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ABSTRACT 
 

 

The aim of the studies in this thesis was to apply and further develop methods in multi-source 

forest inventory tasks in boreal and tropical forests. The applications presented in this 

dissertation are based on optical remote sensing data and k-nearest neighbours techniques, 

both of which are common components in multi-source forest inventory. 

The use of variograms as a texture information source in standwise volume estimation 

was tested using image data from a digitized aerial photograph taken in Hyytiälä, Finland. 

According to the leave one out cross-validation, the accuracy of volume estimation at stand 

level improved when empirical values of semivariance were included in the set of feature 

variables.  

Landsat 5 Thematic Mapper (TM) satellite data was utilized in forest cover and volume 

mapping in Terai, Nepal. A corresponding multi-source forest inventory-oriented processing 

chain was also tested and demonstrated in forest volume mapping in the region of Kon Tum 

province in Vietnam. In these two studies, coarse scale MODIS reflectance products were 

used as a reference in a local correction approach conducted for the relative calibration of 

Landsat TM images. 

Multi-source forest inventory techniques for obtaining biomass maps have facilitated the 

development of a spatially explicit methodology to estimate the bioenergy potentials of forest 

chips. The technical bioenergy potential of forest chips was calculated in a case study in 

Central Finland, based on the logging residues and stumps from final fellings.  

An adaptation of the abovementioned methods and techniques in studies with target areas 

of forests in sub-tropical and tropical zones in Nepal and Vietnam was carried out using open 

source software tools. These studies serve the purpose of capacity building in utilizing remote 

sensing data in forest inventory activities related to the REDD+ mechanism, and estimating 

bioenergy potentials provides quantitative decision making support in the field of forest 

bioenergy production. 

 

 

Keywords: k-nearest neighbours, satellite images, remote sensing, technical bioenergy 

potential, variogram, wall-to-wall maps. 
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1 INTRODUCTION  
 

 

1.1 Forest inventory and the role of remote sensing  

 

1.1.1 National forest inventory  

 

Forest inventories support forest policy makers, the forest industry and the private forestry 

sector in their forest planning and decision making-processes by providing objective 

information of forest resources. The aspects of sustainability – economic, social and 

ecological – represent common strategic goals to be taken into account in the use of forest 

resources. In the long run, forests as a renewable natural resource formed a keystone of the 

industrialization and social welfare development that occurred in Finland in the 1900s. As a 

tool for forest monitoring, national-level forest inventories have been carried out in Finland 

since the 1920s (Tomppo 1996; 2006; Tomppo et al. 1998; 2012). The use of forest resources 

has been a recent topic of active discussion in Finland because the emerging forest policy in 

EU member states will take into account the fact that forests act as carbon sinks. For example, 

for this reason, objective forest statistics at regional and national levels are still needed today.  

In the National Forest Inventory (NFI) of Finland, the sampling design and plot- and 

stand-level measurements have changed over time to respond to contemporary requirements, 

and also to optimize the use of resources and information available (Tomppo 2006a). In large 

scale forest inventories, such as NFI sample surveys, the two logical components of a forest 

inventory system are: 1) a measurement system, and 2) a calculation system (see e.g. Pukkala 

1994; Kilkki 1984; Kangas et al. 2011). The underlying element of the two components of 

the forest inventory system is a sample of field plots that is laid out over the target area(s) of 

the inventory. Variables describing the forest site characteristics and tree-level characteristics 

obtained by tally and sample trees are measured in the field.  

Field sampling and measurements are limited by budget constraints, and need to be used 

in a cost-efficient manner, so a systematic cluster sample has tended to be applied. A 

calculation system is the component where sample tree measurements are imputed to tally 

trees to compute stand-level variables, and also to calculate results for the area. A planning 

system is where the results of an inventory are utilized for generating information on forest 

production possibilities and the consequences of alternative activities. A planning system 

feeds the decision maker with information on the necessary criteria for use in a decision 

support system, and so helps in the analysis leading towards reasoned decisions. Besides the 

size of the given target area, factors like the time horizon and the strategic, tactical or 

operational levels of planning also set specific requirements for the calculation system. 

Aerial photographs were already being utilized in the 5th (1964–1970), 6th (1971–1976) 

and 7th (1977–1984) Finnish NFIs in Northern Finland. Two-phase stratified sampling 

(stratification based on aerial photographs) was employed in the 5th and 6th inventories, and 

photo interpretation plots featured in the 7th inventory (see Tomppo 2006a p.180; Korhonen 

et al. 2013; see also Poso and Kujala 1971, Poso 1972 and Mattila 1985 as cited by Tomppo 

2006a). When satellite remote sensing images became available in the late 1980s, Kilkki and 

Päivinen (1987) came up with an idea of utilizing remote sensing technology in the NFI of 

Finland and suggested a methodology to combine the existing field plot data of Finnish NFIs 

with satellite data, for obtaining reliable forest estimates by smaller regions than was possible 

with field plots only. In Finland, this meant aiming to produce results at a municipality-level, 
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whereas field plot-based results were accurate enough when compiled by Forestry Centres. 

Assuming that similar forest exists also around the target area of the inventory, then satellite 

image data could be used in creating a method of reference sample plots, closely related to 

the grouping method of Poso (1972 as cited by Kilkki and Päivinen 1987). Methodological 

tests of the technique were made using Landsat MSS, Landsat TM and SPOT HRV imagery, 

together with field data that was available from NFI7 and NFI8 (Muinonen and Tokola 1990; 

Tokola et al. 1996; Tokola and Heikkilä 1997). From that time, the underlying approach of 

nearest neighbours (NN) techniques was further developed at the former Finnish Forest 

Research Institute (known as the Natural Resource Institute since 2015), and this was finally 

tuned into a sophisticated calculation system, i.e. the non-parametric k-nearest neighbour (k-

NN) estimation method, that has become a well-known method and widely applied in the 

field of satellite image-based forest inventory (e.g. Tomppo 1996). 

A Finnish Multi-source NFI (MSNFI), (Tomppo et al. 1998; 2012; Katila and Tomppo 

2001; Tomppo 2006b; McRoberts and Tomppo 2007; Tomppo et al. 2008a; for an improved 

version see, e.g., Tomppo and Halme 2004; Tomppo et al. 2009a; 2009b) is based on the k-

NN method. In MSNFI, multiple map data sources have been utilized for separating areas of 

land use categories other than forest land, for example agricultural land areas, urban areas, 

buildings and roads (Tomppo et al. 1998). Techniques to reduce the effects of map errors 

have been presented by Katila et al. (2000), and Katila and Tomppo (2002).  

NN techniques such as k-NN allow for estimating all of the forest variables 

simultaneously for a target element, usually in the form of a raster cell (a pixel in a satellite 

image). The approach is easily implemented (McRoberts 2008), and the covariance structure 

among the variables is also preserved (Tomppo et al. 1998). NN techniques have become 

widely used in forestry applications also in other Nordic countries (for a review of studies, 

see Tomppo et al. 2008b; 2009a; 2012), and the performance of the k-NN approach has been 

evaluated by e.g. Franco-Lopez et al. (2001) and Pachana (2016). 

McRoberts and Tomppo (2007) discussed the remote sensing support for modern NFIs 

and noted that regardless of the quality of the estimates obtained using data from active 

sensors, remote sensing measurement of plots is not expected to completely replace field 

measurement any time in the near future. Studies using data from active sensors had been 

lacking the spatial extent required for NFIs, and did not adequately take into account the 

complexity of forest conditions. It was concluded at the time, that satellite imagery had 

contributed greatly to the ability of NFIs to produce more timely, cost efficient and precise 

inventory estimates, and had greatly facilitated the construction of spatial products that were 

in increasing demand. A further conclusion was that the use of digital remote sensing data of 

different spatial and spectral resolutions could be expected to become an essential part of 

large area forest inventories. As such, the availability of data and the development of 

statistically sound methods would be important factors for future development. 

Næsset et al. (2013b) also note that for larger geographical regions such as counties, states 

or nations, it is not feasible to collect airborne Light Detection and Ranging (LiDAR) data, 

i.e. data acquired from Airborne Laser Scanning (ALS), continuously (“wall-to-wall”) over 

the entire area of interest. Thus, optical satellite images such as those provided by Landsat or 

SPOT, with a resolution of 10–30 m and with a large area coverage in a single image, still 

offer an alternative ancillary data source. The usability and potential of satellite images in 

data procurement for a planning phase has been reviewed by Mäkelä et al. (2011). Mirrored 

with past studies and the summary of McRoberts and Tomppo (2007), the availability and 

cost efficiency of satellite image data, together with a straightforward and easy-to-implement 

approach such as the k-NN technique are still applicable tools for NFIs. However, despite 
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their integration with new data such as ALS data being a most probable development 

scenario, this is strongly dependent on the availability of data (including satellite images) 

with different spatial and spectral resolutions.  

 

1.1.2 Forest management inventory 

 

In Finland and several other countries, although NFIs are conducted at national and regional 

levels, forest management inventories (FMI) are carried out at farm levels for private forests, 

and up to the level of target regions for tactical and operational forest planning for forest 

companies. Moreover, an NFI sample for a large area is too sparse for estimating reliable 

results by smaller areas, i.e. areas smaller than 200 000 ha (see Metsätieto 2015), such as a 

municipality or village. The operational unit in forestry in Finland comprises a forest stand – 

or a compartment –, so the sample-based inventory system is unable to support the spatially 

explicit data needed for tactical forest planning. Traditionally, aerial photographs have been 

actively utilized in stand delineation and assisting with field work. In FMI, field work has 

been carried out as a visual compartment level field survey supported with plot measurements 

(Koivuniemi and Korhonen 2006; see Maltamo and Packalen 2014). Stand-level treatment 

proposals could be mapped, and in this way assist the tactical forest planning with a spatially 

continuous forest stand dataset and stand-level forest attribute table. However, aerial digital 

cameras and computing capacity have developed to a level that allows the production of 

mosaicked digital aerial images. Remote sensing therefore offers the means to assess a 

spatially continuous image of the forest area.  

The utility of the k-NN method in estimating stand-level means of stem density (trees/ha) 

and basal area (m2/ha) has been examined by McRoberts (2008), who also presented 

modifications to k-NN suited for a stand-level approach. The stand-level estimation was 

based on the averages of pixel-level predictions in a stand, and the modifications included 

inspecting the distribution of stem number and basal area for reference pixels over all of the 

stand target pixels in a locally (per target stand) adaptable manner. This partly corresponded 

to the method previously described by Malinen (2003). Additionally, covariates were sought 

using a genetic algorithm-based technique adapted from the procedure presented by Tomppo 

and Halme (2004). McRoberts (2008) concluded that the combination of strategic inventory 

data, TM imagery and NN techniques may provide an inexpensive and easily implemented 

alternative to expensive, sample-based management inventories, and that further research 

would be necessary that involved other forest types and plot types.  

It has been noted in Finland that poor plot-level accuracy (a large RMSE at the plot-level) 

is limiting the performance of satellite image data in applications aiming to support stand-

level forest management decisions. Accuracy results have been reported by e.g. Tokola et al. 

(1996) and Mäkelä and Pekkarinen (2001). In their study, Tokola et al. (1996) noted that the 

size of field plots defined by the relascope basal area factor of 2 m2ha-1 used in the Finnish 

NFI was too small when compared to the pixel size in nearest neighbour estimation, and was 

therefore causing extra variation to the relationship between the field and spectral data. A 

prerequisite for the use of small plots is their exact location in the field, and the geometric 

correction of the satellite material. A multi-criteria approach for reducing plot location error 

in assigning image pixel data to the field plot was thereafter developed with successful results 

by Halme and Tomppo (2001). 

ALS has now proven to be well-suited for the estimation of standwise forest 

characteristics and the delineation of forest stands, and the development of forest applications 

originated in Norway (Næsset 2014) and Finland (Maltamo and Packalen 2014). The 
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underlying implementation requires a so-called area-based approach (Næsset 2014; Maltamo 

and Packalen 2014), where ALS point data-based explanatory features are computed in grid 

cells, each of which composes an estimation area unit (a unit size of 16 m × 16 m has been 

used in Finland). Ground truth data in the operational planning inventory comprises a set of 

circular field sample plots (Maltamo and Packalen 2014; Metsätieto 2015). Combining ALS 

and optical data from a digital aerial photograph can improve the tree species-specific 

estimates of growing stock volume (Packalén et al. 2009). Also, stand boundaries can be 

detected from an ALS data-based canopy height model (Mustonen et al. 2008), and stand-

level predictions are aggregated from the grid cells that fall inside stand boundaries.  

