Artikkelit jotka sisältävät avainsanan 'satelliittikuvat'.

Sanna Härkönen. (2012). Estimating forest growth and carbon balance based on climate-sensitive forest growth model and remote sensing data. https://doi.org/10.14214/df.138

Metsän kasvun ja hiilitaseen ennustaminen ilmastoon reagoivan kasvumallin ja kaukokartoitusaineiston avulla

Tutkimuksessa kehitettiin uusi menetelmä metsien kasvun ja hiilitaseen ennustamiseen pohjoisilla alueilla. Menetelmässä metsän kasvu ennustetaan tiivistelmämallilla, joka huomioi metsikön rakenteen ja ilmaston vaikutuksen puuston kehitykseen. Tutkimuksessa tarkasteltiin tiivistelmämallin hyödyntämistä sekä maastosta että laserkeilaimella lentokoneesta kerätyillä metsikkötason lähtötiedoilla. Lisäksi testattiin hiilitase-ennusteiden yleistämistä koealatasolta suuraluetasolle satelliittikuvien avulla. Menetelmän luotettavuutta arvioitiin vertailemalla malliennusteita maastossa mitattuihin kasvuihin, jotka olivat suurimmaksi osaksi peräisin Metsäntutkimuslaitoksen valtakunnan metsien inventoinneista. Vertailun vuoksi tutkimuksessa ennustettiin metsän kasvua myös perinteisillä empiirisillä kasvumalleilla, joita käytetään tällä hetkellä käytännön metsäsuunnittelussa Suomessa.

Lyhyellä aikavälillä kasvuennusteiden luotettavuus oli samalla tasolla kuin perinteisten kasvumallienkin. Prosessi/hybridipohjaisten menetelmien etuna on se, että niitä voidaan soveltaa myös muuttuvissa ilmasto-olosuhteissa sekä uudenlaisten metsänkäsittelyvaihtoehtojen simuloinnissa, joista nykyisten empiiristen mallien laadinta-aineistoissa ei ole riittävästi tietoa. Menetelmä vaatii kuitenkin vielä testausta kattavammalla aineistolla, jotta sen luotettavuudesta laajassa mittakaavassa voidaan tehdä johtopäätöksiä. Malliennusteiden luotettavuutta varsinkin sekametsiköissä ja eri-ikäisrakenteisissa metsiköissä sekä pidemmillä kasvujaksoilla tulisi tarkastella lisää. Tiivistelmämallia sovellettiin tässä tutkimuksessa vain lyhyisiin kasvatusjaksoihin. Pidempiä aikoja simuloitaessa mukaan tulisi liittää uusien puiden syntymistä ja vanhojen kuolemista kuvaavat mallit. Muita jatkokehityskohteita ovat esimerkiksi puiden veden ja typen oton prosessit sekä kasvumallin parametrisointi turvemaille.

Kehitetty menetelmä tarjoaa monipuolisia työkaluja metsäsuunnittelun päätöksenteon, tutkimuksen ja metsäpolitiikan apuvälineeksi. Sitä voidaan soveltaa esimerkiksi metsikkökohtaisten hiilitase-ennusteiden laatimiseen laserkeilaustiedon perusteella ja hiilitase-ennusteiden yleistämiseen koko Suomelle ja sen lähialueille. Metsäsuunnitteluohjelmistoon yhdistettynä menetelmä tarjoaisi entistä helpomman välineen sekä arvioida käytännön metsänhoidon vaikutusta metsien hiilitaseisiin että hakea hiilinielujen kannalta optimaalisia metsänkäsittelyvaihtoehtoja.

  • Härkönen, University of Eastern Finland, School of Forest Sciences ORCID ID:Sähköposti sanna.harkonen@metla.fi (email)
Sirpa Thessler. (2008). Remote sensing of floristic patterns in the lowland rain forest landscape. https://doi.org/10.14214/df.59

Trooppisten metsäalueiden maankäytön ja sademetsien suojelun suunnittelu tarvitsee kiireesti arvioita kasvilajiston alueellisesta vaihtelusta. Laajojen, vaikeapääsyisten ja lajirikkaiden sademetsäalueiden kasvilajiston inventointi täytyy käytännön syistä rajata koealoihin ja koskemaan vain osaa kasvilajistosta, indikaattorilajeja. Yhdistämällä lajiston inventointiaineisto ja spatiaalisesti jatkuva ympäristötieto voidaan kasvilajiston vaihtelua mallintaa ja ennustaa koealojen välisille, tutkimattomille alueille. Moniulotteinen lajiaineisto täytyy kuitenkin ensin tiivistää pienempään määrään muuttujia, lajistovaihtelun indikaattoreihin.

Työssä selvitettiin voidaanko kaukokartoituksen keinoin tarkastella ja kartoittaa luonnontilaisten alankosademetsien kasvilajiston alueellista vaihtelua. Lajistovaihtelun indikaattoreina käytettiin 1) ekologisten luokiteltujen lajien lukumäärää, 2) kasvillisuus-/metsäluokkia ja 3) lajistokokoonpanoa, joka tiivistettiin NMDS ordinaation avulla kolmeen ulottuvuuteen (ordinaatioakseliin). Indikaattorilajeina käytettiin aluskasvillisuuden Melastomataceae- ja sanikkaislajeja sekä latvuskerroksen puu- ja palmulajeja. Lajistovaihtelun indikaattoreita ennustettiin tutkimattomille alueille käyttäen k lähimmän naapurin menetelmää ja lineaarista erotteluanalyysiä. Ympäristövaihtelun kuvaajina käytettiin Landsat TM ja ETM+ -satelliittikuvia ja SRTM digitaalista korkeusmallia. Tutkimusalueet sijaitsivat itäisessä Ecuadorissa, koillis-Perussa ja pohjois-Costa Ricassa.

Työ osoitti että alankosademetsien kasvilajiston alueellista vaihtelua, jonka indikaattoreina käytettiin kasvillisuusluokkia, ordinaatioakseleiden arvoja tai ekologisten kategorioiden lajimäärää, voidaan arvioida ja kartoittaa yhdistämällä kaukokartoitus ja maastohavainnointi. Ennusteiden tarkkuuteen vaikuttivat etenkin kuvapiirteiden valinta ja painotus ja tarkastelun spatiaalinen resoluutio. K lähimmän naapurin menetelmä osoittautui lupaavaksi menetelmäksi lajistovaihtelun ennustamisessa, kun kyseessä oli jatkuva muuttuja kuten ordinaatioakseleiden arvot tai lajimäärä. K lähimmän naapurin menetelmä myös tuotti tarkempia ennusteita kasvillisuustyyppien luokittelussa kuin lineaarinen erotteluanalyysi.

  • Thessler, University of Turku, Faculty of Mathematics and Natural Sciences ORCID ID:Sähköposti sirpa.thessler@mtt.fi (email)

Rekisteröidy käyttäjäksi
Paina tätä linkkiä Metsätieteen aikakauskirjan käsikirjoituksen tarjoamis- ja seurantajärjestelmään (OJS) kirjautumiseen.
Kirjaudu sisään
Jos olet kirjautunut käyttäjäksi, kirjaudu sisään tallentaaksesi valitsemasi artikkelit myöhempää käyttöä varten.
Ilmoitukset päivityksistä
Kirjautumalla saat tiedotteet uudesta julkaisusta.


Valitsemasi artikkelit