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ABSTRACT 

 
 

Climate change is amplifying forest disturbances, especially those by insect pests. In addition 
to native species, biological invasions by alien insects are threatening forest health, 
ecosystem sustainability, and economic return. Uncertainties related to insect pest 
infestations are increasing along the risk of high impacts. There is a high demand of accurate, 
efficient, and cost-effective methods for forest health monitoring to prevent, control, and 
mitigate the various negative impacts, as well as to support decision-making.  

Current needs for information for efficient forest management are complex and 
extensive. The required quality cannot be met with traditional forest inventory methods. 
Forest information should be up-to date and available across a range of spatial and temporal 
scales. Rapid development of methods for general forest inventory also support development 
of forest health monitoring and management. The continuously developing field of remote 
sensing and geographical information systems provide new means for various forest 
monitoring tasks. However, disturbance monitoring, especially by insect pests, gives an extra 
challenge and increased uncertainties compared to other forest monitoring tasks. With new 
approaches, however, valuable information on disturbances can be derived for evaluation of 
insect-induced forest disturbance at reasonable high accuracy and reduced amount of needed 
fieldwork.   

This dissertation aims towards improved forest health monitoring, particularly 
disturbances by defoliating insect pests. Insect-induced disturbances from single tree level to 
larger areas in Fennoscandia and eastern USA were evaluated in five sub-studies. The sixth 
and final sub-study comprises continental scale species distribution models in North America 
and East Asia. In these sub-studies, different remote sensing sensors and approaches, and 
ecological niche modeling for species potential distributions were employed in disturbance 
evaluation. Study species include native insect pests and an invasive alien species. In context 
of recent research and the included sub-studies, issues specific to insect disturbance 
monitoring are discussed. Pattern, frequency, scale, and intensity of insect infestations vary 
depending on the insect pest and forested landscapes in question affecting disturbance 
detection and impact evaluation. Sensors, platform, and/or modeling methods have to be 
chosen accordingly. Environmental features, such as topography, and level of landscape 
fragmentation give restrictions to the method selection, as well as to the appropriate spatial 
resolution. Importance of varying information is also affected by the scale and resolution of 
investigation. Timing of data acquisition is crucial. Early detection and timely management 
operations are often the only way to control or mitigate insect outbreaks. Moreover, amount 
and accuracy of auxiliary information, including forest inventory data, and disturbance 
history, differ between countries and continents. Forest policies and practices differ 
depending on the region affecting further selection of usable data sets and methods.   

 Information on potential ranges of insect pests and, to some extent, on future impacts of 
infestations can be obtained employing spatial modeling techniques, such as ecological niche 
modeling. These models are more frequently used at the regional and continental levels, 
however, smaller scale can be applied. Various modeling approaches can also be applied in 
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risk assessment, providing information for decision-making and forest health management 
operations. Models can be coupled with other techniques, including remote sensing. The 
feasibility of modeling is emphasized when predicting and projecting future events, 
especially those connected to the climate change related changes in insect population 
dynamics or adaptation to various forest management operations.  

Forest health monitoring should be included into forest monitoring systems, including 
accurate and timely disturbance detection, monitoring of infestations, and impact evaluation. 
Higher and lower spatial resolution remote sensing should be combined over varying spatial 
ranges and modeling techniques incorporated for flexible and cost-efficient monitoring over 
a gradient of different forest ecosystems, climatic conditions, and forest inventory and 
management practices. Open access remote sensing archives with high temporal resolution 
could facilitate continuous monitoring of wide forest areas. Developing satellite technology 
may respond to these needs. Plenty of valuable research on forest health monitoring exist. 
However, considerably more research is still needed before comprehensive monitoring 
systems can be adopted at the operational level. Development of remote sensing and 
modeling techniques, as well as improving computational power and databases facilitate 
continuous improvement of forest health management practices.  

 
 

Keywords: Ecological niche modeling, Forest disturbances, Forest health monitoring, Insect 
pests, Invasive species, Remote sensing 
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Coworkers at the Department of Forest Sciences have provided me a great working 
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I am grateful to my parents Aino and Kaarlo, who have always believed in me, even when 
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my dear parents, my aunt Pirkko and uncle Jorma have always supported me and carried me 
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1. INTRODUCTION 
 
 
1.1. Forest disturbances – a growing threat of the changing world  
 
Numerous issues are threating sustainability of world’s ecosystems, such as the diverse range 
of forests, and consequently, human welfare. Changing climate with elevating temperatures, 
continuously growing human population and the following increased demand of goods and 
services, as well as traffic and trade induced biological invasions of exotic species can be 
included into the most complex socio-economical threats. The existing forest resources are, 
at the same time, facing wider and more intense disturbances than before and increasing in 
their value for the world. The global change is exposing forest ecosystems to severe threats 
along with the increasing demand of the ecosystem services provided by forests (Seidl et al. 
2016). In addition to forest products, forests have critical non-material values, including 
major effects on important regulating services, such as carbon storage and sequestration, 
flood control, and water purification (Boyd et al. 2013). Infestations by insect pests are 
threatening forest health and persistence of existing forested landscapes and the critical 
ecological processes. Forests and tree species are regarded resilient and well adapted to 
disturbance regimes (Gutschick and BassiriRad 2003). However, the disturbance regimes are 
also changing, and the magnitude of the future impacts include significant uncertainty 
(Westerling et al. 2006; Seidl et al. 2014; 2016). Magnified insect-induced forest disturbances 
have negative effects on, e.g., biodiversity (Beudert et al. 2015), various biogeochemical 
processes (Seidl et al. 2014), and economic return (Dale et al. 2001). Efforts for monitoring 
and protecting forests against damaging agents, especially insect pests, are growing in 
importance. Improved forest health monitoring and development of methodology for early 
warning would facilitate more effective mitigation of the negative impacts of forest insect 
pests. Relatively new and rapidly developing tools of remote sensing and spatial modeling 
should be included into efficient forest health monitoring and risk assessment. In this context, 
this dissertation contributes to forest health monitoring, particularly of insect induced forest 
damage. Relevant background and related scientific advancement are reviewed in the thesis 
and combined with six sub-studies focusing on methods of insect pest monitoring with 
different spatial and temporal resolutions. 
 
 
1.2. Forest health and disturbances  

 
1.2.1. Definitions for forest health 
 
Healthy and sustainable forest ecosystems provide social and economic welfare. Healthy 
forests support important ecosystem services, i.e., beneficial functions and goods supporting 
directly or indirectly the quality of human life (Harrington et al. 2010; Díaz et al. 2015). 
Ecosystem services provided by healthy forests includes direct provisioning services, i.e., 
products used by human, indirect regulating services providing benefits resulting from 
modifications of the environment, and cultural services that improve human well-being 
(Boyd et al. 2013). These services include carbon storage and sequestration, habitats for 
species, maintenance of biodiversity, regulation of climate and mitigation of climate change, 
filtering and maintenance of water resources, erosion control, and supplying for energy, food, 
and materials (Trumbore et al. 2015; reviewed by Lausch et al. 2016). Forest health is a 
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complex concept and challenging to define or evaluate. Despite the commonness of the term, 
forest health is often used without a clear definition. (Kolb et al. 1994). Further, human 
expectations are often inserted into the concept (Raffa et al. 2009). A healthy ecosystem is 
free from distress (Haskell et al. 1992). This distress can be characterized, e.g., by reduction 
in biodiversity, nutrition, and productivity, increase in fluctuation of key populations, and 
presence of retrogression and sever disease (Rapport 1992). Unfortunately, quantitative 
information for measuring these changes in indicators of forest health is lacking in most 
regions (Kolb et al. 1994). According to Trumbore et al. (2015), current measures of forest 
health vary from extreme practical aspects, based upon local human needs, to ecological 
characterizations associated with forest persistence within a landscape. Indicators of forest 
health range from pure utilitarian or economic (e.g., Adamowicz 2003) to ecological, 
preserving ecosystem resilience and stability (Kolb et al. 1994). The Food and Agriculture 
Organization (FAO) covers this variation with a definition of forest health and vitality. This 
definition combines presence of abiotic and biotic stressors and their impacts on tree growth 
and survival, yield and quality of forest products, wildlife habitats, as well as recreational, 
scenic, or cultural values (Trumbore et al. 2015).   

A fully utilitarian view on forest health comprises conditions where no biotic or abiotic 
damage agent hinder obtaining satisfying management goals at the present, or in the future 
(USDA Forest Service 1993; Kolb et al. 1994). However, the ecological perspective of forest 
health should include information on ecological processes, structure, diversity, and 
productivity (Kolb et. al. 1994). They introduced four ecological indicators facilitating 
evaluation of forest health for a range of forest ecosystems, from those at natural stages to 
artificial settlements. (1) The abiotic and biotic environment, including the trophic networks 
should support productive forests during, at least some, seral stages of the ecological 
succession. (2) A forest ecosystem should have resistance to catastrophic changes or have 
the ability to recover from these changes at a landscape-scale. (3) A functional equilibrium 
should exist between the supply and demand of fundamental resources and (4) a diversity of 
seral stages and stand structures should provide for various native species and essential 
ecosystem processes. Edmonds et al. (2000) identified eight conditions characterizing 
healthy forest ecosystems. These qualifications include conditions were (1) current or future 
management targets are not threatened by biotic or abiotic factors, (2) plant and animal 
community and its physical environment are fully functional, and (3) the forest ecosystem is 
in balance. Further, the ecosystem balance has (4) to sustain complexity whilst providing for 
humankind, (5) be resilient to change, and (6) to be able to recover from various stressors 
(natural and anthropogenic), and at the same time (7) maintain and sustain its functions and 
processes. Finally, a healthy forest ecosystem (8) does not show symptoms of distress, 
including reduced productivity, loss of nutrients, reduced biodiversity, or widespread 
prevalence of disease or tree-killing insects. 

The lack of a clear definition for forest health is hindering operational level decision-
making and forest management (Kolb et al. 1994). For a comprehensive description of forest 
health, both utilitarian and ecosystem indicators should be included and implemented across 
varying spatial scales (Lausch et al. 2016). With increasing spatial scale, from the individual 
tree level to forested landscapes, the definition of forest health becomes more ambiguous, as 
the system increases in complexity (Kolb et al. 1994); health status of a tree is usually much 
easier to assess than that of a forest stand or landscape (Trumbore et al. 2015). Although the 
definition of healthy forest is binary and corresponds to absence of disease or damage, 
intervals or ratio scales are needed to assess forest health in practice (Lausch et al. 2016). 
Such scales often include subjective components. Further, it is good to keep in mind that 
healthy forest environments rarely remain constant over time (Berryman 1986) or space.  
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1.2.2. Forest disturbance regime 
 

Forests face numerous natural and anthropogenic threats. Various forest disturbance factors 
include deforestation (Lewis et al. 2015), soil erosion (Pimentel 2006), land-use change 
(Foley et al. 2005), unsustainable management (Suorsa et al. 2003), air pollution (Kandler 
and Innes 1995), drought, water, fire, and wind (Millar and Stephenson 2015; Gauthier et al. 
2015), pests and pathogens (Gauthier et al. 2015; Wingfield et al. 2015), climate change 
(Allen et al. 2010), and invasive species (Pyšek and Richardson 2010). External drivers may 
also alter ecosystem dynamics to transform native species into emergent threats (Raffa et al. 
2009). Disturbance agents are divided into abiotic and biotic. In North America, insect pests, 
pathogens, and invasive plant species are regarded as primary biotic forest disturbance agents 
(Fike and Niering 1999; Logan et al. 2003). Examples of typical abiotic disturbance agents 
in forest ecosystems include fire, heavy winds, and drought. Often these abiotic and biotic 
disturbance agents act together intensifying the impacts on a forest, such as in case of a bark 
beetle infestation following a storm event; or trees suffering from defoliation can be highly 
susceptible to systemic pathogens (Dwyer et al. 2000). Forest disturbance regime includes 
the frequency, scale, and type of a disturbance (Asner 2013). These measures are considered, 
e.g., in the impact evaluation. 

Illustrating complexity of the concepts of forest health and disturbance, natural 
disturbances have a fundamental role in forest ecosystem functions, referring to processes of 
resident species interacting among each other and their physical environment (Raffa et al. 
2009; Asner 2013). Natural disturbances are essential to forest environments, as they induce 
forest succession, release plant growth, alter nutrient and water cycling, increase food 
resources, and affect plant and animal interactions (Vitousek and Denslow 1986; Dale et al. 
2001; Folke et al. 2004; Asner 2013). However, this only applies when all the key processes 
of the forest ecosystem operate within the normative limits of resiliency (Folke et al. 2004); 
healthy forests are regarded as relatively resilient to various stressors and disturbance agents. 
Forest ecosystems with high resilience can recover faster to the stage preceding the 
disturbance (i.e., reach equilibrium) than more susceptible ones (Berryman 1986; Lausch et 
al. 2016). Consequently, factors compromising inherent processes and resilience should be 
emphasized in evaluation of forest health (Raffa et al. 2009). However, understanding the 
limits of forest resilience requires knowledge on patterns, processes, interactions, and 
responses to the external drivers (Raffa et al. 2009). Forest stability and resiliency are 
complex and continuous processes. Resilience can be defined as ecosystem’s capacity to 
absorb disturbance and go through change at the same time as persisting and maintaining the 
important functions, structures, identity, and feedbacks (Holling 1973; Walker et al. 2004; 
Drever et al. 2006). This means that a resilient forest ecosystem should be able to reconfigure 
itself without a significant change after disturbances or other stressors (e.g., Carpenter et al. 
2001). The current understanding of ecosystem resilience is the strongest at smaller scales 
(Landis 2017). It is known that in general, more complex and diverse forest ecosystems are 
usually more stable. In diverse forests, other species may be able to compensate the decline 
of a particular tree species targeted by a forest pest (Hessburg et al. 2000; Boyd et al. 2013). 
However, in case of foundation (keystone) species, other tree species cannot serve as a 
replacement, and thus ecosystems and provided services can fundamentally change (Boyd et 
al. 2013). Further, biodiversity and the following functional redundancy are naturally lower 
in the boreal zone (Aitken et al. 2008). Disturbances targeting individual tree species may 
have a much higher impact in the North than elsewhere (Boyd et al. 2013). Further, relative 
stability of a forest ecosystem is mainly a long-term characteristic (Berryman 1986) and not 
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to be evaluated at any given time. Maintaining stability includes interactions between species 
and trophic levels, as well as negative and positive feedback loops (Berryman 1986). The 
reactions are often timely delayed. Even though forest ecosystems are assumed to respond to 
gradual changes, such as in climate, dramatic switches in the resilience may occur (Scheffer 
et al. 2001). Loss of resilience may be resulting from, e.g., forest management or gradual 
environmental changes in the ecosystem when in coincidence with weather extremes and/or 
pest outbreaks (Scheffer et al. 2001; Bréda and Badeau 2008). 

Whether the event in question exceeds the threshold of a disturbance and requires 
involvement is often matter of human expectations. For example, the term forest pest as such 
is anthropogenic and firmly tied to human anticipations. It has been defined as an organism 
that interferes with desired management objectives or have a negative impact on human 
survival or wellbeing (Berryman 1986; Raffa et al. 2009; Coulson and Saarenmaa 2011). A 
forest pest is acting as a parasite, transmits pathogens, competes with humans for resources, 
or is just an annoyance (Berryman 1986). Coulson and Saarenmaa (2011) defined forest 
management as ‘orchestrated modification or manipulation of landscape structure, function, 
or rate of change’. Various management strategies and intensities lead to specific types of 
forests, such as conservation areas, even-aged stands, mixed species or monocultures, 
Christmas tree plantations, urban forests, etc. Depending on management strategy and 
resulting forest type, impacts of disturbance, as well as the need for mitigation vary. For 
instance, if a bark beetle species induces high tree mortality in a commercial forest, the 
species is regarded as a pest; the species is usually not a pest when causing same level damage 
in a wilderness area (Raffa et al. 2009). Further, even minor damage within a small forest 
area with high value may exceed the threshold level of economic injury (Damos 2014), where 
as in conservation areas, disturbances are seen as normal processes of the forest environment. 
In general, the economic impact is often important in defining damage intensity. Greater 
losses are tolerated in low value forest environments than in more valuable ones, such as 
plantations or seed orchards (Berryman 1986). 

Timing and locations of forest disturbances are highly unpredictable due to high number 
of organisms and ecological processes that may disturb forest environments (Dukes et al. 
2009). When exceeding natural variation, the change in the structure and functions of a forest 
following a disturbance can be extreme (Ayres and Lombardero 2000). Major disturbances 
may affect sustainability and economic return even at a landscape level. Disturbances may 
interrupt ecological succession or even change the direction of succession, affect resources 
and the physical environment, and population structure (Attiwill 1994; Linke et al. 2007). At 
extreme, a disturbance agent is able to, e.g., eliminate a whole population of a tree species. 
A classic example is the ecological impact of the chestnut blight (Cryphonectria parasitica 
(Murrill) Barr.) infestations on the American chestnuts (Castanea dentata (Marsh.) Borkh.) 
in the early 1900s (Freinkel 2009). The chestnut blight drove the pristine host species almost 
to an extinction. In case of removal of the American chestnut, other tree species were 
observed to compensate for the loss (Elliot and Swank 2007).  The major loss seems to be of 
social and esthetical values of the iconic tree species (Boyd et al. 2013). 

 
 

1.3 Forest insects as disturbance agents  
 
1.3.1. Insects in forest environments 

 
Insects (Arthropoda: Insecta) comprise the most diverse and the largest group of fauna. Over 
two dozen separate orders of insects have spread and adapted into every ecological niche 
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(Berryman 1986). Myriad of insect species are also adapted to forest environments. However, 
only a small portion of them is considered as a problem (Berryman 1986). Insects, in general, 
are an important living component of any forest environment, playing many key roles, such 
as facilitating various ecosystem services (Millennium Ecosystem Assessment 2003; 
Schowalter 2013; Noriega et al. 2018). Although specific information on functional roles of 
most species is lacking (Hortal et al. 2015).  Insects induce change in forest conditions, 
especially to the state of the abiotic and biotic environment, and forest configuration (Coulson 
and Stephen 2008). They influence the abiotic environment significantly by accelerating 
decomposition and nutrient cycling and maintaining forest productivity (Coulson and 
Stephen 2008). On the biotic environment of a forest ecosystem, impacts of insect are 
multitude. For example, in case of herbivorous species, impacts include tree mortality of 
selected species, alteration of species composition, weakening trees and predisposing to 
abiotic natural disturbances, modifying the form and appearance of trees, reducing food 
supplies, reducing or enhancing regeneration, influencing succession, and fertilizing the 
forest floor (Berryman 1986, Coulson and Wunneburger 2000; Coulson and Stephen 2008). 
In case of forest configuration, i.e., spatial forming of size, shape, number, and arrangement 
with a landscape, impacts of insects include alteration of structural and age class diversity 
resulting in from, e.g., insects killing trees in the older age classes or forming disturbance 
patches within the forest matrix. Many insect species are also beneficial for humans. For 
example, various predators and parasitoids act as natural enemies for potential pest species 
suppressing their populations (Berryman 1986). This function is included into the selection 
of ecosystem services (Sing et al. 2015). Insects can reallocate nutrients to healthy trees. 
Insect are normally more successful in attacking weakened trees, such as trees under 
environmental stress. After tree mortality, more nutrients become available and recycled to 
the remaining trees (Berryman 1986). Although insects can improve certain sites in long 
term, these processes can be in conflict with human’s more short-term management goals 
(Berryman 1986). Insect are also important forest pollinators, ensuring cross-fertilization of 
flowering trees (Berryman 1986; Ollerton et al. 2011).    
 
1.3.2. Insect-induced forest damage 

 
Insect-induced disturbances during periodic oscillations or outbreaks occur naturally in forest 
environments and are involved in varying ecological processes. These disturbances are often 
included into natural processes that help maintaining health and heterogeneity of forests 
(Raffa et al. 2009). Insect-induced disturbances have also an important role, e.g., in long-
term forest dynamics. However, pest insect infestations can threaten forest ecosystem 
sustainability, normal succession functions, and provided services (Boyed et al. 2013). 
Although trees have various defense strategies against forest pests and natural enemies 
control pest populations, certain species can overcome the tree resistance (Berryman 1986). 
A good example of this are several bark beetle species that can reproduce rapidly, colonize a 
host via aggregation pheromones and tree volatiles, and mass attack even healthy trees (Raffa 
et al. 2008). Tree mortality also promote fuel, increasing probability of forest fire (Berryman 
1986: Hicke et al. 2012). However, from the ecological point of view, this is sometimes 
desired. For example, the mountain pine beetle (Dentroctonus ponderosae Hopkins) have a 
role in the fire ecology of lodgepole pine (Pinus contorta Douglas), important in maintaining 
current range of the pine species (Logan and Powell 2001). A few years after a mountain pine 
beetle outbreak, dead needles and trees serve as high combustible fuel for forest fire opening 
the serotinous pinecones. 
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 Whether the impacts of insects on forests are positive or negative, they can be classified 
into ecological, economic, social, or political impacts (Coulson and Stephen 2008). 
Ecological impacts include functional roles, i.e., insect activities affecting forest 
environments at various spatial scales. Economic impacts refer to the effects on the economic 
return from products and services. Social impacts are difficultly quantified aesthetic, moral, 
or metaphysical values associated with forests, such as related educational or recreational 
use. Effects of insects on the forests that result in actions, practices, and policies comprise 
the political impacts. Economic impacts are in most cases the triggering factors for 
classifying an insect species as a pest. Most of the forest insect pests can attain high 
population densities causing serious economic losses, even occasionally (Berryman 1986). 
Because population density is such a critical attribute of most forest pests, understanding 
underlying causes inducing changes in insect population densities is important in forest health 
management (Berryman 1986). At endemic levels, pest insect population levels are typically 
low and do not cause significant damage. For example, sparse bark beetle populations attack 
successfully only weak trees. The change from stable and low population levels to unstable 
and dense populations are typically triggered by environmental disturbances, such as 
droughts, storms, or other stressors (Berryman 1986; Anderegg et al. 2012; 2015). Human 
actions may also trigger insect pest infestations (Berryman 1986). However, low and sparse 
insect populations can be harmful as well. For example, in cases when the insect species is 
affecting extremely valuable resources, such as ornamental and shade trees, or plantations 
and seed orchards. Further, insects, even at low population densities, acting as a vector for 
other species or pathogens, or inject toxin to host species can be damaging (Berryman 1986). 
For example, the smaller European elm bark beetle (Scolytus multistriatus) transmits 
Ophiostoma novo-ulmi fungus causing destructive Dutch elm disease (Menkis et al. 2016), 
and longhorn beetles (Monochamus spp.) act as a vector for pinewood nematode 
(Bursaphelenchus xylophilus) causing pine wilt disease (Vicente et al. 2012). 