Forest attributes by grid cell are commonly predicted either via regression modelling or 

by utilizing the NN imputation, and are the main approaches applied in Norway and Finland 

respectively (see Næsset 2014; Maltamo and Packalen 2014). The ALS data-based 

methodology applied in forest management inventory in Finland has been widely based on 

NN estimation, namely the k Most Similar Neighbour approach (k-MSN), in which the 

similarity measure is built on the canonical correlation analysis between two groups of 

variables, i.e. the groups for design attributes and indicator attributes (Moeur and Stage 

1995). Forest variables act as response variables, and the image data-based or ALS point 

data-based features act as feature variables, respectively (see McRoberts 2012). It is then 

possible to have a similarity measure accounting for several forest characteristics 

simultaneously. The initial motivation in the approach by Moeur and Stage (1995) was to 

impute missing observations in the data in a way that resembles true correlations occurring 

in the original data. In the k-MSN, NN estimation is applied, with the similarity measure 

corresponding to the distance function (Malinen 2003; Malinen et al. 2001; Packalén et al. 

2009), and inverse distance weighting can then be applied for producing the weights of the 

neighbours. 

To fulfil the requirements of species-specific stand attributes in Finland, combining ALS 

data with the spectral features from airborne images has proven successful (Maltamo and 

Packalen 2014). In the two-stage approach developed by Packalén et al. (2009), each ALS 

point is furnished by the spectral features from aerial photographs, where unrectified images 

are utilized instead of orthorectified images, and the overlap in aerial imagery allows an ALS 

point to be linked to several aerial image DNs (digital numbers). With this data set, ALS 

points can be classified by common tree species, and the approach was seen as preferable 

compared to using ALS data alone in aiming for tree species-wise volume estimates, which 

is the main objective in Finland. 

Forest variables describing the stand-level growing stock can be estimated using ALS 

point cloud data and field plot data, resulting in an estimation quality fulfilling the needs of 

forest planning purposes. Therefore, ALS has established its place in FMIs in Finland. In a 

review of the development of Norwegian operational ALS forestry applications by Næsset 

(2014), forest stand characteristics such as tree size distributions and biomass quantification 

categorised by tree species were recognized as interests for up-coming development work. 

The review also mentioned that the evaluation of the performance of ALS data in 

combination with optical aerial images will continue. The combination of different data 

sources – also including multispectral LiDAR technologies (Hopkinson et al. 2016) – can 

offer a range of possibilities for future multi-source ALS forest inventory applications 

(Valbuena 2014). 
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1.1.3 Mapping forest cover and biomass 

 

Forest above-ground biomass (AGB) is a key variable for the characterization of the forest 

state and its disturbance status, as well tracking its dynamics over time (Häme et al. 2013b). 

The Tier approach introduced by the Intergovernmental Panel on Climate Change (IPCC) 

has been used to describe levels of methodological quality and complexity in the 

measurement reporting and verification (MRV) assessment system (see Tokola 2015). In this 

way, the United Nations Framework Convention on Climate Change (UNFCCC) policy on 

Reduced Emissions from Deforestation and forest Degradation (REDD+) has provided 

guidelines to assist countries in developing carbon assessment methodologies (e.g. Asner 

2009; Tokola 2015). For estimating aboveground carbon in the REDD+ monitoring setups, 

calculation chains are conventionally implemented using coefficients such as the biomass 

expansion factors discussed by Tokola (2015). Notably, Tokola (2015) emphasised that 

remote sensing-based applications are definitively key tools for REDD+ MRV, and the good 

practices applied in traditional forest inventories (such as a proper sample and fieldwork 

design) ought to be followed in allocating field plots and carrying out field measurements 

also in tropical conditions (see Olofsson et al. 2014).  

The challenges in the fields of forest degradation and the REDD+ framework have been 

discussed, for instance by Morales-Barquero et al. (2014: see also Peres et al. 2006). In order 

to evaluate the possible reduction in greenhouse gas emissions for both deforestation and 

forest degradation, a baseline is required (Morales-Barquero et al. 2014). However, there is 

a lack of historical data on carbon stocks, and one needs to build concepts for separating 

between degradation and deforestation, and also the natural causes of fluctuation, so these 

introduce elements of uncertainty into the baseline determination process. Morales-Barquero 

et al. (2014) also mention that degradation is a process that is best assessed at the landscape 

level, because tropical forests are characterised by different stages of forest transition, due to 

both natural processes and impacts caused by human activities. Therefore, one should assess 

the overall carbon budget of each coherent landscape/management unit, and not individual 

patches of forest within the unit, in order to average out the temporary losses and gains. 

Morales-Barquero et al. (2014) also state that optical remote sensing faces a fundamental 

problem, in that changes in canopy cover are not a direct measure of the total biomass or of 

the degradation that is occurring below the canopy surface-level (e.g. fuelwood collection or 

grazing).  

The role of LiDAR is to provide a ground truth type of information over large areas. The 

innermost REDD+ concept still lies in the realm of forest inventory (Tokola 2015). A review 

of approaches for LiDAR sampling over large areas was presented by Wulder et al. (2012, 

see p. 207), and it is noted that an evident way to generate measures in support of REDD+ 

programs is through the integration of optical imagery and samples of LiDAR data. Hou et 

al. (2011) and Tokola (2015) have underlined that only the upper parts of the canopy are 

detected and quantified using optical images, and this affects their use and applicability for 

the estimation of forest biomass. Unlike other remote sensing techniques such as optical 

remote sensing and Synthetic Aperture Radar (SAR), LiDAR does not suffer from the 

saturation problems associated with large biomass values. In addition, optical remotely 

sensed imagery and other spatial data can be used to aid stratification, to inform sampling, 

and also to enhance estimation (Wulder et al. 2012; see GOFC GOLD 2016, section 2.10.2.2). 

In a further paper, several image sources were combined by Häme et al. (2013a) in mapping 

tropical forest classes. LiDAR data can be used to provide conventional sampling-based 
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estimates of biomass characteristics, and also to determine changes in the amount of biomass 

over time (GOFC-GOLD 2016; see also Asner 2009, Næsset et al. 2013a). 

McRoberts et al. (2015) discovered that: 1) airborne laser scanning data has substantial 

utility for increasing the precision of forest AGB estimates, and 2) the k-NN technique is an 

effective method for predicting forest AGB from a combination of forest inventory and 

airborne laser scanning data. However, Drake et al. (2003) had previously concluded that it 

will probably be necessary to develop a series of relationships between LiDAR metrics and 

above-ground biomass in different bioclimatic life zones. The importance of climatic 

variables for developing general algorithms for the estimation of above-ground biomass in 

different tropical areas using LiDAR data was emphasized to be a focus of further study. 

 

 

1.2 From resource mapping towards further analyses 

 

In offering a large-scale example, the Finnish NFI field sample has provided the data source 

for a forestry scenario model developed for timber production analyses at national or regional 

levels (Siitonen et al. 1996; Hirvelä et al. 2017). In this, the two components of the MELA 

system are an automated stand simulator based on calculations conducted at tree-level, and 

an optimization package based on linear programming (Lappi 1992). Timber production 

analyses at regional level by forest centres can be based on the NFI field sample itself, where 

calculation units are generated by grouping the field plots based on plot-level and tree-level 

measurements. This linkage between the NFI measurement and the MELA forestry model 

has ensured versatile strategic analyses, used for instance in assessing sustainable production 

level possibilities. Ecological and social sustainability can also be taken into account in these 

calculations by way of the constraints imposed for instructing the feasibility of forest 

operations in terms of the input materials, or the constraints imposed as part of the 

optimization strategy. 

Mäkelä et al. (2011) investigated the potential of multi-source methodology and satellite 

imagery in assisting the forestry scenario analysis using the MELA forestry model. In their 

study, the approach was based on Finnish NFI field data (i.e. image segmentation combined 

with k-NN estimation), and yielded promising results in estimating data for local scenario 

analyses. However, they stated that the accuracy of the satellite image-based estimation of 

forest stand variables is not accurate enough to support operational forest planning, mainly 

because of the mean stand size is less than 2 ha in Finland. Therefore, the interest in using 

satellite images has tended to be directed towards the strategic analysis of forest production 

possibilities (Mäkelä et al. 2011; see also Bååth et al. 2002).  

Questions can be asked in the field of remote sensing forestry applications about how to 

fit the raster map representations of a set of forest variables and the planning view together, 

in a way that would best serve the needs of planning levels selected. It is worth keeping in 

mind the accuracy (RMSE) of satellite data-based estimation, e.g.  ca. 60–80 % for total 

volume of growing stock at the pixel level, and ca. 40–60 % at the forest stand level when 

Landsat data is used (see Mäkelä 2011). Hou et al. (2011) tested ALOS AVNIR-2 optical 

satellite data in a tropical forest region in the Lao People’s Democratic Republic, and 

discovered that in multiple regression estimation, the RMSE for stand volume was ca. 69 %. 

ALS data is an alternative to satisfy needs demanding better accuracy, whereas if the cost-

effectiveness is taken into consideration, ALOS AVNIR-2 data is of potential to be used for 

rough but economic estimates of tropical forest attributes (Hou et al. 2011). 
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Bio-energy is seen as one of the key options to mitigate greenhouse gas emissions and 

substitute fossil fuels (Faaij 2006). Batidzirai et al. (2012) published a methodological review 

that also discussed the terminologies and analysed approaches used in estimating bioenergy 

potentials. The three types of potentials are summarized as follows: (i) theoretical potential 

describes the maximum amount of biomass that can be considered as theoretically available; 

(ii) technical potential describes the fraction of the theoretical potential that is available using 

current technological possibilities; and (iii) market (or economic) potential describes the 

share of the technical potential that meets economic criteria within given conditions. 

Furthermore, the fraction of technical potential is referred to as ecologically sustainable 

potential if restrictions related to environmental criteria such as nature conservation and 

soil/water/biodiversity preservation are also considered. Batidzirai et al. (2012) noted that 

there is an overlap between market potential and ecological potential, due to the fact that a 

share of ecological potential might not meet economic criteria and vice versa. 

Implementation potential is a variant of the economic potential that can be implemented 

within a certain time frame and under concrete socio-political framework conditions, 

including economic, institutional and social constraints and policy incentives. Several 

combinations can also be implicitly or explicitly analysed i.e. theoretical–technical and 

economic-implementation potentials (Batidzirai et al. 2012), or ecological-economical 

potentials (Smeets and Faaij 2007).  

Guidelines for a reasonable framework in biomass resource assessment and analysis have 

been compiled by Vis et al. (2010), whose work aimed at harmonizing the use of terms and 

concepts within the scope of European work. Vis et al. (2010) divided the different biomass 

types into four biomass categories: Forest biomass and forestry residues, energy crops, 

agricultural residues, and organic waste. Furthermore, forest biomass includes several types 

of raw woody materials derived from forests or from the processing of timber, that can be 

used for energy generation. Thus, Vis et al. (2010) refer to a main-type (e.g. Forestry) and a 

sub-type (e.g. Primary forestry residue) to address the leftovers from harvesting activities 

such as twigs, branches, stumps etc. In the framework they present, the availability of forestry 

residues and waste is an underlying element in a working step for the ‘Estimation of biomass 

technical potentials’, illustrating the basic role in forests and the forestry sector, and the need 

of forest resource data to support further working steps. It can be noted that Vis et al. (2010) 

categorised potentials as types of theoretical, technical, economic and implementation 

potential – and lastly as a sustainable implementation potential. This being the case, it is 

important that both methodologies and influential factors are accounted for and documented 

when results are presented. Vis et al. (2010) also discuss that besides theoretical, technical, 

economic and implementation potentials, the fifth type (i.e. the sustainable implementation 

potential) is not a potential on its own, but rather the result of integrating environmental, 

economic and social sustainability criteria in biomass resource assessments. In this way, the 

sustainability criteria act like a filter on the theoretical, technical, economic and 

implementation potentials, leading ultimately to a sustainable implementation potential. 

The methodologies used to assess biomass resources are generally categorised as (i) 

resource-focused, (ii) demand driven, or (iii) integrated approaches (Vis et al. 2010). In 

demand driven approaches, the competitiveness of biomass-based energy systems is 

compared with other options, whereas information from the models of different sectors 

(economic, energy, land use and climate) is integrated into the analysis in integrated 

approaches. In a resource-focused approach, the bioenergy resource and the competition 

between different uses of the resources are investigated, with a focus on the supply of biomass 

for bioenergy. Statistical and spatially explicit methods can also be distinguished under this 
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approach. Statistical methods combine statistical data and various conversion factors that are 

based on expert judgements, field studies and literature reviews. Spatially explicit methods 

take into account various location specific factors that affect the availability of biomass.  

Spatially explicit methods present biomass availability in a location specific, or e.g. in a 

two-dimensional way on maps (Vis et al. 2010). Batidzirai et al. (2012) also noted that 

compared to statistical analyses, spatially explicit analyses are more suitable to reflect the 

impact of local or regional circumstances by combining the available spatially explicit data 

on land use. In a larger context, a multi-source inventory can serve as a logical platform for 

generating information for the analysis of bioenergy potentials at regional and national levels 

(Vis et al. 2010; Wohletz 2011). Moreover, remote sensing has been benchmarked in the 

approaches of both the REDD+ guided methodologies of developing countries, and also in 

developed countries for finding a sustainable level for the use of bioenergy as a renewable 

energy source in mitigating climate change, or in assisting forest management inventories, 

especially with regard to a spatial coverage of high resolution remote sensing data or ALS 

point data.  

