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ABSTRACT 

Information needs associated with forest monitoring have become increasingly complex. 

Data to support these information needs are required to be systematically generated, 

spatially exhaustive, spatially explicit, and to capture changes at a spatial and temporal 

resolution that is commensurate with both natural and anthropogenic impacts. Moreover, 

reporting obligations impose additional expectations of transparency, repeatability, and data 

provenance. The overall objective of this dissertation was to address these needs and 

improve capacity for large-area monitoring of forest disturbance and subsequent recovery. 

Landsat time series (LTS) enhance opportunities for forest monitoring, particularly for 

post-disturbance recovery assessments, while best-available pixel (BAP) compositing 

approaches allow LTS approaches to be applied over large forest extents. In substudies I 

and IV, forest monitoring information needs were identified and linked to image 

compositing criteria and data availability in Canada and Finland. In substudy II, methods 

were developed and demonstrated for generating large-area, gap-filled Landsat BAP image 

composites that preserve detected changes, generate continuous change metrics, and 

provide foundational, annual data to support forest monitoring. In substudy III a national 

monitoring framework was prototyped at scale over the 650 Mha of Canada’s forest 

ecosystems, providing a detailed analysis of areas disturbed by wildfire and harvest for a 

25-year period (1985–2010), as well as characterizing short- and long-term recovery. New 

insights on spectral recovery metrics were provided by substudies V and VI. In substudies 

V, the utility of spectral measures of recovery were evaluated and confirmed against 

benchmarks of forest cover and height derived from airborne laser scanning data. In 

substudy VI the influence of field-measured structure and composition on spectral recovery 

were examined and quantified. By focusing on four key aspects of forest monitoring 

systems: information needs, data availability, methods development, and information 

outcomes, the component studies demonstrated that combining BAP compositing and LTS 

analysis approaches provides data with the requisite characteristics to support large-area 

forest monitoring, while also enabling a more comprehensive assessment of forest 

disturbance and recovery. 

 

Keywords: Landsat, time series, image compositing, change detection, airborne laser 

scanning, remote sensing  
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INTRODUCTION 

Background 

The information needs associated with improving the spatial and temporal characterization 

of forests range across spatial scales, and must address increasing demands on the forest 

resource for economic, ecological, cultural, and recreational benefit (Corona 2016). Data to 

support these information needs must be timely, consistent, and spatially exhaustive, and 

moreover, must be generated in a manner that is transparent and scientifically robust 

(Pelletier and Goetz 2015). For some jurisdictions, the need to maintain chain of custody 

information for regulatory or reporting purposes influences how the data is stored and 

processed (Lewis et al. 2017). In this context, remotely sensed data, available in a range of 

forms and spatial resolutions, can provide a cost-effective means to improve the 

characterization and monitoring of forest ecosystems, particularly over very large areas 

(Banskota et al. 2014; Hirschmugl et al. 2017). 

Forest monitoring information needs 

Forest disturbance and recovery are important ecological processes that strongly impact 

regional and global forest carbon budgets (Pan et al. 2010; Hicke et al. 2012). Climate 

change is anticipated to alter the frequency and intensity of disturbances (Dale et al. 2001), 

as well as the rate and efficacy of forest regrowth following disturbance (Anderson-

Teixeira et al. 2013). Moreover, an increased use in forest biomass to offset the carbon 

consequences of fossil fuels, may result in shorter harvest rotations and increased harvest 

levels (Kuuluvainen and Gauthier 2018). In this context, baseline information that 

characterizes historic trends in forest disturbance and recovery over large areas can be 

valuable reference information for understanding present and future forest dynamics 

(Cohen et al. 2016). Time series of remotely sensed data, especially Landsat data, offer 

opportunities to generate such baseline information on forest disturbance and recovery 

trends over regions (Kennedy et al. 2012; Griffiths et al. 2014; Potapov et al. 2015), 

continents (Masek et al. 2008; Lehmann et al. 2012), and the globe (Hansen et al. 2013).  

Forest monitoring is particularly challenging in Canada, which has a large forested area, 

representing approximately 10% of global forests, but much of which is difficult to access 

(Meijer et al. 2018). Moreover, forest management responsibility is vested primarily with 

multiple provincial and territorial governments, each with their own standards and systems 

for forest information (Wulder et al. 2007a). In this context, consistent, nationally synoptic 

baseline information on forest dynamics is critical. In nations such as Finland, where 

intensive forest management practices and private forest land ownership prevail (Natural 

Resources Institute Finland 2017), the capacity for synoptic, spatially-explicit monitoring 

of forest disturbance and recovery through time, particularly in the context of a complex 

land use mosaic, is of interest to resource managers and planners (Culotta et al. 2015). 

Canada has an estimated 347 Mha of forest land, with 226 Mha of managed forest (Natural 

Resources Canada 2018). By comparison, Finland has 22.8 Mha of forest (Natural 

Resources Institute Finland 2017), and forest access is not a limiting factor to the 

establishment of field plots, where the road density (23.3 km/100km
2
) is almost double that 

of Canada (14.1 km/100 km
2
; Meijer et al. 2018). In Finland, the National Forest Inventory 

(NFI) measures more than 10,000 field plots annually (Tomppo et al. 2008a), whereas in 
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Canada, the NFI measures ~1150 field plots over a 10-year measurement cycle (Gillis et al. 

2005).  

In the last decade, remote sensing has come to the forefront as a valuable source of 

information that is well suited to the disparate forest management contexts and information 

needs of different nations (Banskota et al. 2014). Remotely sensed data is used for 70% of 

the areas under National Forest Inventories globally (MacDicken et al. 2015). In Canada, 

national forest monitoring data are needed to support a range of science and program 

information needs, policy development, and to fulfill national (Natural Resources Canada 

2018) and international reporting obligations associated with various international treaties 

and conventions (Wulder et al. 2004). Ideally, these data should be both spatially 

exhaustive and spatially explicit, and should enable the assessment of trends over time, as 

well as characterization of non-timber resources (Gillis 2001). Canada’s National Forest 

Inventory (NFI) program and Carbon Accounting programs are the two most significant 

stakeholders for this information, particularly for Canada’s northern forest areas where 

there is currently the greatest paucity of forest information (Wulder et al. 2004; Falkowski 

et al. 2009). Table 1 provides a listing of those core forest attributes that are fundamental to 

the programmatic information needs of Canada’s NFI and Carbon Accounting programs 

(Gillis et al. 2005; Wulder et al. 2004; Kurz et al. 2009). Some of the attributes presented in 

Table 1 are readily obtained from remotely sensed data (e.g. land cover, crown closure, and 

disturbance related attributes), while for others, remotely sensed data can be used to 

generate a proxy for the attribute of interest (i.e. time since disturbance as a proxy for age 

(Helmer et al. 2010)). With the aid of an appropriate source of calibration data such as 

airborne laser scanning (ALS) data, some of the attributes in Table 1, such as volume and 

biomass can be modeled (e.g. Wulder et al. 2012; Matasci et al. 2018a; 2018b). Of all the 

attributes listed in Table 1, tree species remains the most difficult to determine reliably over 

large areas, particularly when using medium resolution remotely sensed data such as 

Landsat (e.g. van Aardt and Wynne 2001; Thompson et al. 2016), although forest types 

(e.g., coniferous, deciduous) can be reliably mapped (Wulder et al. 2007b). 
Finland is also a signatory to many of the same international treaties and conventions as 

Canada, and similar to Canada, Finland generates a national annual summary of forest 

statistics (Natural Resources Institute Finland 2017). The Finnish NFI was established in 

the 1920s (Tomppo et al. 2010; Kangas et al. 2018) and is based on the statistical sampling 

of field measurements of standard forest inventory attributes, as well as indicators of forest 

health and biodiversity.  

 

 
Table 1. Key attributes for Canada's National Forest Inventory and Carbon Accounting 

programs 

 

 

 

 

Basic attributes Disturbance-related attributes 

Land cover Pre-disturbance land cover 

Crown closure Post-disturbance land cover 

Age Disturbance agent 

Tree species Disturbance year 

Height Disturbance extent 

Volume Disturbance intensity 

Biomass  
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National and regional-level strategic forest-planning scenarios for timber procurement, 

harvests, and silvicultural treatments utilize information from the NFI (e.g. Maltamo et al. 

2009; Turtianen et al. 2016; Miina et al. 2018). Likewise, forest carbon budgets and 

assessments of sustainable forest management practices rely on data from the Finnish NFI 

(e.g. Härkönen et al. 2011; Majasalmi et al. 2018). 

As noted previously, more than 10,000 plots are acquired annually to support the NFI in 

Finland (Tomppo et al. 2008a). That amounts to ~60,000 plots for a typical NFI 5-year 

cycle in Finland. The plot density at the national and regional level (i.e. regions > 300,000 

ha) is sufficiently high that sampling errors are acceptably low for key variables such as 

area of land class and volume of growing stock (Tomppo et al. 2013). The size of Finnish 

forest units (Public Service Units) typically ranges from 800,000 ha to 5 Mha, but these 

units are divided into smaller sub-areas (referred to as forest management units) for forest 

planning purposes. Note that operational forest management in Finland is conducted on a 

much smaller unit, with the average size of forest holdings estimated to be 30 ha (Natural 

Resources Institute of Finland 2017). Information on the extent and status of the forest 

resource is required for these smaller units as well; however, the plot density in these 

smaller units is not sufficient to maintain a low sampling error. Moreover, in the 1980s and 

1990s in Finland, there was an increase in forest harvesting, which, combined with 

changing forest practices and increase in other land uses, created a need for more localized 

and timely information. 

Given this context, in 1989 the multisource-NFI (MS-NFI) was established in Finland 

as a means to provide estimates of forest characteristics for the areas between the network 

of established NFI field plots, with the goal of providing estimates for smaller areas than 

are currently possible based on the field plot data alone (Tomppo et al. 2008b). The MS-

NFI uses Landsat data, as well as Sentinel-2 and SPOT data to generate spatially-explicit 

thematic maps and municipal-level forest statistics. While NFI and MS-NFI estimates are 

similar at the regional level, prediction error at the individual pixel level is relatively high 

(Tomppo et al. 2014; Tuominen et al. 2017). Methods for generating the MS-NFI have 

evolved over time, and the methods used to generate the MS-NFI are under continuous 

development (Tomppo et al. 2008a). The first national MS-NFI results were published in 

1998 (Tomppo et al. 1998), and subsequently in 2006 (Tomppo et al. 2008a), 2009, 2011, 

2013, and 2015. As a result of the methodological evolution of the MS-NFI, comparability 

between MS-NFI output maps generated for different years at a pixel or stand level over 

time can be challenging.  

 

Forest disturbance and recovery 

Combined, disturbance and recovery processes inform forest stand dynamics and influence 

changes in forest structure over time (Oliver and Larson 1996). Historically, remote sensing 

science has focused primarily on characterizing forest disturbance, largely because 

disturbance detection is an application that is well suited to the synoptic nature of remotely 

sensed data (Coops et al. 2007; Frolking et al. 2009), and because disturbances, particularly 

stand-replacing disturbances—which are typically spatially and temporally discrete—are 

readily detected with remotely sensed data (Lu et al. 2004). The opening of the Landsat 

archive in 2008 (Woodcock et al. 2008) greatly enhanced disturbance detection capacity 

(Zhu and Woodcock 2014), and renewed interest in the characterization of forest recovery 

post-disturbance (Banskota et al. 2014). In order to understand forest dynamics, both 
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disturbance and recovery processes must be characterized and  Landsat time series (LTS) 

data make this possible (White et al. 2011; Gómez et al. 2012; Pflugmacher et al. 2014). 

Definitions of forest recovery post-disturbance are not universal (Bartels et al. 2016) 

and often relate to the return of forest structural characteristics following a particular 

disturbance type (Frolking et al. 2009), ranging from the initial re-establishment of 

vegetation to the full return of pre-disturbance forest structure. In reality, forest recovery is 

a process and not a state; the structure, composition, and function of forests manifest 

gradually through successional processes that occur following disturbance (Oliver and 

Larson 1996; Spake et al. 2015). Timing of the various stand development stages and 

recovery phases post-disturbance (Figure 1) is variable and depends on many factors, 

including disturbance type and site characteristics. The point in time at which forest 

recovery is achieved relates to its definition and often depends on whether the information 

need is related to reclamation (Audet et al. 2014), silviculture (Fagg et al. 2013), carbon 

(Urbano and Keeton 2017), or ecosystem goods and services (Thompson et al. 2013), 

among others. Indicators of forest recovery can therefore be compositional, functional, 

structural, or combinations thereof (Gatica-Saavedra et al. 2017; Chazdon et al. 2016). 

In contrast to disturbances, recovery is more of a continuous process, and as such, is 

particularly well suited to time series analyses (Kennedy et al. 2010). The potential capacity 

of LTS data to monitor post-disturbance recovery was established some twenty years ago 

(e.g. Viedma et al. 1997; Lawrence and Ripple 1999); however implementation over large 

areas was constrained by issues related to both data availability and cost, as well as 

computational power. Today, the use of LTS data to assess post-disturbance recovery has 

been greatly facilitated by free and open access to the Landsat archive, as well as by 

significant advances in computational capacity (Banskota et al. 2014). These factors have 

enabled assessments of recovery at a spatial resolution that is meaningful for forest 

monitoring (Kennedy et al. 2014).  

Spectral recovery, as measured using a time series of optical satellite data, is not a direct 

measure of forest recovery (Kennedy et al. 2010; 2012; Griffiths et al. 2014) and must 

therefore be interpreted within the context of a priori expectations of recovery, which are 

typically derived from ground measurements (Bartels et al. 2016) or ALS data (Magnussen 

and Wulder 2012; Slesak and Kaebisch 2016). With some rare exceptions (e.g. Hérault et 

al. 2018), ground-based studies of post-disturbance recovery are typically limited by sample 

size, and spatial and temporal extent (Bartels et al. 2016), precluding a more comprehensive 

analysis of recovery across a range of site types, forest types, and disturbance magnitudes. 

Field plot measurements that are typically used to assess recovery include various structural 

attributes such as basal area (Bartels et al. 2016), stocking density (Johnstone and Chapin 

2006), and combinations of canopy cover and height (Hansen et al. 2013; Chazdon et al. 

2016), among others. 

 



13 

 

 

 

The Landsat archive has enabled assessments of recovery that are spatially exhaustive and 

retrospective—providing important baseline data for forest monitoring in an era of climate 

change. LTS-derived measures of spectral recovery have demonstrated utility for 

understanding regional (Schroeder et al. 2007; Kennedy et al. 2012), temporal (Frazier et al. 

2018), and agent-based (Madoui et al. 2015) variations in forest recovery over large areas. 

These remotely-sensed assessments can augment ground-based surveys, providing 

improved understanding of variations in forest return following disturbance (Frolking et al. 

2009); however, the linkages between spectral measures of recovery and manifestations of 

forest structure have not been well understood (Schroeder et al. 2011). Previous studies 

characterizing national trends in disturbance and recovery in Canada have either focused on 

wildfire exclusively, using substantially coarser spatial resolution remotely sensed data 

(i.e., Advanced Very High Resolution Radiometer or AVHRR 1- and 8–km data) (Amiro et 

al. 2000, Hicke et al. 2003, Goetz et al. 2006), or have been sample-based (Frazier et al. 