Outcomes and impacts of insect-induced damage are often difficult to predict (Dale et al 
2000). Impacts of insect driven disturbances can be seen on varying spatial scales, such as at 
a branch, tree, stand, forest, or landscape level. Effect of insects on forests are typically 
related to site and stand conditions (Coulson and Saarenmaa 2011). Forest landscapes are 
consisting of differing site conditions that vary over the life cycle, rotation time, and/or tree 
species (Coulson and Saarenmaa 2011). Insects can cause damage to forests and forest 
products in various ways. The impacts of insect infestation may vary from tree mortality to 
growth reduction, can reduced timber value, stem deformity, or reduce seed crops. In addition 
to direct damage to trees, many species carry and spread, e.g., fungal species, as bark beetles, 
inducing reduction in timber quality. Insect infestation may have effects on recreation, 
wildlife, esthetics, or wildfire hazards (Berryman 1986). The economic impact can be 
considerable high. For example, tree removal and replacement after infestations by the 
emerald ash borer (Agrilus planipennis Fairmaire) was estimated to cost $26 billion dollars 
in the Midwestern states of USA (Sydnor et al. 2011). In Europe, between 1950 and 2000, an 
estimated average annual timber loss by bark beetles was about 2.9 million m3 (Schelhaas et 
al. 2003). About half of the wood was damaged by the European spruce bark beetle (Ips 
typographus L.). Ecological impacts can also be extreme. Forest pest insects can 
fundamentally affect landscapes through altering, e.g., ecosystem composition, structure, and 
function (Hunter 2002; Coulson and Stephen 2008; Ford and Vose 2007; Ford et al. 2012). 
For example, elimination of hemlocks (foundation species) by the hemlock wooly adelgid 
(Adelges tsugae Annand, HWA) may result in an altered forest structure and ecosystem 
functions and services dominated by deciduous tree species (Stadler et al. 2006; Clark et al. 



21 
 

2012). Insect pests can also facilitate altering microclimatic conditions, including solar 
radiation (Classen et al. 2005).  

Foliage-feeding insects, i.e., defoliators are economically very important group of forest 
pests (Berryman 1986). Defoliators attack forest stands of all ages, depending on the species 
in questions. However, defoliator outbreaks can often be linked to old or overstocked stands, 
or forests growing on poor site types (Berryman 1986). It is further believed that stands 
suffering from physiological stress are susceptible to defoliator outbreaks (Berryman 1986). 
The immediate effect is defoliation that further causes loss in tree vigor and growth 
(Lyytikäinen-Saarenmaa and Tomppo 2002), and even widespread tree mortality (Berryman 
1986; Zhang et al. 2014). Substantial tree mortality typically occurs when the stand is 
exposed to other stressors, such as nutrient or water deficiency, intense competition, or high 
age (Berryman 1986). Even reduction in tree growth without significant mortality may cause 
substantial economic losses if wide areas are infested. Weakened trees by defoliators are also 
more susceptible to other damaging species and abiotic factors, such as heavy wind or 
drought. Additional tree mortality is often present when linked with the secondary stressors 
(Cooke et al. 2007). Survival of trees also depends on their distinctive properties or on the 
intensity and duration of defoliation. Typically, tree mortality occurs when the species is 
feeding for a few years in a row (Chen et al. 2017). However, some tree species may be killed 
after a single complete defoliation and others withstand defoliation for several years 
(Berryman 1986).  

 
1.3.3. Population dynamics of forest insect pests 

 
Forest insects can be divided into three groups based on their population dynamics: (1) 
relatively stable populations that do not have high fluctuations and remain close to 
equilibrium, (2) populations exhibiting violent cycles in abundance (cyclic pattern), and (3) 
populations that occasionally erupt and spread over large areas (eruptive pattern) (Berryman 
1986). Insect pest outbreaks can further be classified into seven outbreak patterns (see 
Berryman et al. 1987; Singh and Satyanaryana 2009). Most forest insect pests have either 
cyclic or eruptive population dynamics, such as autumnal moth (Epirrita autumnata 
Borkhausen; cyclic), or common pine sawfly (Diprion pini L.), and European spruce bark 
beetle (Ips typographus L.; eruptive). Cyclic forest pests are typically feeding on tree foliage. 
They often cause severe defoliation but not extensive mortality to host trees (Berryman 
1986). Local environmental conditions are critical in regulating magnitude of population 
cycles. Consequently, outbreaks of cyclic pests typically occur in the same areas and rarely 
spread into other areas (Berryman 1986). Cyclic changes in the population gradient often 
occur in intervals of eight to 12 years and are spatially synchronized over large areas 
(Berryman 1986; Myers 1998). Periodic intervals of infestations in every 8-12 years are 
observed for, e.g., larch budmoth (Zeiraphera diniana Guenée), western tent caterpillar 
(Malacosoma californicum pluviale Dyar), and gypsy moth (Lymantria dispar L.) 
(Baltensweiler 1989; Myers 1990; Johnson et al. 2005). An example of a longer periodic 
cycle is an interval of 30–35 years of the spruce budworm (Choristoneura fumiferana Clem.) 
(Williams and Liebhold 2000). The spatial synchrony regularly decreases with the distance 
(Peltonen et al. 2002; Tenow et al. 2007). These patterns of cyclic pests are most likely 
affected by the climate change (Jepsen et al. 2008). High-amplitude cycles are expected in 
forest environments that are favorable for reproduction and survival of the species and less 
favorable for the hosts or natural enemies (Berryman 1986). Eruptive species may stay at low 
population level, i.e., endemic phase for a long period and then start to increase in population 
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density exponentially (e.g., Boone et al. 2011). Eruptions can be caused by either a sudden 
event or more gradual changes in the environment. Outbreaks of eruptive pest insects are 
often initiated in local environments (epicenters) that are very favorable for the reproduction 
and survival of the species (Berryman 1986).  For example, endemic bark beetle populations 
may rapidly grow to epidemic outbreak levels when a heavy wind event provides plenty of 
fresh wind thrown trees for breeding material (Seidl and Rammer 2017). Triggering 
conditions for an outbreak may form as a combination of several factors (Boone et al. 2011), 
such as availability and quality of host species (Aukema et al. 2006; Hicke and Jenkins 2008), 
favorable weather conditions (Logan and Powell 2001; Powell and Bentz 2009), and 
avoidance of natural enemies (Turchin et al. 1999). The initiated outbreaks typically spread 
into less favorable neighboring forest stands or areas when emigrating insects exceed the 
outbreak levels of these stands. Several eruptive pests can also be associated with 
monocultures, i.e., conditions in which most trees within a stand or landscape are suitable 
hosts for the species (Mattson et al. 1991).  In addition to the European spruce bark beetle, 
species, such as the mountain pine beetle and southern pine beetle (Dendroctonus frontalis 
Zimm.) are included to highly destructive eruptive forest insect pests.  

Insect populations are naturally regulated by various density-dependent and -
independent factors. These natural controlling factors include availability of food resources, 
natural enemies, and intraspecific competition. There are three trophic levels involved in the 
population dynamics of forest insect pests involving herbivore interactions with host plants 
and natural enemies (Price et al. 1980). It is generally agreed that herbivore populations are 
influenced by bottom-up forces (e.g., host plant quality and abundance, plant defense) and 
by top-down trophic effects (e.g., diversity and abundance of predators and parasitoids) 
(Price et al. 1980; Hunter et al. 1997; Gurr et al. 2017). These forces are also referred as 
hypotheses of recourse concentrations and enemies, respectively (Root 1973). Typically, 
high pest insect population levels decrease, and the effect of natural controlling factors can 
be seen even during one generation. However, many of the regulating factors, including 
natural enemies are delayed. This natural regulation may be too slow or inefficient for the 
forest practitioner. From the human point of view, mitigation of insect-induced forest damage 
often aims to reduce the impacts on economic return, e.g., timber value. Habitat management 
operations can be targeted to emphasize these trophic interactions to control pest populations.  
Methods include actions supporting population of natural enemies or providing additional 
pray or hosts (Gurr et al. 2017). Habitats can also be manipulated altering abiotic conditions, 
i.e., microclimate to favor natural enemies (e.g., Landis et al. 2000). 
 
1.3.4. Forest protection and integrated pest management 

 
Coulson and Saarenmaa (2011) defined a three-level hierarchical structure of management 
of forest environments. Forest protection is the foundation of the management hierarchy and 
is applied as a part of forest management. Further, forest management is a component of 
environmental management. Forest protection aims to mitigate impacts of agents causing 
undesirable changes in conditions or resources of a forest environment (Coulson and Stephen 
2008; Coulson and Saarenmaa 2011). Main elements of forest protection include impact 
assessment, mitigation and prevention, forest health monitoring and management planning, 
problem solving, and decision-making (Coulson and Stephen 2008). Insect-induced 
disturbances can never be fully eliminated. An important role of sustainable forest 
management is to limit damage to acceptable levels.  
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Integrated pest management (IPM) is a component of forest protection that aims to reduce 
or maintain destructive agents, such as insect pests, at tolerable levels (Coulson and 
Saarenmaa 2011). The IPM concept includes various preventative, suppressive, and 
regulating means that are ecologically and economically efficient, as well as socially and 
politically acceptable (Coulson and Saarenmaa 2011). These actions should be fully 
integrated into comprehensive forest management and planning (Coulson 2003). Different 
tactics and strategies of IPM can be applied in various combinations according to the situation 
in hand. Effect of IPM should always be considered in the context of desired management 
goals (Coulson and Saarenmaa 2011). Effects on the surrounding environment have to be 
taken into account as well, i.e., the highest hierarchy level of environmental management 
(Coulson and Saarenmaa 2011). IPM consist of 11 different interrelated activities (Coulson 
et al. 2003). These activities include assessment of effects of climate on the forest 
environment, pest population dynamics, tree and forest dynamics, and impacts. Rest of the 
activities are evaluation of control alternatives, monitoring, database management, diagnosis, 
environmental assessment, management planning, and decision and execution. These steps 
should include methods for simulation and modeling, field surveys, remote sensing, and 
building up databases. 

The focus of insect pest management should on preventive measures, since eradication is 
very difficult (Wingfield et al. 2015). Due to effective reproduction and high mobility, insect 
pests have very low extinction thresholds, and thus are unlikely to be driven to extinction by 
human actions (Berryman 1986). More realistic goal for forest practitioners is to specify the 
environmental conditions allowing populations to grow to very high densities, i.e., outbreak 
behavior from those maintaining endemic behavior (Berryman 1986). Concepts of economic 
injury level (EIL) and economic threshold (ET) are commonly used in the decision-making 
(Pedigo and Higley 1996). According to Peterson and Hunt (2003), concept of IPM is based 
upon the assumption that certain levels of pests are tolerable. Accordingly, the economic 
injury level (EIL) is a fundamental part of IPM. The EIL provides information on tolerable 
forest pest densities and intensity of damage (Peterson and Hunt 2003). Development of EIL 
facilitated development of modern IPM (Peterson and Higley 2002). The ET equals the level 
of pest population density at which management action should be taken to inhibit the pest 
population from reaching the EIL. Decision-making in IPM, however, is usually done under 
high uncertainty (Peterson and Hunt 2003). 

Characteristics of a favorable environment for an insect pest population, include but is 
not limited to having high quality food resources (host abundance and quality), shelter and 
breeding sites, a low risk of mortality by natural enemies and low number of competitors, as 
well as a high probability of finding a mate (Berryman 1986). Characteristics of the physical 
environment are also affecting insect performance. Prevailing temperature and precipitation 
are related to other characteristics, such as latitude and topography. For example, south facing 
(i.e., sun facing) slopes are warmer and drier. In a simplified manner, birth and immigration 
rates usually exceeds those of death and emigration in favorable environments, inducing 
population growth (Berryman 1986).  

Means of protection and mitigation of insect-induced damage should be chosen based 
on pest species, severity, and the forest and surrounding landscape in question. An outbreak 
is often a causality resulting in from other biotic factors, abiotic conditions, human actions, 
and their interactions. The human activities affecting insect populations include poor forest 
hygiene, storing harvested wood in wrong manner, or poor network of forest roads. Insect-
induced disturbances typically occur at or close to the time when forest stands reach 
maximum biomass density or the greatest volume (Berryman 1986). At the maximum 
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biomass phase, water, nutrient, and light resources are limited weakening the trees; forest 
owner should harvest or thin the trees in the end of maximum growth period, before the trees 
become susceptible to insect attack (Berryman 1986).  

Managers can manipulate forest stands creating conditions where insect populations are 
relatively stable and densities are low (Berryman 1986). Insect pest populations can be 
controlled at low densities by interactions with their food resources, i.e., trees or by natural 
enemies, i.e., biological control (Berryman 1986; Duan et al. 2015). Biological control has 
been efficient in case of several introduced pests, such as in mitigation of emerald ash borer 
populations (Duan et al. 2015; Wingfield et al. 2015). Forest manipulation operations to 
control insect pest outbreaks may include thinnings and loggings, alterations in tree species, 
tree species composition, or age distribution, practicing forest hygiene, applying fertilizers, 
burning, grazing, pheromone trapping, or genetic manipulation, etc. In order to accomplish 
regulation successfully, forest manager has to understand the basic patterns of pest population 
dynamics and the feedback processes (Hunter and Price 1992; Berryman 1986). Further, if 
the type of exhibited outbreak pattern is identified, causal environmental variables can be 
managed in order to attempt to maintain insect population under outbreak levels (Berryman 
1986). If a pest insect population reach outbreak densities and forest is under risk of severe 
damage, forest manager has three options; do nothing, try to limit spreading and/or try to 
reduce the population. 

Forest insect pests have many advantages making controlling efforts difficult. These 
include (1) ability to flight, which enables insects to colonize widely dispersed resources, 
escape enemies, and find mates in sparse populations; (2) high fecundity and fast 
development enable them to rapidly exploit available resources and maintain high genetic 
diversity; and (3) genetic plasticity that enables rapid adaptation to environmental changes, 
including anthropogenic changes (Berryman 1986). Although insect advantages exceed 
weaknesses making them so successful organisms, insects have some disadvantages that can 
be taken into account in monitoring and controlling efforts. For example, insects’ stereotype 
behavior force them to respond automatically to various stimuli, including pheromones, light, 
and host odors (Berryman 1986). Further, insect development is temperature/moisture 
dependent and environmental manipulation can make them vulnerable. Some stages of 
metamorphosis and transition between the stages, such as flightless immature stages or newly 
emerged adults are regarded more vulnerable. The more vulnerable stages, however, are 
seldom taken into account in forest health management planning.  

 
 

1.4. Amplified threats of insect pests on forest ecosystems 
 
1.4.1 Climate change in relation to insect pests 
 
Changes in climatic conditions during the next century will substantially affect conditions, 
compositions, distributions, and productivity of various ecosystems (Easterling et al. 2000). 
Elevated temperature is the dominant feature of the climate change (Chung et al. 2013). The 
global mean annual temperature has increased by 0.85°C from 1880 to 2012, and it is 
anticipated to increase between 1.8°C and 4.0°C by the end of the 21st century (IPCC 2014). 
Globally, the number of colder days has decreased and that of warmer days increased. 
Further, the frequency of heat waves has increased in Europe, Asia, and Australia. Climate 
change also induce reallocation of water resources (Seager et al. 2007). Precipitation is 
anticipated to increase substantially in the North and South. Simultaneously, e.g., subtropical 
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areas are turning into more arid (IPCC 2014). There also is an increasing number of regions 
with an elevated probability of heavy precipitation events, compared to those with decreased 
risk (IPCC 2014). Changes in precipitation patterns may also lead to earlier and longer dry 
seasons, as well as more frequent and longer droughts (Seager et al. 2007). Increased 
frequency and intensity of extreme weather events are associated with the changing climate. 
Ecosystems can be highly vulnerable to these events, including storms, heat waves, droughts, 
floods, cyclones, and wildfires (Bale et al. 2002; IPCC 2014). Gutschick and BassiriRad 
(2003) described extreme events as episodes, during which (1) the acclimatory capacities of 
an organism or population are significantly exceeded and (2) lead to death or prolonged 
recovery phase that impact both physiological and developmental responses. Although 
having a high impact on forest ecosystems, these events are stochastically unpredictable 
(Bréda and Badeau 2008). Unfortunately, it is uncertain, how, when, and where these events 
occur (Jentsch et al. 2005).  

Impacts of climate change are most pronounced on natural systems (IPCC 2014). Climate 
change is regarded as one of the major environmental concerns threatening forest health 
(Lindner et al. 2010; Netherer and Schopf 2010; Ramsfield et al. 2016). Effects of the climate 
change on forests are moderated between prevailing climate, disturbances, and the forest 
environment itself (Dale et al. 2001). Ecological indicators of climate change in regards of 
forest environments include increased forest fires and infestations of pests and 
pathogens, moved treeline, and alteration of age, structure, and species composition 
(reviewed by Soja et al. 2007). The increased frequency of heavy winds, fires, and insect 
infestations in European forests has already resulted in signs of saturation of the carbon sink 
(Nabuurs et al. 2012). Further, the impacts include changes in forest conditions and 
ecological balance (Tkacz et al. 2008), ecological processes and biodiversity (Dale et al. 
2000; Mantyka-Pringle et al. 2011), loss of ecosystem services (Schröter et al. 2005; Lee at 
al. 2015), and alteration in forest productivity and carbon balance (Dale et al. 2000; Houghton 
2005).  

It is projected that warmer climate will increase the impacts of insect-induced forest 
disturbances (e.g., Seidl et al. 2014, 2017). Climatic conditions are regarded as the main 
factors determining geographical distributions and affecting performance of insect pests 
(Berggren et al. 2009; Björkman et al. 2011; Jamieson et al. 2012). Insect species are directly 
connected with temperature and other abiotic factors. These factors can trigger outbreaks or 
biological invasions (i.e., expansion of a species geographical range to new areas) (Logan et 
al. 2000; Nativi et al. 2004; Parmesan et al. 2006). Insects are very sensitive to the prevailing 
temperature and respond rapidly to the changes in the temperature (Sharpe and DeMichele 
1977; Lemoine et al 2014). Accordingly, temperature is considered as the most important 
abiotic factor that influences insect behavior, development, survival, and reproduction (Bale 
et al. 2002; Karban and Strauss 2004). Success of insect populations have also been 
directly linked to seasonal temperatures (Berryman 1986; Danks 2002; Glazaczow et al. 
2016). Seasonal temperatures control, e.g., rates of life stage development (Preisler et 
al. 2012) or insect mortality. Warmer climate increases insect metabolism in the growing 
season and decreases the risk of winter mortality (Bale et al. 2002; Ayres Lombardero 2000). 
However, species fitness may decline if the temperatures are beyond its optimum level 
(Lemoine and Burkepile 2012). Rapid genetic adaptation of insects to seasonal changes 
in temperature has already been documented (Balanyá et al. 2006; Bradshaw and 
Holzapfel 2006), and numerous range expansions have occurred as species move into 
new niches created by the elevating temperature (Battisti et al. 2006; Nealis and Peter 
2009). The effects of climate change are more pronounced in the North. The increase in 

https://www.nature.com/articles/srep38022?WT.feed_name=subjects_phenology#auth-1
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temperatures in northern latitudes and high elevations, such as in boreal zone, is expected to 
exceed that of the global mean (Soja et al. 2007; IPCC 2014). Further, more frequent extreme 
weather events are expected in these regions. Forest ecosystems may be even more vulnerable 
to weather extremes while simultaneously adapting to more gentle changes by climate or 
forest management (Bréda and Badeau 2008). Extreme weather events cause severe forest 
damage, including selection against more susceptible species (Bréda and Badeau 2008). 

The ongoing climate change affects forest insects and the related disturbance patterns in 
the forest ecosystems (Moore and Allard 2008; Klapwijk et al. 2013). Insect pests are flexible 
and rapidly adapting their survival, development, reproduction, dispersal, and geographic 
distribution as a response to the climate change (Régniére 2009; Lindner et al. 2010). Climate 
change is likely to influence the temporal and spatial dynamics, as well as intensity, 
frequency, and ranges of insect pest outbreaks (Logan et al. 2003; Vanhanen 2007; Battisti 
2008; Jepsen et al. 2008; Netherer and Schopf 2012; Hicke et al. 2012; Chung et al. 2013; 
Tobin et al. 2014). Various insect species have already responded to the climate change by 
shifting their geographic ranges and altered seasonal activities, migration patterns, 
abundances, and/or species interactions (Parmesan 2006; IPCC 2014). An increasing number 
of insect species is expanding geographic ranges pole-wards or upwards (Logan et al. 2003; 
Battisti et al. 2006; Vanhanen et al. 2007; Hlásny et al. 2011) or turning into a serious pest 
species within the current distributions (De Somviele et al. 2007). In many cases, host tree 
availability is not a limiting factor defining insect pest distributions (Benz et al. 2010). Major 
northward and upward range shift can be anticipated for several insect pests, such as bark 
beetles (Benz et al. 2010), moths (Forsman et al. 2016), and diprionid sawflies (Virtanen et 
al. 1996). There are already indications that the climate change has induced or intensified 
severe insect pest outbreaks (e.g., Tenow et al. 1999; Battisti et al. 2005, 2006; Benz et al. 
2010). Insect-induced forest disturbances are often related to warm and dry conditions 
(Berryman 1986); periods of draught or warm and dry springs and summers are significant 
factors increasing insect population levels and facilitating outbreak densities. In comparison, 
cool and moist summers and cold winters can mitigate populations considerably. Milder 
winters may also promote success of insect pests (Neuvonen and Viiri 2017). Increased 
minimum winter temperatures are associated with reduced bark beetle mortality (Benz et al. 
2010). Insect pests may complete their life cycle faster than earlier. In northern parts of the 
ranges, pest populations are may be able to produce one generation per year compared to the 
earlier two-year cycle (Berg et al. 2006). Alternatively, they may be able to produce two or 
more generations per year in other regions. This can lead to shifting the balance between the 
insect and tree defense in favor of the insect (Berg et al. 2006). For example, the European 
spruce bark beetle have managed to produce two generations in some years during the past 
decade, in southeastern Finland (Lyytikäinen-Saarenmaa, personal observations). Only a 
little is yet understood about the potential consequences of climate change and elevated 
temperatures on the interactions between the trophic levels (Jamieson et al. 2015). 