 

 

1.3 Overview of workflow in multi-source forest inventory  

 

A forest inventory framework based on remote sensing can be categorised as a multi-source 

framework, especially when existing map data from several sources are combined in a GIS -

platform to aid the estimation of forest attributes in the area of interest. This overview covers 

applications based on optical image data – mainly satellite data – and the NN estimation 

technique, i.e. the airborne or ALS data-specific elements are left out or only briefly 

mentioned, as is also the case for issues about analysing the reliability of the large area 

estimates or coverage of optional post-processing steps.  

A general workflow of a multi-source forest inventory approach comprises identifiable 

working phases with different tasks (Figure 1). The workflow can be categorised into three 

thematic phases: (i) Data procurement, (ii) Selecting parameters for NN estimation, and (iii) 

Estimating forest variables. The reporting phase is hereby included in the last phase, since 

some input elements for reporting are calculated on-the-fly during the pixel-by-pixel 

estimation of forest variables. Moreover, the reports task in phase (iii) also covers the 

reliability analyses of the results at large area level. 

 

1.3.1 Data procurement  

 

In the data procurement phase (see Figure 1), both image and mapped data are imported into 

the GIS database, and image data to be used in the mapping is pre-processed. In addition, 

managing and analysing field data is necessarily undertaken in this first phase of the process.  

Available digital map data is utilized in separating some categories of non-forestry land 

(such as roads, buildings and agricultural areas) from further analysis and is usually 

implemented by using masks built from the auxiliary data (Tomppo et al. 1998). Changes in 

the landscape may also create a need to correct older map data. The timeliness of map data 

vs. other data sources is important to reduce map errors. Applying the pixel-by-pixel 

estimation by strata is a technique that reduces the effects of these map errors (Katila and 

Tomppo 2002). Ancillary data should provide continuous cover, i.e. a wall-to-wall raster map 

or a vector map that can be transformed into raster format. Once overlaid on the image data,  
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Figure 1. A schematic workflow in a multi-source forest inventory approach. 

 

 

it acts as a mask showing pixels in the area of interest. It is also used in the stratification of 

sample units (pixels) and field plots. 

In the absence of map data, another option could be e.g. the delineation of forest and non-

forest land use classes, using image interpretation procedures such as the NN methods applied 

by Haapanen et al. (2004). However, the feasibility of the methodology needs to be 

investigated in each case. In this scenario, the estimated land use class from the image 

interpretation is then used to mask out non-forest -pixels. Other data sources may include a 

digital elevation model and boundaries of administrative regions or vegetation zones. 

Field data in large regions is often collected using a systematic sample of field plots, as 

in the case of NFIs (e.g. Tomppo et al. 1998). Acquiring accurate field plot positions is an 

important issue, and exact map coordinates are needed to successfully furnish the field plots 

with spectral variables (Halme and Tomppo 2001). Another important task is the analysis of 

forest data in a calculation system (Figure 1), including modelling and imputing tree 

characteristics such as tree height and stem volume, and also calculating plot-level results. 

For usage in stratification and as ground truth in estimation, a combined data set is built and 

maintained, consisting of the field plots which are furnished with image spectral variables 

and ancillary data variables (Figure 1). In multi-phase sampling applications, a visual 

interpretation of an attribute such as a land use class can be incorporated into this data set. 

Optical remote sensing materials are images taken using passive instruments, such as 

airborne cameras or spaceborne satellite sensors, that observe reflected solar radiation. 

Optical sensors operate primarily in the visible and infrared (ca. 0.4–15.0 μm) portions of the 

electromagnetic spectrum, whereas radar sensors operate in the microwave region (ca. 3–70 

cm) (GOFC-GOLD 2016, section 2.10.4.1). Multispectral images contain measurements 

from multiple wavelength bands (channels) corresponding to reflected energy in different 

wavelengths. Images and sensors are commonly categorised based on resolution. In remotely 

(i) Data procurement 

▪ Data acquisition 
▪ Pre-processing image data 
▪ Analysis of forest data 
▪ Building a combined data set 
▪ Preparation of input data to pixel-by-pixel estimation phase 

(ii) Selecting parameters for nearest neighbour estimation 

▪ Feature selection 
▪ Cross-validation 

(iii) Estimating forest variables 

▪ Pixel-by-pixel estimation of forest variables (k-NN) 
▪ Wall-to-wall mapping 
▪ Summary tables and reports 
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sensed imagery, resolution is significant in four measurement dimensions: spectral, spatial, 

radiometric and temporal (USGS Landsat Missions 2017). Spectral resolution is determined 

by the position in the spectrum, width and number of spectral bands, and these are factors 

that make up the degree of which individual targets can be discriminated on the multispectral 

image (Mather 1987). Spatial resolution is a measure of the amount of detail that can be seen 

in an image, and relates to the area on the ground that an imaging system (such as a satellite 

sensor) can distinguish (USGS Landsat Missions 2017). Radiometric resolution refers to the 

number of digital levels used to express the data collected by the sensor. Temporal resolution 

refers to the time that elapses between successive acquisitions of imagery (Mather 1987). 

Spatial resolution has been used to categorise image materials. Imagery with a spatial 

resolution of less than 1 m has been considered as having a very high spatial resolution 

(VHSR), while correspondingly a high spatial resolution (HSR) imagery has a spatial 

resolution of less than 10 m, (see Olofsson et al. 2014). GOFC-GOLD (2016) contains a 

review of the optical sensors available for monitoring deforestation, and uses categories of 

“Coarse” (250–1000 m), “Medium” (10–60 m), “Fine” (< 5 m) and “Very Fine” (< 1 m) 

resolution. Several systems have different spatial resolutions among their various spectral 

bands.  

In their review, Lillesand et al. (2015, p.340) referred to “moderate resolution” as having 

a range from 4 to 60 m and “high resolution” as a resolution of less than 4 m, and noted the 

4 m boundary was arbitrary. They also suggested that the evolution of land-oriented optical 

remote sensing satellite systems could be characterized by three general time periods: (1) the 

Landsat and SPOT “heritage” period when these systems completely dominated civilian 

remote sensing from space, (2) the immediate “follow-on” period (approximately between 

1988–1999) when several other moderate resolution systems came into existence, and (3) the 

period since 1999, wherein both “high resolution” and “moderate resolution” systems have 

served as complementary sources. This latter period has also included the development of 

space borne hyperspectral sensing systems. 

As mentioned earlier, Landsat TM and SPOT HRV images have been common imagery 

sources in forestry applications. Other possible sources include sources such as RapidEye 

satellites (6.5 m-resolution), and Sentinel-2 MSI (10 – 60 m resolution, dependent on the 

particular spectral band) which is one of the missions in the Sentinel Program of the European 

Space Agency (ESA). The Earth Observing System (EOS) program is conducted by NASA 

and features numerous satellite missions. Terra and Aqua spacecraft are platforms in this 

EOS program, and they both carry multiple instruments. Both Terra and Aqua carry a 

Moderate Resolution Imaging Spectro-Radiometer (MODIS). MODIS has a resolution of 

250, 500 or 1000 m depending on wavelength and a swath width of 2230 km. In addition, 

compared to some earlier systems MODIS data is characterized by improved geometric 

rectification and radiometric calibration (Lillesand et al. 2015). The Landsat mission is also 

continuing, with the Landsat 8 launched in 2013 and Landsat 9 planned for 2020. Landsat 

Level-1 data can be searched and downloaded without charge (USGS Landsat Missions 

2017). 

Contrary to the case with moderate resolution systems, the operators of high-resolution 

satellite sensors have been and will continue to be commercial firms. The first four high-

resolution systems were three managed by U.S.-based firms (IKONOS, QuickBird and 

OrbView-3) and one system operated by a company from Israel (EROS-A) (Lillesand et al. 

2015). The SPOT-5 satellite was in action between 5/2002 and 3/2015, carrying 2 instruments 

(HRG) having multispectral bands with a resolution of 10 m, and 5 m for panchromatic 

bands. Even higher 2.5 m resolution for panchromatic bands could be accessed in SPOT-5 
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by combining scenes. Sensors in the satellites SPOT-6 and SPOT-7 (launched in 2012 and 

2014 respectively) have a 6 m resolution in multispectral bands (blue, green, red, near-

infrared) and a 1.5 m resolution in a panchromatic band (Lillesand et al. 2015; Satellite 

Imaging Corporation 2017).  

Airborne images, such as those taken by using airborne digital cameras (or digitized aerial 

photographs earlier), offer an alternative to having a resolution of less than 1 m. This enables 

the observation of single trees and delineating forest stand borders with a high enough quality 

needed for operational forestry operations. Before the advent of digital airborne cameras, 

analogue aerial photographs were converted into digital form using a digital scanning 

instrument. Coarse spatial resolutions (e.g. 30 meters) make stand delineation in the image 

suffer from mixed pixels containing spectral signatures from nearby stands, compared to core 

pixels that carry signatures from one stand only. Higher-resolution images or ALS data 

enable texture features to be utilized (Haralick et al. 1973), and single trees can be detected 

in the image.  

Satellite image pre-processing (Figure 1) includes corrections for atmospheric effect and 

topography, for instance. Building a data set by combining several nearby images into a 

mosaic can require some relative calibration due to different image conditions. In the case of 

using optical image data, radiometric corrections for atmospheric effects or reducing 

topographic effects from slope and aspect vs sun illumination can also be performed if 

necessary. From a user’s point of view, other common needs are to rectify the original image 

with map data into a certain geographical coordinate system (i.e. georeferencing), or to 

transform the map coordinate system to another one. 

To cover a large area with satellite data for multi-source forest inventory applications, 

there is usually a need to use imagery from different dates, or even from different years. 

Differences between images can rise from image data processing algorithms applied, and 

also from imaging conditions and bidirectional reflectance (see Tuominen and Pekkarinen 

2004 and Tomppo et al. 2014). When multi-date images are used in image mosaicking, a 

technique of a relative calibration is needed for managing these effects. Temporally, satellite 

images are taken at certain time intervals as the satellite repeatedly passes over the region. 

The availability of satellite images is therefore often limited by the lack of cloud-free weather 

conditions and also the temporal revisit time, i.e. the temporal resolution of the system.  

Tuominen and Pekkarinen (2004) developed a local correction approach and showed that 

digitized colour infrared aerial photographs could be successfully corrected for bidirectional 

reflectance in boreal forest conditions using Landsat satellite data as reference. In their study, 

the local correction was evaluated by using the k-NN estimation of forest attributes. They 

applied local coefficients based on a ratio of the mean values obtained for both the target 

image and the reference. Tuominen and Pekkarinen (2004) thus determined local units for 

which the correction coefficients were computed, as Landsat image pixels, image segments 

or moving circles. Tomppo et al. (2010, 2014) applied a correction approach with Landsat 

images and used MODIS images as a reference to match mean and variance in the image data 

before mosaicking the Landsat data. The different pixel sizes were accounted for by 

averaging, and the necessary coefficients were calculated for pixels that were cloud-free in 

both images.  

For calibrating a set of images to a reference image, spectrally compatible image bands 

are required, and the time interval between images should be small for minimizing the risk 

of man-made changes in the landscape (Xu et al. 2012). The approach developed by 

Tuominen and Pekkarinen (2004) has been applied in several studies when combining remote 

sensing images to cover larger areas (Xu et al. 2012). 
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1.3.2 Selecting parameters for nearest neighbour estimation 

 

In satellite image-based NN applications, the nearest neighbours for a target set element (a 

target pixel) among all the reference pixels (those pixels covering a centre point of a field 

plot) are sought using a distance measure in the spectral feature space (see Kilkki and 

Päivinen 1987; Muinonen and Tokola 1990; Tokola et al. 1996; Tomppo et al. 1998; Tokola 

2000; McRoberts 2012). The Weighted Euclidean distance in the spectral space is a 

commonly used distance measure (Tokola and Heikkilä 1997), as is the Euclidean distance 

(Katila and Tomppo 2001) or regression-based distance (Tokola et al. 1996; Holmström and 

Fransson 2003). The weighting of different spectral variables is an obvious problem when 

defining the distance metric in the spectral space (Tomppo and Halme 2004).  

By using k-NN, each of the neighbours (i.e., the k reference pixels) of a target pixel in 

turn gets a weight calculated, based on the spectral distance between the neighbour and the 

target pixel. Weights proportional to the inverse or inverse squared distance can be attached 

to the k-NNs, for instance, when conducting pixel-level predictions. The largest weight is 

then assigned to those neighbours being spectrally closest to the target pixel (Tokola et al. 

1996; Tomppo et al. 2009a). It is also possible to apply equal weights for all k reference 

observations in the estimation (Haapanen and Tuominen 2008). 

For NN estimation, the variables employed in the distance metric together with a value 

of k are selected as they are estimation parameters for the k-NN (see Tomppo et al. 2009a). 