2015; Pickell et al. 2016). Moreover, previous studies that have used Landsat time series 

data to characterize annual trends in disturbance and recovery have not distinguished trends 

by disturbance type (Kennedy et al. 2012, Griffiths et al. 2014). 

Vegetation indices and derivatives are the most common methods for assessing post-

disturbance recovery with remotely sensed data (Chu and Guo 2014). The Normalized 

Difference Vegetation Index (NDVI) has been used extensively to evaluate post-fire 

recovery (e.g., Gitas et al. 2012; Veraverbeke et al. 2012a and 2012b; Vila and Barbosa 

2010). Pickell et al. (2016) characterized the relative strengths of commonly used 

vegetation indices including NDVI, Normalized Burn Ratio (NBR), Tasseled Cap 

Greenness (TCG), and the shortwave-infrared band (SWIR; Landsat TM/ETM+ band 5). 

Research on spectral measures of forest recovery have emphasized the use of multiple 

metrics to provide a comprehensive assessment of recovery (Pickell et al. 2016; Chu et al. 

2016), as different metrics characterize different phases of the recovery process (Figure 1). 

For example, although NDVI and TCG can characterize the initial pulse of vegetation that 

establishes at a site post-disturbance, these indices also saturate rapidly, and are therefore 

Figure 1. Schematic diagram of the stages of stand development post-disturbance and 

associated forest recovery phases (adapted from Oliver and Larson, 1996). Stand structure 
and species composition  are known to vary by disturbance type, dominant species, and site 
conditions. 
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less informative on the longer-term return of forest vegetation at a site. (e.g., Buma 2012; 

Chu et al. 2016). Indices such as NBR, which incorporate the SWIR wavelength, can 

inform on forest structure (Horler and Ahern 1986; Cohen and Goward 2004) and provide 

an indication of the longer-term increase in forest structural complexity that is commonly 

associated with forest regeneration (Frazier et al. 2015; Ireland and Petropolous 2015).  

 

Spectral changes in forests during and following disturbance 

The detectability of forest disturbance and subsequent recovery is enabled by changes in the 

presence, composition, and structure of vegetation, which in turn, influence spectral 

reflectance properties. The capacity to characterize the spectral properties of forests has 

advanced markedly, although gaps remain in terms of in situ measurements in the SWIR 

wavelengths (Rautiainen et al. 2018). While stand-replacing fire and harvest both result in a 

significant removal of biomass, the magnitude and impacts of these two disturbances and 

subsequent recovery processes differ (Schroeder et al. 2011). While harvest methods and 

subsequent regeneration practices are somewhat consistent, particularly in Nordic countries, 

the impacts of fires are much more variable. Generally, exposed soil will have higher 

reflectance than vegetation in the visible and SWIR wavelengths, whereas vegetation will 

have higher reflectance than soil in the NIR (Nilson and Peterson, 1994). Vegetation 

indices are often designed to take advantage of the different spectral responses of 

vegetation at different wavelengths (Bannari et al. 1995), and the Normalized Burn Ratio, 

used extensively in this thesis, measures differences in vegetation response in the SWIR 

and NIR wavelengths (Key and Benson 1999, 2006). Vegetation moisture will absorb 

energy in the SWIR wavelengths, resulting in low reflectance in the SWIR for vegetation 

(White et al. 1996), whereas exposed soil will have higher reflectance in the SWIR (Escuin 

et al. 2008). Conversely, vegetation has higher reflectance in the NIR than exposed soil. 

Prior to disturbance, forest canopy will have high reflectance in the NIR and low 

reflectance in the SWIR. Immediately following disturbance, disturbed areas will have low 

reflectance in the NIR and high reflectance in the SWIR (Figure 2). 

During clearcut harvest most of trees and other vegetation are removed from a site, 

exposing soil and woody debris. As a result, immediately following harvest, there is a 

marked increase in reflectance in the visible and SWIR wavelengths and a decrease in NIR 

reflectance (Horler and Ahern, 1986, Nilson and Peterson, 1994). Over time as green 

vegetation re-establishes at the site, there will be a gradual decrease in reflectance in the 

visible wavelengths (particularly in the blue and red wavelengths, which have greater 

chlorophyll absorption). Reflectance in NIR will increase over time with increasing tree 

cover. Conversely, reflectance in the SWIR will decrease over time (Horler and Ahern 

1986); however, the magnitude of the decrease in SWIR reflectance relative to the 

variability in spectral response is greatest in this spectral region (i.e. high signal to noise). 

Horler and Ahern (1986) posited that this characteristic of the SWIR, combined with the 

fact that SWIR wavelengths are less impacted by atmospheric noise, indicates  the potential 

of the SWIR as a particularly good region for monitoring forest regeneration. Cohen et al. 

(2018) published a Disturbance Signal to Noise Ratio (DSNR) metric. The NIR band had  
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the lowest median DSNR value, while SWIR and SWIR-based indices had the highest 

median DSNR. Of all the spectral indices tested, NBR was found to have the highest 

median DSNR. 

Peterson (1992) acquired in situ spectral measurements in an area of boreal forest in 

Estonia, similar to the forests of southern Finland analyzed in Studies V and VI. Plots were 

established in 16 clearcut areas in 1986 prior to the start of the growing season, with the 

initial conditions dominated by bare soil with some woody debris. Measures were recorded 

annually for five years post-harvest in the visible and near-infrared wavelengths. Using the 

Greenness and Brightness indices of Kauth and Thomas (1976), Peterson (1992) described 

the successional reflectance dynamics in boreal forest communities following clearcutting, 

identifying two stages of spectral development. The first stage of successional reflectance 

was characterized by a rapid increase in seasonal greenness associated with a concomitant 

increase in vegetative cover, primarily from fast growing herbaceous species. Peterson 

(1992) noted that this effect was more pronounced on sites colonized by vegetation species 

that were previously light limited under canopy, or when a site was dominated by species of 

a similar architecture and complete or near-complete ground cover was attained in the first 

summer following harvest. Under these conditions with relatively uniform vegetation 

cover, the amount of shadowing was minimal, and therefore maximum seasonal greenness 

could be achieved within the first growing season post-harvest on more fertile mesic sites, 

Figure 2. Spectral profiles of vegetation and soil with the near infrared (NIR) and shortwave 

infrared (SWIR) regions associated with the Landsat bands used in the calculation of the 
Normalized Burn Ratio (NBR). 
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whereas there was a delay in maximum greenness for less fertile sites. The second stage of 

successional reflectance is associated with a decrease in seasonal maximum greenness in 

subsequent years, which results from an increase in shadows as a function of increasing 

structural complexity in the stand. This decrease in seasonal maximum greenness was 

found to be correlated with time since disturbance. Moreover, as succession progressed, 

there was increasing contrast between the visible and near-infrared wavelengths (Peterson 

1992) 

Image compositing 

Pixel-based image compositing approaches were first implemented with low spatial 

resolution (i.e. > 500m
2
) data, including the Advanced Very High Resolution Radiometer 

(AVHRR; Holben 1986; Cihlar et al. 1994) and MODerate-resolution Imaging 

Spectrometer (MODIS) (Roy 2000; Justice et al. 2002; Ju et al. 2010), both of which are 

free and open and provide daily or near-daily global coverage. With abundant observations, 

compositing approaches using these data have typically used a single characteristic or rule, 

such as the maximum NDVI or minimum view angle, in order to select the best observation 

for a given pixel within a specified compositing period (e.g. 16 days) (Wolfe et al. 1998). 

Landsat compositing approaches have benefitted from experiences gained in methods 

development for compositing with AVHRR and MODIS data (Roy et al. 2010). Prior to 

free and open access to the USGS Landsat archive in 2008, cost precluded the application 

of data-intensive, large-area compositing approaches to Landsat data. Moreover, before the 

advent of the Landsat Global Acquisition Consolidation (LGAC) project, many areas of the 

globe would not have had a sufficient density of Landsat observations to support annual, 

growing-season composites (Wulder et al. 2016).  

An early precursor to Landsat image composites were the epochal global Landsat 

datasets that were generated for the Global Land Survey (GLS) project (Townshend et al. 

2012, Gutman et al 2013), which made use of the best single-date image for each Landsat 

path/row (Tucker et al. 2004). Given the limited availability of cloud-free Landsat data in 

some areas of the globe, epochal composites have been used extensively to support change 

detection studies (e.g., Hansen et al. 2008; Potapov et al. 2011). Lindquist et al. (2008) 

evaluated the potential of the epochal 2000 and 2005 GLS datasets, relative to more data 

intensive per-pixel compositing approaches (e.g. Hansen et al. 2008), for mapping forest 

cover change in the tropics. The authors concluded that in order to provide sufficient spatial 

coverage to support change detection between epochs, Landsat-based image compositing 

approaches should make use of all available Landsat data for any given path/row. In a 

similar study, Broich et al. (2011) generated epochal Landsat composites for 2000 and 2005 

over Sumatra and Kalimantan, Indonesia and assessed the efficacy of these composites for 

quantifying forest cover change. The authors found that a time series approach that used 

“all good land observations” provided more accurate estimates of forest cover change when 

compared to change maps generated from the epochal composites. For most of the globe, 

Landsat does not provide data density that is analogous to that of coarser resolution sensors 

such as MODIS and AVHRR. This low data density combined with the data gaps present in 

ETM+ data after SLC-off failure therefore require more complex rule-sets for composite 

generation.  

Since the opening of the Landsat archive in 2008, several Landsat compositing 

approaches have emerged in the literature. Many of the approaches have relied exclusively 

on Landsat Enhanced Thematic Mapper (ETM+ data) corrected to TOA reflectance (Roy et 

al. 2010; Potapov et al. 2011; 2012). The per-pixel compositing approach applied by 
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Hansen et al. (2008) that was later adapted by Potapov et al. (2011), relies on a MODIS-

generated forest/non-forest mask to support radiometric normalization via a dark object 

subtraction (DOS) method (Chavez 1988). Potapov et al. (2012) further refined this 

approach, using a 10-year MODIS surface reflectance composite to facilitate band-wise 

mean bias adjustments with corresponding Landsat bands. For very large areas, the use of 

coarser spatial resolution data for normalization both increases computational overhead and 

imposes temporal limitations related to the operational lifetime of a given satellite or sensor 

(i.e. precludes applicability to the pre-MODIS era in this case) (e.g. Hansen et al. 2013).  

Data from TM and ETM+ have been combined via compositing approaches that use 

data corrected to surface reflectance (Flood 2013; Griffiths et al. 2013) via the Landsat 

Ecosystem Disturbance Adaptive Processing System (LEDAPS) (Masek et al. 2006; Feng 

et al. 2013). More recently, OLI data has been integrated into these compositing approaches 

(Hermosilla et al. 2017; Griffiths et al. 2018). The United States Geological Survey (USGS) 

now provides Landsat surface reflectance products as a Level-2 Science Product, with data 

from Landsats 4-7 corrected with LEDAPS (USGS 2012; 2018a), whereas OLI is corrected 

with Landsat Surface Reflectance Code (LaSRC; USGS 2018b, Vermote et al. 2016). 

Surface reflectance products are available on-demand for download from the USGS Earth 

Resources Observation and Science (EROS) Center Science Processing Architecture 

(ESPA), and the provision of these higher level products further reduces the amount of pre-

processing required to enable pixel-based compositing in the same way that the standard 

Level-1 Terrain Corrected (L1T) products have enabled processing efficiencies (Hansen 

and Loveland 2012). Analysis Ready Data (ARD) products are now available for the 

United States, with plans to release such products globally (Elgorov et al. 2018). ARD 

products are designed specifically to reduce pre-processing requirements and support LTS 

analysis over large areas. ARD products include cloud and cloud shadow masks and are 

provided with various levels of correction, including TOA and surface reflectance.  

In the context of time series analyses with Landsat data, radiometric correction to 

surface reflectance is required if models (for change detection, land cover classification, 

forest structure imputation, etcetera) are to be extrapolated in time or space (Song et al. 

2001). While some Landsat compositing approaches use Top-of-Atmosphere (TOA) 

corrections (e.g. Roy et al. 2010), TOA are bulk corrections typically made to an entire 

image, not to individual pixels. TOA primarily adjust for sun angle and earth-sun distance; 

however atmospheric effects can contaminate spectral indices in a manner that is non-linear 

(Myeni and Asrar; 1994; McDonald et al. 1998), and do not enhance within-scene fidelity 

(Hansen and Loveland 2012). In contrast, corrections to surface reflectance are typically a 

per-pixel adjustment that is required when the goal is to achieve a consistent radiometric 

response within and between images (Song et al. 2001). LEDAPS is the most mature 

approach for correcting to surface reflectance (Vermote et al. 1997; Masek et al. 2006). 

Hansen and Loveland (2012) posit that advances in pixel-based image compositing 

signal the end of scene-based analysis approaches, making way for progressively more 

novel opportunities for large-area characterization and monitoring. This shift from a scene-

based perspective to a pixel-based perspective for image understanding and processing is 

key, and certainly mirrors trends and developments in time series analysis approaches 

(Kennedy et al. 2010). The aforementioned USGS Landsat ARD product provides further 

opportunity for best-available pixel compositing approaches and the inclusion of data from 

other sensors, such as Sentinel-2 (Wulder et al. 2016; Zhu et al. 2015; Storey et al. 2016).  
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Study Objectives 

The overall objective of this dissertation was to develop and apply forest monitoring 

approaches that take advantage of remotely sensed data, particularly LTS data, to improve 

the capacity to characterize both disturbance and recovery over very large areas. To address 

this objective, the component studies have focused on information needs, data availability, 

methods development, and information outcomes (Figure 3). Substudies I and II define the 

information needs in a Canadian context, as well as the rule-base for generating annual, 

large-area, gap-free and cloud-free surface reflectance image composites from Landsat, 

which are an important pre-requisite for subsequent monitoring efforts. Substudy III 

focuses on information outcomes and methods development for characterizing forest 

recovery over large areas, providing a national assessment of disturbance and subsequent 

recovery for Canada’s 650 Mha of forested ecosystems for 1985 to 2010. Substudies IV–VI 

explore the adaptation and application of the developed approach in southern Finland, 

focusing on data availability to support information needs and compositing efforts (IV) and 

assessing measures of spectral recovery against benchmarks of forest structure and 

composition measured with airborne laser scanning (ALS; V) and field plot data (VI).  

 

The specific objectives of each substudy are as follows: 

 

(I) Identify and articulate the information needs and target attributes required for 

large-area forest monitoring in Canada. Subsequently, use these information 

needs and monitoring requirements as the framework within which to develop 

and prototype a Landsat best-available pixel (BAP) image compositing 

approach for generating the required annual source data and information 

products to meet these information needs and requirements. 

 

(II) Develop and demonstrate a protocol for generating annual change information 

and BAP composites that have no spatial or temporal gaps (hereafter referred 

to as proxy composites) and prototype regionally in Canada. 