In addition to insect pests, climate change is affecting host trees and the insect-host 
interactions. The effects are often species-specific. Changes in temperature, precipitation, 
and atmospheric greenhouse gas concentrations are anticipated to affect host trees 
(McNulty and Aber 2001). For instance, elevated temperatures can affect tree species 
establishment and survival (reviewed by Chung et al. 2013). Increasing temperatures have an 
impact on all biological processes in forest ecosystems, such as tree growth and biomass 
allocation, photosynthesis, phenology, and nitrogen cycling (reviewed by Chung et al. 2013). 
Studies addressing impacts of climate change on host species phytochemistry and defense 
responses are scarce. Zvereva and Kozlov (2006) suggest that the elevated temperatures 
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influence different groups of chemical defenses of host species either increasing or 
decreasing, and thus affecting insect-host interactions. Host plant quality influences insect 
pest performance, as well as attractiveness of the host plant (Coviella and Trumble 1999). 
Herbivorous insect pests are dependent on the concentrations of essential nutrients (such as 
carbon and nitrogen) and affected by defensive secondary compounds (such as phenolics and 
terpenes) in the plant tissue they are feeding on (Zvereva and Kozlov 2006). For example, 
herbivorous insects tend to benefit from higher nitrogen contents in foliage. Increased 
temperature may lead into increased carbohydrate contents in the host plant diluting nitrogen 
concentration (Zvereva and Kozlov 2006). Elevated CO2 consecrations in the atmosphere 
also affect plant quality, e.g., lowering nitrogen concentrations and increasing allocation of 
phenolic defensive compounds (Coviella and Trumble 1999; Hunter 2001; Cornelissen 
2011). Herbivorous insect pests respond to lower quality food resource by increasing 
consumption but may suffer from reduced fitness (Williams et al. 1994; Coviella and 
Trumble 1999; Hunter 2001). Climate change induced weather extremes, such as drought, 
may also influence tree defense (Raffa et al. 2008; Benz et al. 2010).  

Individual tree species must either persist and adapt to rapidly changing environment, 
shift range, or go locally extinct (Aitken et al. 2008; Benz et al. 2010). McKenney et al. 
(2007) predicted an average northward range shift of 700 km with 12% decrease in 
distribution area, with full dispersal ability for 130 North American tree species by the end 
of this century. With no dispersal abilities, the mean shift was 330 km with 58% decrease in 
the distribution area. Simultaneously with direct effects of climate change on tree physiology 
and growth, indirect effects from the interactions between herbivores and their host trees may 
have high impacts on forestry (e.g., Logan et al. 2003). Ability of different tree species to 
adapt to expected climate change is still very much unclear (Hamann and Wang 2006; Bolte 
et al 2007) and severe infestations may inhibit the adaptation (Hastings et al. 2017). For 
example, in case of eastern hemlock (Tsuga canadensis L. Carriere) and Carolina hemlock 
(Tsuga caroliniana Engelmann), poor seed spreading, slow growth, and environmental 
preferences are hindering adaptation to climate change together with HWA infestations 
(Hastings et al. 2017). Furthermore, the low rate of adaptation of tree species to changes, 
compared to insects, increases forest ecosystems’ vulnerability to insect pest outbreaks 
(García-López and Allué-Camacho 2010). 

 
1.4.2. Invasive insect pests 

 
Oceans and other natural barriers used to define distributions of Earth’s biota (Liebhold et al. 
1995). However, during the last century, mainly because of international travel and trade, 
species have been able to bypass these barriers and invade new geographical regions at an 
accelerated rate by globalization (Liebhold et al. 1995). These species include a multitude of 
insects and other arthropods, plants, and pathogens introduced to novel areas by accident or 
intentionally. Introduction of most of the plant and vertebrate species have been intentional, 
while most invertebrates and microbes have been introduced accidentally (Pimentel et al. 
2005). The risk associated with biotic invasions have rapidly increased recently due to fast 
human population growth and movement, and rate of environmental change (Pimentel et al. 
2005). For example, more than 2000 non-native insect species have established in North 
American forests or agricultural settings (Sailer 1983: Niemelä and Mattson 1996; Pimentel 
et al. 2005). Most of these species have maintained largely unnoticed, however, many of the 
species have turned into serious pests (Liebhold et al. 1995). According to a US Congress 
report (OTA 1993), 79 invasive species resulted in $97 billion in damage during 20th century. 
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Close to a half of the threatened or endangered species in the USA are considered to be at 
risk largely due to competition with, or predation by non-native species (Wilcove et al. 1998).  

Biological invasions cause extensive disturbance to forest ecosystems and have high 
socioeconomic impacts (Liebhold et al. 1995). These invasions are often facilitated by very 
favorable new environments due to low host plant resistance, lack of competition, and/or 
absent or low number of natural enemies. These kinds of conditions may even trigger 
permanent outbreaks (Berryman 1986). Similar climatic conditions between native range and 
pristine environments are considered as a basic requirement for a successful invasion 
(Thuiller et al. 2005). A successful invasion process consists of three different phases: arrival, 
establishment, and spreading (Liebhold and Tobin 2008). Arrival occurs at the time of the 
initial transportation of a species to a novel area. Establishment comprises the process, during 
which the population grows enough to avoid extinction. During the spreading phase, the 
species expands infestation into adjoining uninfested areas. This range expansion may often 
last until the species have invaded its completely new ecological niche or the range of host 
species (Ramsfield et al. 2016). In the beginning, after the introduction to a novel 
environment, population dynamics of invasive species is often similar to eruptive because 
they tend to spread fast from the point of origin (Berryman 1986). However, over time, the 
species may subside and settle into a relatively stable pattern or exhibit one of the different 
outbreak patterns (Berryman 1986).  

Invasive forest insects can have similar negative impacts to forest ecosystems that native 
insect pests. Invasive insects been observed to influence, e.g., evapotranspiration (Clark et 
al. 2012) and carbon dynamics (Clark et al. 2010). Climate change will further intensify the 
negative impacts of invasive insects (Zavala et al. 2008; Dukes et al. 2009). Liebhold et al. 
(1995) rated biological invasions as the most significant environmental threat to natural forest 
ecosystems. They called for more efforts to control and mitigate the high impacts of these 
invasions (Liebhold et al. 1995). Management of invasive insect pests targets on preventing 
either arrival, establishment, or spread (Liebhold et al. 1995). Typically, in case of invasive 
species, there is a need to predict the future spreading patterns (Liebhold and Tobin 2008). 
These projections can be used to estimate anticipated impacts and timeline for targeting 
mitigation (Liebhold and Tobin 2008).  

Especially forests of North America have been suffering from major invasions of non-
native invasive insect species. For example, in the USA, hundreds of non-native invasive 
forest insects, diseases, plants, and other organisms have already been established. 
Widespread tree mortality is occurring, e.g., by Asian longhorn beetle (Anoplophora 
glaripennis Motschulsky), emerald ash borer, gypsy moth, and hemlock woolly adelgid 
(Adelges tsugae Annand; HWA), just to name few. Although the total number of invasive 
species in Europe is lower, some highly destructive forest pests have established at the 
continent, including pinewood nematode and the Asian longhorn beetle. 
 
1.4.3. Increased demand of forest health monitoring  
 
Health of forest ecosystems is under a higher risk than ever before (Boyd et al. 2013; Santini 
et al. 2013; Roy et al. 2014; Wingfield et al. 2015). Climate change induced changes in 
performance of native insects and alien invasive species have relatively recently amplified 
impacts of biological outbreaks. Coupled with the amplified abiotic disturbance patterns, 
effects of climate change are posing a major threat on sustainable forests ecosystems (Dix et 
al. 2010; Wingfield et al. 2015). Joint impacts of climate change and insect pest outbreaks 
have induced increased tree mortality and wide-scale forest dieback during last few decades 



29 
 

(Raffa et al. 2008; McDowell et al. 2011; Jamieson et al. 2012; Ryan and Vose 2012; Weed 
et al. 2013). Various forest ecosystems suffer from increased intensity, frequency, and spatial 
scale of insect-induced disturbances and the recent disturbance activity well exceeds the 
levels of the 20th century (Millar and Stephenson 2015). The impacts are anticipated to 
intensify further in the future. Consequently, monitoring and mitigating the negative impacts 
of forest insect pests have become major topics (Pimentel et al. 2005; Dukes et al. 2009). 
Amplified insect-induced disturbances have raised concerns regarding the impacts on, e.g., 
biodiversity (Beudert et al. 2015; Müller et al. 2008), biogeochemical processes, such as 
carbon cycle (Kurz et al. 2008; Edburg et al. 2012; Seidl et al. 2014), and economic return 
(Dale et al. 2001).  

In addition to monitoring climate change induce changes in the patterns of insect-
induced disturbances; invasive species have increased the monitoring load. Already 
established and spreading species needs monitoring, as well as insect pests that have a high 
potential of establishment. Monitoring efforts are typically focused on international ports of 
transportation, such as harbors or truck and train stations close to border crossing areas. In 
addition to the species that have been transferred overseas, transportation of invasive species 
may occur within the geographic boundaries of a country. Invasive pests are often moved 
within a country with firewood and lumber, on vehicles, or on nursery stock. 

Climate change scenarios, biological invasions, and associated range shifts are causing 
great uncertainty in the impact evaluation, risk assessment and forest management planning 
(Dukes et al. 2009; Liang et al. 2014). Because of the importance of forest ecosystems and 
the increasing risks, implementation of sustainable forest management is crucial (Lausch et 
al. 2016). Despite the importance, there are no consistent data sets on insect-induced 
disturbances through time and space (Kautz et al. 2016). This lack of data significantly 
hinders development of methods for accurate predictions, as well as sufficient management 
strategies (Kautz et al. 2016; Seidl et al. 2011). Because of the high impacts and high 
uncertainties, detailed information on forest disturbance is essential for a variety of 
applications, ranging from ecological modeling to global carbon budgets (Hilker et al. 2009). 
Remote sensing has been seen as a highly needed source of information for detecting and 
evaluating the disturbances (e.g., Potter et al. 2003; Linke et al. 2009).  

Traditionally the focus on monitoring insect disturbances has been on field inventory 
and human observations. These methods are relatively expensive and time consuming. Very 
often, a field campaign can cover only a minor proportion of the infested area. This may lead 
to biased results and either under- or overestimation of the impacts. Furthermore, traditional 
methods can be impractical. For example, major outbreaks of forest insect pests may occur 
in areas with complex topography, sparse road networks, or human settlements inhibiting 
collection of adequate field data. Field inventories are also typically restricted to certain time 
or number of species (Homolová et al. 2013). 

Modern information to support efficient forest management is complex, extensive, and 
constantly increasing (White et al. 2016). To support sustainable forest management, forest 
information has to be up-to date and available across a range of spatial and temporal scales 
(Turner at al. 2003; Wulder et al. 2008). Furthermore, accurate information is important for 
decision-making (Kangas and Maltamo 2006). The need for accurate and detailed 
information poses challenges for forest inventory (White et al. 2016). Further, reducing 
financial resources hold pressure on efficient forest monitoring (White et al. 2016). However, 
these needs and the subsequent pressure for method development provide an opportunity for 
new information sources (Alam et al. 2014). Inaccurate or biased estimates on the disturbance 
in question may result in inefficient of even bad decisions regarding forest health 
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management operations (Talvitie et al. 2011). While enhanced forest information is required, 
this can also support development of improved applications for forest health monitoring and 
management (White et al. 2016). There is a high demand of accurate, efficient, and cost-
effective methods for forest health monitoring. In an optimal situation, these methods should 
be included into comprehensive wall-to-wall forest monitoring systems. These systems 
should include improved methods of, e.g., accurate and timely disturbance detection, 
monitoring of infestations, and impact evaluation. Ideally, these systems would be able to 
identify damage agent, evaluate damage intensity, and provide information on disturbance 
trends and future projections.  
 
 
2. EVALUATING INSECT-INDUCED DISTURBANCES 
 
 
2.1. Forest health monitoring – an overlook 
 
Methods for forest inventory are designed to assess the extent, quantity, composition, and 
condition of forest resources (Kangas et al. 2006). However, traditionally the focus has been 
often on the quantitative forest information, such as stand volume or growth. Most of the 
existing inventorying and monitoring schemes have not been developed to meet the needs of 
forest health monitoring. Forests inventories are carried for various purposes at varying 
scales. Reasons for gathering forest resource information include strategic, tactical, and 
operational forest planning and management (White et al. 2016). Typical small-scale forest 
inventories include, e.g., an area of a private forest property. National forest inventories 
(NFIs) are an example of wide-scale inventories. NFIs are carried to acquire nation-wide 
information on forest resources and to facilitate national strategic planning and development 
of policies (White et al. 2016). Acquired data may include information on forest cover, 
growing stock volume, biomass, carbon balance, and wood procurement (White et al. 2016). 
NFIs are not designed based on needs of forest health monitoring either. However, many 
NFIs collect some information related to forest health and disturbances, such as the Natural 
Resources Institute Finland (LUKE) carrying out the Finnish NFI. Information on forest 
health is collected as auxiliary information, and the health status is monitored at a coarse 
scale (Tomppo et al. 2006). However, the demand of precise information on forest health 
management cannot be obtained by the current forest health monitoring practices (Talvitie et 
al. 2011). Typical challenges of forest inventory tasks, despite the approach, are accuracy, 
consistency for subjective assessments, and high costs (Thompson et al. 2007; White et al. 
2016). 

Monitoring of insect-induced disturbances is an essential part of forest health 
management. Monitoring can be utilized in detecting initial symptoms of insect outbreaks, 
or evaluating intensity and spatial scale of damage, as well as changes of insect outbreaks. 
This information is also used to update forest inventories and databases (Sprintsin et al. 
2011). Further, forest health monitoring can provide information for projecting future risks 
or trends in disturbance regimes. Information from the disturbance monitoring can also be 
utilized in other tasks, such as evaluating global carbon cycles or increasing understanding 
of spatial and temporal trends in forest management (Healey et al. 2005). Monitoring can be 
targeted on tree symptoms, insect population densities, or even indirectly, natural enemies of 
the insect pest in question. Spatial scale of monitoring vary form surveying an infestation in 
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detail to landscape level or large area monitoring. Monitoring can be conducted in the field, 
including utilizing pheromone traps, employing remote sensing, or with varying 
combinations linked to the IPM. Road surveys and even fire towers have occasionally been 
used in insect damage monitoring (Berryman 1986). Used means of monitoring should be 
chosen based upon the needs. Field surveys (i.e., terrestrial forest monitoring) can be high in 
detail but time consuming and costly. Typically, only relatively small areas can be covered. 
Fieldwork is usually applied on small scales from tree- to stand-level, whereas remote sensing 
provides wall-to-wall information on multiple temporal and spatial scales (e.g., Jetz et al. 
2016; Lausch et al. 2017). Developing remote sensing technology is covering part of the 
needs for forest information traditionally collected in the field. Although fieldwork cannot 
be fully replaced with remote sensing in the near future, it is most likely that the need of 
costly filed assessments is reduced further. Most likely field assessments are needed also in 
the future to, e.g., confirm the damaging agent for decision-making. 

Typical indicators of health status of a tree or a forest stand are symptoms on tree crown 
or canopy, and tree trunks. Symptoms in canopy may include defoliation, foliage chlorosis 
and other discoloration, loss of buds, and dead branches. Trunk symptoms comprise 
emergency holes, sawdust, sap, and missing bark. Most of the indicators of damage are 
qualitative and include visible assessment of an infestation. Some quantitative metrics for 
assessment of canopy damage or deterioration exist, such as leaf area index (LAI), crown 
closure, numbers and volume of standing, dead, or fallen trees (Lausch et al. 2016). Changes 
in forest canopy, including tree mortality, are in many cases more visible from above than on 
the ground. With means of remote sensing, data for broad, remote, and even inaccessible 
forest areas can often be produced more rapidly at significantly decreased costs, compared to 
terrestrial inventories (Ciesla 2000; Hall et al. 2007; Morgan et al. 2010). At wider scales of 
regional or greater, remote sensing is the only reasonable means for regular monitoring of 
the changes in forest environments (Healey et al. 2005).    

Means of remote sensing have proven to be effective in disturbance monitoring and 
impact assessment in forest environments (e.g., Hall et al. 2007; Lausch et al. 2013). Efficient 
pest management is typically dependent on timely detection of an infestation. Often, visual 
detection of outbreaks is not easy or straightforward (Rullan-Silva et al. 2013). The situation 
is pronounced with wide and inaccessible forests (Rullan-Silva et al. 2013). Remote sensing 
has been employed in disturbance monitoring for two main reasons: (1) remote sensing 
sensors have spectral abilities for symptom distinction with a wide spectral range beyond 
human eyes and (2) aerial or satellite perspective permits assessment of large areas different 
spatial and temporal scales (Rullan-Silva et al. 2013). The recent developments of remote 
sensing methodologies in forest inventories should be adapted into forest health monitoring 
systems. Remote sensing can be effective for varying spatial scales, depending on the sensor 
and platform. However, e.g., in case of aerial or satellite imagery, only symptoms in the 
canopy can be detected. In some cases, one-time monitoring produces the required 
information. However, often continuous monitoring that can be applied with various 
temporal scales is needed. Monitoring can be done for a continuous area or applying one of 
the many sampling methods and plot designs. The procedure can be done individually or as 
a part of comprehensive forest inventory or monitoring tasks. Choosing methods and 
platforms for forest health monitoring comes typically with tradeoffs, e.g., between 
resolution and spatial scale, or consumed efforts and precision.  
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2.2. Monitoring of insect-induced disturbances with means of remote sensing 
 
2.2.1. Overview on remote sensing  
 
Remote sensing is acquisition of information from a distance (e.g., Lillesand et al. 2015). 
Remote sensing refers to the detection of reflected and emitted electromagnetic energy. 
However, the concept of remote sensing usually comprises all the steps from sensing to 
processing and applying the information. Different objects have different spectral signatures 
based upon how they reflect and emit electromagnetic radiation (Hunt 1977). These spectral 
signatures enable detection, identifying, and classifying forest damage by various damage 
agents, including insect pests (Ciesla et al. 2008). The electromagnetic spectrum can be 
divided into wavelength ranges, from shorter gamma and x-rays to longer microwaves and 
broadcasting radio waves, of which several can be utilized in remote sensing of forest health, 
such as ranges of visible light (~0.4µm – ~0.7 µm) and reflected infrared (~0.7 µm – 3.0 µm). 
Suitable ranges are chosen based upon knowledge on the spectral signatures or traits. For 
example, chlorophyll, present in green vegetation is known to highly absorb the blue and red 
regions, and reflect green wavelengths (Govender et al. 2007). Under various stressors, 
normal growth and chlorophyll production is hindered and less adsorption in the red and blue 
regions occur. This also applies when the amount of green biomass is decreasing, such as in 
case of defoliation. Near infrared (NIR) region has proven to be very useful in projections of 
forest disturbance (Senf et al. 2017b).  Radiation in the NIR region is scattered by the plants 
leaf structure (Myneni et al. 1995). Shortwave infrared (SWIR) may be very useful in 
detecting early stages of a bark beetle infestation (Foster et al. 2017). 

Typically, various indices are used in remote sensing of insect disturbances. Vegetation 
indices, i.e., a variety of mathematical combinations or transformations of the available 
spectral bands have been created to highlight spectral properties of green vegetation in order 
to improve the distinction from other objects. Typical implications of vegetation indices are 
indications of greenness, relative density of vegetation, or the vegetation health status. The 
Normalized Difference Vegetation Index (NDVI) (Rouse et al. 1973; Tucker 1979) is 
probably the most utilized vegetation index in mapping and monitoring insect disturbance 
(e.g., Eklundh et al. 2009; Hilker et al. 2009; Spruce et al. 2011; Gärtner et al. 2016; Olsson 
et al. 2016a). Spectral bands of red and NIR are used in NDVI calculation. Vigorous 
vegetation has low red reflectance and high NIR reflectance resulting in NDVI values. Lower 
NDVI values are obtained from disturbed vegetation, such as defoliated trees. Other 
vegetation indices used for mapping or detection of insect disturbance are multitude, 
including Enhanced Vegetation Index (EVI) (e.g., de Beurs and Townsend 2008; Bateman et 
al. 2013), Red-Green Index (RGI) (e.g., Coops et al. 2009a; Meddens et al. 2011; 2013), 
Simple Ratio (SR) or Infrared Simple ratio (ISR) (e.g., Fraser and Latifovic 2005), and 
Carotinoid Reflectance Index (CRI) (e.g., Fraser and Latifovic 2005; Lausch et al. 2013), just 
to name few. In addition to vegetation indices, indices developed for other purpose can be 
utilized in insect disturbance detection. For example, Kennedy et al. (2010) used tasseled-
cap wetness (Crist 1985) and normalized burn ratio (NBR; van Wagtendonk et al. 2004) from 
Landsat data, in addition to NDVI, in forest disturbance detection. These disturbances 
included insect damage. They suggested that both wetness and NBR were more sensitive to 
the disturbances than NDVI. The used index can also be a modified version of an index or a 
combination of indices, such as a disturbance index developed by Healey et al. (2005) that 
combined three indices of brightness, greenness, and wetness. Increasingly, ready-to-use 
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remote sensing based vegetation index products are available, such as 8-day NDVI MODIS 
data.  