Furthermore, the maximum geographical distances in horizontal and vertical directions can 

also be employed in indicating the set of feasible NNs when determining the k-NNs. When 

available, ancillary data have been utilized in the estimation, e.g. for stratification. When 

applying the weighted Euclidean distance, the parameters of the k-NN also include the 

weights of the features in the Euclidean spectral distance measure (see Tokola et al. 1996; 

McRoberts and Tomppo 2007). Besides spectral variables, ancillary variables (e.g. map form 

predictions of mean volumes by tree species describing the coarse scale variation of a forest 

characteristic) have been utilized in the distance metric. Field data of the current or preceding 

inventory would be required for this improved k-NN approach (ik-NN) that has been applied 

in the Finnish MSNFI (Tomppo and Halme 2004; Tomppo et al. 2009a). 

The selection of the k-NN estimation parameters is performed, for example, by 

calculating the root mean square error (RMSE) and estimate of bias of pixel-level predictions 

using leave-one-out cross validation and available field sample plots. The selections are not 

independent (see Tomppo et al. 2009a). For selecting and weighting features for the distance 

metric, several algorithms – including Genetic Algorithms (GA) – have been applied to 

automate this task (Tomppo and Halme 2004; Haapanen and Tuominen 2008; Packalén and 

Maltamo 2007). Tomppo et al. (1999) have concluded that too many NNs, indicated by large 

values of k, reduce the natural spatial variation of the estimates, and therefore, a smoothed 

output is finally obtained. This feature of the k-NN technique has also been emphasized by 

Holmström et al. (2001).  

 

1.3.3 Estimating forest variables 

 

In forest variable estimation (Figure 1), the chosen estimation parameters are used in a pixel-

by-pixel-based k-NN estimation. Estimates for a target area can be computed using field data 

drawn also from outside the target area, when a prerequisite assumption made about the 
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similarity of their forests holds true. For a sufficiently large area, results have been compared 

to the estimates and error estimates based solely on field data (Tomppo et al. 2009a, p.31). 

Wall-to-wall thematic maps of forest variable predictions can be produced, as the 

estimation is carried out on a pixel-by-pixel basis (e.g. Tuominen et al. 2010). For categorical 

variables, the mode or median value can be used as a prediction, instead of a weighted 

average as is used for continuous variables (see Tomppo et al. 2009a; 2009b). In the k-NN 

prediction, the weights are positive and so they can be interpreted as area weights (see Tokola 

et al. 1996; Tomppo 1996), representing area proportions by each plot. Therefore, summary 

results for the area of interest (a set of target pixels in the area of interest) can be produced 

by aggregating the area weights over the region by reference plot. 

For implementing the necessary calculation procedures and map presentations, there are 

open source tools available, such as GRASS GIS (Neteler and Mitasova 2008), the QGIS 

system (QGIS 2017), and the R software package (R Core Team 2017).  

 

 

1.4 Objectives  

 

Remote sensing materials constitute an essential source of data in estimating forest attributes. 

The main objective of this dissertation was to use and explore the capability of the NN-based 

multi-source forest inventory approach in regions representing different forest conditions. 

The further use of the results of a multi-source approach is examined in a case study in 

Finland for calculating technical bioenergy potentials. In Studies I-IV, multispectral images 

are used, yet the approaches are also open to materials obtained from active sensors like ALS 

and SAR sensors. The specific aims of the studies included in the dissertation can be itemised 

as follows: 

 

• Study I: To present an approach for incorporating indicators of spatial variation into 

the estimation of forest parameters and compare its performance with other spectral 

features. 

 

• Studies II and III: To apply and further develop methods in multi-source forest 

inventory tasks using different kinds of remote sensing data and forest data. 

 

• Study IV: To utilize results from a multi-source forest inventory case study and 

present an approach for calculating biomass potential in a selected region. 

 

There can be several variations in the above-presented workflow (Figure 1) depending on 

the sampling design and the details of the field data and ancillary data. For example, a forest 

cover map was constructed separately by using the k-NN estimation of a category variable in 

study II. Moreover, the forest category area of study III could also be extracted from the 

existing map of forest polygons. Study IV provides a solution to incorporate biomass 

estimation results from a multi-source approach for further scenario analyses including 

spatial constraints, and thus shows how the results of the approach may be utilized in the 

future. 
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2 MATERIALS 
 

 

2.1 Study areas and field data 

 

The study areas in studies I and IV are in Finland and represent boreal forests, whereas the 

study areas of studies II and III are located in Nepal and Vietnam respectively, and in the 

ecological zones of tropical forest (see studies I-IV and maps of FAO Global Ecological 

zones viewable in FAO GeoNetwork 2018).  

The data in study I was collected from the area of the Helsinki University Experiment 

Station in Hyytiälä, in South-Western Finland. In study IV, the target area comprised the 

region of the Central Finland Forestry Centre. 

The target area in study II was the Terai region, that is the southernmost of the five 

physiographic zones of Nepal. There are three separate sub-regions in Terai; in study II, 

Western Terai comprised the two westernmost sub-regions, and Eastern Terai consisted of 

the easternmost sub-region. Terrain in the Terai region is topographically less complex 

compared to the other physiographic zones, and the elevation varies from 60 to 330 m above 

sea level. In the map of ecological zones with physiographic regions in Nepal presented by 

Lillesø et al. (2005, p. 49), the study area in study II represents the lower tropical ecological 

zone. The study area featured in study III was the region of Kon Tum province in Vietnam, 

located in the north-western part of the central highlands region. 

The field material in study I comprises a set of compartment-level forest parameters in 

Hyytiälä, Finland. The total size of the area was 125 ha and there were originally 73 forest 

compartments that were homogenous with respect to tree and soil properties. The area is 

mainly mineral soil. Data was collected in 1989 by the University of Helsinki, Department 

of Forest Resource Management. Stand-level variables were calculated from sample plot 

measurements drawn from a systematic grid (50 m × 25 m) of variable radius field sample 

plots. Stand boundaries were overlaid on the sample plot grid. Compartment-level results 

were then calculated from plots falling within the stand boundaries. Treewise volumes were 

calculated using Laasasenaho’s (1982) taper curve models. Small stands (with an area less 

than 0.3 ha), stands dominated by deciduous species (n=3) and young sapling stands (n=3) 

were left out due to their rarity in the data. In the field material, there were 59 forest stands 

that ranged from young to mature stands, and were dominated by Norway spruce (Picea abies 

(L.) Karst.) and Scots pine (Pinus sylvestris L.). The stand area ranged from 0.30 ha to 11.11 

ha with a mean area of 1.87 ha, and the stand age ranged between 18–107 years, with a mean 

age of 63 years (study I). 

In study II, the field materials and visual interpretation data originated from an operative 

forest inventory project, i.e. the Forest Resource Assessment project of Nepal (FRA Nepal). 

First, a sample grid of visual interpretation data was utilized in a classification approach for 

producing a forest cover map. Second, field plot data was used in volume mapping and for 

checking classification accuracy. In the Terai region, a 4 km by 4 km grid was used to locate 

sample units, i.e. square clusters with a side length of 300 meters. Each cluster consisted of 

6 sample plots, i.e. 3 plots 150 m apart in each of the two sides in a North-South direction. 

All 6 plots were used as visual interpretation plots (7533 observations). In the two-phase 

sampling method, the clusters were selected to a field sample by strata. In the selected cluster, 

the four plots at the cluster corners were then field-measured. The field plot material in Terai 

consisted of 217 field-measured sample plots. 
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In study III, the field material also consisted of existing forest inventory data from 

systematically located permanent plots, each having consecutively arranged subplots, with 

20 subplots in a north-south direction and 20 subplots in an east-west direction. The study 

material for study III comprised field measurements from 133 sample plots established 

between January 2007 and January 2010. For satellite image-based volume mapping, the 

subplot material was compiled using the forest mask based on existing digital map data of 

land use or forest type and by selecting every second subplot to be used in field reference 

material, resulting in 2094 subplots.  

In study IV, a wall-to-wall raster map of biomass variables obtained for the area of the 

Forestry Centre of Central Finland (Tuominen et al. 2010) was used as a starting point in 

analysing biomass potential. However, a separate analysis for the stump recovery rate 

constraint was carried out using existing field plot data from mature stands in southern 

Finland, selected from three data sets denoted as SPATI, KYMI and ENSO (see Anttila et al. 

2001). Altogether 146 stands were used in analysing the stump recovery rate, including Scots 

pine stands, Norway spruce stands, or mixed stands of Scots pine and Norway spruce. SPATI 

contains a set of fixed area sample plots spanning the years 1988 – 1994 in North Karelia 

Finland, the materials of ENSO (1991) and KYMI (from 1984 and 1985) contain relascope 

sample plots originally established to check the inventory by compartments.  

 

 

2.2 Remote sensing data 

 

In study I, remote sensing data was comprised of a digitally orthorectified aerial photograph, 

whereas satellite image materials were used in studies II and III (Table 1). 

The colour infrared aerial photo used in study I was taken on June 12, 1989 at a scale of 

1:30 000, with a Wild RC20 camera. The digital image was produced by digitally scanning 

the original negative using 900 dpi resolution, and then orthorectifying the image to a 0.80 

m pixel size using an elevation model from the Finnish National Land Survey. 

 

 

Table 1. Remote sensing materials in studies I-III; (WRS = Worldwide Reference System, 

path/row). 

 
Image source Image reference Date Study 

Aerial photo – 1989-06-12 I  
MODIS (MYD09A1) tile h24v06 2010-02-10…2010-02-17 II  
MODIS (MYD09A1) tile h25v06  2010-02-10…2010-02-17 II  
Landsat TM 144/40 (WRS-2)  2011-03-27 II  
Landsat TM 143/41 (WRS-2)  2010-02-25 II  
Landsat TM 142/41 (WRS-2)  2010-02-18 II  
Landsat TM 141/41 (WRS-2)  2010-02-11 II  
Landsat TM 140/41 (WRS-2)  2010-02-04 II  
Landsat TM 140/42 (WRS-2)  2010-02-04 II  
Landsat TM 139/42 (WRS-2)  2010-01-28 II  
MODIS (MCD43A4) tile h28v07 2011-02-02…2011-02-17 III 
Landsat TM 124/50 2011-02-07 III  
Landsat TM 125/50 2009-02-08 III  
Landsat TM 125/49 2011-02-11 III  
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Table 2. MODIS spectral bands 1–7, Landsat TM bands and spatial resolutions (see Lillesand 

et al. 2015 p.374; USGS Landsat Missions 2017). 

 
Sensor and band Bandwidth Resolution (m) 

MODIS    
1 620–670 nm 250 
2 841–876 nm 250 
3 459–479 nm 500 
4 545–565 nm 500 
5 1230–1250 nm 500 
6 1628–1652 nm 500 
7 2105–2155 nm 500 

Landsat TM    
1 Visible 0.45–0.52 µm 30 
2 Visible 0.52–0.60 µm 30 
3 Visible 0.63–0.69 µm 30 
4 Near-Infrared 0.76–0.90 µm 30 
5 Near-Infrared 1.55–1.75 µm 30 
6 Thermal 10.40–12.50 µm 120 
7 Mid-Infrared 2.08–2.35 µm 30 

 

 

In studies II and III, MODIS data products and Landsat satellite data were used, with the 

former used as a reference for relative calibration, and the latter for estimating forest 

parameters using k-NN. For the gap-filling work in III, some older Landsat image data from 

December 2004 was also utilized. It can be noted here that some underlying analyses (such 

as the visual interpretation in study II, and the vector map of land use in study III) were based 

on high- resolution satellite materials. In study IV, the segmentation for producing stand 

delineation for the biomass potential analysis was based on a satellite image mosaic built 

from several images used in the Finnish MSNFI, from IRS-P6 and SPOT-5 satellites 

(Tomppo et al. 2012).   

The spectral bands in the MODIS MYD09A1 data product and in Landsat TM imagery 

are presented in Table 2. MODIS products MYD09A1 and MCD43A4 provide 500 metre 

reflectance data of the MODIS “land” bands 1–7 in an 8-day or 16-day period, respectively 

(USGS 2018). Landsat TM band 6 was not used in the analysis, and MODIS data products 

with a 500 m resolution were utilized as a reference material for the relative calibration 

approach applied.  

 

 

2.3 Ancillary digital data 

 

In study I, a digital elevation model from the National Land Survey of Finland (NLS) was 

used to orthorectify the digital aerial photograph. 

In study II, the region boundaries of Terai were compiled by the FRA Nepal project team, 

and visual interpretation was also aided by the topographical map layers available in Google 

Earth imagery (Google Earth 2018).  

In study III, non-forest areas were masked out using an existing vector map of forest 

polygons created by the Forest Inventory and Planning Institute (FIPI) located in Hanoi, 

Vietnam. Also, data available from a digital elevation model (DEM); more precisely SRTM 
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90 m Digital Elevation Data, version 4.1 (Consortium for Spatial Information 2018), was 

used in image pre-processing.  

In study IV, the map data contained municipality boundaries and a DEM from NLS, 

conservation and Natura2000 areas from the Finnish Environmental Institute, and road data 

and forest attribute estimation based on the Finnish MSNFI (Tomppo et al. 2012).  A digital 

elevation model of a 25 m resolution was used in separating areas with a steep slope 

constraining forest operations (study IV).  