 

(III) Demonstrate technical capacity for large-area forest monitoring by 

prototyping at scale (i.e. nationally). Characterize national spatial and 

temporal trends in stand replacing forest disturbance caused by wildfire and 

harvest, and subsequent vegetation recovery, for the period 1985–2010 for 

Canada's forested ecosystems (~650 Mha), using information derived from 

Landsat time series data.  

 

(IV) Characterize the large-area forest monitoring information needs, as well as the 

spatial and temporal extent of the USGS Landsat archive holdings for Finland. 

Document the capacity of the Landsat archive to retrospectively support the 

generation of baseline data on forest change, and support long-term forest 

monitoring information needs in Finland. 

 

(V) Improve understanding of the linkages between spectral metrics of forest 

recovery post-harvest—as derived from LTS data—and manifestations of 

forest structure (height and cover) as measured from ALS data. The specific 

objectives of this study were threefold: (i) apply an established image 
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compositing and change detection approach (Composite2Change or C2C) to 

an area of managed forest in southern Finland and generate a spatially-explicit 

dataset characterizing forest change (1984–2012); (ii) validate the detected 

changes using independent reference data; and (iii) evaluate the utility and 

appropriateness of the Y2R spectral recovery metric for assessing the return 

of forest following harvest in a managed, boreal forest context. The 

assessment of the Y2R metric against measures of forest structure derived 

from the LTS data is the unique contribution of this work.  

 

(VI) Explore the relationship between spectral recovery metrics and stand 

conditions in seedling plots that were measured in the year in which the stand 

was considered spectrally recovered. Using a chronosequence of recovered 

field plots, characterize stand conditions in the year of spectral recovery and 

determine those factors that may explain why some sites recover more rapidly 

than others. The specific objectives were to determine (i) if spectral measures 

of recovery could be used to accurately predict the plot stand development 

class assigned by the field crew; (ii) conversely, if seedling plot attributes 

could be used to predict spectral recovery rates derived from the Landsat 

times series recovery metrics; and finally determine (iii) what seedling plot 

characteristics distinguished stands that had rapid (< 5 years) versus slow (> 

10 years) rates of spectral recovery. 

 

 

 

 

Figure 3. Sub-studies included in this thesis focused on information needs, data availability, 
methods development, and information outcomes in both Canada and Finland.  
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MATERIALS 

Study areas 

Canada 

Canada is the second largest nation on earth at nearly 1 billion hectares, with a gradient in 

ecosystem productivity that is influenced by latitude and precipitation (Hofgaard et al. 

1999). Canada’s forested ecosystems represent a complex mosaic of treed areas, wetlands, 

and lakes and cover approximately 65% of Canada’s land area (~650 Mha; Wulder et al. 

2008). Canada's forests account for approximately 9% of the world's forest and 28% of the 

world's boreal forest (FAO 2012). The majority of Canada's forests (94%) are publicly 

owned (Natural Resources Canada 2013) and since the time of Canada's confederation in 

1867, resource stewardship responsibilities, including forest management, have been vested 

with provincial and territorial governments.  

In contrast to Nordic countries where intensive forest management is widely practiced, 

extensive forest management is more common in Canada (Wulder et al. 2007a). Licences to 

harvest and process wood products are allocated through tenure agreements to the private 

sector and the total area under some form of tenure amounts to approximately half the 

forest area of Canada (Natural Resources Canada 2015). This managed forest area implies 

the existence of inventory data and forest management activity, including fire suppression. 

Areas outside of this managed forest are typically difficult to access, have lower 

productivity, are not subject to fire suppression, and are not typically inventoried. Given the 

large size of Canada's forests and its complex jurisdictional responsibilities for forest 

stewardship, information needs to characterize forest resources are many and varied and are 

increasing with cumulative economic, ecological, cultural, and recreational demands on the 

forest resource. Information is required to support both national and international reporting 

commitments such as the national annual State of the Forests report, or the United Nations' 

FAO Forest Resource Assessment program (Wulder et al. 2004). 

Substudies I–III were conducted in Canada. In substudy I, compositing approaches were 

demonstrated nationally for a single year (2010) and regionally on an annual basis for a 15-

year period from 1998 to 2012, with detailed analyses of observational capacity for the 

jurisdictions of Saskatchewan and Newfoundland (Figure 4). Saskatchewan has a highly 

dynamic disturbance regime, dominated by frequent and large wildfires, whereas 

Newfoundland is prone to frequent cloud cover. Both of these areas represent unique 

challenges to compositing algorithms. In substudy II, change detection and proxy infilling 

of BAP data gaps was prototyped in the province of Saskatchewan (Figure 4). In substudy 

III, methods developed in substudies I and II were applied nationally (Hermosilla et al. 

2016) and information on disturbance and recovery trends for the period 1985–2010 were 

reported nationally for Canada’s forested ecosystems, by ecozone (Figure 5). Ecozones 

represent broadly defined ecological units characterized by "interactive and adjusting 

abiotic and biotic factors" (Ecological Stratification Working Group 1996). There are 10 

terrestrial ecozones in Canada, two of which (the Boreal and Taiga Shield) have large west-

east extents and are often split into their western and eastern components to reflect 

differences in ecoclimatic conditions between these regions (Stocks et al. 2002, Frazier et 

al. 2015), resulting in twelve ecozone units for the assessment of national trends in 

disturbance and recovery. 
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Figure 4. Forested ecosystems of Canada (substudy III) and regional areas used for 
prototyping of best-available pixel (BAP) compositing methods in subtudies I and II.  
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Finland 

In Finland, 22.8 Mha (75% ) is considered forest land, representing about 10% of Europe’s 

forest area (Natural Resources Institute Finland 2017). Approximately 60.9% of Finnish 

forest lands are privately owned; state-owned forests account for 25.4% of Finnish forests 

and are primarily located in the north of the country. The remainder of forests are owned by 

private forest companies (8.2%) or other owners (5.4%). Commercial forests in Finland are 

defined by productivity and productive forest lands are considered those forests where the 

annual increment is > 1m
3
ha

-1
yr

-1
. 

In substudy IV, the availability of archived Landsat data is summarized by the Public 

Service Units of the Finnish Forest Centre (Figure 6B). The study area used in substudies 

IV–VI is approximately 5.3 Mha in size, and represents an intensively managed forest area 

in southern Finland and a complex landscape mosaic of agricultural, forest, and urban land 

use (Figure 6A). Approximately 86% of the study area belongs to southern boreal 

vegetation zone and the majority is considered forest (65% by area). Protected areas, such 

as national parks, represent 2.3% of the forested area whereas agricultural fields cover 

approximately 16% of the study area. Forests in this area have a mean stem volume of 

146.4 m3ha
-1

 and the main tree species are Norway spruce (Picea abies (L.) Karst.) and 

Scots pine (Pinus sylvestris L.) contributing 40.2% and 38.5% of the stem volume, 

respectively. Approximately, 97.5% of the forest area within the study site is considered 

productive forest, with a growth increment of at least 1 m3ha
-1

yr
-1

. Site type varies from 

herb-rich forest to barren heath forest, with the main site type being mesic heath forest 

covering 49.8% of the forest land within the study area (Natural Resources Institute of 

Finland 2015). 

Figure 5. Forested ecozones of Canada used to report results from substudy III.  
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Figure 6. (A) Location of study area used in substudies V and VI. (B) Public Service 

Units of the Finnish Forest Centre used to summarize Landsat metadata in substudy 
IV. 
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Landsat Time Series (LTS) data 

All Landsat data used in the component studies were downloaded from the USGS archive 

in Level-1 Terrain-Corrected (L1T) format. L1T products are systematically corrected for 

radiometric, geometric, and terrain distortions (Irons et al. 2012). For compositing 

purposes, a target day of year (DOY) of August 1 (Julian day 213) was selected as being 

representative within the growing season for the majority of Canada’s forested area 

(McKenney et al. 2006), as well as for the study site in southern Finland (substudy IV). A 

maximum cloud cover threshold was determined to be 70%; when cloud cover exceeds 

70%, potential ground control points may be obscured and images are more difficult to 

geometrically correct (White and Wulder 2013). For substudies I–III, annual BAP image 

composites were generated by considering as potential candidates all Landsat Thematic 

Mapper (TM) and Enhanced Thematic Mapper Plus (ETM+) images acquired within ± 30 

days of August 1 (1984–2012) that have less than 70% cloud cover. For Canada, which is 

represented by 1285 unique Landsat Worldwide Referencing System (WRS-2) scenes 

(path/row combinations), a total of 81,000 images meeting these criteria were downloaded 

from the USGS Landsat archive (Hermosilla et al. 2016). Landsat metadata used in 

substudy IV included 30,076 images available for Finland from the USGS archive (1972–

2017 inclusive). For substudy V in southern Finland, which is represented by 11 unique 

WRS-2 scenes, 554 images that met the aforementioned compositing criteria were 

downloaded from the USGS archive in L1T format for the period 1984–2012. For substudy 

VI, the 1984–2012 time series used in substudy V was extended to 2017 following the 

approach outlined in Hermosilla et al. (2017), and included data from Landsat-8 OLI. An 

additional 143 images were downloaded from the USGS archive.  

Airborne laser scanning data 

In 2008, the National Land Survey of Finland began acquiring ALS data in order to 

generate a new national-level digital terrain model (DTM) with a 2-m resolution. The NLS 

and the Finnish Forest Centre have outlined a plan to cover the entire area of Finland by the 

end of 2019; free and open access to the ALS data provided by the NLS data services.  The 

ALS data have been acquired for production areas of varying sizes. The ALS data used in 

substudy V were acquired between 2008 and 2016 for production areas that ranged from 

43,200 ha and 417,600 ha in size. Target parameters set by the NLS for ALS data 

acquisitions were a minimum point density of 0.5 pts/m
2
; and a point height error less than 

15 cm. Flying altitude of all acquisition campaigns was approximately 2000 m above sea 

level, a scan angle of ± 20 degrees with a footprint size of < 60 cm. The utility of these 

national ALS data for characterizing the vertical distribution of vegetation has been 

demonstrated (e.g. Kankare et al. 2015; Kotivuori et al. 2016). ALS data used in substudy 

V were downloaded from the NLS data services in 3 x 3 km tiles, with ground and non-

ground points classified by the NLS. 

Field plot data 

Data for seedling stand plots used in substudy VI were obtained from the Finnish Forestry 

Centre. Seedling stands are considered to be those stands with a mean height < 7 m for 
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coniferous-dominated, or < 9 m for deciduous-dominated stands, respectively (Äijälä et al. 

2014). Seedling stands are further divided into young (< 1.3 m) and advanced (1.3–7 or 9 

m) seedling stands. Seedling plots were selected for analysis based on two criteria: (i) the 

plots were located within change events identified from our C2C time series and were more 

than 20 m from the nearest stand boundary; and (ii) the plots were measured in the same 

year in which spectral recovery was indicated by the Y2R metric. The application of these 

criteria yielded a total of 284 plots measured from 271 different seedling stands in the 

summers of 2010 to 2017. Time since disturbance for the seedling plots ranged from 1 to 15 

years. Plots had a radius of 9 m, and the location of plot centroids were measured with < 1 

m accuracy. In northern European forests, the regeneration stage is characterized as that 

period of time between clearcutting and when the main tree species established at a site has 

attained an average height of 1.3 m (Nilsson et al. 2010). Approximately 82% of the 

selected seedling plots had attained or exceeded this threshold. Additionally, the target stem 

density for regenerated stands is a minimum of 1800-2500 stems per ha, and although this 

target is frequently not met (Nilsson et al. 2010), 95% of the selected seedling plots had met 

this target. The selected plots were therefore considered representative of successfully 

regenerated stand conditions post-harvest. Time since disturbance for the plots ranged from 

1 to 15 years. Measured plot attributes included species-level mean height and number of 

stems per ha for up to seven unique species-strata in each plot. Using the stratum-wise data 

we calculated the mean, median, maximum, and coefficient of variation (CV) of plot 

height, as well as the weighted mean height, whereby the number of stems in each stratum 

were used as weights. We also calculated the mean, median, total, and CV of stems per ha, 

percentage of total stems in the plot that were deciduous species (hereafter referred to as 

percent deciduous), and the ratio of the mean deciduous height to mean coniferous height in 

each plot (hereafter referred to as height ratio). Information on dominant tree species, site 

type, and drainage class were also recorded as categorical variables for each plot (Table 2). 

METHODOLOGY 

Characterizing Landsat archive holdings for forest monitoring in Finland 

The spatial and temporal availability of the images in the Landsat archive directly 

influences the successful generation of annual BAP image composites that are useful for 

forest monitoring. The extent of archive holdings for Canada have previously been 

summarized by White and Wulder (2013), and more recently, globally (Wulder et al. 2016). 

In substudy IV, the metadata for all Landsat images acquired for Finland between the 

inception of the Landsat program in 1972 and December 31
st
, 2017 were analyzed to assess 

their spatial and temporal variability, and suitability for image compositing. Finland is 

covered by 66 unique WRS-2 scenes. The number of images acquired for each scene is 

analogous to the number of observations for each scene. The total number of archived 

images was summarized by year of acquisition, day of year, and Landsat sensor (MSS, TM, 

ETM+, OLI). Images were interrogated for their suitability for pixel compositing, as 

defined in substudy I, and were likewise summarized by sensor, by year of acquisition, and 

spatially, according to the Public Service Units of the Finnish Forest Centre (Figure 6B). 

Overlap between WRS-2 scenes increases the theoretical observation yield for compositing. 

Following the approach developed in substudies I and II, BAP image composites were 
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generated for a 5.3 Mha study area in southern Finland (corresponding to 11 WRS-2 

frames) to demonstrate the realized potential of the archive and overlap areas for image 

compositing.  

 

 

Table 2. Summary of seedling plot attributes. 

Plot attribute 

Summary and class codes 

Mean Min Max 
Lower 

Quartile 

Upper 

Quartile 

Std. 

Dev. 

Mean height (m) 1.98 0.20 6.10 1.16 2.59 1.14 

Weighted mean height (m) 0.86 0.05 4.00 0.41 1.08 0.70 

Median height (m) 1.94 0.20 6.10 1.15 2.50 1.13 

Maximum height (m) 2.52 0.20 8.40 1.50 3.50 1.45 

CV height (%) 28.88 0.00 118.11 14.43 40.11 19.87 

Mean stems per ha 3151 367 25000 1417 3750 2842 

Median stems per ha 2667 100 25000 1100 3150 2824 

Maximum stems per ha 5705 500 38000 2350 7300 5190 

Total stems per ha 8227 1100 38200 3850 11250 6041 

CV stems per ha (%) 78.51 0.00 181.67 50.91 108.73 41.31 

Percent deciduous 60.35 0.00 100.00 35.00 85.25 30.37 

D height: C height (Height ratio) 1.29 0.00 6.67 0.81 1.67 0.85 

Dominant 

species 

1. Scots pine (Pinus sylvesteris L.; n = 83) 

2. Norway spruce (Picea abies L. Kars; n = 149) 

3. Deciduous (primarily birches, Betula spp. L; n = 52) 

Site type 

1. Heath with rich grass-herb vegetation and corresponding natural and ditched 

peatland (n = 66) 

2. Mesic heath forest, and corresponding natural and drained peatland (n = 159) 

3. Sub-xeric heath forest, and corresponding natural and drained peatland (n = 44) 

4. Xeric heath forest, and corresponding natural and drained peatland (n = 15) 

Drainage class 

1.Undrained mineral soil (default) (n = 244) 

2. Swampy mineral soil (n = 7) 

3. Drained mineral soil (n = 21) 

4. Forested drained peatland (n = 12) 

Stand 

development 

class 

T1. Young seedling stand, dominant height of the dominant species is < 1.3 m (n = 

89);  

T2. Advanced seedling stand, dominant height of the dominant species is > 1.3 m (n 

= 195) 
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Best-available pixel (BAP) image composites 

Pixel-based image compositing of Landsat data aims to make use of the best observation 

for each available pixel within a defined acquisition period. The ultimate goal of BAP 

image compositing is to generate cloud-free, gap-free surface reflectance data products to 

support forest monitoring applications. As the annual BAP may have data gaps and likely 

also noise, additional processing of the annual BAPs is required to filter noise, fill data 

gaps, and generate a gap-free surface reflectance product, also known as a proxy BAP. 