Sensors are predominately categorized by their spectral sensitivity (Toth and Józ’ków 
2016). Further, remote sensing can be divided into two principal types based upon sensor, 
into active and passive remote sensing. Passive sensors, such as digital cameras, only detect 
naturally occurring energy, i.e., when reflected by sun. Active sensors emit radiation toward 
the object and the reflected radiation is again detected and measured by the sensor. Active 
sensors are able to acquire information despite the season or time and are less dependent on 
the prevailing environmental conditions (Toth and Józ´ków 2016). Typical active sensors 
include Light detection and ranging (LiDAR) systems and Radio detection and ranging 
(Radar). LiDAR methodologies are based on repeated range measurements between the laser 
scanner and target. The range (distance) measurements are conducted by measuring the time 
a single laser pulse traveling from the scanner to the target and back (Wehr and Lohr 1999). 
Emitted laser pulses reflect from the target object resulting in a back-scattering signal, of 
which intensity varies as a function of time and the resulting intensity curve (waveform) is 
used for the range measurements. Two laser beams are taken into account, the emitted laser 
pulse and the received portion of the pulse (Wehr and Lohr 1999). The ranges (distances) are 
defined by multiplying light speed with the time the emitted laser beam travels to the object 
and returns (Bachman 1979; Lim et al. 2003). There are two different approaches to record 
the back-scattering laser data (Wehr and Lohr 1999; Lim et al. 2003). The discrete return 
approach has been so far more widely studied and utilized in forestry, including in forest 
health monitoring. In the method, the waveform is analyzed by seeking local maxima in order 
to reduce the amount of data. Further, Laser scanners are characterized by size of the 
footprint, sampling rate, and scanning patterns (Dubayah and Drake 2000).  

Both passive and active sensors record signal intensity within specified wavelength 
intervals (bands or channels) of the electromagnetic spectrum. For example, LiDAR systems 
use wavelengths from visible to near infrared (typically 1.064 µm) and Radar emits longer 
microwaves (Lefsky et al. 2002). In general, active and passive sensors are available on all 
platforms (Toth and Józ´ków 2016). Further, remote sensing can be divided into optical and 
thermal. Many sensors record radiation in the thermal infrared region (3 µm to 15 µm), in 
addition to the optical range of the spectrum. Thermal sensors measure, in general, surface 
temperatures and thermal properties of the sensed objects. Traditional platforms for remote 
sensing forest applications are aircrafts or satellites (Turner et al. 2003; Schowengerdt 2007). 
Nowadays, however, almost any method for acquiring images or spatial data are considered 
remote sensing (Mikhail et al. 2001). Use of unmanned-aerial-vehicles (UAVs), i.e., drones, 
as a remote sensing platform is increasing in popularity, including in disturbance monitoring 
(Colomina and Molina 2014; Pajeres 2015; Näsi et al. 2015, 2018). Remote sensing data can 
also be acquired on the ground (e.g., terrestrial laser scanning; TLS), or from vehicles 
operating on terrain or water. Defining the margins for remote sensing is increasingly difficult 
as the observation space includes a growing number of new applications (Toth and Józ´ków 
2016). Earlier, remote sensing was based on a single sensor on a single platform (Toth and 
Józ’ków 2016). With the development of remote sensing technology and decreasing costs, 
remote sensing systems have often adapted for multiple simultaneous sensors, such as more 
than one camera and/or LiDAR sensors (e.g., Nagai et al. 2009; Asner et al. 2012). In 
addition, data from two or more different platforms are combined. 

Characteristics of remote sensing include spatial, spectral, temporal, radiometric, and 
directional resolutions. These characteristics influence the ability to detect symptoms of 
varying forest disturbances. Often, remotely sensed data are differentiated by the spatial and 
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spectral resolutions (Govender et al. 2007). In case of forest disturbances, also temporal 
resolution is very important. These characteristics are affected by both the remote sensing 
sensor and the platform. Level of spatial detail is defined by spatial resolution (Govender et 
al. 2007). Remotely sensed data are commonly distributed in a matrix of pixels (Turner et al. 
2003). The size of a pixel corresponds to the spatial resolution of the sensor (and platform). 
Spatial resolution defines the smallness of objects, i.e., forest characteristics or symptoms 
that may be distinguished, and thus being larger than the size of a pixel (Turner et al. 2003; 
Lausch et al. 2016a). Depending on the pixel size, each pixel may contain reflectance from 
multiple features in the forest (Lausch et al. 2016b). The spatial properties of data result in 
from the sensor’s field of view and operation altitude (Smith 2001). Higher spatial resolution 
enables assessment of an environment in higher detail. Currently, spatial resolution of remote 
sensing data ranges from millimeters to 1000 m or even more. Very high spatial resolution 
data (millimeters) can be acquired, e.g., by drones. High spatial resolution data is often 
acquired from aircrafts or with high-resolution satellites. Spatial resolution from 0.5 m to 2 
m include aerial imagery and hyperspectral sensors (e.g., airborne imaging spectrometer for 
applications; AISA). Modern high-resolution satellites, such as WorldView-2, RapidEye, and 
Sentinel-2 reach to spatial resolution up to 2–10 m. WorkdView-3 data reach spatial 
resolution of 1.24 m for multispectral channels. Medium to low resolution data is typically 
acquired from the space. These spatial resolutions range from 10–30 m (e.g., Satellite Pour 
l'Observation de la Terre; SPOT or Landsat data) up to 250–1000 m or greater (Moderate 
Resolution Imaging Spectroradiometer; MODIS and the National Oceanic and Atmospheric 
Administration’s Advanced Very High Resolution Radiometer; NOAA AVHRR). In 
airborne scanning LiDAR, pulse density that is calculated as a function of the footprint 
spacing on a flat surface, is regarded as the most consistent measurement of the spatial 
resolution (Gatziolis and Andersen 2008). When planning a LiDAR campaign, a minimum 
pulse density for the task should be determined (Gatziolis and Andersen 2008). Factors 
affecting resolution of an airborne LiDAR point could include Laser scanning speed, flying 
speed and altitude, and side-lap coverage. LiDAR pulse densities can be divided into low (<1 
pulse/m2), moderate (1-3 pulse/m2), and high (>3 pulse/m2). The selection of possible remote 
sensing application increases with the pulse density.  

Spectral resolution refers to the sensors ability to define wavelength intervals. It also 
refers both to the number and width of the measured portions of the spectrum (Govender et 
al. 2007; Rocchini 2007). A sensor may record a large portion of the electromagnetic 
spectrum but still have a poor spectral resolution if only few wide bands are recorded. A 
sensor capturing a wide range of the spectrum and having several narrower bands has a higher 
spectral resolution (Govender et al. 2007). Higher spectral resolution, i.e., information in 
higher detail facilitates better distinction of unique traits from other components in the 
imagery (Jensen 2005). Sensors with high spectral resolution enable, e.g., tree species 
recognition at a higher precision than sensors with broader spectral bands (Fassnacht et al. 
2016). Where multispectral sensors typically record energy over 3-10 separate wavelength 
ranges, hyperspectral sensors are able to detect hundreds of very narrow spectral bands from 
visible to mid-infrared ranges of the electromagnetic spectrum. The obtained spectral 
signatures of multispectral images are discrete, as contiguous signatures can be obtained with 
hyperspectral sensors (Govender et al. 2007). Higher multispectral resolutions up to 15 
channels, that are often spaceborne, are also acquired for improved classification 
performance (Toth and Józ´ków 2016). In addition to the spectral resolution, the position of 
the captured range on the spectrum is important. The chosen sensor should record the range 
or ranges important for the task in question. Spectral resolution is not often that critical in 
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visual interpretation but increases in importance when using automated classification 
techniques (Horning et al. 2010).  

Radiometric resolution is describing the sensitivity of a sensor. A sensor with higher 
radiometric resolution is more sensitive in detecting minor differences in reflected or emitted 
energy than a sensor with lower resolution. The potential range of values within a pixel is 
often referred as radiometric resolution (Horning et al. 2010). Radiometric resolution is 
measured in bits, where the number of bits is an exponent to the power 2. This number 
represents the maximum number of available levels of brightness recorded. For example, 
Landsat data values range between 0 and 255 (8 bits) and IKONOS data values range from 0 
to 2048 (11 bits). The level of detail and precision increase along the increasing radiometric 
resolution. Temporal resolution, or a revisit time interval, refers to the period between 
repeated remote sensing acquisitions of an object or target area (Turner et al. 2003). For 
example, Landsat data is acquired from the same location on Earth in every 16 days, and 
MODIS in every eight days. Some spaceborne remote sensing platforms have high temporal 
resolution, such as time intervals of 1 or 2 days (TerraSAR-X, RapidEye, WorldView-2, 3) 
(Pause et al. 2016). For tailored remote sensing campaigns, such as acquiring remote sensing 
data from aircraft or drone, the temporal resolution and number of revisits can be assigned 
based on the needs. Revisiting the target location enables monitoring of change, i.e., change 
detection. They also facilitate timely detection of disturbances. Temporal resolution is further 
important with optical sensors in obtaining cloud free data over frequently cloudy areas 
(Turner et al. 2003). Higher temporal resolution increases the probability of cloud free 
imagery. Temporal resolution is also included into the decisive factors improving distinction 
of forest characteristics and quantification of spectral traits of an object (Lausch et al. 2016a). 
In addition to disturbance, factors, such as senescence, phenology, stress, and limited 
resources lead to changes in spectral traits at varying time intervals (Lausch et al. 2016a). It 
is important to have sensors recording various processes at different temporal frequencies 
(Lausch et al. 2016a).     

Generally, there are tradeoffs in choosing between different sensors and platforms. 
Often, when spatial or spectral resolution of remote sensing data decreases, the spatial extent 
increases. Satellite sensors with a low spatial resolution typically have a high temporal 
resolution. Further, sensors with high spatial and spectral resolution have often a lower 
temporal resolution; remote sensing systems imaging wider areas may visit the same point 
every day in expense of spatial resolution (Turner et al. 2003). This, however, is changing 
with the development of remote sensing technologies (Lausch et al. 2016a). In addition, new 
techniques are developed to merge remote sensing data with differing spatial, spectral, and 
temporal resolutions in order to obtain needed information to accomplish various monitoring 
tasks (e.g., Hilker et al. 2009; Lausch et al. 2017). High spatial resolution spaceborne sensors 
(< 5 m) typically have a lower spectral resolution than the medium resolution satellites (Ørka 
and Hauglin 2016). Their revisit time-interval, however, is often higher due to adjustable 
image acquisition angle (Ørka and Hauglin 2016). Recent sensors, such as Worldview-3 
provide over 10 bands high spatial resolution of 0.3–2.5 m (Lausch et al. 2016a). However, 
the limited coverage per image is restricting the spatial scale of mapping. Snetinel-2 acquire 
data from moderately high to medium spatial resolution (10-60 m) with revisit time of five 
days at equator. In addition to reasonable high spectral and temporal resolution, Sentinel‑2 
carries a multispectral instrument with 13 spectral bands enabling a variety of vegetation 
indices for monitoring forest disturbances (Drusch et al. 2012). 

Under perfect circumstances, remote sensing characteristics would be chosen based on 
the needs. For example, it is often practical to use an optical sensor that enables use the lowest 
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number of images covering the study area and providing needed level of detail (Horning et 
al. 2010). Further, every popular pixel by pixel-based classification method may not work 
well with a very high resolution data. Multi-spectral sensors usually have quite broad 
bandwidths providing a high signal-to-noise ratio (Horning et al. 2010). However, sometimes 
pre-selected narrow bands are needed to detect subtle changes within a similar forest canopy. 
While remote sensing data acquisition and processing costs are decreasing, there are still 
expenses to take into account. The relative costs of remote sensing is related to the costs of 
system (Toth and Józ´ków 2016). For example, total costs of spaceborne remote sensing 
exceeds those of airborne platforms. However, usually expenses for the final user are 
considered. Conversely, satellite imageries are usually the most cost-efficient. There are 
medium to high resolution satellite data available free of charge, such as Landsat and 
Sentinel-2. Further, commercial high-resolution satellite data, including RapidEye, Ikonos, 
and Geoeye, can be obtained at low costs of 1–14 € per km2 (Ørka and Hauglin 2016). Costs 
of airborne data vary depending on the sensor: aerial imagery (35–62 € per km2), 
hyperspectral data (120–180 € per km2), and LiDAR data (62–240 € per km2) (Ørka and 
Hauglin 2016). Some of the costs of remote sensing can be compensated with reduction of 
costly fieldwork (Fassnacht et al. 2016). These expenses can also be associated with more 
efficient management and improved decision-making (Fassnacht et al. 2016). It should also 
be kept in mind that remote sensing enables monitoring of larger areas and may lead to higher 
accuracy than more traditional methods. Further, while usually field inventory has fixed costs 
per unit, remote sensing become often less expensive are the target area increases (Franklin 
et al. 2002). In the future, the expenses related to remote sensing data acquisition can be 
expected to decrease and more data sources will be available free of charge.  

 
2.2.2. Remote sensing of insect-induced disturbances  
 
Rapidly growing number of scientific publications have demonstrated usefulness of remote 
sensing in various forest health monitoring tasks. Modern remote sensing and modeling 
approaches combined with geographical information systems (GIS) provide new means in 
monitoring and estimating impacts of insect induced disturbances. However, remote sensing 
of insect damage gives an extra challenge compared to traditional applications of these 
methods, such as forest inventory and forest management planning. Nevertheless, with 
suitable scale, resolution, and correct timing, these approaches can produce valuable 
information and reduce the amount of fieldwork. Remote sensing methods are more cost 
effective compared to the traditional field inventories and more easily adapted to remote areas 
with limited access (Heurich 2008). However, to understand full effects of different stressors, 
monitoring systems combining terrestrial observations and remote sensing are still needed 
(Wingfield et al. 2015; McDowell et al. 2015).  

Remote sensing applications are key components of cost-effective, extensive, repeatable, 
and standardized forest health monitoring programs (Lausch et al. 2016a). While the 
information on insect pests gained from field or laboratory data is important, these data 
cannot be used in predicting outbreak patterns at a landscape-scale or wider (Seidl et al. 2015; 
Senf et al. 2017a; Simard et al. 2012). The requirements of sufficient data for evaluating 
large-scale impacts include (1) spatial explicit information, (2) wide geographic area 
coverage, (3) temporal resolution that is suitable for monitoring the life cycle of the insect 
pest in question, and (4) long enough time-series to assess natural fluctuations characteristic 
to the population dynamics (Senf et al. 2017a). With means of remote sensing, these criteria 
can be met (Senf et al. 2017b). Remote sensing provides an opportunity to study insect 
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outbreaks throughout wide areas at high spatial and temporal scales (McDowell et al. 2015; 
Trumbore et al. 2015). 

Lausch et al. (2016a) considered three research questions on remote sensing of stress 
and disturbances in taxonomic, structural, and functional diversity over the diversity of forest 
ecosystems. (1) How can forest health and the mechanisms, drivers and processes be defined, 
and which spatio-temporal scales should be used to measure forest health? (2) What are the 
reasons and under which conditions remote sensing approaches are applicable for observing 
forest health, and (3) what is the concept of spectral traits and the variation in the traits that 
enable quantifying, monitoring, and assessing forest health with means of remote sensing? 
How well means of remote sensing serve in forest health monitoring dependents on several 
factors (Lausch et al. (2016a): (1) shape, density and distribution of spatial and temporal 
forest characteristics, (2) spatial, spectral, radiometric, angular and/or temporal resolutions 
of remote sensing sensors or multi-sensor systems, (3) choice of modelling and representation 
techniques, and (4) how the chosen algorithm and its assumptions fit both the remote sensing 
data and forest characteristics. 

There is a multitude of tree or forest characteristics indicating forest health, ranging from 
biochemical characteristics, such as nutrient and moisture contents, phenological, 
physiological, and functional characteristics to diversity, structure, and yield and production. 
Research on remote sensing on several of these characteristics have been conducted 
(reviewed by Lausch et al. 2016a). Not all the symptoms of various forest disturbance can be 
monitored by means of remote sensing. The symptoms that cannot be recorded by remote 
sensing can be referred to as “Non-Spectral Traits” (Lausch et al. 2016a). These include 
symptoms that are underground, cannot be detected by a certain sensor, current remote 
sensing characteristics are not able to record the symptoms directly or indirectly, or have not 
been detected yet. These include, e.g., some trunk or root symptoms, such as root rot. For 
example, typical bark beetle trunk symptoms cannot be assessed from above, while they are 
visible in the field. However, these damage for tree trunks affect also foliage chemistry, and 
thus may be detected from above, at least in the future. The main component of forest to 
observe health conditions through remote sensing is the tree crown or canopy. There are two 
especially important and reliable stress related variables to be observed, discoloration and 
defoliation (Innes 1993; Rullan-Silva et al. 2013). Although there are various factors that 
cause both discoloration and defoliation, insects are regarded as the most common source of 
defoliation (Ciesla et al. 2008). However, these additional factors induce uncertainty in 
detecting insect-induced damage (Rullan-Silva et al. 2013).  

In case of monitoring insect disturbance, spatial scale is an elementary issue (Rullan-
Silva et al. 2013; Lausch et al. 2016a). In addition to the practical aspect, the costs are affected 
by the scale of investigation. At the operational level, two scales should be considered 
(Rullan-Silva et al. 2013). A wide scale monitoring at low spatial resolution, at a level of 
early warning, to identify insect outbreaks at locations they can be suspected to occur. The 
second scale is more local and tactical. Higher spatial resolution is utilized for assessing the 
warning signs delivered by the first level (Spruce et al. 2011; Rullan-Silva et al. 2013). Thus, 
monitoring of insect disturbance should be considered as a hierarchy of data sources ranging 
from wider to smaller scales (Wulder et al. 2006b; Coops et al. 2009b). Low-resolution 
satellite-based remote sensing can facilitate cost-efficient monitoring of large areas (Rullan-
Silva et al. 2013), while high resolution remote sensing (with field surveys) is critical for 
delivering detailed information on the disturbance in question (Eklundh et al. 2009). A 
variety of sensors with differing spatial resolutions permits multi-scale applications (Rullan-
Silva et al. 2013). Multi-scale monitoring would contribute to detection of complex ‘all-scale’ 
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dynamics of forest disturbances (Marceau and Hay 1999). Combining different remote 
sensing data is also increasing in popularity (e.g., Gao et al. 2006; Zhu et al. 2010; Fu et al. 
2013). Data fusion have also been utilized in monitoring of forest disturbance (e.g., Roy et 
al. 2008; Hilker et al. 2009).  

Timing of data acquisition is critically important in remote sensing of insect-induced 
damage. Right timing can enhance the monitoring results substantially. Data acquisition 
should be scheduled based upon the phenology of the tree species and other vegetation, as 
well as on the insect pest’s life cycle. For example, utilizing the dates of maximum greenness 
may enhance separation of infested and uninfested stands (Fraser and Latifovic 2005; Frantz 
et al. 2017). Information on suitable timing could be also derived from insect population 
models (e.g., de Beurs and Townsend 2008). The timing during the season influences 
monitoring damage by both defoliators and bark beetles (Senf et al. 2017b). For example, in 
the case of bark beetles, best timing is often late summer, allowing detecting of spring 
infestations and avoid effect of regular needle loss in the fall (Senf et al. 2017b). Timing may 
be the most critical aspect in remote sensing of short ephemeral disturbance events with high 
recovery rates (Senf et al. 2017b).  

In addition to the characteristics of remote sensing sensor and platform, methodology, 
such as modeling algorithm or classification method affect the accuracy of forest health 
monitoring (Lausch et al. 2016a). Depending on the required information, some attributes 
can be directly measured with remote sensing technologies, while other can be derived 
indirectly employing modeling techniques (Brosofske et al. 2014). A vast variety of 
classification and modeling techniques has been employed in detecting insect-induced 
disturbance or evaluating the severity or impacts of outbreaks. According to a review study 
by Senf et al. (2017b), classification models, such as random forest, maximum likelihood, 
and logistic regression have been the most often utilized.  In addition, rule-based approaches, 
and regression models have been popular. Typical mapping accuracies have ranged from 
60% to over 90% (Senf et al. 2016). Accuracies for detecting damage by defoliating insects 
have been higher than detecting those by bark beetles. 

 
2.2.3. Main sensors and platforms in monitoring insect disturbances 

 
Use of remote sensing in evaluating insect-induced disturbance begun to increase in the early 
2000s and has been amplified ever since (Senf et al. 2017b). European and North American 
applications have been the most frequent. The emphasis in Europe has been on the Boreal 
zone (Senf et al. 2017b). Medium resolution remote sensing data have been the most utilized 
(57%), of which most of the studies utilized Landsat images (Senf et al. 2017b). The most 
frequently employed low-resolution data has been MODIS (75% of the 13% share). High and 
very-high resolution data have been equally often utilized (15% each). Senf et al. (2017b) 
found that low-resolution data was often applied for mapping damage by defoliating insects. 
Medium resolution was used for all incest pest types and high resolution was especially 
utilized for mapping bark beetle infestations.  Use of single date data was the most common 
in mapping bark beetle damage (Senf et al. 2017b). Multi-temporal data was used to all types 
of insect pests but was more common in case of defoliators.  