 

 

3 METHODS  
 

 

3.1 Relative calibration of satellite images 

 

In building a Landsat image mosaic, which was conducted in studies II and III, a local relative 

calibration was applied with a method combined from the approaches presented by Tomppo 

et al. (2010) and Tuominen and Pekkarinen (2004).  

 The correction function (see Tomppo et al. 2010) applied for a pixel (x, y) was as follows: 

 

),(),(),(),(ˆ yxbyxfyxayxf iiii +=   (1) 

 

where ),(ˆ yxf i
 is the corrected data for the pixel (x, y) in band i, ),( yxfi is the 

uncorrected data in band i.  Parameters ),( yxai  and ),( yxbi  were computed for a pixel 

(x, y) as follows: 

 

),(/),(),( yxsdyxsdyxa LiMji =  (2) 

 

),(),(),(),( yxayxavgyxavgyxb iLiMji −=  (3) 

 

where i denotes a Landsat TM band, and j denotes a MODIS band that is compatible with i. 

Raster map algebra was used to compute raster maps “avgLi”, “sdLi”, “avgMj” and “sdMj”, i.e., 

which represent the means and standard deviation values of the Landsat TM and MODIS 

data in compatible spectral wavelength bands i and j, respectively. They are computed using 

a w × w moving window from an image in resolution c corresponding to the reference image 

(MODIS). Averaging was used to change resolution of the Landsat images in creating raster 

maps “avg” and “sd”. MODIS bands 3, 4, 1, 2, 6 and 7 were used as compatible bands for 

Landsat TM bands 1, 2, 3, 4, 5 and 7. 

In studies II and III, a value of c=500 m was used. In study II, w=21 was selected based 

on the visual appearance of the image mosaic – the means and standard deviation values were 

then calculated in a 21 × 21 moving window (10 km × 10 km) after averaging the Landsat 

images to 500 metre resolution. In study III, values w=21 and w=41 were tested by the 

correlation of image band values and a forest variable, i.e. volume. 

In studies II and III, the aforementioned approaches were combined as follows: the 

coefficients were calculated locally in a moving window, as presented in Tuominen and 

Pekkarinen (2004), and the coefficients for the adjustment calculated following the principles 
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by Tomppo et al. (2010). It can be noted that the parameters follow the form presented and 

derived for an image normalization procedure by Du et al. (2002, p. 126) – see also Xu et al. 

(2012, p 72). The tools necessary for the raster calculation and analysis were available in 

GRASS GIS (Neteler and Mitasova 2008).  

Corrections were calculated separately for each Landsat image, after which a mosaic was 

created. A visual inspection was used to guide determining the range of the size of the moving 

window. A 500 metre resolution was selected as it was the same resolution that featured in 

the MODIS image data. Optionally, image DN values can be scaled to 8-bit integer values, 

and in studies II and III they were normalized during the next phases, i.e., feature selection 

and k-NN estimation, so as to account for the scale of the image data.  

 

 

3.2 Computing spectral features  

 

NN techniques were used in studies I, II and III. In study I, forest stand-level feature variables 

were computed and they were based on a digital aerial photograph resampled to a 0.80 m 

pixel size. Features variables included mean values in red, green and blue bands (r, g and b 

respectively). Also an indicator of local variability (rsd) was computed using red band, as a 

mean value of standard deviation in a 13 × 13 moving window inside the stand. In a similar 

manner, a texture feature variable, angular second moment (ASM) was computed for each 

stand using 40 digital number (DN) classes and a 13 × 13 window (Haralick et al. 1973). 

Empirical omnidirectional variogram curves were calculated from a sample of randomly 

located L -shaped clusters (0.80 m sample interval) and there were 26 clusters in each stand; 

thereafter 25 points from the computed variogram curve were selected as indicator variables 

(i.e., feature variables) at 1-metre lag intervals. The calculation of semivariances and textural 

feature variables was carried out according Carr and Miranda (1998; see also Anttila 2002).  

In study II, the image data comprised Landsat image mosaic bands after relative 

calibration based on MODIS data. For the forest/non-forest classification, the spectral 

features included image mosaic band values corresponding to Landsat bands 1 to 5 and 7 at 

30-metre resolution. For the volume mapping, the band ratios and Normalized Difference 

Vegetation Index (NDVI) were also included in the feature set.  

In study III, the image mosaic was constructed in a similar way to that of study II, i.e., 

the spectral feature set in analysing volume estimation in study III consisted of image mosaic 

band values, band ratios and the value of NDVI. In the k-NN analysis and estimation (II, III), 

features were first scaled to standard deviation one. 

In study III, in Kon Tum, Vietnam, there were different options in the image pre-

processing phase and their parameters were evaluated in making the image mosaic. The first 

of these phases was selecting the neighbourhood size (10 km vs. 20 km) in the local 

calibration. The second option to test was a median filtering (in a 3 × 3 or 5 × 5 -pixel 

window) of the image data, and thirdly, a DEM-based radiometric correction approach was 

applied as presented in Tomppo et al. (2008a, p.36). Parameter values for the two first of the 

aforementioned optional pre-processing steps were evaluated by examining the correlation 

between stand volume and image bands. The power parameter value in the third option (i.e. 

the DEM-based correction) was analysed by examining the RMSE and bias of volume 

estimation when parameter values of 0.00, 0.0125, 0.0250, 0.0375, …, 0.500 were tested in 

a grid search.  
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Table 3. Nearest neighbour estimation methods used in studies I-III. (CCA = Canonical 

correlation analysis; GA = Genetic algorithm; FS = feature selection). 

 
Study Forest variable Distance  FS Plot weights 

I Volume MSN  CCA Inverse distance  
II Forest/ non-forest Euclidean user-defined Equal weights  
 Volume Euclidean GA Inverse distance 
III Volume Euclidean GA Inverse distance  

 

 

 

3.3 Nearest neighbour techniques in the estimation of forest variables 

 

Nearest neighbour techniques were utilized in a manner presented in Table 3. In study I, the 

target and reference elements are forest stands, whereas in studies II and III they are pixels 

in satellite images. 

In study I, the method used in stand volume estimation was based on the approach 

presented by Moeur and Stage (1995), i.e., Most Similar Neighbours analysis (MSN). In the 

MSN similarity measure, D2 (Equation 4), between a target element u and a reference element 

j is formulated as:  

 
''22 )()( jujuuj XXXXD −−=  (4) 

 

where 
uX  and 

jX  are feature variables of elements (observations) u and j (1 × p),   is a 

matrix of canonical coefficients of feature variables (p × s), 
2  is a diagonal matrix of 

squared canonical correlations  (s × s), s is the number of canonical correlations used, and p 

is the number of feature variables. 

Canonical coefficients originate from canonical correlations, where the aim is in finding 

linear combinations U and V for target variables (Y) and feature variables (X), which 

maximize the correlation between them. In the study I, s was equal to 1, i.e. the vector of 

canonical coefficients related to stand volume were used. In Equation 4, the feature variables 

(i.e., the indicator attributes) are the image data-based variables that act as predictor variables, 

or independent variables, and the forest variables act as target variables (i.e., design 

attributes), i.e., they comprise the group of dependent variables for the similarity measure. In 

study I, the squared distance function to measure the similarity was based on canonical 

correlations between a forest variable (stand volume) and there were several sets of spectral 

features that were tested. The k-MSN method was applied, i.e., the set of k nearest neighbours 

for a target observation were searched by finding the closest k reference observations 

according to the similarity measure (Equation 4).  

In studies II and III, the population units were the pixels in a satellite image. The satellite 

image bands were used as the feature variables, with observations for all of the population 

units. The nearest neighbours for a target pixel i among all reference pixels (the pixels 

covering the centre point of a sample plot) were determined using a weighted Euclidean 

distance in a spectral feature space (see Tokola 2000): 
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where nb is the number of bands, i is a target set element for which a prediction is sought, 

and j is a reference set element; bih and bjh are the spectral values of the pixels i and j on band 

h, respectively, and ph is the empirical weight for band h.  

For the target pixel i, the k-nearest neighbours, i.e. the set of reference pixels to which the 

Euclidean distance in spectral feature space from the target pixel i is smallest, 

)}(),...,({)( 1 ijijiK k=  were sought. 

In the case of a continuous forest variable, such as volume, the weight wij for each 

neighbour )(iKj was determined to be inversely related to its distance to the target pixel 

i: 
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where t is a user-defined parameter (t ≥ 0). In studies II and III, a small positive number was 

given for zero distances and the value t = 2 was used in (Equation 6). In study I, weights were 

determined in a similar manner, but a constant value of 1 was added to the similarity measure 

(i.e. to the spectral distance) to deal with zero distances, and the value of t=1 was used 

(Equation 6).  

A nearest neighbour prediction ( iŷ ) for a target element i was then computed as: 
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where yj is the observed value of the forest variable in reference element )(iKj . 

In the case of a category variable such as the forest cover mapping in study II, the mode 

value of the FAO land use class among the k-nearest neighbours was the predicted class for 

the target pixel. The band weight (ph) was set to 1 for all bands.  

In the distance function (Equation 5) the weights for the spectral features were sought 

using a heuristic method, i.e. a genetic algorithm-based approach via the ‘genalg’ package of 

the R statistical software package (R Core Team 2017). The genetic algorithm approach was 

used in two modes: on/off mode, where the aim is feature selection, and in simultaneous 

mode where features are selected and their weights are sought. In GA, the goal function is 

formulated so as to minimise the sum of RMSEs and biases of the target variables and any 

possible penalty, and this was applied in study III to limit the number of spectral features in 

the model. 

Cross-validation is a step in building the k-NN model, and the accuracy of the forest 

variable estimate at the plot level (or at the stand level in study I) was compared with values 

of RMSE and estimate of bias of pixel-level predictions. 

 

 

3.4 Cross-validation and feature selection  

 

For the validation of the results of continuous variables, leave-one-out analyses were 

conducted, and common validation criteria, i.e. RMSE and bias, were calculated for the 

continuous variable of stand volume. The RMSEs and biases were determined as follows: 
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where iy  is the observed value, iŷ  the predicted value of the given characteristic, and n is 

the number of observations. The relative (i.e. percent) RMSEs and biases were calculated by 

dividing the absolute RMSEs and biases by the means of the respective values from the 

observations and multiplying the resulting quotients by 100.  

In study I where the k-MSN method was applied, feature sets were designed manually, 

and the weights for the features in the similarity measure (i.e. distance function) in the search 

of neighbours, were computed using the canonical correlations. The performance of the 

feature sets was evaluated using RMSE and bias of the volume estimates at forest stand level. 

Values 1,…,10 of the parameter k (the number of neighbours) were analysed in a similar 

manner. The first of the feature sets tested contained image pixel mean values in the red, 

green and blue bands in the forest stands, and the feature set in the model was enlarged to 

contain all of the spectral features (r, g, b, ASM, values of empirical semivariance).  

In the forest/non-forest classification scheme carried out in study II, Landsat image 

mosaic band values were used in the k-NN estimation. Equal weights were manually given 

for the bands in a Euclidean distance function. For this case of a category variable (i.e. forest 

cover), classification accuracy was studied via indicators based on the confusion matrices 

(error matrices) and included producer’s accuracy, user’s accuracy, overall accuracy and 

Kappa statistic (KHAT) (Congalton 1991; Congalton and Green 2009; Olofsson et al. 2014; 

Campbell 2007). The error matrix is a simple cross-tabulation of the class labels allocated by 

the classification of the remotely sensed data against the reference data for the sample sites 

(Olofsson et al. 2014). Characterisations of KHAT-based categories as “strong agreement” 

(i.e. > 80%), “moderate agreement” (i.e. 40-80%) and “poor agreement” (i.e. < 40%) have 

been presented by Congalton and Green (2009). 

The classification accuracy was accounted for in the selection of the k value, mainly by 

inspecting empirical distributions of the KHAT values at different k values. The Monte Carlo 

approach was used, where for each value of k{1, 3, 5, …, 15}, 5000 test samples of 1000 

reference elements were randomly selected from the set of reference elements, to act as test 

set of target elements. The remaining elements not included in the sample comprised the 

reference set. The Kappa statistic value was used as a classification accuracy indicator, and 

KHAT was then computed for each test sample. In this way, the empirical distributions of 

KHAT were produced with a varying value of k to guide the selection of k value. Visual 

inspection plots (i.e. the 1st phase plots) were the elements used in test samples.  

In constructing a forest/non-forest raster map, the post-processing included a 3 × 3 mode 

filter (for removing the salt-and-pepper effect), reclassifying non-forest categories into a 

single class and excluding forest segments having an area of less than 0.5 ha. In the end, 

field-observed values were also used as reference data in checking the accuracy of the forest 

cover mapping. 

