyttäen yksinkertaista lineaarista regressiota (tutkimus I) ja ”sparse bayesialaista” menetelmää (tutkimukset II-III). AGB-mallin tehokkuus testattiin käyttämällä riippumatonta validointiaineistoa ja tehokkuus arvioitiin määrittämällä keskineliövirheen neliöjuuri (RMSE) ja keskipoikkeama. Tutkimuksen I tulokset osoittavat, että RapidEye-mallilla oli lupaava tarkkuus 20%:n suhteellisella RMSE:lla suhteessa riippumattomaan validointiaineistoon. Tutkimuksen II tulokset osoittivat, että etäisyydellä tiestä ja opetusalueen kaltevuudella oli huomattava vaikutus AGB-arvion tarkkuuteen, koska metsän rakenne vaihteli saavutettavuuden mukaan. Tutkimuksen II tulokset osoittavat, että riittävä puuston pituuden ja tiheyden vaihtelevuuden kattavuus oli tärkeä edellytys opetusalueiden valitsemisiin. Suhteellisessa RMSE:ssa havaittiin vain vähäistä nousua, kun opetusalueiden kokonaismäärää pienennettiin. ALS-perusteinen ennustaminen vaati pienimmän määrän opetusalueita verrattuna RapidEye- ja Landsat-aineistoon.

Yhteenvetona: (i) ALS-simuloidut opetusalueet voisivat toimia vaihtoehtona kalliille kenttäkoealueille käyttäen kaksivaiheista lähestymistapaa; (ii) opetusalueen pitäisi kattaa laaja vaihtelevuus suhteessa saavutettavuustekijöihin ja metsän rakenteeseen kuten pituus ja tiheys; (iii) ALS-pohjainen ennustaminen onnistui paremmin kuin satelliittimateriaalipohjaiset (RapidEye- ja Landsat) menetelmät. Nämä arvioidut AGB-inventoinnin konseptit ja tekijät ovat hyödyllisiä tukemassa tulevaisuudessa metsävarojen kestävään käyttöön ja REDD-mekanismiin liittyvää metsien monitorointia ja päätöksentekoa.

  • Rana, University of Eastern Finland, School of Forest Sciences ORCID ID:Sähköposti parvez.rana@uef.fi (email)

Rekisteröidy käyttäjäksi
Paina tätä linkkiä Metsätieteen aikakauskirjan käsikirjoituksen tarjoamis- ja seurantajärjestelmään (OJS) kirjautumiseen.
Kirjaudu sisään
Jos olet kirjautunut käyttäjäksi, kirjaudu sisään tallentaaksesi valitsemasi artikkelit myöhempää käyttöä varten.
Ilmoitukset päivityksistä
Kirjautumalla saat tiedotteet uudesta julkaisusta.


Valitsemasi artikkelit