Aerial images have been the most frequently used remotely sensed data in forestry (Hall 
et al. 2003). High-resolution aerial photography facilitates assessment at fine scale, i.e., 
individual tree level for reasonable large areas, such landscapes. A variety of forest health 
monitoring tasks can be accomplished with digital aerial photography (Wulder et al. 2006a). 
Although the performance of aerial sensors has also advanced, satellite systems have taken a 
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leap towards aerial systems and increased in popularity. The fact that US governmental 
restriction on commercial satellite spatial resolution (<50 cm) was lifted in 2014 and very 
high-resolution satellite imagery could be sold, decreased further the difference between 
airborne and satellite imagery (US Satellite Resolution Restrictions 2014; Toth and Józ’ków 
2016).  

Landsat images are historically probably the most widely utilized remote sensing data for 
forest health monitoring. Landsat data has further been employed in various tasks of 
monitoring forest disturbance (e.g., Healey et al. 2005; Masek et al. 2008; Hilker et al. 2009). 
Cloud contamination of Landsat images can be particularly problematic in humid 
environments (Ranson et al. 2003; Ju and Roy 2008). In temporal monitoring tasks, the 
minimum revisit time interval of 16 days can be significantly extended due cloudy imagery 
or duty cycle limitations (Ju and Roy 2008). This may hinder data acquisition for forest 
disturbance in a timely manner (Gao et al. 2006; Leckie 1990; Pape and Franklin 2008). A 
probability for acquisition of cloud-free Landsat imagery can be only 10% for a given year 
(cloud cover < 10%) (Leckie 1990). Higher temporal resolution sensors increase the 
probability of cloud-free images. Opening the Landsat archive in 2008 provided free 
moderate resolution remote sensing data over large areas (Woodcock et al. 2008; Wulder et 
al. 2012). This data has facilitated development of methods for mapping several types of 
forest disturbance (Cohen et al. 2010; Kennedy et al. 2010; Meigs et al. 2011; Wulder et al. 
2012). 

MODIS data is increasingly included to the selection of methods for general insect 
disturbance monitoring (e.g., Sulla-Menashe et al. 2014). Although the main weakness of 
MODIS data is the low-spatial resolution, it has advantages explaining the increasing 
popularity of the data in forest health monitoring applications. These advantages include 
reasonable high temporal resolution, low computational demand, and historical continuity in 
time. Accordingly, MODIS data may gain an important role in large area monitoring of forest 
disturbance, from regional to global scales (e.g., Hayes et al. 2008; Adelabu et al. 2012). The 
higher temporal resolution, compared to lower temporal resolution data, such as Landsat, 
facilitates the more efficient use in areas with frequent cloudy conditions.   

Active remote sensing has not been as widely used in forest health monitoring as passive 
sensors. Airborne scanning LiDAR is relatively new compared to other remote sensing 
technologies used in monitoring insect disturbance. However, forest applications using 
LiDAR are rapidly developing and expected to increase in popularity. LiDAR applications 
have many advantages, including highly accurate registration of spatial information and the 
capability to penetrate vertical canopy profiles and quantify canopy structures (Gatziolis and 
Andersen 2008). LiDAR may contribute considerably to monitoring insect disturbances. The 
ability to measure tree-dimensional (3D) distribution facilitate investigation of vertical 
structure of forest canopy (Lefsky et al. 1999; Wehr and Lohr 1999). Accordingly, LiDAR 
could be used to monitoring disturbance driven structural changes in forest canopies. These 
may include detection of defoliation (Solberg et al. 2006; Kantola et al. 2010).   

 
2.2.4. Monitoring of defoliating insects 

 
Detection of insect-induced defoliation with means of remote sensing is regarded to still be 
in its early stage and the spectral responses to damaged vegetation are not completely 
understood (Zhang et al. 2010; Wang et al. 2010). Further method development is needed 
before comprehensive adaptation at the operational level (Jepsen et al. 2009; Rullan-Silva et 
al. 2013). More challenging than the detection of needle loss is assessing the severity of 
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defoliation (Rullan-Silva et. al 2013). Although classification accuracies of 70%-80% for 
three severity classes have been observed (Rullan-Silva et al. 2013), it has to be kept in mind 
that especially low intensity defoliation is very difficult to monitor (Zhang et al. 2010). 
Further, detection of defoliation within a sparse canopy cover is even more difficult 
(Dennison et al. 2009), such as in typical boreal pine forests. 

Healthy and green vegetation results in a well-known pattern of spectral signature over 
the electromagnetic spectrum (Rullan-Silva et al. 2013). The pattern reveals the highest 
absorption and lowest reflectance in the visible range of the spectrum, followed by a plateau 
of highest reflectance in the NIR range. Within the range of visible light, a peak in the 
reflectance occurs in the green band (~0.54 µm), corresponding to the green color of a healthy 
crown (Rullan-Silva et al. 2013).  It is suggested that the visual range is the most consistent 
indicator of plant stress shown in foliage (Carter 1993; Jensen 2005). A tree is regarded to 
suffer from stressors, when there is indication on change in the health condition in the foliage 
(Rullan-Silva et al. 2013). Under stress, reflectances of green and red are increased as the 
foliage turn into yellowish or chlorotic. Increase in reflectance in the NIR region seems to be 
consistent only at extreme stress levels (Rullan-Silva et al. 2013). Healthy foliage has a high 
reflectance of the NIR range. That is partly due to additional reflectance from the energy 
transmitted through the leaf and re-reflected by the leaves below (Jensen 2005). Hence, 
changes in the NIR region may be utilized in detecting defoliation (Rullan-Silva et al. 2013). 
The region of 0.65-0.7 µm may be suitable for early detection of forest damage; the first 
indicators of stress are seen as increase in reflectance of the red edge (0.7 µm), sifting towards 
shorter wavelengths (Jensen 2005). Remote sensing sensor’s ability to record narrow 
sensitive ranges, such as hyperspectral data, may improve the detection accuracy (Carter 
1993, 1996; Jensen 2005; Mutanga et al. 2009). Hyperspectral data may also be suitable to 
assess levels of chlorophyll absorption and photosynthetically active radiation related to, e.g., 
insect-induced defoliation (Jensen 2005). Shortwave infrared (SWIR) wavelengths have been 
useful in detecting insect-induced needle loss (Skakun et al. 2003; Wang et al. 2007; 
Goodwin et al. 2008; Coops et al. 2010). There are two peaks in the SWIR reflectance in case 
of healthy vegetation (~1.6 µm and ~2.2 µm) located between atmospheric water absorption 
bands (Rullan-Silva et al. 2013).  These ranges are reflecting water content of healthy foliage 
tissue, which is correlated with plant transpiration rates. With decreasing moisture, the 
infrared energy becomes scattered and the reflectance increases (Jensen 2005). Timing of 
data acquisition is also very important in case of defoliating insects. One key to a successful 
assessment of defoliation is the biological window referring to an optimal period for ‘visual 
expression of major forest pests and related damage’ (Wulder et al. 2004). The period vary 
depending on factors, such as host tree phenology, climate conditions, and natural enemies. 
It is typically in accordance with the peak foliage period of the host (Rullan-Silva et al. 2013). 
Further, this period is often short emphasizing the role of high temporal resolution. Typical 
cases are ephemeral outbreaks by defoliators especially in areas with frequent cloud cover 
(Hicke et al. 2012; Rullan-Silva et al. 2013). 

Most of the remote sensing studies on defoliating insects have utilized low to medium 
resolution data (Senf et al. 2017b). Medium-resolution Landsat and SPOT satellites have 
been the most widely utilized. Landsat data has been the most popular sensor (e.g., Luther et 
al. 1997; Radeloff et al. 1999; Franklin et al. 2003; Hall et al. 2003; Babst et al. 2010; Paritsis 
et al. 2011; Meigs et al. 2011; Olsson et al. 2012; Townsend et al. 2012; Thayn 2013; 
Sangüesa-Barreda et al. 2014; Rullan-Silva et al. 2015; Senf et al. 2015). MODIS data have 
been utilized in, e.g., mapping defoliation by pine sawflies (Eklundh et al. 2009), gypsy moth 
(de Beurs and Townsend 2008; Spruce et al. 2011), and geometrid moths (Jepsen et al. 2009; 
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Olsson et al. 2016a). SPOT data have been utilized by, e.g., Muchoney and Haack (1994), 
Fraser and Latifovic (2005), and Gilichinsky et al. (2013). Kharuk et al. (2004, 2007, and 
2009) have utilized NOAA AVHRR, MODIS, and SPOT VEGETATION data in monitoring 
Siberian silk moth (Dendrolimus superans sibiricus Tschetverikov). High-resolution satellite 
data has been so fat less utilized in monitoring insect defoliation. RapidEye images have been 
utilized by Adelabu et al. (2014) and Sentinel-2 based vegetation indices by (Hawryło et al. 
2018). 

Although aerial photographs are the most utilized data in forestry (Hall et al. 2003), they 
have not been as widely utilized as lower resolution satellite-based images in needle loss 
detection. Aerial digital photography has been used in some studies detecting insect-induced 
defoliation, such as by pine looper (Bupalus piniaria L.) (Långström et al. 2004) and common 
pine sawfly (Ilvesniemi 2009). Haara and Nevalainen (2002) classified non-specified 
Norway spruce (Picea abies L. Karst.) defoliation from aerial images. Aerial video data was 
used by Franklin et al. (1995) to detect defoliation by the western spruce budworm 
(Choristoneura occidentalis Freeman). Leckie and Ostaff (1988) tested use of 11 band 
multispectral scanner data in classification of spruce budworm induced defoliation. Kantola 
et al. (2010) combined aerial images with high pulse density LiDAR data to classify Scots 
pine (Pinus sylvestris L.) defoliation.  

Even though use of LiDAR enables assessment of vegetation structure it has not been 
widely utilized so far in mapping of defoliation. Further, the features on LiDAR data that 
could be associated with insect defoliation are less investigated than the associated spectral 
traits. It has been observed, however, that various metrics calculated form LiDAR point 
clouds, such as canopy-based quantile metrics, can be linked to foliage biomass (e.g., 
Magnussen and Boudewyn 1998; Lim and Treitz 2004). Foliage biomass have been directly 
estimated from point clouds (Riaño et al. 2004), or full waveform data (Lefsky et al. 1999). 
LiDAR have been utilized before in detection of defoliation by pine sawflies (Solberg et al. 
2006, 2010; Kantola et al. 2010; Hanssen and Solberg 2007). Use of terrestrial laser scanning 
in classification of defoliation was tested by Huo et al. (2019). In contrast to LiDAR, active 
remote sensing SAR data seems to contribute only modestly to defoliation assessment 
(Rullan-Silva et al. 2013).  

There is an increasing trend in comparing vegetation indices from different times to 
evaluate the changes by defoliators (Senf et al. 2017b). Multi-temporal satellite data derived 
vegetation indices have been utilized in, e.g., studies on defoliation by western spruce 
budworm (Meigs et al. 2015; Senf et al. 2015), Hungarian spruce scale (Physokermes 
inopinatus Danzig and Kozár) (Olsson et al. 2012), and pine processionary moth 
(Thaumetopoea pityocampa Denis and Schiffermüller) (Sangüesa-Barreda et al. 2014). The 
used vegetation indices utilized NIR or SWIR regions. Changes in NIR and SWIR enables 
detection of chlorosis and structural changes in the canopy, however, the relationship 
between the changes in spectral signature and insect defoliation is not as well understood as 
for bark beetles (Senf et al. 2015). Use of dense time-series may improve detection of 
defoliation with information on insect peak performance periods within a season (Fraser and 
Latifovic 2005). In case of broadleaved tree species, dense time-series may even compensate 
coarse spatial resolution (Senf et al. 2017b). Fusion of remote sensing data with different 
spatial and temporal resolution may be used to enhance the mapping of defoliation (Gärtner 
et al. 2016). 
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2.3. Species distributions 
 
2.3.1. Concept of an ecological niche for species 
 
A niche in ecology refers to a particular range of environmental conditions under an organism 
can survive and reproduce, or to the functions or positions the organism has in an ecological 
community (The American heritage dictionary 2018). Every organism has a certain set of 
physiological, morphological, and behavioral traits that is suitable to occupy particular spaces 
in nature (Grinnell 1917). It is usually agreed that the concept of niche is one of the central 
concepts of ecology; although, it is not fully understood (Real and Levin 1991; Leibold 
1995). Ecological niches are widely utilized in, e.g., identifying set of environmental 
conditions affecting species performance, or limiting factors affecting population dynamics 
(Leibold 1995). Grinnell (1917) included microhabitats, abiotic factors, resources, and 
natural enemies into the limiting factors comprising the ecological niche. Hutchinson (1957, 
1978) introduced a concept of fundamental niche which is a multidimensional space having 
all the environmental variables affecting the species on the multiple axes. This fundamental 
niche would be occupied by the species in the absence of other species. The realized niche is 
a part of the fundamental niche within the species is restricted resulting from interspecific 
interactions. Elton (1927) addressed the importance of the functional role of a species in the 
environment, such as in relation to the trophic levels.  
 
2.3.2. Ecological niche models  
 
As the forest health monitoring gives often answers on the current situation or near future, 
risk assessment is often needed in evaluating potential of damage events occurring or 
reoccurring in the future. In here, risk is defined as product of hazard and exposure, i.e., 
probability of disturbance occurrence in certain time and location. Risk assessment may 
facilitate prediction on, e.g., a set of conditions where outbreaks of an insect pest may occur 
in the future (Berryman 1986). Modeling techniques are often used as part of efficient risk 
assessment. Various modeling approaches can be employed in, e.g., projections of future 
disturbance trends, determining outbreak threshold levels, evaluating level of impacts, such 
as growth losses or tree mortality, and species distributions. 

Ecological niche modeling (ENM, species distribution modeling) is a popular group of 
techniques for predicting species distributions and changes in the distributions (Soberón and 
Peterson 2005; Soberón 2007; Peterson et al. 2011). ENMs are contributing to forest health 
management, especially in decision-making and risk assessment. In ENM, a wide range of 
environmental layers can be used to predict species distributions. ENMs enable projections 
of species distributions across space and time, facilitating estimates on changes in the 
distributions over a range of spatial extents (Pearson and Dawson 2003; Gontier 2007). 
ENMs are based on the niche concept and are targeted to describe the range of suitable 
habitats for a species. This is accomplished by identifying environmental conditions 
associated with the species occurrence observations (Peterson et al. 2011; Halvorsen 2012). 
ENMs comprise a wide selection on algorithms, of which Maximum Entropy (MaxEnt) and 
Genetic Algorithm for Rule-Set Production (GARP) are the most widely used. Factors 
affecting accuracy of ENM projections include selection of predicting environmental 
variables and delineation of the background evaluation extent (Peterson et al. 2011; Merow 
et al. 2013). In addition, to projecting current ranges, of species, popular ENM applications 
include future predictions of distribution according to various climate change scenarios. The 
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selection of predictors is affected by the goal, whether it is to project the current distribution 
or the potential distribution through time and space (Peterson et al. 2011).  

A multitude of different factors affect species distribution, composition, and abundance 
(Hodkinson 2005). However, the potential distributions describing the current suitable 
abiotic environment can be projected with a reasonably small number of variables 
(Leidenberger et al. 2015). Further, the importance of varying environmental factors in 
identifying species distributions is highly scale-dependent (Peterson et al. 2011). Abiotic 
factors tend to be more important variables at large spatial scale over biotic and 
anthropogenic factors (Menke et al. 2009). Climate and topography are seen as the most 
important factors at the regional scale between 200 km and 2000 km (Pearson and Dawson 
2003). At even wider continental scale, climate is the most important factor limiting species 
distribution (Thuiller et al. 2005). Out of the climatic factors, temperature and humidity has 
been suggested as the main drivers for species distribution (Grinnell 1917; Peterson et al. 
2011). Climatic factors have, in addition to direct impacts on insects, indirect impacts via 
host plant quality, including nutrient balance and levels of secondary metabolites (Ayres and 
Lombardero 2000). Population dynamics of insect herbivores can respond to a variety of 
interactions between species and their natural enemies. However, it can be assumed that these 
interactions are also sensitive to climate, especially to temperature (Björkman et al 2011; 
Weed et al. 2013). In reality, distributions are never defined by abiotic factors only. With 
decreasing of spatial scale, other environmental factors increase in significance, such as biotic 
interactions, e.g., competition, dispersal, and soil and microclimate, as well as anthropogenic 
factors, including landscape change (Ehrlén and Morris 2015). These factors, however, are 
often difficult to incorporate into the models.  

Ecological niche models utilizing presence data are not very suitable for assessing 
abundance of species, or the related impacts. Further, future projections are more suitable for 
estimating potential ranges than probability or timing of an establishment (Fitzpatrick et al. 
2012). However, often, close to the ranges of the suitable conditions, the impacts can be 
milder than in the middle of the ranges. For example, pronounced genetic constrains and 
asymmetric gene flow on the edge areas may lead to lower survival (Parmesan 2006).  On 
the other hand, ENMs can be further linked to other models, such as population growth and 
dispersal models to be used to in impact evaluation. New versions for ENM are also 
developed that include an estimate on species abundance as well. For example, exponential 
raw output can be used as an estimate of relative abundance within species distributions in 
the new version of MaxEnt (3.4.0; Phillips et al. 2017).  
 
2.3.3. Potential distributions of invasive species  
 
The main emphasis of ENM has been on native species and their future ranges according to 
various climate change scenarios. However, ENMs for invasive species have increased in 
their popularity due to the high impacts of these species on ecosystems and economic return 
(Menke et al. 2009; Kulhanek et al. 2011). Typically, ENMs are calibrated within the species’ 
native range and the results are transferred into the novel environments. Often, in case of 
invasive species, results are presented as an ensemble of different modeling methods. 
However, that does not guarantee higher accuracies (Elith et al. 2010). However, ENMs can 
be created also within the introduced regions. This is particularly encouraged if the 
information from the native range is limited or biased. Use of information from the area of 
introduction in the model calibration requires careful delineation of the background 
evaluation extend and information on species history in the novel environment (e.g., Elith et 
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al. 2010; Barve et al. 2011). In case of species that are not at the equilibrium and still 
spreading, the maximum distance of spreading under optimal conditions could be used to 
delineate the area for model calibration (Barve et al. 2011). However, varying condition 
outside the invaded area may induce additional error and uncertainty to the models (Menke 
et al. 2009).  

There are more uncertainties present when calibrating ENMs for invasive species, 
compared to native and more stable insects (Peterson 2003). Two main concerns include: (1) 
the species occurrence data does not correspond to the stable relationships between the insect 
and environmental factors and (2) future combinations of suitable environmental factors 
cannot be sufficiently sampled (Menke et al. 2009; Elith et al. 2010). Various biotic 
interactions may influence successful invasion and pattern of distribution (Bruno et al. 2003; 
Suttle et al. 2007). Further, obtaining a good quality data within an expanding range is 
challenging (Guisan and Thuiller 2005). Other sources of uncertainty include species 
adaptation during range expansions. The rate of adaptation of invasive species can be very 
fast (Butin et al. 2005).     

Significance of the impacts of invasive species cannot be determined only by their 
presence (Bradley et al. 2012). Further, the impacts are difficult to predict, and they may vary 
substantially within the area of invasion (Kulhanek et al. 2011). Impacts may be less severe 
at the edge of the suitable range, as for native species. However, if the area provides lower 
suitability for the host species as well, there is a risk of high impacts. When ENMs are used 
with abundance data, the technique can be utilized for risk modeling as abundance correlates 
stronger with risk that just presence (Kulhanek et al. 2011). Unfortunately, suitable 
abundance data for ENM purposes is not often collected, particularly in case of invasive 
species (Bradley et al. 2012). 
 
 
3. OBJECTIVES OF THE THESIS 
 
 
The dissertation aims to contribute to the development of efficient future forest health 
monitoring systems. Forest health monitoring is in transition and traditional methods are 
insufficient to cover all the current and future demands; new modern approaches are needed. 
These systems must operate at different spatial resolutions and scales over a gradient of 
different forest ecosystems and disturbance agents combining remote sensing and spatial 
models. The topic is wide and complex, and an immense amount of research is still needed 
to accomplish the major goal. In this context, the main goal of this dissertation is to evaluate 
and improve various methods for forest health monitoring at different scales in regard to 
insect pest disturbances. Improved methodology can lead to, inter alia, cost-efficiency, 
decreased fieldwork, increased accuracy of detection and monitoring, and improved 
evaluation of impacts of forest disturbances. Focusing on foliar insect pests, use of various 
remote sensing methods and ecological niche modeling are discussed. The thesis is adding 
information on issues related to forest health monitoring under varying conditions, such as 
on the use of proper spatial and temporal resolution in the monitoring. Influence of landscape 
heterogeneity, topography, and available information are also discussed in the context of 
remote sensing of insect-induced disturbances.  

In the six sub-studies, use of remote sensing and ENM were investigated as components 
of forest health management. Remote sensing was employed in the sub-studies I-V. The scale 
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of investigation ranges from individual tree level to forested landscapes and spatial resolution 
form high pulse density LiDAR to low resolution MODIS data. Most of the sub-studies are 
using singe date data and in the sub-study V, use of time-series are investigated. Several 
modeling techniques were applied on remote sensing data sets. In the last sub-study (VI), 
MaxEnt algorithm was applied for projecting continental scale distribution of an insect pest. 
Geographic information system software, such as ArcGIS (Environmental Systems Research 
Institute - ESRI, Redlands, CA, USA) and R environment for statistical computing (R core 
team 2019) were important components of the sub-studies. Study species include native 
insect pests and an invasive alien species. The main study species are common pine sawfly 
(Diprion pini L.) and hemlock woolly adelgid. Additional study species in the sub-study V 
were European pine sawfly, autumnal moth, and winter moth (Operophtera brumata L.). The 
specific objectives of the six sub-studies were: 

 
I To investigate use of LiDAR in assessment of tree level defoliation after needle 

consumption by the common pine sawfly in Ilomantsi, North Karelia. Classification 
of defoliation was conducted for several different classification schemes to study 
how the number of classes and the class thresholds affect the classification accuracy. 
An additional objective was to investigate the effect of LiDAR pulse density on the 
classification accuracy.  
 