In study II, the k-NN approach was applied also for volume mapping, i.e. in estimating a 

continuous forest variable. The feature selection and the weighting of the features (i.e., band 

weights ph in Equation 5) in the Euclidean distance function were conducted using a genetic 

algorithm-based approach available in the statistical software package R (R Core Team 
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2017). For the algorithm, guiding parameters of population size, number of iterations, elitism 

and mutation chance were given values of 1000, 500, 40% and 0.05, respectively. The goal 

was to minimize the sum of RMSE and bias for the stand volume. To create a thematic wall-

to-wall map for the growing stock volume, the predictions were classified in classes of 50 

m3ha-1. The reference set comprised those pixels in which the centre points of field checked 

plots were located. 

In study III, the Euclidean distance function was also used and candidate models were 

tested either with equal weights for the spectral features, or the weights were searched using 

GA. Two functions developed for continuous variables in GA were used: on/off feature 

selection or a simultaneous feature selection and weight search. The value of k was also 

searched using GA. The number of neighbours (k) in the analysis was 1,…,15, and the 

number of variables in the model was controlled by including a penalty to the GA if there 

were more than 6 variables in the model. Similarly to study II, a classification of volume 

predictions into classes of 50 m3ha-1 was applied in making the thematic map of volume. 

 

 

3.5 Calculation procedure for the bioenergy potential of forest chips 

 

The framework in calculating the technical potential of forest biomass presumes a stand-level 

forest database of forest attributes. The steps included in the calculation procedure for the 

bioenergy potential of forest chips in study IV are presented in Figure 2. To summarize: forest 

stand register over a large area was used in computing aggregations of forest biomass 

variables. The calculation procedure was guided by exogenously defined harvesting levels, 

that act as scenarios to control the intensity of the forestry operations, together with 

environmental criteria and constraints at stand level. Reported potentials are average values 

from replicates generated in a sampling loop that is introduced to account for, e.g. the 

variation caused by the selection of stands for regeneration. The types of forest biomass 

examined in study IV are primary forestry residues, i.e. logging residues and stumps. 

Data procurement and pre-processing (Figure 2) includes the preliminary working steps 

for the necessary input forest stand attributes. Wall-to-wall raster maps of biomass variables 

from a multi-source forest inventory case study in the area of the Forest Centre of Central 

Finland (Tuominen et al. 2010) were used in combination with other forest variables 

originating from raster maps from the MSNFI of Central Finland (Tomppo et al. 2012). The 

satellite image data from SPOT-5 and IRS-P6 satellites also originated from the Finnish 

MSNFI (Tomppo et al. 2012). Image segmentation algorithms presented by Pekkarinen 

(2002) were used to delineate stand boundaries: An average filter (3 × 3 pixel window) was 

applied to smooth the image mosaic and the process included three iterative rounds of region 

merging. ArcGIS utilities (Esri 2017) were used to find the centroids of the segments. Non-

forestry land was excluded based on the thematic map data of MSNFI, and nature 

conservation areas and Natura 2000 areas were excluded based on digital map data. Raster 

GIS zonal analyses were then used in calculating necessary segment-level forest attributes, 

i.e. mean or mode values (category variables). In this way, forest stands in the calculation 

system were then based on image segments furnished with the calculated forest attributes. 

Distance from roads and steepness of slope were also computed and added to the stand 

attribute table.  
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Figure 2. Working steps and issues in the calculation procedure for the bioenergy potential 

(study IV). 

 

 

Calculation parameters (Figure 2) like those for technical and economic accessibility, 

together with the environmental criteria affecting the bioenergy potential of forest chips, were 

incorporated into the procedure following the guidelines for harvesting forest biomass for 

energy presented by Tapio (the Finnish Forestry Development Centre) (see Koistinen et al. 

2016 for a current edition of guidelines), in addition to the general Finnish forestry guidelines 

(see Äijälä et al. 2014 for the current edition of the guidelines). Technical accessibility criteria 

(minimum recovery rate values of logging residues and stump extraction, the proportion on 

unmerchantable stem top, steepness of slope) and economic accessibility (minimum values 

of the recovery volumes for logging residues and stumps per stand, minimum stand area) 

were introduced as constraints in the system. The environmental protection of soil, water and 

remaining trees was included by implementing buffer zones, and by giving a list of feasible 

site fertility classes. These constraints served to define the exogenous factors to be fulfilled 

for a feasible technical and economic accessibility of the stands, and also to respect the 

principles of environmental protection. Optional constraints were given to actual forwarding 

distance and dominating tree species in the calculations. 

The value for stump recovery rate had to be analysed in a separate calculation that was 

based on a set of existing field materials of forest stands (see section 2.1); One hundred 

simulation runs were conducted for each of the stands in the materials, following the pre-

mentioned forestry guidelines (see also Kärhä 2012; for stump diameter see Repola 2008, 

2009):  

 

• all stumps with a diameter of less than 20 cm were left on the harvesting site 

• in addition to the small stumps above, 25 larger stumps per hectare were not 

extracted and this selection is done randomly, starting from stumps of deciduous 

tree species. 

 

(i) Data procurement and pre-processing 

▪ Data acquisition 
▪ Image segmentation 
▪ Computing stand-level attributes 

(ii) Calculation parameter setting 

▪ Environmental criteria and constraints 
▪ Site class distribution from NFI 
▪ Harvesting level definitions 

(iii) Sampling loop 

▪ Adjusting site class distribution 
▪ Selecting regeneration stands 
▪ Summing up biomasses from the selected regeneration stands 

(iv) Reporting 

▪ Aggregating average values from the replicates generated by the sampling loop 
▪ Creating summary tables and figures 
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Site class distributions were checked from the Finnish NFI (Peltola and Ihalainen 2012). 

Harvesting levels for the time period 2000-2009 were then examined using the annual 

statistics of roundwood removals at municipality-level (see Luke 2017), and the proportion 

of roundwood by felling method (Torvelainen 2010) was applied in estimating the share of 

regeneration cuttings. Three scenarios (i.e. MIN, AVG and MAX) were defined. The MIN 

and MAX were based on 2009 and 2007 figures, respectively.  

In the sampling loop (Figure 2) of the calculation procedure, the segment-based 

distribution was adjusted to match with NFI-based distribution using an approach where 

randomly selected stands are transferred from a source class to a target class, towards the 

tails of the distribution. This adjustment was made because it was noted that pixel-by-pixel 

mode values had produced a more peaked distribution in the whole region compared to the 

actual distribution. The selection of the forest stands to final fellings (i.e. the source of forest 

chips and the origin for the bioenergy potential) were selected randomly from among the 

feasible stands in the region. In reporting (Figure 2), the bioenergy potentials were then 

calculated as averages from the replicates generated by the sampling loop using necessary 

unit conversions. Using the replicates, the coefficient of variation could also be computed to 

determine the sampling variance in the results.  

The method in study IV is categorizable as a resource-focussed assessment and a spatially 

explicit analysis (Vis et al. 2010). The reserves of forest chips are calculated in a way utilizing 

the spatial explicit form of the raster maps. The delineation of forest management units was 

carried out using an image segmentation approach (cf. Mäkelä et al. 2011). This enabled 

applying regulations, a share of which depend on the size of the forest stand area, to forest 

operations. Sustainability issues are addressed by comparing given harvesting levels to the 

mean annual increment of the growing stock reported in the forest statistics. 

 

 

4 RESULTS 
 

 

4.1 Usability of information on variograms in image interpretation (I) 

 

In study I, the usability of the empirical variogram curve calculated on the red band in the 

digitized aerial photograph was analysed by performance of image interpretation at forest 

stand level. The forest standwise accuracy based on cross-validation and leave-one-out 

analysis in the NN-based estimation of total volume was measured by RMSE and the estimate 

of bias. A similarity measure of quadratic form (i.e. the distance measure) was based on the 

approach of MSN. The explanatory variables were grouped into feature sets established for 

the comparisons. The number of neighbours (i.e. the value of k) varied in a range of 1 to 10. 

Lowest standwise RMSE results were obtained using those feature sets (see study I) in 

the distance measure that included the values of semivariance (i.e. feature sets fset_e, fset_g, 

fset_h and fset_f). In these cases, the relative RMSE resulted in a level of ca 18 %, that was 

lower than the relative RMSE-level of ca. 24–27 % acquired without the inclusion of the 

values of semivariance to the model (fset_d, fset_b, fset_a and fset_c). In all test cases, bias 

was between –0.6 % and 1.8 %. 

Values of k greater than 3 offered little improvement, i.e. the RMSE level was quite stable 

with values k larger than 3. The bias was unstable when fewer than 8 neighbours were used. 
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Large values of k resulted in underestimates. Based on the residual plot in case fset_e (k=3), 

stand area had no clear effect on the performance of the volume estimation.  

 

 

4.2 Mapping forest cover and volume in tropical forests using k-NN (II and III) 

 

Covering the Terai region with Landsat TM satellite data utilized in study II required several 

Landsat images that were taken on different dates. For this reason, an approach for a relative 

calibration was necessary, in order to enable the combined usage of Landsat image data, field 

plot data, and visual interpretation plot data. The overall appearance of the image mosaic was 

inspected to find suitable window sizes for the calibration approach. Finally, a window of 21 

× 21 pixels of a 500 m -resolution was used in calculating the means and standard deviation 

values used for the calibration. MODIS data acted as reference material in a local calibration 

that was made separately for eastern and western parts of Terai. The forest cover mapping 

was based on an FAO land use classification made for a sample grid of visual interpretation 

plots. The k-NN approach was applied for mapping forest cover and volume.   

The MODIS data performed well as reference data for the calibration approach. For the 

category variable (i.e. forest cover), the value of k was selected using randomly selected test 

samples. Kappa statistics (KHAT) for different values of k showed that in forest cover 

mapping, using values of k greater than 5 does not improve the quality of the estimation 

result. Kappa statistics showed 0.84 and 0.87 for k=5 in Western and Eastern Terai, 

respectively. A value of k=5 was used in the forest cover mapping, together with equal 

weights in a Euclidean distance calculated with image mosaic bands.   

Accuracy measures were calculated using the field-observed values, 140 and 77 plots in 

western and eastern parts, respectively. The accuracy of the delineation of forest cover by 

visual interpretation was very good in both parts of Terai, with a Kappa value of ca 0.82 (i.e. 

strong agreement) based on the field-checked value. In Eastern Terai, the forest cover 

classification appeared to have the same accuracy level as the visual interpretation – the 

Kappa value was 0.825. In Western Terai, the forest cover map had a slightly lower Kappa 

value of 0.745 (moderate agreement); the user’s accuracy in the “Non-forest” class was 71 

%. Based only on the field plot points, the forest cover map and the visual interpretation 

showed a better agreement in Eastern Terai (KHAT=0.825, i.e. strong agreement) than in 

Western Terai (KHAT=0.65, i.e. moderate agreement). 

In study II, thematic mapping of stand volume was carried out with k-NN techniques 

using a weighted Euclidean distance. The explanatory variables (spectral features) included 

b1, b2, b4/b3 and b5/b3, where bi refers to image mosaic band comparable to the ith TM band. 

The largest weights by search conducted with a GA-based approach in the distance were 

given to b2 and b1. Plotwise RMSE and bias resulted in 85.4 m3/ha (ca. 62%) and −0.541 

m3/ha (slight overestimation), and k=4 was used in the volume mapping. A boxplot of 

residuals indicated the median of residuals being close to zero in all volume prediction 

categories. However, some averaging effect could be noted in the volume predictions. For 

the thematic map of volume, reclassification into categories of 50 m3/ha were used. The target 

pixel data for the classification comprised of pixels belonging to the category of forest in the 

forest cover map and the reference data comprised the pixels covered by a field plot. 

Kon Tum province was the target area of study III, and is located in the north-western 

part of the central highlands region of Vietnam. The aim of study III was to compile and 

demonstrate the use of a multi-source forest inventory -oriented processing chain to produce 

forest volume maps for the region. This study raised the challenges of species-rich tropical 
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forest structure to forest data analysis. It can be noted that a vector map of forest polygons 

was utilized in aggregating the subplots into forest stands for a tree height generalisation 

model – this subject is not covered in the main scope in this thesis, more details of the 

procedure of applying the NMLE modelling approach are featured in the listed publication 

of study III.   

The relative calibration of Landsat TM images was performed using a similar approach 

than that which was used in study II. A 41 ×41 pixel moving window and a 500 m resolution 

were used in computing the mean and standard deviation values as a larger window was 

preferred. Also, a 5 × 5 median filter was applied, based on the correlation between stand 

volume and satellite variables. The next step was to find out if DEM-based pre-processing 

could improve the estimation. After a grid search (k=15, equal weights of image mosaic band 

values) and examining the plot-level RMSE and bias of volume estimation (i.e. 129.2 m3/ha 

and 0.11 m3/ha respectively), the power parameter was given a value of 0.250 for the DEM-

based correction. 

The next phase was a genetic algorithm-based search of the spectral features (feature 

selection), together with a search of feature weights, i.e. the coefficients of the variables in 

the weighted Euclidean distance function for the volume estimation. After several test runs, 

in the two modes of the GA procedure – on/off and simultaneous modes – it was noted that 

the differences in the RMSE of stand volume between the models of the test runs conducted 

were small. The plot-level values of RMSE and bias in the leave-one-out cross validation 

resulted in 126.2 m3/ha (76.6%) and −0.04 m3/ha (0.03%), respectively, and the number of 

neighbours was 13. For the thematic map of volume, the volume predictions were reclassified 

into 50 m3/ha categories and overlaid on the land use map data, i.e. the vector map of forest 

polygons. 