 

Generation of annual BAP composites 

The analysis-ready L1T format, and the consistency of the Landsat calibrated data record 

(Markham and Helder 2012) greatly reduces the amount of additional pre-processing 

required. In 2018, the USGS further refined its analysis-ready data products through the 

provision of data collections; however, the studies described herein pre-date the release of 

these more mature products. For the Landsat data used in substudies I–VI, downloaded L1T 

images were subjected to cloud screening and converted to surface reflectance. Cloud 

screening was performed using the Function of mask (Fmask version 2.1; Zhu and 

Woodcock 2012). Fmask is an object-based algorithm designed to identify clouds and cloud 

shadows, as well as clear land pixels, clear water pixels, snow, and areas of no data. The 

water pixels identified by Fmask were also used to generate a water mask that was used to 

exclude water features from further processing (Lunetta et al. 2004; Hermosilla et al. 2016). 

LEDAPS was used to correct the data to surface reflectance (version 1.3.0; Schmidt et al. 

2013). LEDAPS generates a TOA reflectance from Landsat digital numbers (DN) and 

applies atmospheric corrections to then generate a surface reflectance product (Masek et al. 

2006). LEDAPS corrections are based on the Second Simulation of a Satellite Signal in the 

Solar Spectrum (6S) radiative transfer model (Vermote et al. 1997). LEDAPS was applied 

to the six Landsat optical bands (i.e. bands 1–5 and 7). 

After pre-processing, all pixels in each candidate image are assigned scores for four 

factors: sensor, day of year, distance to cloud or cloud shadow, and opacity. Composite 

scores are based on the approach described in Griffiths et al. (2013). Sensor and DOY 

scores are assigned at the image level, so all pixels within the same image are assigned the 

same score. The distance to cloud or cloud shadow score and the opacity score are unique 

to every pixel. The characteristics of these four scores are summarized in Table 3.  Note 

that for subsequent studies, some alterations were made to the original scoring protocol 

described in substudy I. The scoring rules outlined in Table 3 are the definitive, final 

version of the scoring protocol used in the subsequent studies. 
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Table 3. Summary of best-available pixel compositing scores. 

 Score Equation and scoring details 
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where μ and σ denote the mean and standard deviation respectively of all the image 

DOYs, and xi is the DOY for the image being assessed 

 μ force to the target DOY (August 1; Julian day 213); σ = 38 

 DOY score calculated using Equation T1.1 and then scaled to a value between 0 

and 1, by dividing by the maximum score. 
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where Di is the pixel’s distance to cloud or cloud shadow, Dreq is the minimum 

required distance (i.e., 50 pixels), and Dmin is the minimum distance of the given pixel 

observations (i.e., 0 pixels).  

 Pixels identified as clouds or cloud shadows are assigned a ”no data” value  

 Pixels located at a distance greater than 50 pixels from an identified cloud or 

cloud shadow pixel are assigned a score of 1.  

 Pixels that are not identified as clouds or cloud shadows, and that are less than 50 

pixels away from clouds and cloud shadows are assigned a score between 0 and 1 

using Equation T1.2. 
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      (T1.3) 

where Oi is the pixel’s opacity value, Omax is the maximum opacity value (i.e., 0.3), 

and Omin is the minimum opacity value (i.e., 0.2).  

 Pixels with an opacity value < 0.2, score = 1 

 Pixels with an opacity value > 0.3 were labelled as “no data”.  

 Pixels with opacity values ≥ 0.2 and ≤ 0.3 were assigned a score between 0 and 1 

using the opacity score Equation T1.3 above.  

 

The four scores are generated for each pixel, as described in Table 3, and summed. The best 

observation for any given pixel location is determined as being the pixel that has the highest 

summed score. The final annual BAP composite is populated with the surface reflectance 

value corresponding to the best observation for that pixel. Not all pixels will have an 

observation, so “no data” gaps are possible in the final annual BAP composites. 

 

Generation of proxy best-available pixel composites and change detection 

The Composite-to-Change or C2C protocol is an approach optimized for generating gap-

filled BAP composites over very large areas. The approach builds on the temporal 

segmentation algorithm of Kennedy et al. (2007; 2010). An overview of the C2C protocol 

is provided in Figure 7. 
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The full temporal trajectory of surface reflectance values for a given pixel (hereafter 

referred to as a pixel series) are used to define a range of expectation for spectral values. 

While minor variation in spectral values through time is expected, anomalous values are 

likely indicative of clouds/cloud shadows that were missed by the Fmask algorithm, or by 

other factors such as haze or smoke (Figure 8). Such anomalous values in the pixel series 

must be identified and distinguished from more marked variation in spectral values that 

result from real change. First, the outlier filtering method of Kennedy et al. (2010) was 

applied. Using this method, a pixel’s surface reflectance value for any given year is 

compared to its surface reflectance value in the year immediately preceding and 

immediately following. This outlier filtering is applied to each of the six Landsat optical 

bands independently. If a pixel is detected as an outlier and the difference between the 

pixel’s surface reflectance value and the average of the reflectance values in the previous 

and subsequent year exceeds a pre-defined threshold in 3 of the 6 Landsat optical bands, the 

pixel is flagged as noise and is set to a no data value. These no data pixels further add to 

existing data gaps in the original annual BAPs (Figure 7). 

The next step is to temporally segment each pixel series to identify change. However, in 

order to enable change detection and to avoid interpolation across potential breakpoints that 

are indicative of change events, a preliminary infill of pixel values was undertaken (Figure 

7). These preliminary proxy values are determined by examining each year within a pixel 

series. A year with no data in the pixel series is assigned the spectral value of either the 

preceding year or the subsequent year, depending on which is lower: the standard deviation 

of the surface reflectance values for two years preceding or the two years following.  

 

Figure 7. Overview of the Composite-2-Change (C2C) protocol used for generating gap-free 
BAP composites. 
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Following the pre-infilling of spectral values, temporal segmentation or breakpoint 

detection is undertaken. The accurate identification of breakpoints is critical to the 

assignment of final proxy values and to ensure that changes are detected in the correct year. 

In the C2C approach, breakpoint detection is undertaken using the Normalized Burn Ratio 

(NBR; Key and Benson 2006) pixel series. The bottom-up/sliding window (SWAB) 

breakpoint detection algorithm of Keogh et al. (2001) was applied and consisted of four 

steps. Initially, n-1 segments are created in a pixel series composed of n values. Thus, for a 

pixel series of 30 years with 30 reflectance values, 29 segments would be generated 

initially. Second, the cost of merging each pair of adjacent segments is calculated using root 

mean square error (RMSE). Third, the pair of segments with the lowest cost is merged. 

Finally, the cost of merging the remaining segments is recalculated and the process is 

repeated until the stopping criteria are fulfilled. Two stopping criteria are used by C2C: the 

maximum number of segments, and the maximum allowable merging cost. During the 

iteration of segment merging, the maximum allowable merging cost can be dynamically 

altered to ensure enforcement of the maximum segment criterion. The maximum number of 

segments for the 1984-2012 time series was set to 5 and the maximum allowable cost was 

set to 0.125 (Hermosilla et al. 2015; 2016). When the time series were extended to 2016 in 

substudy VI, an additional segment was used, for a total of 6 segments, while the maximum 

allowable cost remained unchanged (Hermosilla et al. 2017). 

Once the breakpoints are detected, four distinct types of trends are computed: (i) 

monotonic trends with no breakpoints (i.e. single segment); (ii) trends with multiple 

breakpoints, with all segments having positive slopes; (iii) trends with a single breakpoint 

and a negative-sloped segment; and, (iv) trends consisting of multiple breakpoints, with at 

least one negative slope. The latter represent change events and subsequent activity (i.e., 

forest recovery, change in land use) that are of interest for forest monitoring applications. 

From the aforementioned trends, segments, and breakpoints, a set of descriptive metrics are 

generated that enable the characterization of change events, as well as pre- and post-change 

Figure 8. Schematic of pixel series illustrating differences between the various forms of 
noise and actual change. 
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conditions. Metrics include change year, magnitude, persistence, and rate (Table 4; 

Hermosilla et al. 2015; 2016).  

Once spectral changes are detected in the temporal domain, a subsequent process 

analyzes the change events in the spatial domain to improve the consistency and spatial 

homogeneity of change detection. The aforementioned preliminary infill of pixel values 

may result in spatially discordant change events having an incorrect change year. From a 

monitoring perspective, the key is that change events are labelled to the correct year and 

that they have spatial cohesion with surrounding pixels within the same event. This is 

achieved by ranking the reliability of the change detection according to number of missing 

years of observations in a pixel series. In this context, an inverse relationship is assumed 

between the ability to detect the change in the correct year and the number of missing 

observations in the pixel series. Data availability in the years before, during, and after the 

change event therefore determines the reliability of the change detection. 

Detected change events are aggregated into spatial segments based on date of change 

and persistence. Spatial segments that are missing less than 50% of their observations in a 

given year are deemed more reliable than segments that are missing more than 50% of 

observations. Lower-ranked segments that are spatially adjacent to a higher ranked segment 

within one year are assigned the change year of their more reliable neighbour. This spatial 

analysis also imposes a minimum mapping unit (MMU) of 0.5 ha, or approximately 5 

pixels, for detected changes. Change events that have a size less than the MMU (0.5 ha) are 

removed. As per Kennedy et al. (2012), this MMU is small enough to capture most forest 

management activities, while also being sufficiently large to enable validation—which is 

most often enabled through visual interpretation of the LTS (Cohen et al. 2010). 
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Table 4. Summary of Composite-2-Change (C2C) change metrics. 

 

 Metric Description 

Pre-

change1 

Magnitude  
Difference between NBR values at the start (A) and end (B) 

points of the pre-change segment. 

Persistence 
Number of years between the start (A) and end (B) points of the 

pre-change segment. 

Rate 
Ratio of pre-change magnitude variation to pre-change 

persistence. 

Change 

(negative 

segments) 

Greatest 

Change Year 

Year in which breakpoint occurs (C). For pixel series with 

multiple change events, this is the year in which the greatest 

change event occurs (greatest magnitude change). The breakpoint 

separates the pre-change and change segments. 

Magnitude 
Difference between NBR values at the start (B) and end (C) 

points of the change segment. 

Persistence 
Number of years between start (B) and end (C) points of the 

change segment. 

Rate Ratio of change magnitude to persistence. 

First change 

year 

For pixel series with multiple change events, this is the year of 

the first change event (first breakpoint). 

First change 

persistence 

For pixel series with multiple change events, this is the 

persistence of the first change event (first breakpoint). 

Last change 

year 

For pixel series with multiple change events, this is the year of 

the last change event (last breakpoint). 

Last change 

persistence 

For pixel series with multiple change events, this is the 

persistence of the last change event (last breakpoint). 

Post-

change1 

Magnitude 
Difference between NBR values at the start (C) and end (D) 

points of the post-change segment. 

Persistence 
Number of years with no negative segments years following a 

change event. 

Rate 
Ratio of post-change magnitude variation to post-change 

persistence. 

1Pre- and post-change metrics are calculated for the change event with the greatest magnitude in 

the pixel series. 
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The final step is then to assign the final proxy values to those pixels with no observations. 

Proxy values are computed using piecewise linear interpolation from the temporal segments 

in which breakpoints and trends have been identified and characterized, as follows: 

 

                       
       

           
                 (1) 

 

Where xt is the proxy value assigned to pixels with no observation in the year t, and xt-1 and 

xt+1 are the spectral values in years with observations before (t-1) and after (t+1) the no data 

observation respectively. For no data values located at the extremes of the temporal 

segments in a pixel series, pixel values are assigned using extrapolation, as follows: 

 

                     
       

         
                                                                 (2) 

Where xk and xk-1 are the spectral values of the two nearest years, k and k-1, with 

observations. With this approach, the proxy value assigned to a data gap is uniquely a 

function of the spectral values within the temporal segment where the gap is located. This 

approach avoids interpolation across temporal segments, and the combination of trend 

information from different trend components, preserving the change events in the time 

series. The outputs from the combined spatial and temporal processing are gap-free, surface 

reflectance proxy image composites at a 30 m resolution, annual change detection 

information, and a series of change metrics characterizing the detected changes (including 

pre- and post-change conditions). 

 

Observation yield and radiometric consistency 

In substudy I, the observation yield (the number of pixels with BAP observations from the 

target date range of August 1 ± 30 days) and the number of consecutive years with 

observations were assessed. In substudy II, the observation yield was also evaluated, 

however the origin of the gaps were also tracked according to whether the data gaps 

resulted from the scoring mechanism or from the noise removal step (Figure 7). 

 

In substudy I, the radiometric consistency of the annual BAP composites was assessed 

using reference data (i.e. selecting a single WRS-2 path/row scene, identifying a target year, 

and withholding the most cloud-free image). Annual BAP were generated from remaining 

images and samples of pixels (n = 500) were randomly selected from areas of dense forest 

cover and surface reflectance values for these sample pixels were extracted from the annual 

BAP and reference data and compared using the coefficient of determination (R
2
).  

 

In substudy II, the assigned proxy values were evaluated by artificially generating gaps in 

each annual composite using a random sample of 0.005% of pixels (n = 116,000). The C2C 

protocol to generate proxy BAPs was applied and the generated proxy values were 

evaluated against the reference data. Values were compared using the Pearson correlation 

coefficient (r; to determine the degree of association between the reference and the proxy 

values), root mean square error (RMSE; to determine the average difference between the 
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reference and the proxy values; Equation 3), bias (to determine if proxy values are typically 

higher or lower than references values; Equation 4), and coefficient of variation (CV; for 

comparing between disturbed and undisturbed pixel groups within any given spectral band, 

but not for comparisons between bands; Equation 5).  
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where Referenceb,i and Proxyb,i are, respectively, the reference and proxy values for each 

pixel in band b, n is the number of samples, and             is the mean spectral value for 

band b. Values for r, RMSE, Bias, and CV were calculated for all six spectral bands, and 

were also generated for three strata: all pixels, pixels without change events, and pixels 

with change events. The impacts of an increasing number of data gaps, as well as 

consecutive numbers of data gaps, on the quality of the proxy value assignment, were also 

assessed. 