II To develop and evaluate an area-based LiDAR method for assessing plot-level 
needle loss caused by the common pine sawfly in the Ilomantsi district. Hypotheses 
of LiDAR pulses penetrating deeper to the canopy was also evaluated by comparing 
penetration related LiDAR metrics. Impact of pulse density on classification 
accuracy was also tested.  

 
III To demonstrate additional tools in investigation of broad scale impacts of hemlock 

mortality to HWA herbivory in Linville River Gorge, Southern Appalachians, NC, 
USA. The specific objectives included visual detection of dead trees from high 
spatial resolution aerial images and estimation of an area of the canopy cover surface 
occupied by dead trees. Furthermore, hemlock mortality in relation to topography, 
as well as the spatial pattern of the hemlock mortality were investigated.  

 
IV To develop methodology for assessing insect-induced tree mortality within 

inaccessible forest landscapes. High spatial resolution aerial imageries and LiDAR 
driven canopy height model were employed in remote sensing of HWA-induced 
hemlock mortality in the Southern Appalachians. A two-phase semiautomatic 
method was developed to map dead trees and conifer patches comprising the living 
hemlock component. 
 

V To investigate use of low spatial resolution satellite data in stand level detection of 
defoliation in Fennoscandia. Potential of time-series methodology applied to high 
temporal resolution data for insect disturbance was examined to investigate 
accuracy of regional or global disturbance monitoring methods based upon low-
resolution data. The method was developed and tested in different Fennoscandian 
forest landscapes in North Karelia and North Sweden, characterized by different 
defoliating insect, level of fragmentation, and outbreak history. 
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VI To project potential current and future range for non-native HWA in the Eastern 
North America. Ecological niche models were calibrated within the introduced 
range of HWA. Statistically best subsets of explanatory features were chosen 
amongst over 100 environmental variables. An unusually high spatial resolution of 
1 km was used in the models enabling use of topographic and soil features in 
addition to climatic variables. Habitat suitability for the species was reverse-casted 
to the native ranges in East Asia and Western North America and projected under 
several future climate change scenarios in the Eastern North America.   

 
 
4. MATERIALS  
 
 
4.1. An overlook on study areas and data sets 
 
Sub-studies of the thesis comprise four different study areas (Figure 1). Three of the study 
areas are located in Fennoscandia. Two partly overlapping study areas in the Southern 
Appalachians, NC, USA. There were no specific study areas in the sub-study VI, but species 
occurrence observations are gathered within the eastern North America (and East Asia). 
Information measured and assessed in the field in the Palokangas study area, in Ilomantsi of 
eastern Finland, was used in sub-studies I, II, and V, Outokumpu and Abisko areas in V. 
Study areas in the Linville River Gorge served as bases of the sub-studies III and IV. The 
study areas differ in total area, disturbance agent and history, climate, vegetation, as well as 
in the scale of investigation (Table 1). The main focus is on the Palokangas and Linville 
areas, and thus described in more details.  

 
Figure 1. Locations of the specific study areas in the sub-studies; the Linville River Gorge 
area of western North Carolina (left) and Palokangas, Outokumpu, and Abisko study areas in 
Finland and Sweden, respectively (right). (Map by ESRI/HERE©) 
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Table 1. Summary of the study areas, scales, field data, and data sets in the sub-studies.  
 

Study Area Scale of 
investigation Main methods  Remote sensing 

data 
I Palokangas Tree-level Random Forest  LiDAR 
II Palokangas Plot-level Random Forest  LiDAR 
III Linville Tree/landscape Ripley’s K  Aerial photography 
IV Linville Landscape CT/SVMb  Imagery/LiDAR 
V Fennoscandiaa Stand/region Z-scores  MODIS 
VI North America Continent MaxEnt  N/A 

a Fennoscandia comprises Palokangas and Outokumpu study areas in Finland and 
Abisko area in Sweden. 
b CT refers to classification trees, and SVM to support vector machines.  

 
Remote sensing was utilized in the sub-studies I-V. High pulse density LiDAR was 

utilized the sub-studies I and II. A canopy height model (CHM) was produced from low pulse 
density LiDAR data in the sub-study IV. Airborne photography enabled sub-studies III and 
IV. The sub-study V was conducted using spaceborne MODIS data products. Instead of 
remote sensing global climatic, topographic, and edaphic environmental layers were utilized 
in the ENM task in the sub-study (VI). The scale of investigation in the sub-studies ranged 
from individual tree level (I) to continental scale projections (VI). 
 
 
4.2. Target insect pests and their main impacts 
 
4.2.1. Pine sawflies (I, II, V) 

 
Pine sawflies (Hymenoptera: Diprionidae) include some of the most common pine defoliators 
of Europe (e.g., Larsson and Tenow 1984; Geri 1988). There are eleven sympatric pine 
sawfly species in Northern Europe feeding on Scots pine (Kontuniemi 1960). Out of them, 
outbreaks by five species have been recorded in Finland (Kangas 1963). In here, defoliation 
by the larval stage of the two major pine sawfly species in Finland, the common pine sawfly, 
and the European pine sawfly are discussed. Of these, the focus is on the common pine 
sawfly. Berryman (1987) described a common type a of pine sawfly outbreak as sustained 
and eruptive. This kind of pattern is characteristics for the common pine sawfly (Geri 1988). 
Kangas (1963) raised a possibility that the European pine sawfly may have a 30-year cycle 
in the regional outbreaks. However, this cyclic pattern has not been confirmed (Hanski 1987). 
Pine sawfly outbreaks often start in forests growing on dry and poor soils (e.g., McLeod 
1970; Nevalainen et al. 2015). Outbreaks can spread into large areas from epicenters and 
sustain for several years. For both of the species, outbreak levels are usually followed by long 
periods of endemic population levels. The endemic phase may last even for several decades 
(Viitasaari and Varama 1987; Herz and Heitland 1999, 2003).   

Both European pine sawfly and common pine sawfly are currently regarded as forest 
insect pests in Finland causing declined tree vitality and growth on Scots pine due to 
defoliation during consecutive years. Outbreaks by these sawfly species in Finland are often 
accompanied by secondary pests, such as by pine shoot beetles (Tomicus spp.) (Annila et al. 
1999). Damage by the secondary pests is often difficult to distinguish from that of pine 
sawflies. Local outbreaks by the European pine sawfly occur almost annually somewhere in 
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Fennoscandia, spreading sometimes into wide areas causing defoliation at regional scale 
(Virtanen et al. 1996). In Finland, the common pine sawfly used to cause only small-scale 
and low intensity damage (De Somviele et al. 2007). Outbreaks typically covered only few 
hundreds or thousands of hectares (Kangas 1963; Juutinen and Varama 1986). The outbreak 
pattern of the common pine sawfly has evidently changed during past few decades in Finland 
(De Somviele et al. 2007). Factors, such as elevated temperatures and Scots pine monoculture 
have facilitated the change. It was not until 1997-2001, when a massive outbreak of the 
common pine sawfly initiated in western Finland and spread throughout the central Finland, 
causing damage within an area of about 500,000 ha (Lyytikäinen-Saarenmaa and Tomppo 
2002). The outbreak was so far the largest in the recorded history of the Finnish forest health 
(De Somviele et al. 2004). 

The European pine sawfly seldom causes mortality to Scots pine in Finland. The common 
pine sawfly, however, may cause substantial tree mortality under current climatic conditions 
affecting further recovery of forest and economic return. Capability of the common pine 
sawfly to cause more intense damage compared to European pine sawfly, is mainly due to 
different timing of the larval stage. In Finland, both species are univoltine and their life cycles 
are regulated especially by prevailing temperatures. The European pine sawfly larvae usually 
feed on Scots pine needles during early summer. Common pine sawfly larvae hatch later in 
the season and typically feed on Scots pines during the late summer in August and September 
(Viitasaari and Varama 1987; De Somviele et al. 2007). The later timing of the larval stage 
facilitates consumption of needles of all age-classes and increases the probability of tree 
mortality. At peak population densities, the needle consumption may lead to total defoliation 
(Geri 1988). Tree mortality typically occur if the heavy needle consumption continues two 
or more subsequent years. The species ability to stay in diapause for several years can even 
prolong the outbreak phase (Viitasaari and Varama 1987; Talvitie et al. 2011). 

Common pine sawflies have been observed to prefer mature and maturing Scots pine 
(Geri 1988; Dajoz 2000), as well as stands growing on shallow, low fertility, and well-drained 
soils (Viitasaari and Varama 1987). Despite the preference on more mature pine stands, at 
gradation phase, the species can spread into sapling and seedling stands (Geri 1988; De 
Somviele 2004). A typical pattern of common pine sawfly defoliation is that the taller and 
older dominant trees are more severely defoliated than the shorter and younger, i.e., 
suppressed trees. Females prefer laying eggs on needles of the uppermost parts of the tree 
crowns and canopy, due to higher carbohydrate synthesis in the needles than under more 
shaded conditions (Lyytikäinen 1994; De Somviele et al. 2007). The common pine sawfly 
typically attacks suppressed understory pines only after completely consumption of the 
needles of taller trees. 

 
4.2.2. Hemlock woolly adelgid (HWA) (III, IV, VI) 
 
Hemlock woolly adelgid is a non-native invasive insect in eastern North America that infests 
and induces tree mortality to eastern and Carolina hemlock communities. This piercing-
sucking aphid-like insect is native to East Asia and the strain of HWA in the eastern North 
America originates from Japan (Havill et al. 2006). Recently, it was also confirmed that the 
species is also native in the western North America (Havill et al. 2016). All the ten hemlock 
species can serve as hosts for HWA. Excluding the eastern North American species, HWA 
causes only minor damage to hemlocks (Havill et al. 2006). Both eastern and Carolina 
hemlock seem to have low to no resistance against HWA (Eschtruth et al. 2006). The high 
susceptibility of the host species combined with lack of natural enemies, rapid reproduction, 
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and several vectors have provided for the successful performance and fast spreading of HWA 
in the eastern USA (McClure 1987; McClure and Cheah 1999; Trotter and Shields 2009). 
The species was recorded for the first time in the eastern USA in Richmond of Virginia, in 
1951 (Stoetzel 2002), although the introduction has most likely been much earlier (McAvoy 
et al. 2017). In the beginning, HWA spread slowly in ornamental settings and was not 
considered as a pest. In the 1980’s, HWA begun the rapid and aggressive spreading 
(Spaulding and Rieske 2010). This was most likely due to reaching the native range of the 
eastern hemlock, accompanied with climatic factors (Ward et al 2004; Spaulding and Rieske 
2010).  

HWA has a complex life cycle that includes two annual generations and hosts (McClure 
and Cheah 1999). On hemlock species, it has an overwintering asexual generation (sistens) 
and a spring generation (McClure 1987). The spring generation develop into two morphs; 
asexual progrediens and winged sexuparae that pursue host spruces (McClure 1987). In the 
eastern North America, no spruce species is suitable for HWA as a host and the morph acts 
as a population sink (Fitzpatrick et al. 2012). HWA feed on hemlock parenchyma cells during 
cooler months and is inactive during hot summer months (McClure 1987; Ward et al. 2004). 
Exact timing of the stages depends on various factors, including temperature, latitude, and 
elevation (Ward et al. 2004). The life cycle of HWA is described in detail by e.g., McClure 
(1987), McClure and Cheah (1999), and Ward et al. (2004).  

HWA remains stationary most of its life cycle. Only the crawler stages are mobile. HWA 
eggs spread by various means, such as with phoresy by wind, wildlife, and human activities 
(Ward et al. 2004; McClure et al. 2001). Both short and long-distance dispersal of HWA 
occur (Morin et al. 2009). New colonies have been observed far ahead of the main front of 
the invasion. The spreading pattern of HWA is anisotropic (e.g., Evans and Gregoire 2007; 
Morin et al. 2009); HWA has spread towards south and north much faster than to the West. 
This may be due to phoresy by migratory birds, as well as pattern and abundance of the 
eastern hemlock (McClure and Cheah 1999; Morin et al. 2009). Annual rates of range 
expansion vary between 12.5 km (Evans and Gregoire 2007) and 20-30 km (McClure et al 
2001; Morin et al. 2009). By the year 2012, the species was observed to reach the most 
southern part of the eastern hemlock range (USDA 2015). Novel areas within the eastern 
hemlock range are available in the North and West. 

The early symptoms of HWA infestations are defoliation and reduction in shoot growth 
(Kohler et al. 2008). Infested hemlocks often die in a span of four to 10 years (McClure et al. 
2001; Spaulding and Rieske 2010). Complete mortality of a hemlock stand may occur as fast 
as in two to three years, particularly in the South (Trotter and Shields 2008). Infested 
hemlocks are also susceptible to secondary damage (Cheah et al. 2004). Herbivory by the 
HWA has various effects on forested landscapes. Impacts of hemlock mortality include 
alternations in carbon and nitrogen cycling (Orwig et al. 2008; Albani et al. 2010; Templer 
and McCann 2010), decomposition (Cobb 2010), landscape structure, composition, and 
function (Ford et al. 2007; Ford et al. 2012). HWA also affect other plant species and wildlife 
(e.g., Ward et al. 2004; Rohr et al. 2009). Influence of hemlock mortality reach beyond forest 
ecosystems, to riparian areas, stream ecosystems, and urban settlements (Ford and Vose 
2007; Templer and McCann 2010). The high performance of HWA in the eastern USA results 
in from rapid parthenogenic reproduction, lack of natural enemies, high dispersal potential, 
and very susceptible host species (Trotter and Shields 2009).  
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4.2.3. Geometrid moths (V) 
 
Mountain birch (Betula pubescens ssp. Czerepanovii [Orlova] Hämet-Ahti) forests in 
northern Fennoscandia, at the upper boarder of the Boreal zone, are regularly suffering from 
defoliation by geometrid moths (Lepidoptera: Geometridae; Tenow 1972, 1996). Large areas 
of mountain birch forests are defoliated in periodic cycles of about 9–10 years, usually around 
mid-decades, by autumnal moth and a more recent winter moth, especially in the Scandes 
(Bylund 1995; Tenow et al. 2007). Autumnal moth and winter moth are present in most of 
Fennoscandia but they differ in their regular outbreak distributions (Tenow 1972; Neuvonen 
et al. 1999). Autumnal moth outbreaks often occur in heath birch forest on the eastern side 
of Scandes as the outbreaks of winter moth typically occur in meadow birch forests in the 
western Scandes (Tenow 1972). Further, outbreaks of the autumnal moth are more common 
in the northernmost parts of Fennoscandia and in the continental regions (Tenow and Nilssen 
1990; Bylund 1999). This difference in the outbreak ranges is regarded to result from the 
difference in cold tolerance between the species (Jepsen et al. 2008). The species overwinter 
as eggs that are placed on birch branches and twigs, and thus are exposed to the weather 
extremes (Tenow et al. 2007). Autumnal moth suffers from high mortality in temperatures 
below −36°C (Tenow and Nilssen 1990). Winter moth is a little more sensitive to low 
temperatures (−35°C; MacPhee 1967; Tenow 1996). Winter moth also seems to be less 
tolerant to extended periods of cold temperatures than autumnal moth. 

These moth species can have substantial ecological impacts resulting from growth 
reduction and tree mortality (Tenow 1972; 1996; Ammunét et al. 2015). Even widespread 
birch mortality may occur from the foliage consumption by the larval stages in the spring 
(Kallio and Lehtonen 1973; Tenow et al. 2007). Typically, older forests are attacked and the 
recovery time of the trees from these outbreaks may be long, even for decades before the full 
recovery (Tenow 1996; Ruohomäki et al. 1997). Sometimes local autumnal moth outbreaks 
have occurred simultaneously throughout the Scandes, while other times outbreaks have been 
spreading like a wave through Fennoscandia (Tenow 1972; Tenow et al. 2007). Outbreaks 
by autumnal moth can also be synchronized with those by winter moth (Tenow 1972; Tenow 
et al. 2007). It has been assumed that low summer and winter temperatures may have 
synchronizing influence on the outbreaks regionally (Niemelä 1980; Bylund 1995). 
Outbreaks by these moth species in North Fennoscandia have been reported since late 19th 
century (Tenow 1972). Most likely, the species have been persistent notable longer in the 
region (Tenow 1972). Warming climate, particularly lower number of extremely cold winters 
has a high impact on these birch moth populations (Babst et al. 2010; Callaghan et al. 2010). 
Expansion towards North and Northeast have already been documented for both species in 
Fennoscandia (Jepsen et al. 2008). Distribution of autumnal moth outbreaks is expanding 
into colder areas with more continental conditions; winter moth is ranging towards areas 
previously dominated by the autumnal moth (Jepsen et al. 2008). Winter moth has also been 
rapidly spreading into outbreak ranges of autumnal moth, such as in northern Finland, and 
may even outcompete the ‘true native’ species (Ammunét et al. 2010). Winter moth has a 
capability to adapt for a range of host plant qualities potentially causing severe cascading 
effects on the northern ecosystems (Ammunét et al. 2011, 2012). In addition to these moth 
species another geometrid moth, the scarce umber moth (Agriopis aurantiaria Hübner) has 
been able to reach outbreak densities in Fennoscandia (Jepsen et al. 2011), posing a novel 
threat to the Fennoscandian mountain birch forests (Ammunét et al. 2012). 
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4.3. Study areas 
 
4.3.1. Palokangas area (I, II, V) 
 
The Palokangas study area, totaling of 34.5 km2, is located in Ilomantsi of eastern Finland 
(62°53′N, 30°54′E, Figure 2). Managed Scots pine forests, owned by the Tornator Ltd are 
mainly growing on dry and dryish forest site types. The relief within the area is relatively flat 
with a mean elevation above the sea level of 170 m. In 2009, the majority of the stands were 
young and middle-aged, with average age of 53 years and diameter-at-breast-height (dbh) of 
14.7 cm (Talvitie et al. 2011). 

The initial outbreak by the common pine sawfly was already visible at the area in 1999. 
The outbreak initiated when the widespread outbreak spread to the east and reached the 
region (section 4.2.). Within the region, the common pine sawfly caused growth losses and 
Scots pine mortality within an area of circa 10,000 ha.  The population density, damage 
intensity, and spatial extent have been fluctuating ever since. Peak population densities at 
gradation phase were observed during 2000-2002, and again at 2005. After 2005, population 
densities have remained at relatively high postgradation phase, showing some chronic nature. 
Last time the area was visited in the spring of 2016, new defoliation from the previous year 
was apparent (Kantola T., personal observation). The forest owner has conducted large 
salvage loggings within the area due to the prolonged outbreak. Typically, the infested Scots 
pine in the Palokangas area were also infested by secondary pests of pine shoot beetle 
(Tomicus piniperda L.) and lesser pine shoot beetle (Tomicus minor Hartig) (Kantola T., 
personal observations).  

 
Figure 2. Locations of Palokangas study area and locations of Adaptive cluster sampling plots 
and clusters within the study area. (Map by ESRI/HERE©) 
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4.3.2. Outokumpu area (V) 
 
Outokumpu study area is located in eastern Finland (62°46´N, 28°57´E), west of the 
Palokangas area (Figure 1). The landscapes are generally flat and highly fragmented. The 
landscape mosaics are comprised by agricultural fields, lakes, and residential components in 
addition to forests. The forested areas are mainly Scot pine dominated intensively managed 
commercial forests, targeting for fiber and timber production. Similar to the Ilomantsi area, 
the main site types comprise poor and dry heath (Calluna type), quite poor and dryish heath 
(Vaccinium type) (Cajander 1926). However, medium fertile fresh heath (Myrtillus type) is 
more predominant in Outokumpu than in the Palokangas area. In general, the forest stands in 
Outokumpu are more fertile than in the Ilomantsi area. A typical size of a forest stand varies 
between one and three ha. Regarding the most recent pine sawfly outbreaks in these regions, 
the forests in the Outokumpu study area have a shorter disturbance history than in the 
Ilomantsi district. The most recent gradation phase of the European pine sawfly initiated in 
2008 within an area of circa 50,000 ha. The sawfly population obtained the peak densities in 
2011 and started to collapse into postgradation phase since then. 
 
4.3.3. Abisko area (V) 
 
The Abisko study area is located in Northernmost Sweden, near Norwegian border (68.35°N, 
18.82°E, Figure 1). These sub-alpine forest landscapes are featured by mountain birch 
forests, mires, and heath vegetation with high abundance of dwarf shrubs, grasses, and 
lichens (Wielgolaski 2001). The Abisko region has a history with outbreaks by both autumnal 
moth and winter moth (Bylund 1995; Tenow 1996). The unmanaged mountain birch stands 
are characteristically infested by these species in a time interval of 9−10 years. Two most 
recent moth outbreaks occurred in 2004 and 2012−2013 (Heliasz et al. 2011; Olsson et al. 
2016b). The subarctic region, including Abisko area has been subjected to increasing 
temperatures in the last decades causing, e.g., disappearing of permafrost and changes in the 
vegetation communities (Callaghan et al. 2010; Johansson et al. 2006). Elevated temperatures 
during this century have led to mean annual temperatures above 0 °C in the area (Callaghan 
et al. 2010) Warming climate, particularly less frequent extreme winter temperatures support 
the overwintering egg survival (Tenow 1972; Callaghan et al. 2010). The magnitude of 
climate change driven impacts on the population dynamics of these moth species and further 
their impact on the mountain birch ecosystems are still unknown (Jepsen et al. 2008; Heliasz 
et al. 2011). 
 
4.3.4. The Linville River Gorge area (III, IV) 
 
Target areas of the sub-studies III and IV are located in the Lower Linville River area, in the 
Grandfather Ranger District (35˚56’N, 81˚55‘W) of the Pisgah National Forest, Southern 
Appalachians, NC, USA (Figure 3). In the sub-study III, the study area comprised the Lower 
Linville River Watershed, with the spatial extent of approximately 60 km2. For the sub-study 
IV, the study area was delineated by available remote sensing data sets (section 4.4.). The 
area of 40 km2 is located in the northern part of the Lover Linville River area and much of it 
(in the center) overlaps with the study area of the sub-study III. 