 

 

4.3 Estimating the bioenergy potential of forest chips (IV) 

 

Calculation of the bioenergy potential of forest chips was based on a spatially explicit 

method, where a stand register furnished with necessary forest attributes is presumed. Wall-

to-wall raster maps of forest attributes from a multi-source forest inventory approach together 

with a stand delineation derived using image segmentation were used to build a stand register 

for study IV. By overlaying these two raster maps in a raster GIS framework, stand-level 

forest attributes could be computed. In the preliminary separate analysis, stump recovery rate 

was found to have a value of 0.9. Constraints for set-aside areas (such as nature conservation 

areas) were also implemented. It was noticed that the variance due to site class adjustment 

was very small compared to the variance due to stand selection for regeneration. To keep the 

variation of sample mean small enough in the results, the number of replicates in the sampling 

was set to a value of 500 replicates, comprising 5 site class adjustments and 100 random 

selections in each of them. The variations within the municipalities caused by the random 

selection of stands for regeneration increased with more constraints.  

Regulations and criteria for technical and economic accessibility of the biomass from 

logging residues and stumps, together with environmental criteria, affect the availability of 

forest biomass, so they were implemented in the calculation model as basic and optional 

constraints. Optional constraints for a 300-meter maximum actual forwarding distance and 

another for selecting only spruce dominated stands for stump extraction were applied.  

When only the basic constraints were applied, the annual forest-centre-level potential for 

the residues in the AVG scenario was 320 000 tonnes (710 000 m3), and this was 63% of the 
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theoretical potential in that scenario. After introducing an actual forwarding distance limit of 

300 m, the potential for residues decreased to a relative value of 36% of the theoretical 

potential. 

For stumps, the basic constraints in the AVG scenario resulted in a potential of 212 000 

tonnes (470 000 m3) that was 38% of the theoretic potential in that scenario. An actual 

forwarding distance limit of 300 m and a limit for regeneration to stands dominated by 

Norway spruce resulted in relative values of 22% and 15% of the theoretic potential. With 

only basic constraints, the harvesting level MIN and MAX resulted in relative values of 25% 

and 43% of the theoretic potential, respectively. 

Assuming the AVG harvesting level and applying all basic and optional constraints, the 

annual technical potential of forest chips from final fellings in Central Finland for energy is 

0.26 million tonnes (dry mass), that is 4.6 million GJ (1.3 TWh). From this value, logging 

residues comprise a share of 70%, and stumps 30%. 

 

 

5 DISCUSSION 
 

 

5.1 Variograms and image texture  

 

The utilization of image-based spatial features in study I was introduced via features 

(indicator attributes in k-MSN) derived from a variogram curve. In study I, the aim was to 

evaluate the usability of empirical semivariance values as features and to try to catch the 

effect of forest structure on the spatial variation in the image observed. The results showed 

that incorporating features indicating image spatial structure decreased the RMSE level of 

volume in the k-MSN estimation approach.  

Anttila (2002) stated that the shape of the image segment representing a forest stand can 

also delimit the usability of the approach applied in study I. In a comprehensive analysis of 

a nonparametric estimation (i.e. the k-MSN approach) of stand volume from aerial 

photographs, Anttila (2002) noted that the smallest and elongated stands should be left out 

of the estimation to avoid difficulties that would otherwise be induced into the calculation of 

the semivariance. Exclusion of stands with a low ratio of stand area to perimeter improved 

the accuracy of the estimation. Using old inventory data as indicator attributes in k-MSN 

proved successful in stand volume estimation. Anttila (2002) also stated that the location of 

a stand in an image affects the texture of the stand, and estimation with single photographs 

instead of with all three was more accurate in two out of three cases. With image pixel mean 

values and semivariance features only, the RMSE for volume in study I was quite small, ca. 

18%, whereas Anttila (2002) reported RMSE value 37% (with features of a ratio image and 

semivariance) and RMSE value 44 % using only semivariance-based feature variables. 

However, in the case of single photographs and by taking the shape of stands into account in 

selecting reference stands (ratio of stand area to perimeter was used in the selection), Anttila 

(2002) reported comparable RMSE levels to study I for volume, when old inventory data, 

semivariance and ratio image variables were used as feature variables. Results in study I and 

the outcomes noted by Anttila (2002) partly outline the issues related to calibration methods, 

bidirectional reflectance in aerial photographs, and selecting reference data in applications 

based on the NN estimation.  



34 

Treitz (2001) has remarked that the spatial structure of a remote sensing image is 

determined by the relationship between the size of the objects in the scene and the spatial 

resolution of the sensor. A variogram is used to describe spatial variability (i.e. semivariance) 

as a function of lag distance. The variogram demonstrates a peak in variance (i.e. sill) when 

pixels become independent of one another. The lag interval to the peak in variance is known 

as the ‘range’ of the variogram (see e.g. Treitz 2001). St-Onge and Cavayas (1995) gave more 

attention to the range than to the sill, when they related variogram parameters and forest 

structure values. The sill represents the general variance in the image and can be affected by 

image noise or atmospheric conditions. The range of the variogram, however, is directly 

related to the absolute size of the objects on the ground and is measured in the same units as 

these objects. Tesfamichael et al. (2009) tested variogram range values calculated from a 

LiDAR data-based canopy height model in defining a window size for local maxima filtering. 

The variogram range generally proved to be a useful indicator of individual tree canopy size. 

Variogram analysis yielded range values that varied distinctly with spatial resolution and 

point density. They also mentioned the existence of periodic deviations in variograms.  

Treitz (2001) analysed the relationship between variograms and vegetation types, and 

noted that in visible and near infrared wavelength bands of high-resolution Compact Airborne 

Spectrographic Imager (CASI) data, the range estimates for specific forest ecosystems varied 

as a function of altitude (i.e. the spatial resolution was affected by the flying altitude). At 

lower altitudes (e.g.,600 m) the range estimates may be linked directly to the canopy diameter 

of a single tree, whereas at higher altitudes (e.g., 1150 m) they may be linked to a spatial 

aggregation of two or more crowns coupled with their associated understory. Thus, the range 

parameters of variograms could represent multiple scales of information appearing in the 

image data, caused by the spacing of tree crowns and understory. Treitz (2001) also noted 

that range estimates vary as a function of wavelength, so that the ranges for the near-infrared 

data are greater than those for the visible data. Further, the range values for visible and near-

infrared data also increased with stand complexity. It was noted that a lower semivariance is 

characteristic of coarser spatial resolution remote sensing data, and that complex forest 

ecosystems have greater magnitudes of semivariance than simpler ecosystems.  

The assumption in study I was that by incorporating experimental semivariance values 

from a red band into a similarity measure in the k-MSN estimation of stand volume, the 

neighbours selected to a target stand would have a similar spatial structure appearing in the 

image, and that in this way, the variogram curve could be used to indicate this structure. The 

above-mentioned results obtained by Treitz (2001) give some support to the assumptions 

made in study I. Chen and Gong (2004) concluded that window size plays important role if 

the range parameter in a variogram model is used in the texture-based image classification of 

land cover. In study I, the experimental variograms were computed at stand level to cover an 

area large-enough for computing the features derived from a variogram curve. 

St-Onge and Cavayas (1997) expressed the underlying fact that as the spatial resolution 

becomes higher, the pixel will no longer represent the averaged signal reflected by a number 

of trees, as is the case for Landsat TM images. Therefore, they concluded that poor results 

would be expected in classical pixel-by-pixel classification, and instead, stand mapping will 

have to rely on processing algorithms that analyse groups of contiguous pixels. They built an 

image segmentation approach, where directional variogram model-based features were used 

to reveal forest characteristics such as crown diameter, stand density and crown closure. They 

noted that there is an issue related to the linkage between moving window size and variogram 

measures: for stands with a uniform texture composed of small primitives, better results could 

be achieved with a certain level of repetition of the texture primitive assured within a single 
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unit of measure of the variogram. It is thus evident that due to reasons presented by St-Onge 

and Cavayas (1997), that the size of the moving window or the area in the forest stand in 

which a variogram is calculated, and also the spatial pattern of trees which make canopy 

layers visible in the image, contribute to the resulting variogram. Because of these aspects, 

the experiment in study I was carried out at stand level, aiming to obtain a variogram, well 

representing the target stand and its texture in the image (i.e. the results of 26 L-shaped 

clusters were pooled in a stand for calculating the variogram). The question of a mapping 

unit has been tackled in the field of forestry applications by further developing image 

segmentation algorithms (e.g. Pekkarinen 2002), and by an area-based method in ALS data -

derived applications. For analysing texture, approaches based on a Fourier analysis are also 

available, as discussed by Ploton et al. (2017) in the field of tropical forest biomass 

assessments. 

The fine-tuning of k-MSN models should be done very carefully to prevent the loss of 

model applicability, as suggested by Maltamo et al. (2009). They applied the k-MSN 

approach in estimating diameter distributions at plot-level by using ALS data gathered from 

Norway, and compared accuracy indicators (RMSE and bias) based on estimation data 

(cross-validation) and independent validation data. The estimated models should be kept less 

detailed with respect to the total number of their independent variables since cross-validation 

always tends to give overly optimistic results, and validation with independent data will often 

show considerably poorer reliability figures. The disadvantage of the approach applied in 

study I was that the number of semivariance values imported into the model was relatively 

high (a total of 25 explanatory variables were introduced to the model at the same time). The 

resulting model is regarded as data-specific and its predictions cannot be generalized. Thus, 

there is a potential risk of model overfitting (as discussed by Maltamo et al. 2009). The 

variogram could have been parametrized with a lower number of model parameters (e.g. 

range and sill), that could have been incorporated thereafter in the distance function (see e.g. 

Peuhkurinen et al. 2008b). Another approach to decrease the number of explanatory variables 

(instead of using empirical values as in study I) would be to adapt the approach based on 

Minkowski distances (see Peuhkurinen et al. 2008a). However, the Minkowski distance tells 

us only the magnitude of the difference between two distributions, and not where the 

difference is (Peuhkurinen et al. 2008a). It is also worth considering that the study material 

in study I was of a limited size (i.e. a single aerial photo and 59 forest stands), and that the 

level of the resulted accuracy was calculated by cross-validation. The k-MSN would be made 

more general and wider by including several forest variables as design attributes (only one 

forest variable, i.e. total volume, was used in study I). 

 

 

5.2 Satellite images in forest cover and volume mapping 

 

Having a resolution of 500 m, MODIS data was used as a reference material in a local 

correction that was implemented combining the method by Tuominen and Pekkarinen (2004) 

and the approach by Tomppo et al. (2010). The aim was to formulate a procedure where 

different spatial resolutions in the reference images and target images would be accounted 

for, along with locally scaled means and variances in the respective spectral bands. In the 

report by Tomppo et al. (2010), an approach was presented for adjusting bandwise means 

and variances, using MODIS data as a reference due to its sophisticated radiometric 

properties. MODIS also has a large coverage, making it well suited as a reference material. 

The coefficients for the correction (Equations 1–3) were computed in a moving window and 
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were based on a coarse resolution after averaging. The resulting correction is local, i.e. the 

means and variances at the coarse resolution are adjusted locally with the reference material. 

As in the method by Tuominen and Pekkarinen (2004), the original resolution of the target 

image is to be maintained. Parameters to be selected include the window size and the 

resolution, although it is also possible to select a coarser resolution value than the one 

featured in the original reference data. In studies II and III, a 500 m resolution was used, 

whereas the window sizes were 10 km or 20 km. These user-defined values were assumed to 

work well for the approach. Moreover, a sensitivity to disturbances in the reference data is 

affected by the window size of this local correction approach. In study II, the time interval of 

the MODIS image materials was close to the dates of the Landsat images. However, in the 

case of some of the image materials available for parts of the region analysed in study III, 

there were time lags of up to 2 years. The image calibration approach applied was evaluated 

only using the visual appearance of the result. In studies II and III, image data were 

normalized based on observed image values at the locations of the sample plots for setting 

the scale of the output image in the estimation phase, which is a required step to take for 

conducting NN analyses. Alternative approaches to image mosaicking would be to carry out 

separate NN estimation cycles for each Landsat image and the build a thematic map of 

volume as a mosaic. This approach would avoid the risk of having bad reference image data 

in relative calibration. But in that case the forest data would be utilized only inside each of 

those sub-regions (image areas) and could possibly become locally limited if there were 

small-sized sub-regions. There would rise questions such as how representative forest data 

there would be available for each sub-region, and an approach for a seamless volume map in 

the sub-region borders would be needed. 

In the local correction, the means and standard deviations for the adjustment in each band 

are calculated in averaged Landsat image data and MODIS image data, locally in a moving 

window. In studies II and III, it should be noted that the aim was not in change detection. 