Composite-to-change (C2C) outputs 

Forest disturbances: Canada (wildfire and harvest) 

Detected changes were attributed to a change type according to the change hierarchy and 

methods described in Hermosilla et al. (2015; 2016), with both stand-replacing and non-

stand replacing disturbances being identified. The four change types identified were 

wildfire, harvesting, road, and non-stand replacing change. Non-stand replacing changes 

relate to temporary variations in vegetation condition (Vogelmann et al. 2016) such as 

defoliating insects, or longer-term gradual changes in vegetation condition (Cohen et al. 

2016) such as water stress. Changes were attributed at the object-level using spectral, 

temporal, and geometrical characteristics of the change objects, and a random forest 

classifier (Breiman 2001).  

Forest disturbances: Finland (harvest) 

In substudies V and VI, the objective was to assess post-harvest recovery, hence it was 

necessary to identify C2C changes that represented clearcutting (i.e. final felling). 

Clearcutting describes an even-aged silvicultural system that removes an entire stand of 

trees from an area in a single harvesting operation. In Finland, forest certification currently 

requires that at least 10 retention trees are left for every hectare of clearcut (Forest 

Stewardship Council Finland 2010, PEFC Finland 2014). In order to correctly identify 

these clearcuts, a forest mask was applied to constrain the analysis area (Saksa et al. 2003). 
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The forest mask was generated using information from the national base map of Finland 

(i.e. agricultural fields, non-forest land, lakes, rivers wider than 125 m, urban areas, 

highways, railways, power lines, main roads and other roads). For C2C changes located 

within this forest mask, the size (>2 ha) and magnitude (< -0.4) of the changes were used to 

aid in identifying clearcuts. The appropriate change magnitude threshold was determined 

using visual interpretation of high resolution imagery available from Google Earth™. 

Stratifying by change magnitude ensured that other management activities, such as pre-

commercial thinnings, were not included as areas identified as harvest. Lastly, a 30-m 

(equivalent to 1 Landsat pixel) buffer was applied to the interior of these change events to 

account for stand edge effects, particularly with the ALS data, and excluded these pixels 

from further analysis. The 2-ha minimum change event size therefore ensured that there 

were sufficient pixels for analysis remaining within each event after the 1-pixel internal 

buffer is applied. 

Spectral recovery metrics 

Recovery metrics were derived using the Normalized Burn Ratio (NBR), a spectral index 

that was initially designed by Key and Benson (1999, 2006) to map burn severity. NBR is 

calculated using near-infrared (NIR; Band 4 for TM/ETM+ and Band 5 for OLI) and SWIR 

wavelengths (Band 7 for TM/ETM+/OLI) as follows: 

 

      
    –     

        
                                                                                                                (6) 

The NBR takes advantage of the different spectral responses that disturbed and undisturbed 

areas will have in the NIR and SWIR wavelengths (Kennedy et al. 2010). NBR values 

range from -1 to 1, with positive values for pixels dominated by vegetation, and negative 

values for pixels dominated by bare soil (Escuin et al. 2008). 

Recovery metrics used in all sub-studies are developed using trend-fitted NBR values 

from C2C time-series analysis (i.e., from the proxy surface reflectance BAP composites), to 

which a despiking approach was applied similar to that of Kennedy et al. (2010) and Bolton 

et al. (2015), where noisy observations are detected by examining them in relation to their 

previous and subsequent spectral values in the time series (substudy II). Schroeder et al. 

(2007) identified that year-to-year differences that result from phenology or atmospheric 

effects such as haze would be minimized by a fitted trajectory curve.  

In substudy III, the objective was to characterize national spatial and temporal patterns 

in both short- and long-term post-disturbance vegetation recovery. Recovery in this context 

was defined as both the initial establishment of vegetation post-disturbance, and the longer-

term, sustained regeneration of forests at a site (Johnstone et al. 2004), hence recovery 

metrics that captured both short and long-term recovery were applied (Pickell et al. 2016, 

Chu et al. 2016).  

The first short-term metric was an absolute measure of post-disturbance regrowth 

considered as a spectral proxy for recovery (Griffiths et al. 2014). As defined by Kennedy 

et al. (2012), this metric indicates the change in NBR at five years following disturbance: 

 

∆NBRregrowth = NBRfitted, y5 – NBRfitted, y                                                                                                                                          (7) 
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where NBRfitted,y5 is the fitted NBR value 5-years post-disturbance and NBRfitted,y is the 

fitted NBR value in the year of disturbance. Effectively, this metric indicates how much the 

NBR value for a given pixel has changed over the 5-year period following disturbance 

(Figure 9). 

The second short-term metric provides a relative measure of post-disturbance regrowth. 

Previous studies have demonstrated the importance of conditioning spectral measures of 

vegetation recovery on pre-disturbance characteristics (Bolton et al. 2015, DeVries et al. 

2015, Pickell et al. 2016); and therefore a relative measure of vegetation recovery was also 

included. Kennedy et al. (2012) defined the Recovery Indicator (RI), which scaled the post-

disturbance regrowth (∆NBRregrowth) metric by the magnitude of the disturbance segment:  

 

    
∆           

∆              
                                                                                                            (8) 

where ∆NBRregrowth is defined in Equation 7 and ∆NBRdisturbance is defined in Equation 9 

below. While Kennedy et al. (2012) defined magnitude as a percent change in vegetative 

cover, with NBR values calibrated to cover estimates, herein the Recovery Indicator was 

adapted, defining the denominator, ∆NBRdisturbance, as the change in NBR during the 

disturbance segment (Figure 9): 

  

∆NBRdisturbance = NBRy-1 – NBRy                                                                                                                                                            (9) 

where NBRy-1 is the NBR value at the beginning of the disturbance segment and NBRy is the 

NBR value at the end of the disturbance segment. By scaling ∆NBRregrowth by change 

magnitude, it is possible to account for vegetated areas with lower NBR at the time of 

disturbance, and for lower magnitude disturbances, which may leave more residual 

vegetation at a site (Kennedy et al. 2012), thereby influencing recovery (Figure 9). 

A long-term spectral metric of recovery was adapted from the approach of Pickell et al. 

(2016) and determined the length of time it took, in years, for a given pixel to reach 80% of 

its pre-disturbance NBR value (Years to Recovery or Y2R;Figure 9). The pre-disturbance 

NBR value was defined as the average NBR value of the two years prior to the disturbance 

segment, calculated as follows:  

  

                    
             

 
                                                                                (10) 
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In substudy V, different Y2R thresholds were applied to define recovery: 60%, 80%, and 

100%. In addition, a probabilistic threshold was applied to define when a pixel was no 

longer statistically significantly different from NBRpre-disturbance (Figure 10). 

 

Validation of change outcomes 

Canada 

Substudy III relies on information outputs generated in Hermosilla et al. (2015; 2016). The 

accuracy of the change detection, the year of change, and the attribution of change were 

evaluated using independent reference data. The methods used to assess those change 

products are described briefly here. A stratified random sampling strategy was applied to 

select evaluation samples for the change detection and attribution processes following the 

approach described in Olofsson et al. (2014) and guided by Hermosilla et al. (2015b). 

Change/no change were evaluated by allocating the total number of sample points (n = 

1200) equally to change and no change strata. Change attribution (i.e. wildfire, harvest,  

Figure 9. A schematic of a spectral NBR pixel series illustrating the short-term spectral 

recovery absolute (NBRregrowth) and relative (Recovery Indicator, RI) metrics and the long-
term spectral recovery metric, Y2R. 
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road, non-stand replacing changes) were evaluated by allocating the 600 samples within the 

change strata equally to each of the four change types (n = 150). Lastly, in order to report 

the frequency with which change events were detected within the correct year, the 600 

samples within the change strata were also allocated equally among the 25 years. Each 

sample was manually interpreted by the same interpreter who was trained to visually 

recognize the four change types, and was given reference examples to use as a guide. 

Interpretations were then checked by a second, independent interpreter to ensure 

consistency. The annual BAP images composites and high spatial resolution imagery from 

Google EarthTM
 were the main reference data sources. Other ancillary data were used to 

support interpretation, including the Canadian National Fire Database (Burton et al. 2008) 

and regional spatial coverages depicting the locations of insect damages. Samples were 

identified as either change or no-change; in the case of change, the year and change type 

were also recorded. A confusion matrix was generated based on estimated class area 

proportions, from which overall user’s and producer’s accuracies per class were computed 

to assess the commission and omission errors as well as error bounds (Olofsson et al. 

2014). The temporal accuracy of the change detection was also evaluated by comparing the 

change year with the reference year. The temporal accuracy of detected changes occurring 

within three years of the reference events was assessed. Changes detected with a difference 

of four or more years from the reference data were directly flagged as detection errors. A 

Figure 10. Illustration of the different Y2R thresholds tested in Study V: 60%, 80%, 100%, 

and a probabilistic threshold (critical z-value). 
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confusion matrix based on estimated class area proportions was also used to evaluate the 

accuracy on the attribution of the change agent (Hermosilla et al. 2015). 

Finland 

Information outputs generated for Finland in substudy V and subsequently used for 

analyses in substudies V and VI were evaluated using independent reference data, 

following the same approach as described for Canada. A stratified random sample of points 

was selected to evaluate the change detection outputs following the approach described in 

Olofsson et al. (2014) and similar to that implemented in Hermosilla et al. (2015; 2016). An 

overall sample size of 400 points was allocated equally to the change and no change strata. 

To assess the attribution of changes to the correct year, samples in the change strata (n = 

200) were allocated approximately equally to each year in which changes were detected. 

Similar to methods outlined in Hermosilla et al. (2016), each sample was manually 

interpreted from the LTS as per Cohen et al. (2010), augmented by interpretation of high 

resolution Digital Globe imagery in Google Earth™, when available. The spatial support 

region for interpretation of each validation point was considered as the area corresponding 

to a 30 m Landsat pixel surrounding the point. An interpreter visually examined each 

sample and identified whether the pixel at the sample location was considered "changed" or 

"not changed", and in what year the change occurred. Results were summarized using a 

confusion matrix, with associated measures (e.g. producer's, user's, and overall accuracy) 

calculated using estimated area proportions of change and no change, as per Olofsson et al. 

(2014). 

Airborne laser scanning data processing 

In substudy V, ALS data processing was done independently for each production area to 

ensure metadata concerning data origin (i.e. data provider, sensor, and year of acquisition) 

was maintained. A rough skypoint classification (single points above the canopy height 

level) was conducted using Terrascan (Terrasolid Ltd) with a threshold value of 40 m to 

remove outliers. Ground and vegetation points were exported into new (.las) files for 

further processing. ALS elevation data were normalized to heights above ground and a 

spatial index for each 3 x 3 km tile was created to facilitate processing. A tessellation of 30 

x 30 m grid cells identical to the footprint and orientation of Landsat pixels was then 

created and used to clip and generate metrics from the normalized ALS data. ALS metrics 

used in the analysis included the mean and standard deviation of ALS heights, ALS height 

percentiles (1%, 5%, 10%, 25%, 50%, 75%, 90%, 95%, 99%; referenced as p01, p05, p10, 

etcetera), and the percentage of ALS returns within specified height intervals relative to the 

total number of returns (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, and 25 m; referenced as d00 for 

0–1 m, d01 for 1–2 m, etcetera). Following on the recommendations of Ørka et al. (2016) 

and Korhonen et al. (2013), who studied the use of ALS data to characterize regenerating 

forests, no minimum height threshold (e.g. 2 m) was applied, and only first returns were 

used when calculating ALS metrics. 

In substudy V, ALS data were used to assess the Years to Recovery or Y2R spectral 

metric of recovery. Forest structural benchmarks were established following the FAO 

definition of forest (FAO 2012), whereby canopy cover must exceed 10% and height must 

exceed 5 m. ALS data were used to determine whether the spectrally recovered pixel had 
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achieved these structural benchmarks. Canopy cover was measured using the sum of ALS 

point densities > 2 m, and height was assessed using the 99
th

 height percentile.  

Modeling stand development class and spectral recovery rates 

In substudy VI, the LTS recovery metrics (∆NBRregrowth, RI, and Y2R) were used to predict 

the stand development class, and seedling plot data were used to predict spectral recovery 

rates. In both cases, an ensemble regression tree algorithm (Breiman 2001) was used for 

classification. Correlation analysis was used to aid in screening candidate predictors. 

Random forests was implemented using the R packages caret (Kuhn 2018; Liaw and 

Weiner 2002; 2018) and the cforest function in the package party (Hothorn et al. 2006; 

Strobl et al. 2007; 2008; 2009). The number of trees to grow (ntree) was set to 1000, and 

the number of variables to use at each split (mtry) was optimized within caret. Finally, to 

determine those field-measured characteristics associated with plots that have slow and fast 

rates of spectral recovery we analyzed the variance in continuous seedling plot attributes by 

recovery group, and for the categorical seedling plot attributes (i.e., species, site type, and 

drainage), we analyzed the variance in Y2R. 

RESULTS AND DISCUSSION 

Information needs and their linkages to image compositing criteria (I) 

Linking compositing approaches to information needs in a Canadian context (substudy I) 

indicated that a target DOY that corresponded to the growing season for the majority of the 

forested area of Canada (August 1), combined with a relatively narrow temporal window (± 

30 days), resulted in a suitable data yield to support a broad range of forest monitoring 

information needs, while limiting phenological variation that may be detrimental to some 

applications. In this substudy, a BAP compositing approach was developed and prototyped 

both nationally for a single year (2010) and regionally on an annual basis for the period 

1998–2012. A prototype national 2010 composite was generated for Canada using the 

aforementioned compositing rules. Approximately 17% of pixels nationally did not have a 

best observation for 2010 within ± 30 days of August 1. Expanding the compositing 

window to ± 45 days or ± 62 days reduced the percentage of pixels with no observations to 

4% and < 1% respectively. To complete a 2010 national BAP composite, areas of no data in 

2010 were populated with BAP observations from 2009 and 2011.  

Annual composites were prototyped for sub-areas of Saskatchewan and Newfoundland 

for the period 1998 to 2012 (Figure 11). In Saskatchewan, 29% of pixels had BAP 

observations within ± 30 days of August 1 for all 15 years considered, and 74% of pixels 

had ≥ 13 years of observations. All pixels in Saskatchewan had at least 7 years of 

observations. For time series analyses and monitoring, consecutive years of missing data 

may be problematic, as they can reduce the accuracy with which disturbances can be 

attributed to the correct year (or can obscure the detection of non-stand replacing 

disturbances). In Saskatchewan, 14% of pixels had consecutive years of missing data, while 

11% had just two consecutive years of missing observations. Consecutive years of missing 

data increased after the Landsat-7 ETM+ SLC-off failure in 2003, as SLC-off gaps recur 
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spatially. Compared to Saskatchewan, the BAP observation yield in Newfoundland for the 

1998–2012 period was markedly lower, with <1% of pixels in Newfoundland having 

observations within ± 30 days of August 1 for all 14 years. However, 52% of pixels had ≥ 

10 years of observations. All pixels in Newfoundland had ≥ 3 years of observations and 

18% had no consecutive data gaps. Overall, 82% of pixels in Newfoundland were missing 

≥ 2 consecutive years of observations, with consecutive data gaps increasing after 2003 

(Figure 11).  