The Linville Gorge wilderness comprises most of these two study areas. The great 
majority of the wilderness area have been left unlogged and the wilderness is included to the 
greatest old-growth forests within the region. The area has suffered from frequent forest fires 
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(Newell and Peet 1998; Wimberly and Reilly 2007). Topography in the area is very complex 
and prominent cliff-like bluffs are dividing upper and lower slopes (Wimberly and Reilly 
2007). The elevation of terrain ranges from 350 m to 1300 m, from the southern part and the 
river basin to the upper ridges in the north. Three major ecological zones comprise the area: 
Acidic Cove, Xeric Pine-Oak Heath and Oak Heath, and Mesic Oak-Hickory (Simon et al. 
2005). The region’s climate is humid and temperate. Characteristics of the area provide a 
wide range of habitats that are suitable for over 400 vascular plant species and a vast diversity 
of tree species (Schafale and Weakley 1990; Simon et al. 2005). Both of the susceptible 
hemlock species, eastern and Carolina hemlocks are abundant in the area (Jetton et al. 2008). 
Hemlock woolly adelgid was observed in the area for the first time at the early beginning of 
this century (Koch et al. 2006). The species have caused substantial hemlock mortality in the 
region.  
 

 
Figure 3. Locations of the two study areas, and the overlapping area in the lower Linville River 
region, North Carolina, USA. (Map by ESRI/HERE©) 
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4.3.5. Introduced and native ranges of the hemlock woolly adelgid (VI) 
 
The in ENM modeling task (sub-study VI), areas for background evaluation extent and model 
projections have to be delineated (Figures 4 and 5). Background evaluation extent describes 
the area, within the niche model is calibrated while the projection areas comprise the extent 
to with the calibrated models are projected under contemporary or future climatic conditions. 
Normally, ENMs for invasive species are calibrated within the native range and then 
projected into the novel environments. However, in case of limited number of species 
occurrence observations within the species’ native distribution may fail to cover the extent 
of suitable habitats and the developed models may lack transferability to new ranges or spatial 
scales (Menke et al. 2009; Peterson et al. 2011). Further, ENMs calibrated in highly differing 
areas with different environmental gradients are prone to errors when projected elsewhere 
(Menke et al. 2009). Errors can be even more pronounced if models of alien invasive species 
altering their niche requirements are projected under future climate scenarios (Urban et al. 
2007). Due to the inadequate, sparse, and clustered pattern of available HWA observations 
in the continental East Asia, the models were calibrated within the introduced range in the 
eastern North America, were plenty of information in regard to the species exist. The HWA 
observations, described in the section 4.5., were utilized in the delineation of the background 
evaluation extent. It is not yet known if the HWA is yet in equilibrium and have invaded its 
whole range in the eastern North America. For that reason, we delineated the background 
evaluation extent with a narrow 20 km buffer from a convex hull polygon of the species 
occurrence observations (Figure 5). The calibrated models were projected to the eastern 
North America and reverse-casted to the native ranges of the species in East Asia and western 
North America. The projection areas in the both eastern and western North America were 
buffering 800 km and 2000 km in East Asia around the available presence points.  
 

 
Figure 4. Counties with at least one HWA observation by 2018 and native distribution of 
eastern hemlock (Little 1971) within the eastern North America.  
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4.4. Remote sensing data sets  
 
4.4.1. LiDAR data sets (I, II, IV) 
 
The high pulse density Airborne-scanning LiDAR data set used in the sub-studies I and II 
was acquired in October of 2008 with a Leica ALS50-II SN058 laser scanner (Leica 
Geosystem AG, Heerbrugg, Switzerland). The obtained pulse density was circa 20 pulses per 
m2 and footprint size was 0.11 m. The LiDAR data was classified into ground and non-ground 
returns according to the standard TerraScan methodology described by Axelsson (2000). 
Further, a digital elevation model (DEM) was generated from the classified ground returns. 
Laser heights above the ground, i.e., normalized heights or canopy heights, were computed 
by subtracting the obtained ground elevation from the corresponding laser measurements.  

Airborne-scanning LiDAR for the sub-study IV was with a Leica Geo-Systems Aeroscan 
system in 2003 during the North Carolina Floodplain Mapping Program (phase II). The pulse 
density of less than one per m2 was obtained. A LiDAR point cloud for an area of 40 km2 
was obtained from the USGS Earth Explorer (USGS 2012).  
 
4.4.2. Aerial Photography (III, IV) 
 
Aerial images used in the sub-studies III and IV consisted of 1 m spatial resolution color-
infrared (CIR) imagery and a color aerial imagery of red, green, and blue bands (RGB) with 
15 cm spatial resolution. Color-infrared imageries were acquired with a Multiple Intergraph 
Digital Mapping Camera (DMC) (Intergraph Corporation, Huntsville, AL, USA) system at 
an altitude of approximately 9000 m in the summers of 2010 (III) and 2012 (IV) under leaf-
on conditions. Images were captured simultaneously from four-pixel multispectral (MS) 
cameras with 30 mm lenses to produce red, green, blue, and NIR bands. The data sets were 
acquired by the National Agricultural Inventory Program (NAIP).  

Color aerial imagery of RGB had a very high spatial resolution of 15 cm. Data for ranges 
of red, green, and blue were acquired by the Sanborn Map Company Inc. (Colorado Springs, 
CO, USA) with a large-format Zeiss (Carl Zeiss AG, Oberkochen, Germany) / Intergraph 
DMC, at a flying altitude of about 1,500 m. The data acquisition was done in the winter of 
2010 with leaf-off conditions.  
 
4.4.3. Satellite images (V) 
 
Two different Terra/MODIS data time-series products were utilized in the sub-study V. 
These were the MOD09Q1 (ver. 5), that includes surface reflectance in red and NIR bands 
in 8-day periods. The spatial resolution of the data is 250 m (LPDAAC 2012a). The second 
data set was the MOD09A1 (ver. 5). This data set includes surface reflectance in 8-day 
periods with 500 m spatial resolution (LPDAAC 2012b). Further, 250 m resolution 16-day 
vegetation index data (LPDAAC 2012c) was obtained for the second vegetation layer of the 
Enhanced Vegetation Index (EVI). 
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4.5. Reference data sets 
 
4.5.1. Palokangas and Outokumpu areas (I, II, V) 
 
The field campaigns were carried out in May and early June of 2009, in the Palokangas area 
(I, II, IV), and in May of 2010 in the Outokumpu area (V). Timing of the field assessments 
was chosen the way that they were accomplished before elongation of the season’s needles. 
Accordingly, defoliation status of the trees represented the situation of the fall 2008 and 2009, 
respectively. The used sampling method in the Palokangas area was Adaptive cluster 
sampling (ACS; Thompson 1990), discussed in more detail in Talvitie et al. (2011). The 
method has an advantage for sporadic and aggregated phenomena, focusing on areas with the 
inventoried characteristics, i.e., defoliation by pine sawflies. In Outokumpu, a restricted ACS 
was used (Brown and Manly 1998). In this method, the total number of sampling plots is 
assigned a prior to the field campaign. Both of these methods consist of initial sample of plots 
and additional sampling plots, forming clusters, are established when the sampling criterion 
is met, i.e., plot level mean defoliation level of 20% or more. This is considered as a level of 
defoliation that already cause substantial decrease in radial growth of infested trees 
(Lyytikäinen-Saarenmaa et al. 2006). 

A total of 55 permanent sampling plots and 125 additional plots were established and 
inventoried in Palokangas (a total sample of 180 plots). The corresponding numbers in 
Outokumpu were 39 and 91, yielding 130 sampling plots. The Trimble Pro XH (Trimble 
Navigation Ltd., Sunnyvale, CA, USA) was used to locate centers of the plots. All the trees 
were located from the plot center by distance and azimuth to the tree. After the establishment, 
various tree- and stand-wise characteristics were assessed on the plots (Talvitie et al. 2011). 
The visual needle loss assessment was done for each tree. The defoliation intensity of a single 
tree was visually assessed from different directions, according to method by Eichhorn (1998). 
Intervals of 10% were used to classify the trees into needle loss classes.  

In addition, defoliation assessment over a larger area was performed in June 2010 (V). 
The assessment was done stand-wise at course level. Stand-wise defoliation level was 
visually assigned into two classes with the threshold of 20% of defoliation. The data consists 
of 87 Scots pine stands in vicinity of Palokangas (65 healthy and 22 defoliated) and 43 in 
Outokumpu (8 healthy, 35 damaged). 
 
4.5.2. Abisko (V) 
 
The field survey was performed during the last week of June of 2013. The sampling scheme 
was designed to represent the used MODIS satellite data. The size of the sample units was 
corresponding to the nominal extent of one pixel (250 m x 250 m). The sampling units were 
located with a Pocket LOOX N520 PDA (Fujitsu Siemens Computers, Darmstadt, Germany). 
The units were chosen subjectively to cover a large area and ensure even spatial distribution. 
The defoliation level was assessed visually for the sampling units and classified into two 
classes using a threshold value of 50% of average defoliation. Defoliation assessment was 
assumed generally accurate. Most of the birch sites were either heavily defoliated or nearly 
healthy. Eighty 250 m x 250 m sampling units were assessed, yielding 48 damaged and 32 
healthy units. 
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4.5.3. Linville river gorge area (III, IV) 
 
Due to a very complex topography, the study areas are mostly inaccessible.   Consequently, 
the reference data was created utilizing remote sensing in both of the sub-studies (III, IV; 
Figure 4). For the sub-study III, forested areas within the lower Linville River watershed 
areas were analyzed (about 57 km2). All the visible dead trees within the watershed were 
identified from the CIR imagery using the very high spatial resolution RGB imagery as a 
reference when needed. All together 9,881 dead trees were identified and located. The vast 
majority of the dead trees were assumed hemlocks as HWA was the only major damage 
agents present at the time of data acquisition. Generally, the detected dead trees were located 
in the upper canopy cover layers due to visibility. Potential gap size of 1977 individual dead 
trees was digitized, corresponding with 20% of all the detected dead trees. The areas within 
the surrounding dominating trees were estimated rather than the widths of the tree crowns. 
An area distribution of the canopy surfaces with bins of five m2 was created and generalized 
for all the dead trees to assess their occupied surface area.  

Testing and training data sets for the sub-study IV were also created by visual 
assessment of the CIR and RGB imageries. Corresponding pixels of the 3 x 3-image mosaic 
were chosen for the training and testing sets. A 200 m × 200 m systematic point network was 
for testing the accuracy of the created forest mask. Totaling of 1,080 pixels (3 m x 3 m) were 
classified into the forest or non-forest pixels (792 forest and 288, respectively). Separate data 
sets for train and evaluate the classification of forest cover were created. A sample of 7,925 
pixels was subjectively chosen for the data sets (5,701 for training and 2,224 for testing). 
These pixels could be classified correctly with low uncertainty into conifers, hardwood 
species, and dead trees. Additional canopy cover classes would have increased the level of 
uncertainty considerably.  
 
4.5.4. Introduced and native ranges of the hemlock woolly adelgid (VI) 
 
A reasonably high spatial resolution of 1 km2 was used in the ENM task to include other 
environmental factors, in addition to the climatic features. Consequently, high spatial 
accuracy was also a requirement for the species occurrence observations. Hemlock woolly 
adelgid occurrence observation records with at least three decimals in the geocoordinates 
were gathered from different sources. Some of the records were downloaded from the open 
data sources of Global Biodiversity Information Facility (GBIF) and iNaturalist. A small 
number of presence points were also georeferenced from HWA maps available online. 
However, the vast majority of the data was received from scientists and forest managers in 
North America. Totaling 4.219 HWA occurrence observation with high spatial accuracy and 
unique location were gathered form the eastern North America (Figure 5). With this 
information county-infestation map was also updated to the situation of 2018 (Figure 4). 
Occurrence observations on the Pacific Northwest and East Asia were obtained from GBIF, 
iNaturalist, and scientific publications. These observations were not utilized in the modeling 
efforts, but they were used in evaluation and as reference within native ranges (Figure 12B, 
C).  
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Figure 5. Hemlock wooly adelgid occurrence observation, MaxEnt background evaluation 
extent, and distribution of the eastern hemlock (little 1971) within the MaxEnt projection area.  
 
 
5. METHODOLOGICAL OVERVIEW 
 
 
5.1. Tree- and plot-wise Scots pine defoliation (I, II) 
 
5.1.1. Tree-level classification of defoliation (I) 
 
A digital surface model (DSM) is a 3D representation of the ground surface in non-vegetated 
terrain or aboveground features, including vegetation and buildings. In forestry, 3D 
representations of vegetation are often referred as CHMs. Individual tree detection (ITD) was 
achieved using watershed segmentation of a smoothened 0.5 m grid CHM (Hyyppä et al. 
1999, Yu et al. 2011). The resulting segments were verified with the trees on the plots and 
these data were combined. Segments including more than a single tree crown were excluded 
due to varying defoliation levels and overlapping canopy cover layers. Totaling of 701 
watershed segments were considered as single Scots pine crowns. The majority of the trees 
(n = 603) were mild to moderately defoliated (10%–30%). The ITD segment data was 
classified further into five classification arrangements for testing needle loss classification 
accuracy. The number of defoliation classes ranged from two to four in the classification 
schemes. Classification scheme DEF1 (two classes, threshold = 20% of defoliation) was 
assumed as the starting point and used as foundation for all the computations. The threshold 
values for the other schemes were 30% (DEF2), 30% and 60% (DEF3), 20% and 50% 
(DEF4), and 20%, 30%, and 40% (DEF5) of defoliation.  

LiDAR returns were extracted for each tree segment. Hits below 2 m were considered as 
ground or forest floor vegetation. Canopy heights were used to derive LiDAR features for 
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each tree. Only the first and only returns were used in the analysis due to the highest 
reflections and because they are less affected by intra-crown transmission losses (Korpela et 
al. 2010). The physics involved in the interactions between other LiDAR returns and canopy 
is more complicated. Furthermore, more uncertainties are related to later returns. Twenty-six 
laser point metrics were calculated from the canopy returns: maximum height (Hmax), mean 
height (Hmean), and standard deviation of heights (Hstd), penetration (pene), ten height 
percentiles (h10-h90), proportions of canopy returns at relative heights (p10-p90), and the 
mean return intensity (Int). The intensity was not calibrated. 

 
5.1.2. Plot-level classification of defoliation (II) 

 
The sampling plots were classified into classes of healthy and defoliated using a threshold of 
20% of mean defoliation. A novel approach was used in predicting defoliation level of forest 
stands. The prediction was done with airborne scanning LiDAR data, plots combining ITD 
and stand-based techniques at plot level. LiDAR features were not calculated for the entire 
sampling plots, but only for the particular area, within the returns are reflected from the upper 
forest canopy (50% and above). Other factors may hinder accurate prediction of defoliation, 
such as overlapping branches and understory vegetation. Forest canopy cover is known to 
influence LiDAR penetration, which should be taken into account in area-based projections 
of defoliation. The area of forest canopy cover was delineated with an ITD procedure, similar 
to that of in the sub-study I, i.e., using watershed segmentation from a smoothed CHM. To 
minimize the influence of these factors, only LiDAR returns reflected below the mean plot 
height were excluded, corresponding to 50% of the Hmax. This stratification by mid-canopy 
was unique in relation to use of LiDAR in forest monitoring. The resulting canopy cover 
segments consisted returns from the crowns in the upper canopy cover layers (Figure 6). 
After the segmentation, LiDAR point clouds were extracted separately for each canopy cover 
segment. Similar to the sub-study I, only first and only returns were used. In addition to 
Hmax, Hmean, and Hstd, p60-p90 were computed. The LiDAR metrics were linked to the 
field inventory data by using the plot center coordinates located in the field. 

 
Figure 6. Illustration of the LiDAR data lineation and canopy cover surface creation for the 
analysis of plot-wise defoliation A) from above and B) from the side. LiDAR returns above the 
top 50 % of the area based maximum height (Hmax) of the black trees are included into the 
analysis. Gray trees represent the suppressed trees that were excluded from the analysis. 
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5.1.3. Effect of pulse density (I, II) 
 
The high pulse density of the LiDAR data set used in the sub-studies I and II (~20 pulses/m2) 
facilitated simulation of influence of varying pulse densities on the classification accuracy. 
In both of the sub-studies, the original segments were used, since the pulse density may not 
influence the ITD performance (Kaartinen et al. 2012). The original LiDAR data was thinned 
with simple random sampling procedure at 10% intervals, yielding 10 varying pulse densities 
from two to 20 pulses/m2. Densities of two pulses/m2 was assumed as minimum for an ITD 
method (e.g., Kaartinen et al. 2012). For the sub-study II, additional data sets for pulse 
densities of 1 and 0.5 pulses/m2 were created. Laser metrics and classifications were 
conducted with these thinned data. The same metrics were used for the thinned data sets. The 
thinning, metric calculation, and classifications were repeated 10 times for each data.  
 
5.1.4. Random forest (I, II) 
 
In a previous study to the sub-studies I and II, Kantola et al. (2010) tested three different 
methods for tree-level classification of defoliation: random forest, logistic regression, and 
most similar neighbor search. All the methods were proven quite suitable for the task. 
However, best accuracies were obtained with random forest and it was selected for the sub-
studies II and III to classify tree- and plot-level Scot pine defoliation. Random forest is a 
nearest neighbor approach by Breiman (2001). The method has shown to be robust and 
flexible in prediction of forest characteristics (Hudak et al. 2008; Latifi et al. 2010). In 
addition to classification, random forest can be used for feature selection (Cutler et al. 2007). 
The method has been increasingly used in various airborne scanning LiDAR applications to 
predict forest characteristics (e.g., Falkowski et al. 2009, Korpela et al. 2010; Yu et al. 2011), 
including defoliation (Kantola et al. 2010, 2011).  

In Random Forest, several regression or classification trees are generated for training and 
testing (see Crookston and Finley 2012; Falkowski et al. 2010 for description). Several 
classification or regression trees (CART) are created and the prediction is made by averaging 
the results of each tree. The data is split at all nodes, until the data at leaf nodes contain a 
number of samples that is less than a preselected value, or the sum of the squares of the 
distances to the mean of the respective group fall below the threshold. Nearness is defined 
based upon the probability of observations to end up to the same terminal node during the 
classification. The obtained output is the percent increment of misclassification rate 
compared to the out-of-bag rate. Multiple regression or classification trees are computed 
recreating sets of two thirds and one third for training and testing, respectively, for each tree. 

Although random forest is considered robust, the set of variables was kept low in order 
to minimize over-fitting, which may occur, particularly with noisy data, as in case of visual 
assessment of tree defoliation. In the sub-studies, tree- (I) and plot- (II) specific LiDAR 
metrics were used to predict defoliation intensity. Two thousand CART trees were fitted for 
each random forest run. Further, to reduce impact of randomness, the models were fitted 10 
times for the sub-study I and 50 times for the sub-study II. The results were the mean values 
of these repetitions. The results were evaluated with classification accuracies and kappa-
values (Cohen 1960). The R statistical computing environment (2018) and yaImpute library 
(Crookston and Finley 2012) were applied in the random forest searches. In forestry 
applications, stable results have been obtained assigning the number of neighbors (k) between 
two and seven. The smallest bias is obtained with k=1. Parameter k values of three (I) and 
one (II) were used.   
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5.2. Landscape-level hemlock mortality (III, IV) 
 
5.2.1. Incorporating topographic information to the dead tree observations (III) 
 
Topographic features of aspect and slope were derived from the DEM raster in order to 
investigate topography in relation to the tree mortality. The DEM raster was classified into 
elevation classes by every 100 m, aspects by cardinal and ordinal compass directions, and 
slopes by every 10 degrees. The three topographic features were extracted to each dead tree 
separately and density of dead trees was calculated for each topography class.  

Euclidean distances from all of the dead trees to the banks of the Linville River were 
measured in order to investigate the tree mortality in the riparian zone. Euclidean distance 
was considered to describe the functional grain of HWA regarding its perception of distance 
within the complex landscape better than the ground distances along the terrain. A sample of 
99 dead trees (0.1%) was taken in order to contrast the two measures of distance. The 
distances were observed to differ from 9.1 m to 1,304.3 m. Percentage of the differences 
varied between 0.02% and 51.9%. However, the mean difference between the distances was 
only 10.1%. 
 
5.2.2. Spatial pattern analysis (III) 
 
An overall spatial pattern of the hemlock mortality was investigated employing Ripley’s K-
function (Ripley 1976, 1977, 1981). This second order statistic is based upon the distribution 
of pairs of points and it tests the deviation from complete spatial randomness (CSR). 
Observed point patterns can be compared at different spatial scales with point patterns 
generated by known processes, such as a homogenous Poisson process (Bailey and Gatrell 
1995). Ripley's K-function detects pattern over a range of spatial scales, which facilitates 
detection of mixed patterns as well (Wiegand and Moloney 2004). However, the method is 
regarded to detect only large-scale of clustering (Dale 1999). Description of the method can 
be read in detail from e.g., Goreaud and Pélissier (2003) or Wiegand and Moloney (2004). 
Ripley’s K-function has been utilized before in forest research (e.g., Zenner and Hibbs 2000; 
Youngblood et al. 2004; Wolf 2005), including tree mortality (Aakala et al. 2006, 2012), and 
monitoring of forest pests (Kelly and Meentemeyer 2002; Liu et al. 2007; Lynch and 
Moorcroft 2008).  

A grid of one km2 was created and each grid cell represented a sub-area for the analysis 
(section 6.2.; Figure 7).  The sub-areas bordering the watershed were clipped to the perimeter. 
The analysis was conducted to the sub-areas having at least 10 dead trees. The linearized 
square root transformation of the K-function, the L-function, was employed in the analysis. 
The L-function is easier to interpret, and the variance is stabilized. Under the CSR, the L-
function equivalents zero (Goreaud and Pélissier 2003). Statistical significance was evaluated 
with Monte Carlo simulation (95% confidence level) (Haase 1995; Wiegand and Moloney 
2004). Spatial scales from 1 m to 250 m with 1 m intervals were analyzed. The R statistical 
computing environment (The R Project 2018), Spatstat library (Baddeley and Turner 2005), 
and Translation correction (Ohser 1983) were used in the implementation. 