Changes in vegetation or landscape in a time window between target and reference image 

dates will factually hamper the image correction due to the local correction approach. It is 

therefore recommended that in the case of multi-temporal images and change detection, that 

point invariant features (PIFs) and the procedure initially suggested by Du et al. (2002) and 

later reviewed by Xu et al. (2012) be used in adjusting the parameters ai and bi in Equation 

1, instead of using the local correction approach. Also emphasizing the importance of 

methodological tools for the use of multitemporal satellite image mosaic in a REDD+ 

programme, for instance, a variance-preserving mosaic algorithm has been presented by 

Eivazi et al. (2015), who base their approach on analysing the overlapped regions of 

neighbouring images.  

The visual interpretation of the FAO’s land use classes for the first-phase plots over the 

Terai region was an example of using remotely sensed data in lieu of more expensive ground 

observations and measurements, and well demonstrates the support obtained from remote 

sensing technology for forest inventory (see McRoberts and Tomppo 2007). Interpreting the 

land use class from high-resolution imagery enabled the forest cover classification, where the 

field-observed data of study II was used in validating the classification results. The 

development of image viewers such as Google Earth (a virtual globe and satellite imagery 

viewer; Google Earth 2018), greatly facilitated the use of the image data that is offered in 

that platform. DFRS (2015) stated that in the visual interpretation of land cover, changes in 

land cover between the image acquisition and interpretation, local geometrical distortions 

and human errors in classifying land cover can affect the quality of results. The interpreter 

can benefit from a direct knowledge of the context. Moreover, the spatial heterogeneity of 
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forest stands, the fuzziness of their boundaries, and the possible defoliation of some 

deciduous trees during the time of image acquisition were also recognized as factors posing 

challenges in the remote-sensing-based mapping of the forest vegetation and its types in 

Nepal (DFRS 2015).  

Kappa has been criticized for its dependence on marginal distributions (Stehman 1997). 

The Kappa distribution computed in a data driven approach on test samples was primarily 

used to guide the selection of the value of k. Other accuracy measures were also calculated 

in the comparison (study II), and the value of k was then set at 5. A small value of k was 

preferred and the Monte Carlo technique compounded by the other accuracy measures served 

well as criteria in this selection. An independent reference sample was not available for final 

testing, and the accuracy measures were computed based on the field-checked plots (cf. 

Olofsson et al. 2014). However, in validation, the neighbour selection could have been 

restricted to different clusters of sample plots other than the cluster represented by the target 

point itself, or a condition for a minimum geographic distance could have been used to 

guarantee that the geographically closest plots are not selected in the evaluation (Haapanen 

et al. 2004). This aspect should to be taken into account when validation measures of the 

corresponding mapping applications are conducted in the future. 

Diagnostic tools such as those developed by McRoberts (2009) and McRoberts et al. 

(2015) can offer guidelines towards approaches for detecting outliers or influential 

observations. There can be field plots with combinations of characteristics measured that can 

substantially increase estimation errors in the cross-validation phase. In study II, however, 

the plot of residuals for the volume prediction classes showed that the median of residuals 

was near to a zero level in all of the prediction categories. For applying this kind of approach 

in the future, more development work towards using automated tools reviewing the data is 

required. 

The volume mapping for the Terai region in Nepal represented a baseline application of 

the k-NN for a continuous variable. The genetic algorithm-based approach proved a suitable 

method for the selection of variables and their weights in the distance function. In study II, 

the largest weights were set to spectral variables representing visible green and blue bands. 

Two further variables represented a simple ratio of the near infrared band to the red band (a 

common band ratio in studies of vegetation), or a ratio of the short wave infrared band to the 

red band. In study III, the largest weights were given to ratios of the green band to the red 

band, and also to a common simple ratio, i.e. the ratio of the near infrared band to the red 

band. Based on volume estimation test runs that were conducted using data from the tropical 

forests analysed in studies II and III, it seemed that after a certain level of accuracy has been 

reached, the further improvements achievable by k-NN model optimization were somewhat 

minimal. The relative RMSE at pixel-level obtained in studies II and III showed quite large 

values of 62 % and 77%, respectively. This level of accuracy reflects the potential of using 

optical satellite data in the k-NN estimation of forest attributes in these conditions. Similarly, 

a DEM-based correction brought only a minor improvement. Accounting for the notes on the 

nature of data (Häme et al. 2013a, p.3), the DEM-based pre-processing step could have been 

excluded from study III. In study III, the k-NN setup applied was a result from three test runs 

with the GA, where 6 variables were searched to the model. The simultaneous mode in the 

GA implementation for the feature selection and weights search appeared to be a usable 

approach for finding a suitable k-NN estimation model. It is evident that there are several 

ways to perform a successful feature selection (see Haapanen 2014, p.29). The applied GA 

approach in performing the feature selection, setting up feature weights in the distance 

measure and searching for the value for k showed the level of k-NN accuracy that could be 
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reached in study III. Hence, the genetic algorithm-based automated approach for selecting 

these k-NN estimation parameters could reveal the potential of medium resolution satellite 

data available for assessing tropical forests.  

One may assume that the technical development in sensors and computing capacity will 

go further towards having higher resolution satellite materials available over larger areas for 

the remote sensing of natural resources. Furthermore, the development of methodologies for 

inventories (also in larger areas and partly guided by REDD+ thinking) will continue to head 

towards approaches combining multiple sources of remote sensing data, including ALS and 

also high-resolution satellite remote sensing data (see e.g. Nilsson et al. 2017; Kangas et al. 

2018). 

As mentioned earlier, forest inventory aims to provide improved decision support for 

policy makers and forest owners via feeding input data into a planning system. In the planning 

context, forecasting future forest development with relevant growth models, calculations for 

the carbon balance or amounts of biomass are relevant issues in forest inventory dependent 

information contexts. The planning level (strategic, tactical or operative) and the size of the 

area of interest can set specific requirements for the quality and form of data. Naturally, the 

complexity of analysis rises when operating in developing countries, areas with difficult and 

weak infrastructure, or in species-rich tropical forests, for example. The scope in developing 

forest information systems starts from finding out the current state of the forest, i.e. 

developing methods or models for calculating stand and tree variables, and for making maps 

of forest resources. The monitoring and change detection aspects of remote sensing can 

follow, provided that the inventory and calculation systems allow these kinds of analyses, 

and an increasing demand is given to these two aims in developing countries by REDD+. 

 

 

5.3 Satellite images and analysing the bioenergy potential of forest chips 

 

Raster maps of biomass assortments produced by NN techniques (Tuominen et al. 2010) 

comprised the input material for the further calculations of the bioenergy potential performed 

in study IV. The existence of spatially continuous forest inventory data and the allometric 

models for different biomass assortments are prerequisites for the approach applied. This 

approach represents a category of spatially explicit methods (Vis et al. 2010). Satellite remote 

sensing was a key issue in acquiring this kind of input for biomass variables in a raster map 

form. For a k-NN estimation, a representative field sample was needed (Tuominen et al. 

2010), and the Finnish NFI proved its importance in this role – study IV was an example of 

a GIS-based analysis in a planning system aimed to offer information of technical potential 

for forest bioenergy. 

The technical biomass potentials of forest chips (i.e. assortments of logging residues and 

stumps) in Finland have been made available, furnished with raster maps in an open map 

service that is available to the public (Biomassa-atlas 2017). The procedure applied in 

Biomassa-atlas (2017) has been reported by Anttila et al. (2014). Based on NFI field data and 

MELA scenario modelling with an annual regeneration area at the level of the period 2008–

2012, the potential of forest chips in Central Finland showed a value of 644 000 m3/a for 

logging residues (Biomassa-atlas 2017). In study IV, the annual technical potential in an 

AVG scenario and with basic constraints for logging residues resulted in a slightly larger 

value of 710 000 m3. For stumps, however, study IV resulted in a lower annual technical 

potential estimate (470 000 m3) than the value reported in the Biomassa-atlas (703 000 m3/a). 

The parameter values reported in study IV were, however, quite comparable (see Anttila et 
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al. 2014), and the deviance may originate partly from the approach of applying the basic 

constraints by image segments representing the forest stands in study IV. Constraints that are 

dependent on the size of a forest stand demand a comparable stand area distribution with 

operational forestry. In the future, special attention should therefore be paid to the image 

segmentation phase of input data processing when applying this spatially explicit approach.  

The aim of having forest inventory data that continuously covers a large area advocates 

the use of a multi-source forest inventory approach in Finland, especially since the map form 

estimates from MSNFI-2009 were made publicly available in November 2012. Biomass 

estimates are also included in the raster maps available in the MSNFI (Mäkisara et al. 2016). 

Technically, the calculations made in study IV could be based on these biomass raster maps, 

and also used as data sources. One may assume that for approaches like the one applied in 

study IV, it would be best to use the same image data in the estimation of the raster map form 

data (i.e. forest variables and biomass variables) and in the image segmentation phase. 

Furthermore, the raster cell grids should match each other. In study IV, there were differences 

in these parameters and this could to some extent lower the quality of input data generation. 

Also, it is known that using medium-resolution satellite data, the RMSE in the pixel-level 

predictions of biomass or volume in the input data are large, making the use of satellite data 

problematic and not accurate enough in the sense of operational forest planning (e.g. Mäkelä 

et al. 2011, p. 1346).  

MELA scenario modelling that is built on NFI data and offers a strategic planning 

perspective is a sophisticated tool for analysing bioenergy potentials in Finland, and these 

could also be calculated with less computational effort from the MELA summary reports of 

biomass assortments (see Anttila et al. 2014; Biomassa-atlas 2017). The possibilities to use 

NFI plot -level area weights from k-NN together with a stand delineation based on image 

segmentation for generating initial forest data of the MELA system, and also the performance 

of resulting scenario analyses have been a topic of recent research in Finland (see Mäkelä et 

al. 2011). If successful, this kind of methodology would further improve the usability of the 

MELA system, directly in the analysis of bioenergy potentials. Using k-NN weights in 

generating forest stand input data would preserve the natural structure in forest data, and may 

be well suited for input data generation for applications where guidelines based on forest 

attributes are to be applied in the selection of stands for a forestry operation or treatment, 

such as collecting logging residues or stumps. The use of high-resolution imagery and ALS 

data in this framework is worth further consideration in the future. 

Defining scenarios for the minimum, average and maximum levels of harvesting was 

undertaken to investigate the fluctuations in the resulting potentials. The statistical input data 

needed for the procedure can sometimes form a bottleneck, because, for instance, the 

municipality-level statistics of removals are not made publicly available in Finland. The 

spatially explicit approach in study IV was strongly guided by the given harvesting levels, 

however, another option (see Anttila et al. 2014) could be to utilize large area statistics 

obtained by regions, and to quantify the removals in respect of areas of mature stands by 

municipality.  
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6 CONCLUSIONS 
 

 

In the experimental case study (I), the accuracy of volume estimation was improved when 

empirical values of semivariance were included in the set of feature variables in a k-MSN 

analysis. Generally, high-resolution satellite images can prove more feasible input materials 

than digital aerial photographs, due to factors arising from illumination and view geometry. 

Attention should be paid to image data normalization and spatial resolution, as they have an 

impact on the range of values of semivariance and on the shape of the variogram curve. 

Further research would be needed on the use of variogram model parameters based on 

imagery of multiple resolutions, as texture indicators in the estimation of forest attributes.  

The results in studies II and III corresponded with the results of earlier studies 

implemented using data from tropical forests in a sense that as the vegetation canopy closes, 

the accuracy of the estimation of forest parameters such as volume or biomass, with medium-

resolution optical satellite data reaches a form of saturation level. Optical satellite image data 

with medium resolution can offer large area coverage, and so the applications of land cover 

classification and mapping can be used as components in a larger calculation system for 

biomass estimation and monitoring. When there are conditions with low field accessibility, 

then high-resolution satellite image data can serve as a basis for image interpretation, instead 

of carrying out more expensive ground observations. Image data in multiple resolutions and 

with a large coverage are important features highlighted in this work. Therefore, calculation 

systems that integrate multiple remote sensing data sources such as active sensor and satellite 

data at multiple resolutions, and multiphase field sample data, should receive the most 

attention in relation to tropical forests and the REDD+ process. In this context, the importance 

of the basic components of a forest inventory system, i.e. a representative field sample and 

the necessary models for tree and forest variables, cannot be overemphasised.  

The GIS-driven analyses based on large area resource data from a multi-source forest 

inventory was technically well suited for examining the bioenergy potential of forest chips 

from clear cuttings (IV). In Finland it could also be technically possible to utilize results from 

the Multi-source NFI, where results in the forms of raster maps of biomass or forest variables 

could form input data for the spatially explicit calculations presented in this thesis. From the 

MSNFI, a municipality-level summary of the areas of mature forest, could, at least to some 

extent be utilized in estimating the level of harvesting removals. As remote sensing 

technologies are being further developed, the usability of satellite image data with higher 

resolutions will offer better segmentation. As estimating forest attributes comes down to a 

matter of accuracy, it is also evident that the development of ALS-based inventory routines 

can also provide a suitable source of data for calculations of the bioenergy potential of forest 

chips. 
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