 

 

 

Figure 11. Consecutive data gaps in annual BAP composites for 1998–2012 (substudy I). 

Data gaps represent those pixels with no best available observation, resulting from clouds, 
cloud shadows, and ETM+ SLC-off data. 
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Correspondence between annual BAP and reference data were greatest in the near- and 

SWIR wavelengths (TM and ETM+ bands 4, 5 and 7) with R
2
 > 0.79. Atmospheric effects 

were more prevalent in the visible wavelengths and correspondence between the BAP and 

the reference data was lower, with R
2
 ranging from 0.60 to 0.75. These results indicate the 

regional variability in data yield for BAP compositing, highlighting issues for cloud-prone 

areas such as Newfoundland, as well as the opportunities for data yield in other areas such 

as Saskatchewan. In both regions, the temporal compositing window (August 1 ± 30 years) 

provided a sufficient data yield and is a reasonable trade-off against increased phenological 

variation that would result from expanding the temporal compositing window. The regional 

and national prototypes generated in this study demonstrate that annual BAP compositing is 

possible in a Canadian context, but that data gaps are an important limitation. 

 

Methods for generating gap-free image composites over large areas (II) 

Substudy II sought to address the limitations of the annual BAP compositing identified in 

substudy I by developing methods to fill data gaps with synthetic values. The protocol 

developed in substudy II (hereafter referred to as the Composite-to-Change, or C2C 

approach) takes advantage of the spatial and temporal context of the data gap. As a starting 

point, this study used the annual BAP composites generated in substudy I for Saskatchewan 

for 1998 to 2012 (Figure 12). On average 15% of pixels in each annual composite were 

missing a best observation (as a result of applying the scoring functions from substudy I). A 

noise detection approach was developed and applied in substudy II (Figure 7), resulting in 

an additional 7.5% of pixels on average for each annual composite being identified as noise 

(ranging from 5.8% to 9.6%), thereby creating additional data gaps. Overall, more than 

50% of pixels had ≤ 3 years of missing observations. Noise detection was useful for 

mitigating residual clouds, haze, and smoke from wildfires (Figure 8). Contextual analysis 

in the spatial domain was useful for ensuring that the correct date was assigned to pixels, 

enabling reconstruction of the spectral response of the disturbance event (Figure 7). 

Results of substudy II indicated that it was more difficult to generate an accurate proxy 

value when change events and data gaps were present in the pixel series. On average, pixel 

series with change events had a lower correlation between proxy and reference values (r = 

0.76 versus 0.85 for no change pixels), a higher RMSE (0.019 versus 0.012), a greater bias 

(0.0005 versus 0.0002), and a larger CV (23.23 versus 17.09). Moreover, cumulative data 

gaps (years with missing observations) also had a negative impact on the generation of 

accurate proxy values. Correlation, RMSE, and CV were found to be relatively stable until 

there were 5 or more consecutive years of data gaps in the pixel series. Several years of 

consecutive data gaps may be a concern in areas that are very dynamic (i.e. that have a 

large amount of change annually), and where persistent, extensive cloud cover limits the 

availability of suitable imagery. In such circumstances, using spatial interpolation 

techniques to fill in data gaps may be considered as a complement to the lack of spectral 

information in the time series.  

The C2C protocol as applied to the annual BAP composites from substudy I, resulting 

in the gap-free proxy BAP composites shown in Figure 12. The average annual area of 

change in Saskatchewan for the period 2000–2010 was highly variable, with a mean of 

393,600 ha  
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and a large standard deviation (292,000 ha). Change metrics generated by the C2C protocol 

(Table 4) enable the attribution of change types, as demonstrated in Hermosilla et al. 

(2015). In the north of Saskatchewan, change events were large and of a high magnitude, 

with a shorter persistence (wildfire), whereas in the south, change events were smaller and 

generally persisted for > 1 year (harvesting). 

 

Figure 12. (A) Annual BAP composites for forested area of Saskatchewan, Canada (2000–

2010). Data gaps (grey) result from a lack of observations (as a function of cloud, cloud 
shadows, ETM+ SLC-off), as well as from the noise removal process applied in the C2C 
protocol (see also Figures 5 and 6); (B) Gap-filled proxy BAP surface reflectance 
composites generated using the C2C protocol. 
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Information outcomes: a national 25-year summary of disturbance and recovery (III) 

Substudy III made use of national change products for Canada generated using the C2C 

protocol of substudy II and subsequently deployed nationally (Hermosilla et al. 2016). 

Detected changes were attributed to change type (wildfire, harvest, non-stand-replacing 

change) following the approach described in Hermosilla et al. (2015). The accuracy of the 

change outcomes that were used in substudy III were assessed and reported in Hermosilla et 

al. (2016). Overall change detection accuracy was 89%, with 89.3% of changes labelled to 

the correct year and 97.7% labelled to within ± 1 year. User’s and producer’s accuracies for 

wildfire were 98% and 93%, respectively. For harvest, user’s and producer’s accuracies 

were both 88%. 

Over the period 1985 to 2010, approximately 57.5 Mha or 10.75% of Canada’s net 

ecosystem area (exclusive of water) were disturbed by wildfire and harvest (Figure 13). 

This represents an annual rate of disturbance of 0.43%. Wildfire was by far the dominant 

stand replacing disturbance, accounting for 2.5 times more area than harvesting. On 

average, wildfire in Canada’s forested ecosystems impacted 1.6 Mha annually but was 

highly variable from year to year (standard deviation = 1.1 Mha), while harvesting 

impacted 0.65 Mha (standard deviation = 0.1 Mha). By ecozone (Figure 5), the Boreal 

Shield West had the greatest amount of stand replacing disturbance for this 25-year period 

(12.6 Mha), while the Pacific Maritime had the least (0.8 Mha). Wildfire was also the 

dominant change in the majority of ecozones, with the exception of the Atlantic Maritime, 

Pacific Maritime, Montane Cordillera, and Boreal Shield East where harvesting accounted 

for more disturbed area. 

 

 

 

 

 

Figure 13. Area disturbed by wildfire and harvest in Canada’s forested ecosystems 
(1985–2010). 
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C2C outcomes were compared to other national disturbance datasets. Canada currently has 

no national, spatially-explicit record of forest harvest and while some jurisdictions in 

Canada do maintain spatial records, these records are not spatially or temporally consistent. 

As the use of geographic information systems (GIS) have become more common in forest 

management agencies, spatial records of forest harvesting are increasingly common (Leckie 

and Gillis 1995). The Canadian Forest Service maintains the National Forestry Database 

(NFD; http://nfdp.ccfm.org/), which is a compendium of national forest statistics. The area 

harvested is reported annually by each jurisdiction in Canada. The NFD data do not report 

harvesting on private land. On public lands, all forms of harvesting are reported, including 

partial or selective harvests (harvesting is distinguished by type: partial or clearcut). 

Harvesting is sometimes reported from operational plans, which may not represent the 

actual areas harvested in any given year; reporting methods have varied by jurisdiction and 

over time. Furthermore, the reporting period for government agencies typically is from 

April 1 of the calendar year to March 31 of the following calendar year, and for years pre-

1990, the NFD contains harvest numbers that were estimated by the Canadian Forest 

Service (i.e. not reported by jurisdictions). Lastly, the NFD reports harvest by jurisdiction, 

not by ecozone, and while C2C estimates of harvest are restricted to forest dominated 

ecosystems, the NFD includes harvest data from outside this area (which is expected to 

represent a small area). Given these caveats, differences in total area reported as harvest are 

expected between the C2C spatial output and the NFD aspatial estimates. The NFD 

estimated the average annual area clearcut in Canada (1985–2010) was 0.82 Mha. C2C 

estimated the average annual area at 0.65 Mha. The NFD shows a somewhat consistent 

trend in area harvested over time; however, C2C shows an increasing trend in area 

harvested over time, from 415,000 ha in 1985 to 866,000 ha in 2005. Differences in trends 

over time between C2C and NFD may be explained by the factors noted above. While the 

C2C outputs were vetted through two independent accuracy assessments, the numbers 

reported in the NFD are have not been similarly vetted. Of note, Masek et al. (2011) 

identified an increasing trend in harvest levels in certain jurisdictions and this is reflected in 

the NFD data for those jurisdictions. Interestingly, correspondence between C2C and NFD 

has increased over time with the advent of GIS systems in forest management agencies and 

these data are used as the source of the jurisdictional estimates in the NFD.  

For wildfire, comparisons with the C2C outcomes were undertaken between the NFD, 

and the Canadian National Fire Database (CNFDB). The NFD and CNFDB estimate the 

annual area impacted by wildfire at 2.3 Mha, whereas C2C estimates 1.6 Mha. Differences 

are greatest in the years with the greatest amount of wildfire, and the amount of wildfire in 

a given year explained a significant proportion of the variance in the absolute difference 

between the C2C and CNFDB estimates of wildfire area (R
2
 = 0.692). The largest fires for 

the time period were examined (the N largest fires that accounted for > 50% of wildfire 

area). On average, C2C identified 61% of these areas as being disturbed by wildfire, 

highlighting the refined detection and mapping of wildfires using Landsat data, and the 

importance of excluding unburned islands and water bodies from fire perimeters (Stinson et 

al. 2011). 

Short- and long-term measures of recovery revealed different recovery trends for areas 

impacted by wildfire and harvest. Using an absolute measure of recovery at 5 years 

(∆NBRregrowth), 86.8% of areas impacted by wildfire and 85.8% of areas impacted by 

harvest had positive ∆NBRregrowth values indicative of spectral recovery. The average 

∆NBRregrowth values were 0.36 for wildfire (σ = 0.22) and 0.26 for harvest (σ = 0.14). 

Ecozone-level trends were consistent with those found nationally. Using a relative measure 
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of recovery at 5 years (Recovery Indicator or RI), 95.7% of wildfire areas and 93.9% of 

harvested areas had positive spectral recovery. Accounting for the magnitude of disturbance 

in the RI resulted in harvested areas generally having greater spectral recovery than wildfire 

areas. These two short-term metrics provide an initial assessment of recovery that is 

influenced by residual vegetation, as well as herbaceous and shrub vegetation. These 

metrics are therefore indicative of a greening or return of vegetation to a site, but not 

necessarily the return of forest structure.  

The Y2R metric assesses longer-term spectral recovery and relates how many years it 

takes for a pixel to return to 80% of its pre-disturbance NBR value (Figure 9). Results of 

substudy III indicate that 68.4% of wildfire areas and 92.5% of harvest areas attained the 

80% benchmark by the end of the time series in 2010 (Figure 14). Considering only those 

disturbances that occurred prior to 1990, 86.3% of wildfire and 98.4% of harvest areas 

achieved the Y2R benchmark, indicating that given sufficient time, forests will return to 

their pre-disturbance spectral characteristics. The national Y2R average value was 10.6 

years (σ = 5.6 years) for wildfire and 6.6 years (σ = 3.9 years) for harvest areas. Nationally, 

35.5% of wildfire areas and 78.5% of harvested areas had a Y2R value that was ≤ 10 years.  

Generally, the relative percentage of pixels that were non-recovered was small: < 1% of 

areas disturbed by wildfire and harvest were considered as non-recovering by all three 

measures of spectral recovery, whilst 77.4% of harvest and 57.4% of areas disturbed by 

wildfire were considered as spectrally recovered by all 3 metrics. By the end of the time 

series in 2010, 15% of areas disturbed by wildfire and harvest that were identified as non-

recovering by the short term metrics, were recovered by 2010.  

Trends in non-recovery were not consistent among disturbance types. For example, 

28.7% of areas disturbed by wildfire that were identified as recovering by the short-term 

metrics had not yet recovered using the Y2R by the end of the time series in 2010. 

Approximately 50% of these pixels were disturbed prior to 2000, and 6.8% were disturbed 

prior to 1990. For harvested areas, only 6.7% of the area identified as recovering by the 

short-term metrics had not yet recovered by 2010. Approximately 21% of this area was 

harvested prior to 2000, and only 3.2% prior to 1990. Over the longer-term therefore, areas 

impacted by harvesting are recovering more consistently than areas impacted by harvesting. 

The C2C data provides an unprecedented opportunity to characterize variability in post-

disturbance vegetation recovery in Canada's forested ecosystems in a consistent and 

systematic fashion by ecozone and disturbance type. Also critical to understanding 

vegetation recovery post-disturbance is the variability in recovery trends across forested 

ecosystems, which for a country like Canada with such a large and diverse range of forest 

conditions, is difficult to quantify on the basis of a small number of field plots alone 

(Bartels et al. 2016). 
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Finnish context: Information needs and data availability for forest monitoring (IV) 

There were a total of 30,076 images for Finland in the USGS Landsat archive. The bulk of 

these images were acquired with TM (42.8%) and ETM+ (31.8%; Figure 15). In Canada, 

the distribution of pre-OLI data (1984-2012) was 57% TM and 26% ETM+ (White and 

Wulder 2013). The temporal distribution of archive Landsat images for Finland reflect 

inconsistencies in program administration over time with little data available prior to 1984, 

and between 1991 and 1993, and likewise between 1995 and 1997 (Goward et al. 2017). 

Overall, more than two-thirds (68.5%) of the available archived data for Finland were 

acquired after the launch of Landsat-7 (ETM+), primarily as a result of the implementation 

of a systematic, long-term acquisition plan (Arvidson et al. 2001). Of note, data from OLI 

accounted for 19.1% of available archived images even though OLI has only been 

acquiring data since 2013. Moreover, the rate at which OLI is acquiring data for Finland is 

almost double that at which TM and ETM+ data were acquired. For BAP compositing, 

16.3% of total archive holdings were considered suitable according to the criteria of 

substudy I, and approximately 72.3% of land area has sufficient data. Landsat data density 

was greater in  

Figure 14. A summary of Years to Recovery (Y2R) for areas impacted by wildfire and 

harvest in Canada’s forested ecosystems. 
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southern Finland with overlap areas between WRS-2 scenes providing increased 

observational density to support image compositing. 

Finland has a long-standing history of incorporating Landsat data into national forest 

information products through the MS-NFI. Tomppo et al. (2008a) suggested that one 

potential means of enhancing the MS-NFI would be to incorporate historical data as a 

source of additional information on the age and development of forests. The MS-NFI was 

first introduced during the eighth NFI for which the field measurements were carried out 

between 1986 and 1994. During this period, the coverage of the USGS Landsat archive in 

Finland is very limited, particularly for 1991–1997 (with the exception of 1994). The 1980s 

Figure 15. A comparison of the temporal distribution of USGS Landsat archive images for 

Finland and Canada (1972–2012).  
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and 1990s represented a period of instability in the Landsat program, with Landsat data 

priced for cost recovery by NOAA, and programmatic control of Landsats 4 and 5 (and 

development of Landsat 6) transferred from the United States government (NOAA) to the 

private sector (EOSAT) from 1985 until 2001. During this commercialization period, costs 

for Landsat data increased dramatically and demand fell. The global Landsat archive 

holdings suffered most significantly during this time. In the absence of a long-term 

acquisition plan, and faced with substantial data downlink costs, acquisitions became 

increasingly US-centric and were demand-driven (Goward et al. 2017). In particular, 

acquisitions were very limited between 1985 and 1992. EOSAT had to pay NASA for data 

downlink from Landsat 4 via the Tracking and Data Relay Satellite System (TDRSS) and 

transmissions decreased to two scenes daily in 1991 and ended in 1993 with the failure of 

onboard relay capacity. By 1992, Landsat 5 only had X-band downlink functionality, 

meaning the only way to download data from the satellite was via X-band, when the 

satellite was within proximity of a ground stations. Although International Cooperators 

continued to downlink data, they were also applying the same cost-recovery model as 

EOSAT, with a similar data pricing structure. Moreover, few International Cooperators had 

data reciprocity agreements with EOSAT. The Kiruna ground station in Sweden was one of 

the few International Cooperators sending data back to EOSAT (1993–1997; Goward et al. 

