Artikkelit jotka sisältävät avainsanan 'TerraSAR-X'.

Reija Haapanen. (2014). Feature extraction and selection in remote sensing-aided forest inventory. https://doi.org/10.14214/df.181

Piirteiden irrotus ja valinta kaukokartoitusavusteisessa metsäninventoinnissa

Tässä väitöskirjassa tutkittiin kaukokartoitusaineistoista irrotettujen piirteiden suorituskykyä suuralueen metsäninventoinnin yhteydessä. Tutkimusalueet sijoittuvat Suomen boreaalisen vyöhykkeen metsiin, yhtä Pohjois-Minnesotassa (Yhdysvallat) sijainnutta aluetta lukuunottamatta. Metsätunnusten estimointi tehtiin pikseli- tai hilatasolla, ei-parametrisen k-lähimmän naapurin menetelmän avulla. Kaukokartoitusaineistoina käytettiin Landsat 7 Enhanced Thematic Mapper Plus (ETM+) satelliittikuvia, väri-infra-ilmakuvia, TerraSAR-X tutkan sekä lentokoneesta tehtävän laserkeilauksen (ALS) tuottamia aineistoja. Näiden kuvatyyppien viitteellinen sopivuusjärjestys metsävaratunnusten estimoinnissa oli ALS, TerraSAR-X, ilmakuva ja Landsat 7 ETM+. Tutkimuksessa paneuduttiin erityisesti eri aineistoista irrotettujen piirteiden yhdistelyyn, sekä sellaisten piirreyhdistelmien etsimiseen, jotka tuottivat parhaan tuloksen metsävaratunnusten estimoinnissa. Piirteiden valinta tehtiin pääasiassa geneettisen algoritmin avulla. Tuloksina saadut suhteelliset keskineliövirheen neliöjuuret (RMSE) asettuivat välille 23–77 %, kun kyseessä oli puuston keskitilavuuden arviointi. Parhaat tulokset saatiin yhdistelemällä ALS- ja ilmakuvapiirteitä. Tällöin suhteelliset RMSE-arvot puuston keskitilavuudelle olivat 23–30 %, maisemakuvasta riippuen. Yleensä toisiaan täydentävien kuvatyyppien käyttö paransi arvioiden tarkkuutta. Automaattinen piirrevalinta vähensi suuresti hälyn sekä piirteiden määrää alkuperäiseen syötteeseen verrattuna ja johti parempaan estimointitulokseen. Niissä osatutkimuksissa, joissa hyödynnettiin ALS-aineistoja, erityisesti puuston vertikaalirakennetta kuvaavat ALS-tunnukset auttoivat pienentämään estimointivirhettä.

  • Haapanen, University of Helsinki, Department of Forest Sciences ORCID ID:Sähköposti reija.haapanen@gmail.com (email)
Reija Haapanen. (2014). Feature extraction and selection in remote sensing-aided forest inventory. https://doi.org/10.14214/df.181

Piirteiden irrotus ja valinta kaukokartoitusavusteisessa metsäninventoinnissa

Tässä väitöskirjassa tutkittiin kaukokartoitusaineistoista irrotettujen piirteiden suorituskykyä suuralueen metsäninventoinnin yhteydessä. Tutkimusalueet sijoittuvat Suomen boreaalisen vyöhykkeen metsiin, yhtä Pohjois-Minnesotassa (Yhdysvallat) sijainnutta aluetta lukuunottamatta. Metsätunnusten estimointi tehtiin pikseli- tai hilatasolla, ei-parametrisen k-lähimmän naapurin menetelmän avulla. Kaukokartoitusaineistoina käytettiin Landsat 7 Enhanced Thematic Mapper Plus (ETM+) satelliittikuvia, väri-infra-ilmakuvia, TerraSAR-X tutkan sekä lentokoneesta tehtävän laserkeilauksen (ALS) tuottamia aineistoja. Näiden kuvatyyppien viitteellinen sopivuusjärjestys metsävaratunnusten estimoinnissa oli ALS, TerraSAR-X, ilmakuva ja Landsat 7 ETM+. Tutkimuksessa paneuduttiin erityisesti eri aineistoista irrotettujen piirteiden yhdistelyyn, sekä sellaisten piirreyhdistelmien etsimiseen, jotka tuottivat parhaan tuloksen metsävaratunnusten estimoinnissa. Piirteiden valinta tehtiin pääasiassa geneettisen algoritmin avulla. Tuloksina saadut suhteelliset keskineliövirheen neliöjuuret (RMSE) asettuivat välille 23–77 %, kun kyseessä oli puuston keskitilavuuden arviointi. Parhaat tulokset saatiin yhdistelemällä ALS- ja ilmakuvapiirteitä. Tällöin suhteelliset RMSE-arvot puuston keskitilavuudelle olivat 23–30 %, maisemakuvasta riippuen. Yleensä toisiaan täydentävien kuvatyyppien käyttö paransi arvioiden tarkkuutta. Automaattinen piirrevalinta vähensi suuresti hälyn sekä piirteiden määrää alkuperäiseen syötteeseen verrattuna ja johti parempaan estimointitulokseen. Niissä osatutkimuksissa, joissa hyödynnettiin ALS-aineistoja, erityisesti puuston vertikaalirakennetta kuvaavat ALS-tunnukset auttoivat pienentämään estimointivirhettä.

  • Haapanen, University of Helsinki, Department of Forest Sciences ORCID ID:Sähköposti reija.haapanen@gmail.com (email)

Rekisteröidy käyttäjäksi
Paina tätä linkkiä Metsätieteen aikakauskirjan käsikirjoituksen tarjoamis- ja seurantajärjestelmään (OJS) kirjautumiseen.
Kirjaudu sisään
Jos olet kirjautunut käyttäjäksi, kirjaudu sisään tallentaaksesi valitsemasi artikkelit myöhempää käyttöä varten.
Ilmoitukset päivityksistä
Kirjautumalla saat tiedotteet uudesta julkaisusta.


Valitsemasi artikkelit