2017). Faced with significant funding shortfalls from the US Government, EOSAT ceased 

processing Landsat data by the end of 1992 and did not resume processing until 1994. 

Other relevant events during this time included the passing of the Land Remote Sensing 

Policy Act of 1992 in the United States, which transferred control of the Landsat program 

back to the US Government with the development of Landsat 7, and the failure of the 

Landsat 6 launch in 1993. EOSAT (and later Space Imaging) continued to control the 

operation of Landsat 5 until 2001 when satellite operations were turned over to the USGS. 

Through the Landsat Global Archive Consolidation project, which saw the repatriation 

of Landsat data from International Cooperators’ holdings back to the USGS (Wulder et al. 

2016), it was discovered that approximately 250,000 TM images that were downloaded 

from Landsats 4 and 5 had no Payload Correction Data (PCD). PCD contains information 

required to correct for geometric disturbances that occur during image acquisition. Without 

PCD, the TM images cannot be corrected to the level required for ingestion into the 

archive. As of February 2018, the USGS has developed a method to correct these data and 

bring them into the archive. For Finland, it is estimated that there are approximately 786 

TM images that are lacking PCD, and the vast majority of these (614) were acquired in 

1997 (Shaw and Loveland, 2017). The suitability of these images for compositing remains 

to be determined; however, regardless, these images do not provide substantial additional 

data for those years with the greatest paucity of observations. 

Confirmation of post-harvest spectral recovery using ALS data (V) 

At the study site in southern Finland, a total of 117,901 change events were detected within 

the area of the forest mask (1991–2011), with a mean change event size of 1.85 ha. 

Changes were detected with an overall accuracy of 89%, with 85.88% of changes attributed 

to the correct year, and 94% to ± 1 year. Approximately 33,164 changes were identified as 

clearcuts, with a mean size of 3.83 ha. In order to assess longer-term post-harvest recovery, 

only change events that occurred in 1991 (3697 events; 40,365 pixels) were further 

analyzed. 
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In substudy V, varying thresholds were applied to the Y2R metric: 60%, 80%, 100%, and a 

probabilistic threshold indicating when a pixel was no longer statistically significantly 

different from its pre-disturbance value (Figure 10). As the spectral threshold indicative of 

recovery increases from 60% to 100%, the number of years required for a harvested pixel to 

attain this threshold also increases (Figure 16). For the Y2R60% and Y2R80% recovery 

scenarios, all pixels in all recovery groups were considered spectrally recovered by the end 

of the time series. The Y2R80% and Y2RZ scenarios had similar distributions of pixels 

among the different recovery groups, but the Y2RZ identified 1.67% of pixels as not 

recovered. Conversely, the Y2R100% scenario resulted in 31% of pixels identified as not 

recovered.  

Differences in ALS metrics between the different recovery groups were compared for 

each recovery scenario. In terms of ALS metrics examined, the largest significant 

differences between recovery groups were for the density metric d00 (the density of ALS 

returns within 0–1 m of the ground surface), and the 99
th

 percentile of ALS heights. 

Generally, differences in ALS metrics between groups decreased with the increasing 

spectral threshold used to define recovery. For example, the maximum difference among 

recovery groups for d00 was 28.61% for Y2R60%, compared to only 4.275% for 

Y2R100%. Likewise, the maximum difference for p99 was 4.68 m for the Y2R60% 

scenario, compared to only 1.03 m for the Y2R100% scenario. Generally, pixels that were 

considered as spectrally recovered within 10 or fewer years (recovery group 1) had larger 

median values for ALS height percentiles p75, p90, p95, p99, relative to pixels that took 

longer to recover. Therefore, pixels that recovered rapidly were taller on average at the time 

of ALS measurement, than pixels that took longer to recover. This relationship with ALS-

measured forest structure confirms the utility and appropriateness of the Y2R metric as an 

indicator of forest recovery in the boreal forest environment studied. Regardless of the Y2R 

threshold used herein, pixels that recovered rapidly had larger median values for the upper 

ALS height percentiles; conversely, pixels that took longer to recover had smaller median 

values for height  percentiles. 

For the Y2R100% scenario, a subset of pixels were analyzed in which the year of 

spectral recovery was the same as the year of ALS acquisition. Within this subset, the Y2R 

ranged from 17 to 22 years (i.e. all pixels were within this recovery group). Of note, 

differences in mean values for the ALS metrics were markedly lower among the Y2R 

within this single recovery group than between recovery groups.  

Pixels were assessed according to benchmarks of cover and height derived from the 

ALS data. The relative distribution of pixels among the benchmark categories within 

recovery groups was relatively consistent across all four scenarios: benchmarks of height 

were more commonly achieved than benchmarks of cover, while achieving benchmarks of 

both cover and height was most common overall. Other studies have similarly reported that 

height growth post-disturbance is more rapid than the return of canopy cover (Bartels et al. 

2016; Bolton et al. 2017). 
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Differences between recovery groups decreased with an increasing spectral threshold for 

recovery, indicating that with the longer recovery times required to achieve a higher target 

spectral threshold (i.e. 100%), forest structural conditions in terms of height and cover, 

begin to converge. The 60% spectral threshold was found to provide an overly optimistic 

scenario of forest recovery, with pixels able to attain spectral recovery rapidly, before 

attaining benchmarks of forest structure. For example, only about half of pixels that the 

Y2R60% scenario indicated as spectrally recovered in 14–17 years had achieved the 

benchmarks for both cover and height, compared to approximately 80% of Y2R80% pixels 

in that same recovery group (Table 5). Furthermore, under the Y2R60% scenario, 2.5 times 

as many pixels that were spectrally recovered in <10 years had not yet achieved the 

structure benchmarks, compared to the Y2R80% scenario. Likewise, the Y2R100% may be 

an excessively pessimistic threshold, with more than 86% of pixels that were considered as 

not yet spectrally recovered by the end of the time series having already attained the 

benchmark values of cover and height (Table 5). As noted by Pickell et al. (2016), it may 

be unrealistic to assume that a pixel will return to 100% of its pre-disturbance value within 

the temporal window of the LTS, particularly if the forest was mature prior to disturbance 

(as in our study) or there was a change in dominant species or management practices post 

disturbance that would alter the density and configuration of the canopy, and thereby also 

the reflectance properties of the stand. As noted by Song et al. (2002), successional 

reflectance trajectories are noisy and are driven by a myriad of factors. 

Figure 16. Relative distribution of pixels by Y2R scenario. Lines represent the fitted normal 

distribution.  
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Table 5. Percentage of pixels within each of the recovery groups that achieved the indicated 

benchmarks of cover (> 10%), height (> 5 m), both cover and height, or neither benchmarks, 
by recovery scenario.  

Benchmarks of 

recovery 

Recovered 
Not 

recovered 
<10 

years 

11–13 

years 

14–17 

years 

>17 

years 
Total 

       

Y2R60%             

cover 1.29 0.22 0 0 1.52 0 

height 5.08 0.41 0.06 0 5.55 0 

cover & height 84.2 4.51 0.17 0 88.88 0 

none 3.38 0.58 0.09 0 4.05 0 

TOTAL 93.96 5.72 0.32 0   0 

       

Y2R80%              

cover 0.47 0.69 0.31 0.05 1.52 0 

height 2.71 1.81 0.75 0.28 5.55 0 

cover & height 50.75 27.58 8.73 1.82 88.88 0 

none 1.39 1.52 0.83 0.3 4.05 0 

TOTAL 55.32 31.6 10.63 2.45   0 

       

Y2R100%             

cover 0.05 0.14 0.32 0.58 1.09 0.42 

height 0.2 0.5 0.82 1.79 3.3 2.25 

cover & height 4.43 11.34 18.35 27.92 62.04 26.84 

none 0.13 0.29 0.54 1.62 2.58 1.48 

TOTAL 4.8 12.27 20.03 31.91   30.99 

       

Y2RZ             

cover 0.47 0.57 0.34 0.09 1.48 0.04 

height 2.42 1.56 0.9 0.49 5.37 0.18 

cover & height 45.92 25 12.48 4.14 87.54 1.34 

none 1.33 1.27 0.9 0.44 3.94 0.11 

TOTAL 50.14 28.41 14.62 5.17   1.67 

 

 

The results of substudy V demonstrate that LTS-derived spectral measures of recovery, 

specifically the Y2R or number of years required for a pixel to return to a certain 

percentage of its pre-disturbance NBR value, relate to measures of forest cover and height 

derived from ALS data. For post-harvest scenarios in managed boreal forests of southern 

Finland, the Y2R80% scenario provided the most realistic assessment of recovery. Using 

the 80% threshold, the majority of pixels identified as spectrally recovered had attained the 

benchmarks of cover and height, as derived from the ALS data. Moreover, with the 80% 

threshold, false positives (spectral recovery attained, structural benchmarks not attained), 

and false negatives (spectral recovery not attained, structural benchmarks attained) were 

minimized. False positives were more common for the Y2R60% scenario, while false 

negatives accounted for 26.84% of pixels under the Y2R100% scenario. Under the 

Y2R80% scenario, all pixels were considered recovered within the time period assessed, 

and sites that recovered rapidly (< 10 years) had forest structural properties at the time of 

ALS measurement that were distinct from sites that took longer (i.e. >17 years) to recover. 
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Assessing post-harvest spectral recovery with field plot data (VI) 

Substudy VI builds on the results of substudy V and seeks to further increase understanding 

of spectral measures of recovery through the use of field plot data. Seedling plots were 

measured in the year the plot was considered spectrally recovered by the Y2R metric (using 

an 80% threshold). Short and long-term LTS spectral recovery metrics discriminated the 

young and advanced seedling stand development classes with an overall accuracy of 

73.59% ± 5.11% (Table 6Table 6). 

 
Table 6. Confusion matrix for classification of stand development class. T1 = young seedling 

stand; T2 = advanced seedling stand. 

 Observed   

Predicted T1 T2 Total User’s accuracy Commission error 

T1 45 31 75 59.25% 40.75% 

T2 44 164 208 78.75% 21.25% 

Total 89 195 209   

Producer’s accuracy 50.16% 84.26%  Overall accuracy Margin of error 

Omission error 49.84% 15.74%  73.59% ± 5.11% 

 

Seedling plot attributes were then used to discriminate the three spectral recovery groups 

with an overall accuracy of 61.06% (± 5.67%; Table 7). Producer’s accuracy was high for 

recovery groups 1 and 3 (70.51% and 68.69% respectively), but was low for recovery group 

2 (43.64%). Likewise user’s accuracies were comparable for recovery groups 1 and 3 

(~66%), and lower for recovery group 2 (48.95%). Confusion was greater between recovery 

groups 1 and 2. Conversely, there was relatively minor confusion between recovery groups 

1 and 3. The most important predictors were mean height, dominant species, percent 

deciduous, height ratio, site type, and coefficient of variation of stem density. Examples of 

the three recovery groups at mesic and xeric sites are shown in Figure 17. 

 

 
Table 7. Confusion matrix for 5-year spectral recovery groups. RG1 = spectral recovery in 

1–5 years, RG2 = 6–10 years, RG3 = 11–15 years. 

 
Observed 

Predicted RG1 RG2 RG3 Total User's accuracy Commission error 

RG1 71 33 3 107 66.40% 33.60% 

RG2 19 41 24 84 48.95% 51.35% 

RG3 11 20 61 92 66.15% 33.85% 

Total 101 94 89 173 
  

Producer's accuracy 70.51% 43.64% 68.69%  Overall accuracy Margin of error 

Omission error 29.49% 56.36% 31.31%  61.06% ± 5.67% 
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One-way ANOVAs indicated significant differences in mean height among spectral 

recovery groups (F(2,281) = 50.96, p = 0.00), and post-hoc Tukey tests indicated that there 

were significant differences in mean height amongst all three recovery groups (Figure 18). 

The average mean height for recovery group 1 was 1.4 m, compared to 3.29 m for recovery 

group 3. There were also significant differences in percent deciduous (F(2,281) = 7.29, p = 

0.00) by recovery group, and post-hoc Tukey tests indicated significant differences between 

recovery groups 1 and 3, and groups 2 and 3, but not between groups 1 and 2 (Figure 18). 

The average percentage of stems that were deciduous in recovery group 1 was 69%, 

compared to 49% for group 3. No thinnings or treatments had been applied to any of the 

seedling plots. No significant differences were found between recovery groups for 

coefficient of variation in stem density (F(2,281) = 0.329, p = 0.72) (Figure 18); however, 

there were significant differences in total stem density (F(2,281) = 3.74, p = 0.02) between 

groups 1 (mean = 9322 stems) and 3 (mean = 6264 stems).  

 

Height was consistently the most important predictor of spectral recovery rates. The trend 

in the seedling plot data whereby height increased with increasing Y2R80 (Figure 18) is 

Figure 17. Examples of the three recovery groups (1: recovery in < 5 years; 2: 5–10 years, 
and 3: 10–15 years) for the mesic heath and xeric sites. 
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typical of spectral trends associated with increasing time since disturbance (Horler and 

Ahern 1986, Nilson and Peterson 1994, Olsson 2009). Height is used as an indicator of 

recovery (Bartels et al. 2016; substudy V) and is fundamental to many definitions of forests 

(Chazdon et al. 2016). The relationship between height and Y2R80 was moderate (r = 0.55) 

for the seedling plot data used in substudy VI. Seedling plots were measured in the year in 

which spectral recovery was achieved, and it was observed that stands that recovered 

rapidly (i.e. < 5 years), were on average shorter in the year they recovered than stands that 

took longer to recover. This finding aligns with knowledge of stand development post-

disturbance (Oliver and Larson 1996), and the fact that the seedling plots represent a 

chronosequence of time since disturbance. These results should be considered in the context 

of the results reported in substudy V. Therein, the heights of stands that were harvested in 

1991 at the same study site in southern Finland as used herein, were assessed against 

benchmarks of cover and height derived from the ALS data. In substudy V, pixels that had 

rapid spectral recovery (i.e. < 10 years) had significantly larger median values for ALS 

height percentiles (75th, 90th, 95th, and 99th) relative to pixels that took longer to recover. 

Therefore, pixels that recovered rapidly were taller on average at the time of ALS 

measurement, than pixels that took longer to recover. Results indicated that there is marked 

variability in heights in regenerating forests, particularly within 10 years post-disturbance 

and that while height may be a useful indicator of recovery, height is also the structural 

manifestation of other site factors that influence the recovery process. Even in northern 

Finland though, natural regeneration was found to effectively restock stands to required 

density and heights within 13–15 years post-disturbance (Valkonen and Siitonen 2016). In 

southern Finland, mean stand height at 10 years of age typically ranges from 2.4–2.7 m 

(Valkonen et al. 2011). 

 

Variability in spectral recovery was also influenced by species and site factors, including 

the amount of deciduous tree species that establish at a site, as well as the heights of those 

deciduous species relative to the coniferous stems present at the site. As indicated in Figure 

18, an abundance of deciduous species in a plot influences the rate of spectral recovery.  

 

Figure 18. Seedling plot characteristics, by recovery group. 
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On average, seedling plots in recovery group 1 had a higher percentage of deciduous stems 

(66%), than recovery group 3 (45%). As noted by Bartels et al. (2016), regeneration by 

remnant species at a site can influence recovery, with deciduous species that can regenerate 

vegetatively establishing much more quickly at a site than species that regenerate from 

seed. In turn, these deciduous species can grow rapidly on productive sites, further 

influencing assessments of recovery rates that use height thresholds as an indicator of 

recovery. For example, Valkonen and Ruuska (2003) found that the average height of 

naturally emerged birches was consistently 1 m greater that of planted pines at the age of 6–

13 years in southern Finland. 

A one-way ANOVA indicated significant differences in mean Y2R values among 

dominant species (F(2,283) = 12.91, p = 0.00). Post-hoc Tukey tests revealed that there were 

significant differences (p < 0.05) in Y2R between Scots pine (mean = 8.4 years, sd = 3.6 

years) and both Norway spruce (mean = 6.2 years, sd = 2.7 years) and deciduous species 

(mean = 6.7 years, sd = 3.1 years), but not between Norway Spruce and deciduous 

dominated plots (Figure 19). Likewise, we found significant differences in Y2R among site 

types (F(3,282) = 6.77, p = 0.00), with a post-hoc Tukey test indicating significant differences 

(p < 0.05) in Y2R between heath (mean = 6.1 years, sd = 2.6 years) / mesic heath (mean = 

6.7 years, sd = 3.3 years) site types, and the sub xeric (mean = 8.3 years, sd = 3.2 

years)/xeric (mean = 9.2 years, sd = 3.4 years) site types. There was no significant 

difference in Y2R among soil drainage classes (F(3,282) = 1.75, p = 0.16). 

 

 

 

Figure 19. Difference in average Y2R metric for species, site type, and drainage class. 
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Uncertainty in monitoring the successional trajectories of forests post-disturbance with 

Landsat data are driven by factors such as topography, atmosphere, phenology, and sun and 

view angles (Song et al. 2000; Song and Woodcock 2003; Song et al. 2007). While it is 

possible to model successional reflectance trajectories (e.g. Nilson and Peterson 1994; Song 

et al. 2007), real successional trajectories are noisy and often non-linear (Song et al. 2002). 

Future prospects for monitoring forest disturbance and recovery over large areas 

Landsat-established baselines and subsequent trends provide a framework to augment and 

integrate existing information, including ground measurements. Such baseline information 

is important for identifying spatial and temporal trends regarding forest disturbance and 

recovery that can be used to inform and bound questions related to forest management and 

climate change. Moreover, the combination of BAP compositing methods with time series 

analyses overcomes some of the key limitations of using remotely sensed data for forest 

monitoring: namely consistent, cloud-free observations (Kimes et al. 2008, Püssa et al. 

2005). Future prospects for implementing and refining these approaches are promising. 

New satellite missions that augment the Landsat satellite archive through purposeful 

harmonization (i.e. Sentinel-2), further increase capacity for cloud-free observations and 

enable virtual constellations of operational satellite programs (Wulder et al. 2015). 

Increased within-year observations expand BAP compositing options (substudy I), have 

demonstrated utility for land cover mapping applications (Griffiths et a. 2019), and improve 

capacity to monitor non-stand replacing disturbances (Cohen et al. 2016). Both the Landsat-

8 and Sentinel-2 programs are considered operational programs, with measurement 

continuity as a key program objective. Free and open data policies, are also a critical 

component of these programs (Zhu et al. 2019). This operational capacity and commitment 

to measurement continuity (Wulder et al. 2016) is particularly useful for the design and 

implementation of national, large-area forest monitoring programs.  

Globally, an increased commitment and interest in forest regeneration and reforestation 

will require spatially-explicit information to guide investments, evaluate outcomes, and 

support policy development (Gellrich et al. 2007, Holl and Aide 2011). For the study of 

forest recovery, integration of temporal information from optical satellites with 

characterizations of vertical structure from LIDAR takes advantage of the relative strengths 

of these two data sources (Hudak et al. 2002). The integration of LIDAR to corroborate 

spectral measures of recovery and support further investigations of LTS recovery metrics 

under a broad range of forest types and management scenarios will be key to improving and 

operationalizing these measures (substudy V). Systematic national ALS acquisitions are 

increasingly common (e.g. Stoker et al. 2008, Kotivuori et al. 2016) and the recent launch 

of two spaceborne lidars, the Advanced Topographic Laser Altimeter System (ATLAS) 

instrument onboard IceSat-2 (Popescu et al. 2018, Neuenschwander and Pitts 2019), and the 

Global Ecosystem Dynamics Investigations (GEDI) full waveform light detection and 

ranging (lidar) onboard the International Space Station (Qi et al. 2016, 2019) provide 

additional opportunities to characterize forest structure and support retrospective analyses 

of recovery. Likewise, other opportunities to characterize vegetation height from 

Polarimetric Synthetic Aperture Interferometry (TanDEM-X and TerraSAR-X; Koch 2010) 

further expand data options for integrated forest recovery assessments.  

Advances in computational capacity and availability of free and open data support 

development of national forest monitoring programs and the operationalization of the 

approaches and methods described herein. However, these advances also provide 

unprecedented opportunities for the generation of information products by a multitude of 



58 

 

stakeholders (Gorelick et al. 2017). In the near future then, a potential challenge will 

undoubtedly be a proliferation of information products and a need to establish authoritative 

data sources for national reporting and accounting purposes. While governments are 

typically constrained by issues related to transparency, chain of custody, and data 

provenance, other stakeholders may not have such limitations (Lewis  et al. 2017).  

 

CONCLUSIONS 

Information needs associated with forest monitoring have evolved, becoming increasing 

complex over time. Data to support these information needs are required to be spatially 

exhaustive, spatially explicit, and to capture changes at a spatial resolution that is 

commensurate with both natural and anthropogenic impacts. Bi- or multi-temporal remotely 

sensed data have previously enabled spatially detailed characterizations of forest 

disturbance. However, Landsat time series data support more detailed accounts of forest 

change through time, allowing both disturbance and the subsequent return of vegetation to 

be characterized. When combined with image compositing approaches, LTS enable the 

generation of large-area, gap-filled best-available-pixel image composites that preserve 

detected changes and provide continuous change metrics, resulting in foundational, annual 

data to support forest monitoring. 

The overall goal of this dissertation was to improve the capacity to monitor forest 

disturbance and recovery over large areas. Component studies focused on four key areas: 

information needs, data availability, methods development, and information outcomes. 

Through the six different substudies (I-VI): 

 

 forest monitoring information needs were identified and linked to image 

compositing criteria and data availability; 

 methods were developed and demonstrated for generating gap-filled best-available 

pixel composites that preserve detected changes, generate continuous change 

metrics, and provide foundational annual data to support forest monitoring; 

 a national monitoring framework was prototyped at scale over the 650 Mha that 

comprise Canada’s forest ecosystems, providing a detailed analysis of areas 

disturbed by wildfire and harvest over a 25-year period (1985–2010) and their 

subsequent short- and long-term recovery; 

 Landsat image compositing methods were ported and adapted to a different forest 

environment and management context and successfully applied; 

 the utility of spectral measures of recovery were evaluated and confirmed against 

benchmarks of forest cover and height derived from ALS data; and 

 the influence of forest structure and composition on spectral recovery was assessed  

and quantified using field plot data. 

 

Information needs should ultimately drive the selection of the most appropriate data source 

for forest monitoring efforts, defining the desired spatial and temporal characteristics of the 

data. Substudies I and IV focused on defining forest monitoring information needs for 

Canada and Finland respectively, as well as linking these needs to compositing approaches 

and data availability. For Canada, the goal was to create gap-free image composite products 
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that could expand the current sample-based NFI monitoring approach and provide spatially-

explicit information on forest dynamics for carbon accounting as well as a myriad of other 

forest information needs in Canada that would benefit from wall-to-wall image and data 

products with an annual time step. For Finland, the opportunity exists to incorporate LTS 

data into existing Landsat forest information products such as the MS-NFI and to support 

retrospective analyses of changing land use in support of greenhouse gas reporting. Such 

retrospective analyses also contribute to an improved understanding of the impacts of 

disturbances and management activities on Finnish forests through time, and can provide 

baseline data on the potential natural regeneration capacity of different management areas. 

The opening of the Landsat archive and the adaptation of image compositing 

approaches to Landsat data have caused a processing shift in remote sensing science. No 

longer constrained by the best-available Landsat image, the use of the best-available 

observation for any given pixel has provided improved opportunities to take advantage of 

Landsat time series data over large areas. Substudies I and II developed a rule-base for 

compositing that was tied to information needs for forest monitoring. Substudy I 

demonstrated that the scoring mechanism for compositing can be adapted to a wide range 

of information needs; however data availability, both spatially and temporally, will dictate 

observation yield. The persistence of cloud cover, topography, phenology, availability of 

Landsat data, and dynamism of landscape processes are all important considerations when 

applying compositing processes. Trade-offs in compositing rules are often required; 

however, desired composite characteristics for the majority of forest monitoring 

applications include consistent phenology, maximum observation yield, and minimization 

of consecutive data gaps. An important limitation for the application of annual BAP 

products to derive forest ecosystem information products (i.e. land cover, land cover 

change, and forest structure) is missing data, that is, pixels with no observations due to 

clouds, cloud shadows, smoke, haze, sensor issues (SLC-off), or a restricted acquisition 

period. Substudy I demonstrated the potential for variability in observation yield in 

different regions of Canada, whereas substudy IV demonstrated analogous insights for 

Finland. 

By leveraging the full temporal information in the pixel series along with the 

disturbance history, substudy II developed methods that enable the generation of gap-free 

proxy BAP composites. These proxy surface reflectance composites, whereby synthetic 

surface reflectance values are generated to fill data gaps while also preserving disturbance 

information, provide the foundation for forest monitoring efforts over large areas. As an 

important precursor to proxy value assignment, the method presented analyzes the spectral 

reflectance values of the pixels through time and generates a set of change metrics that 

characterize the year, persistence, rates of change, severity, recovery, rates of recovery, as 

well as the pre- and post-change metrics (Table 4). These proxy composites, together with 

the derived change metrics, provide valuable independent information for systematically 

mapping, monitoring, and reporting physical characteristics of land cover, land-cover 

changes, and related forest dynamics over large areas, for extended time periods at regional 

or national levels.  

Landsat time series data have allowed for a more holistic assessment of forest 

dynamics: it is now possible to characterize both disturbance and recovery on an annual 

time step, which was previously not feasible with bi-temporal or multi-temporal epochal 

image data. Substudy III focused on information outputs, by prototyping at scale a national 

assessment of disturbance and recovery for Canada’s forested ecosystems. Annual, 

spatially-explicit information on stand replacing disturbances provides refined information 

outputs, including heretofore unavailable information in the case of a national, spatially-
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explicit record of forest harvesting for Canada. Previous assessments of post-disturbance 

recovery in Canada have either been sample-based or have used coarse spatial resolution 

data. LTS enable assessments of recovery that are spatially exhaustive and retrospective, 

with sufficient spatial resolution to capture and attribute anthropogenic impacts, providing 

important baseline data for forest monitoring efforts. A spatially-explicit assessment of 

recovery at a 30 m spatial resolution provides a framework for integration with field plot 

data to enable further insights into recovery processes in different regions and forest types. 

In substudy III, differentiation of short- and long-term trends in recovery was informative, 

as was the capacity to distinguish recovery trends independently for areas impacted by 

wildfire and harvesting. For example, at 5-years post-disturbance, areas impacted by 

wildfire and harvest had relatively similar recovery trends; however by the end of the time 

series, harvested areas had recovered more rapidly than areas impacted by wildfire. 

Likewise, 15% of areas disturbed by wildfire and harvest that were identified as non-

recovering at 5-years post-disturbance were spectrally recovered by the end of the time 

series. 

Much remains to be understood concerning the linkages between spectral measures of 

recovery and manifestations of forest structure. While, Landsat data provides useful 

information on the presence and horizontal distribution of vegetation, ALS provides useful 

information on the vertical distribution of that vegetation, indicative of forest structure. 

Combined, the integration of these data enable the characterization of the return of 

vegetation and trees post-disturbance. Substudy V demonstrated the utility of national ALS 

acquisitions for providing data to corroborate spectral measures of recovery and improve 

our understanding of the linkage between forest structural development and spectral 

measures of recovery. Benchmarks of forest cover and height, generated from ALS data 

provide an objective measure of recovery, against which spectral measures can be 

evaluated. In the boreal forests of southern Finland, post-harvest measures of spectral 

recovery realistically captured and related structural development of forests post-harvest. 

As a process, forest recovery is highly variable, and monitoring efforts require 

definitions of recovery that are tied to the information need and the management context, as 

well as clear linkages between spectral recovery metrics and measurable indicators of forest 

structure, composition, or function. In substudy VI, field plot measurements were related to 

spectral measures of recovery and provided insights on those forest structural or 

compositional factors that influence the rate of spectral recovery within the first 15 years of 

stand development post-harvest in the boreal forests of southern Finland. Of the field plot 

attributes assessed, height was the most important predictor of forest spectral recovery, 

thereby linking structural development with spectral indicators of recovery. However, other 

factors, such as dominant species, and the percentage of stems that were deciduous were 

also useful for discriminating different recovery rates. Results of this study demonstrated 

that recovery, whether it be measured spectrally or in the field, is highly variable within the 

first 10-years of stand establishment and therefore, attempting to discriminate amongst 

different spectral recovery rates for stands < 10 years in this forest environment may not be 

informative for management.  

In this dissertation, methods and approaches to improve the capacity for monitoring 

forest disturbances and subsequent recovery over large areas were developed and 

demonstrated. LTS greatly enhance opportunities for forest monitoring, particularly for 

post-disturbance recovery assessments, while BAP compositing approaches allow LTS 

analyses to be applied over large forest extents. As forest monitoring systems continue to 

evolve, they are no longer theoretically constrained by data availability or computational 

capacity. In reality however, many national forest monitoring programs are challenged by 

decreasing budgets and increasing expectations. Remotely sensed data have an increasingly 
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important role to play in meeting these challenges. The approaches presented herein are 

readily operationalized and are capable of providing the requisite baseline data to support 

science and programmatic information needs, as well as reporting requirements, policy 

development, and monitoring.  
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