 
5.2.3. Mapping hemlock mortality within forest landscapes (IV) 
 
A forest mask was created first to exclude non-forest areas and deep shadows from the study 
extent. The forest mast was created with decision tree classification. Without this step, 
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surface of dead trees would be a great overestimation resulting from the similar spectral 
reflectance associated with certain non-forested objects, including bare ground and 
roadways. Furthermore, number of cover classes were kept in minimum to improve the 
classification accuracy. In the second phase, the remaining forest canopy cover was classified 
with Support Vector Machine (SVM) classification. Accuracies of the both phases were 
evaluated with classification accuracies and Cohen’s kappa-values (Cohen 1960). The 
ArcGIS (), FUSION (FUSION/LDV, USDA Forest Service, Seattle, WA, USA; McGaughey 
2009), and ENVI (EXELISVIS Inc., Boulder, CO, USA) were employed in the analysis.  
 
5.2.4. Forest mask creation (IV) 
 
A CHM and NDVI layer calculated form the CIR imagery were used in the forest mask 
creation. The CHM was derived from the LiDAR data set. The highest returns of each grid 
cell were assigned as local maxima. The ground elevation was computed with a ground filter 
algorithm (see Kraus and Pfeifer 1998). Laser heights above the ground were computed by 
subtracting ground level from the equivalent local maxima. The CHM with a spatial 
resolution of 3 m was smoothened with a 3 × 3 pixel median filter.  

Decision-tree classification is a non-parametric method and regarded as a practical 
approach for land-cover classification (Tooke et al. 2009). In the procedure, a data set is 
repetitively partitioned into smaller subdivisions based upon tests defined at each node 
(Friedl and Brodley 1997). The method has no required assumptions on the distribution of a 
data, and may provide improved accuracies compared to, e.g., maximum likelihood or neural 
networks (Mahesh and Mather 2003, Tooke et al. 2009). The method can deal with missing 
values and facilitates use of numerical and categorical inputs (Friedl and Brodley 1997; 
Mahesh and Mather 2003). The method is flexible and enables processing of non-linear 
relationships (Mahesh and Mather 2003). Suitable threshold values were search through 
testing. CHM heights greater than 1.2 m were considered objects above the ground, including 
vegetation. This decision was acceptable since the goal was to simply separate vegetation 
from the ground. A small NDVI threshold value of 0.05 was determined to exclude deep 
shadows, water, and other non-vegetation elements, but not the dead trees, also having a 
relatively low NDVI values. The resulting classification layer was extracted and filtered to 
smoothen the forest mask, using a neighborhood-majority-filter.  

 
5.2.5. Forest cover classification (IV) 
 
The extracted area of the forest mask was utilized in the second phase, i.e., classification of 
the forest cover. The aim of the second phase was to detect dead hemlocks and living conifers, 
i.e., potential hemlock patches from hardwood species. Support vector machines is a group 
of supervised non-parametric learning techniques (Cortes and Vapnik 1995). These 
classification techniques are not as well-known as many other classification methods. The 
performance of SVM can outcompete, however, those of other classification procedures 
(Gualtieri and Cromp 1999; Mountrakis et al. 2011). The SVMs aim to define the location of 
optimal decision boundaries that separate classes and results in a hyperplane (Vapnik 1995). 
The nearest observations to the hyperplane are determining the margin, and thus called the 
support vectors (Pal and Mather 2005). Kernel functions enable mapping non-linear data into 
a higher dimensional space and a linear surface that separates two classes is searched for 
(Gualtieri and Cromp 1999). SVMs are regarded robust to noise and high-dimensional data. 
Further, it is seen suitable for remote sensing procedures with restricted training data 
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(Mantero et al. 2005; Mountrakis et al. 2011). Support vector machines has been successfully 
utilized in ecological applications of remote sensing (e.g., Gualtieri and Cromp 1999; Huang 
et al. 2008; Lardeux et al. 2009), including tree species identification (Heikkinen et al. 2010). 
Radial basis function (RBF) kernels are frequently utilized in various remote sensing-based 
SVM applications (Kavzoglu and Colkesen 2009). The RBF kernel was employed in the 
classification. The used layers are the spectral bands of red, green, NIR, and NDVI. The 
LiDAR data was not utilized in this step since it was too outdated for this task. 
 
 
5.3. Insect-induced defoliation in Fennoscandia (V) 
 
5.3.1. Overall workflow and vegetation index data 
 
An overall workflow for the sub-study V consisted of four steps. These include (1) 
computation of vegetation indices from the extracted reflectances of red and near infrared 
(NIR) of the MOD09Q1 data, (2) creation and processing of time-series from the vegetation 
indices to search for a metric representing the forests health condition during a season, (3) 
calculation of mean and standard deviation of healthy conditions, and (4) classification of 
MODIS pixels based upon z-scores.  

MODIS data with the highest resolution of 250 m only was used due to level of landscape 
fragmentation in eastern Finland. Despite the popularity, NDVI can reach saturation in areas 
of high biomass, e.g., forests (Huete et al. 1997). This may limit the usability of the index. 
Therefore, use of Enhanced Vegetation Index (EVI), 2-band Enhanced Vegetation Index 
(EVI2), and the Wide Dynamic Range Vegetation Index (WDRVI) were also tested. These 
indices also are calculated from the channels of red and NIR. Enhanced Vegetation Index is 
a two-band version of EVI, which was developed to boost the signal from vegetation in areas 
of high biomass (Huete et al. 2002; Jiang et al. 2008). Wide Dynamic Range Vegetation 
Index was developed for high biomass areas as well (Gitelson 2004). This index has been 
previously used to detect Scots pine defoliation with similar results to NDVI (Eklundh et al. 
2009). Initial testing indicated that defoliation by pine sawflies using EVI (LPDAAC 2012c) 
or WDRVI did not gain high accuracies, and thus only NDVI and EVI2 were studied further.   

 
5.3.2. Creation and processing of time-series  

 
TIMESAT 3.2 was used to create time-series of NDVI and EVI2 with 8-day temporal 
resolution for the years 2001−2011 (Jönsson and Eklundh 2002, 2004). Seasonality 
parameters, such as beginning and end of a growing season were extracted. Noise in the data 
was reduced by fitting smooth functions to the time-series of data. A seasonality parameter 
of season max comprised the season’s maximum value of the fitted function and was used to 
define forest condition of each season. The season max was computed from weighted data of 
the complete growing season. This way the data it is not very sensitive to noise or outliers. 
The weights were assigned to each data value based upon MODIS data quality. The quality 
was based upon quality assurance (QA) flags from the data sets of MOD09Q1 and 
MOD09A1. The QA flags indicate, e.g., disturbance, cloudiness, or low solar zenith angle. 
Potential outliers were removed and no adaptation to the upper envelopes were performed. 
All three fitting functions of Savitzky-Golay filtering, asymmetric Gaussian, and double 
logistic functions were tested. Gaussian and logistic functions result in smooth curves and 
only few parameters have to be set. Savitzky-Golay fitted function follows data sets more 
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directly and may be better for detecting smaller deviations. However, the fitted function using 
a higher number of parameters requires more work. Further, this function is not as easy to 
generalize to other regions as the other two. 
 
5.3.3. Z-scores and decision criteria 
 
Disturbance detection was based upon z-scores. Studies on employing z-scores in remote 
sensing of forest is scarce. However, the method has been successfully used before in drought 
monitoring (Peters et al. 2002). The method can be generalized to other areas and is not 
dependent on absolute thresholds for damage. Z-scores from data with different means, 
ranges, and standard deviations can be combined. Z-score is s number of standard deviations 
from the mean value of the data, i.e., season max. The mean and standard deviation of the 
season max are estimated for each pixel under reference conditions (i.e., healthy conditions) 
before z-scores can be computed. The reference conditions are unique for each pixel. High 
vegetation index values were assumed to correspond to healthy conditions. The reference 
condition for each pixel was computed accordingly: (1) the number of years with the highest 
season max values that gives the highest detection accuracy was identified, and (2) the mean 
and standard deviation for season max were estimated based on the identified number of 
years.  

The z-score method development was done with the field data from the Outokumpu area. 
Palokangas field data included a longer time-series of defoliation assessment than the 
Outokumpu field data. However, the duration of the common pine sawfly outbreak in the 
Palokangas area extended as far back as the entire MODIS time-series data, until the 
beginning of this century. In Outokumpu, only the sampling plots located in forest stands 
covering nearly an entire MODIS pixel were included, resulting in 10 sampling plots. 
Separate assessments of defoliation were considered as independent observations, i.e., every 
sampling plot gave three values between 2009 and 2011, resulting in 30 observations. The 
observations were classified into two classes of damaged and healthy, with the threshold 
value of 20% of defoliation.  

Z‑scores were computed for each observation. Receiver Operating Characteristics (ROC) 
graphs were utilized to define the number of years comprising the reference conditions and 
to assign z-score thresholds for the disturbance. In the ROC graph, the ratio of damaged 
pixels correctly assigned as damaged (True Positive Rate, TPR) is plotted against the ratio of 
healthy pixels assigned as damaged, i.e., false alarm (False Positive Rate, FPR) (Fawcett 
2006).  The ROC curves were created by calculating TPRs and FPRs for a range of z-score 
thresholds. The ROC curves were calculated for all the observation, from the lowest to the 
highest z-score, with percentage increases of 0.1. To define the number of years of the 
reference conditions, z-scores were computed with varying number of years. It was assumed 
that the reference conditions should be based on a high number of years to obtain reliable 
metrics. However, including additional years increases the risk of including years of previous 
disturbance, affecting detection accuracy. Four years was assumed as the minimum number 
of years for reliable reference. ROC curves with additional years were created until the 
accuracy begun to decrease. In case of the European pine sawfly outbreak in Outokumpu, the 
maximum number of healthy years was seven (2001−2007). The z-score value on the ROC 
curve closest to point (1, 0), i.e., closest to the perfect classification was chosen as a threshold. 
This approach is objective and can be used in automated systems. The classification method 
was developed with EVI2 data and applied to NDVI data in order to compare the performance 
of the two vegetation indices. After defining the reference conditions and a z-score threshold 



65 
 

value, z-scores were computed for each pixel for each season separately. According to the 
threshold, each observation was classified as damaged or healthy. The method was evaluated 
in Outokumpu, with a shorter history of defoliation and in Ilomantsi (around Palokangas 
area), where the infestation had persisted for entire time-series of MODIS data. The 
evaluation data consisted of the stand level data assessed in June 2010. To test generalization, 
the same method was also applied to the Abisko study area. Time-series of EVI2 for the years 
2001–2013 was created. Instead of using the same threshold z-scores as in Eastern Finland, 
new ROC graphs were computed. In Abisko, no separate testing data was used.  
 
 
5.4. Species distribution modeling (VI) 
 
5.4.1. Environmental predictors and future climate change scenarios 
 
Environmental factors predicting habitat suitability for HWA were chosen amongst a large 
set of 119 environmental features at 1 km spatial resolution. Seventy-nine climatic variables, 
16 topographic variables, 12 soil physical properties, and 12 soil suborders were screened for 
the niche models.   

Minimum temperature is the most studied factor affecting HWA survival (McClure and 
Cheah 1999; Parker et al. 1999; Skinner et al. 2003). It is also regarded as the most limiting 
factor for HWA range. Cold temperatures from −25°C have been observed to affect HWA 
survival (Parker et al. 1999; Skinner et al. 2003). Temperature of −35°C was observed as a 
threshold of HWA survival. Cold tolerance, however, may be affected by geographic location 
and season (Skinner et al. 2003). Furthermore, long cold periods may influence the tolerance 
(Skinner et al. 2003). Although an increasing temperature often have positive effects on 
insect performance, high temperatures may restrict species distribution. Species typically 
have a range of temperatures supporting their survival (Speight et al. 2008). Hemlock wooly 
adelgid have been observed to tolerate extreme temperatures over 40°C within the native 
range in Japan (McClure and Cheah 1999). However, other studies indicate that heat-
exposure and high temperatures over 30°C may threat species survival (Mech 2015; Sussky 
and Elkinton 2015).  

There is not much available information in the influence of precipitation or humidity on 
HWA. Precipitation may have both direct and indirect effects on the species (Speight et al. 
2008; Jamieson et al. 2012). Rainfall may affect HWA by host plant distribution and quality 
(Evans and Gregoire 2007; Speight et al. 2008). An example of direct impacts is insect 
dehydration and mortality resulting from lack of rain (Jamieson et al. 2012). Elevation 
influence performance of insect pests (Niemelä et al. 1987; Hodkinson 2005; Kharuk et al. 
2007), including HWA and its host species (Trotter and Shields 2009; Narayanaraj et al. 
2010; sub-study III). Effects of elevation, however, are mainly indirect. Species may mainly 
respond to associated changes in temperature, oxygen levels, and air pressure (Peterson et al. 
2011). Topography and soil characteristics and are regarded important modifiers of climatic 
conditions, such as soil water holding capacity or topography related sun exposure, in future 
climate projections (Ehrlén and Morris 2015). Hemlock woolly adelgid is dependent on 
hemlocks as host species, the interactions of soil properties and topography with the 
prevailing climate can be important for identifying environmental conditions suitable for 
hemlock, and further for HWA. Soil characteristics, including the distribution of soil 
suborders, have been previously associated with hemlocks and were observed to overlap with 
global Tsuga spp. distributions (Burns and Honkala 1990; Farjon 1990). 
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5.4.2. MaxEnt niche model calibration and feature selection 
 
MaxEnt algorithm (Phillips et al. 2006) was chosen for model calibration after preliminary 
trials of several popular algorithms. MaxEnt is regarded as robust and it is well documented 
(see e.g., Elith et al. 2011). The algorithm has been widely employed in species distribution 
modeling tasks (Merow et al. 2013), including projections of invasive species within their 
introduced ranges (Roura-Pascual et al. 2009; Gormley et al. 2011; Barbosa et al. 2012; Zhu 
et al. 2012; Kumar et al. 2014). MaxEnt supports features of six types of mathematical 
transformations of the original predictors. Models can be calibrated with several features or 
produce simpler models with only few features (Merow et al. 2013). While all the features 
are often chosen, a modified version may be more suitable in many cases (Merow et al. 2013). 
Simpler models using only hinge features may be more appropriate in case of range-shifting 
species (Elith et al. 2010).  

In order to reduce sample bias and spatial autocorrelation, the HWA occurrence 
observation data was spatially thinned to 10 km using a spatial filter (Boria et al. 2014). 
MaxEnt niche models were calibrated with the introduced range HWA occurrence 
observations using R “dismo” package (Hijmans et al. 2016). About 10.000 pseudoabsence 
points were created within the background evaluation extent. These points were buffered at 
20 km from the presence points. Pseudoabsence-based versions of the True Skill Statistic and 
Area under the Curve statistic (AUC) for evaluation were calculated using the 
“PresenceAbsence” package by Freeman and Moisen (2008). In order to reduce model 
complexity and overfitting, the MaxEnt beta regularization was adjusted to two and only 
quadratic and hinge features were used (Warren and Seifert 2011; Tracy et al. 2018). MaxEnt 
models were calibrated to binary presence/absence format using a threshold at maximum 
True Skill Statistic (Liu et al. 2013). 

To create relatively small subsets of environmental factors predicting HWA habitat 
suitability in the MaxEnt niche models, all the predictors (n=119) described in section 5.4.1., 
were screened using the random subset feature selection algorithm (RSFSA) by Tracy et al. 
(2018). In the feature selection method, hundreds of random subsets of the potential 
environmental predictors of pre-specified sizes are created. Inter-correlated variables were 
restricted from the same subsets using a correlation filter of r = |0.7| as a maximum correlation 
(Dormann et al. 2013). These random feature subsets were then ranked in performance by 
subset wrappers of AUC and/or the corrected Akaike information Criterion (AICc). 
Performance of the subsets with varying number of variables were compared to select an 
optimal subset size. The optimal number of variables were that of beyond no significant 
improvements in AUC, AICc, and overfitting values was observed (Warren and Seifert 
2011). Statistical performance between RSFSA-selected and random MaxEnt models was 
then evaluated. This was done by generating and ranking 3000 models for the selected subset 
size using held out model training and testing data (Tracy et al. 2018). Instead of one final 
MaxEnt models, statistically 12 best RSFSA-selected models were chosen, binary calibrated, 
and combined by frequency consensus forming feature subset ensemble (FSE) models. 
  
5.4.3. MaxEnt projections and future range shifts 
 
The 12 final MaxEnt models were projected over a wider extent in eastern North America 
(Figure 12A, section 4.3.5.). The FSE models were also reverse-cast projected to the known 
native ranges of East Asia and western North America (Figures 12B-C). To assess the 
MaxEnt niche model performance that were generated within the introduced range and 



67 
 

projected into the native range, sensitivity statistic was used (Jiménez-Valverde et al. 2011); 
a sensitivity reverse transferability index (sensitivity native range - sensitivity introduced 
range; Heikkinen et al. 2012) was calculated. This method does not require use of 
pseudoabsence data. The existing presence data within most of the native HWA range, in the 
continental regions of East Asia was not available. This patter would have made use of 
pseudoabsence data more prone to error.  

Future projections for the potential HWA range were only done for the introduced range 
in the eastern North America, where the species is causing substantial damage. The final FSE 
models were projected onto four different climate scenarios based on the Hadley Centre’s 
HadGEM2-ES general circulation model with low and high representative concentration 
pathways for CO2 emissions (RCP 2.6 and RCP 8.5) for the years 2050 (2050he26 and 
2050he85) and 2070 (2070he26 and 2070he85). In addition to future range maps, change 
detection maps between the contemporary climate and the future climate scenarios were 
created (Figures 13A-D). The MaxEnt FSE projection under historical climate was subtracted 
from each of the four future MaxEnt FSE projections. The resulting maps demonstrate the 
change in the number of models projecting suitable habitat for HWA in any given location 
within the projection area. Furthermore, each of the 12 MaxEnt models under contemporary 
climate was paired with the future climate models and the north/south and east/west shifts in 
centroids were computed. Mean elevations within historical and future climate models were 
also compared. 
 
 
6. RESULTS  
 
 
6.1. Classification of pine defoliation by the common pine sawfly (I, II) 
 
6.1.1. Tree-level classification (I) 
 
Random forest classification was ran first for the scheme of DEF1 (two classes, threshold = 
20% of defoliation) with all the 26 laser metrics to derive the scaled importance of the 
metrics. Mean return intensity was observed to be the most powerful predictor. However, 
because this metrics was not calibrated it was excluded from the following analysis. It is 
anticipated that dominant Scots pines are often more severely defoliated by the common pine 
sawfly than suppressed trees (section 4.2.). To classify defoliation level instead of tree size, 
Hmax and Hmean were also eliminated. Based upon the preliminary runs, the three most 
important features were h10, Hstd, and p70. These three metrics were used in all further 
classifications. The highest overall accuracies for defoliation classification were obtained 
with the schemes DEF2 (86.5%, SD ±6.1%) and DEF3 (85.4%, SD ±4.6%). As assumed, 
DEF5 with a highest number of defoliation classes (four) gave the lowest overall accuracy 
(71.0%, SD ±10.1%). In general, classification of healthier trees was more successful. 
Nevertheless, most of the trees were classified at least to an adjacent class. In case of the 
thinned LiDAR data, classifications were done only for the classification scheme DEF1. 
Random forest classification performance did not seem to be sensitive to the pulse density.  
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6.1.2. Plot-level classification (II) 
 
Approximately a half of the sampling plots (n = 106) were healthy and the other half 
defoliated. Inspection of the LiDAR Hmean and Hmax showed some differences between 
these groups. The preliminary predictors were chosen based on available research (e.g., 
Solberg et al. 2006; Kantola et al. 2010, 2011; Solberg 2010), correlation coefficients, and 
preliminary modeling results (i.e., based upon biological plausibility and statistical 
significance). On average, trees on the defoliated plots were taller than those of on healthy 
ones. In order to minimize the influence of stand structure, potential explanatory features 
having a high correlation with tree size were excluded, i.e., Hmean and Hmax. Percentages 
of the LiDAR returns from the upper canopy (p60, p70, p80, and p90) are relative features 
and cannot be directly associated with the tree size. The same metrics were also identified as 
eligible classifiers for pine defoliation. The mean values varied significantly in Student’s t-
test between the two defoliation classes (p = 0.00); on healthy plots, a higher number of 
LiDAR returns was reflected from the upper canopy.  

Based on the preliminary random forest runs, the most important classifiers were 
proportions of the upper-canopy LiDAR returns of p80 and p90. These LiDAR metrics were 
used in the further analysis. Defoliated plots were classified with an accuracy of 84.3% 
(kappa = 0.68). The same metrics were used in examining influence of LiDAR pulse density 
in assessment of pot-level defoliation. The classification result was not very sensitive to the 
pulse density, ranging seemingly randomly from 77.1% to 89.3%.  
 
 
6.2. Landscape-level hemlock mortality (III, IV) 
 
6.2.1. Effect of topography on hemlock mortality (III) 
 
Totaling of 9,881 dead trees were identified within the watershed (Figure 7A). The vast 
majority of the trees was found in the northern part of the area, as well as reasonable nearby 
the river. The digitized canopy surface areas for potential gaps of the 1977 dead trees ranged 
from three m2 to 88 m2 (mean of 36 m2), with a positively skewed frequency distribution. 
When the gap size distribution was generalized to the whole dead tree population, a canopy 
surface area of 7.2 ha was estimated, corresponding 0.1% of the investigated areas within the 
watershed.  

There is a drastic North-South directional difference (~1000 m) in elevation within the 
area. The slope angles varied from flat (0 degrees) to very steep slopes of 80 degrees, facing 
all the directions. Distributions of topographic features of the dead trees differed from those 
of the whole study area (Figure 8). Dead trees were the most abundant in the high elevations 
of 900 - 1000 m and 1000.1 - 1100 m, as well as on slopes to north and northwest. Not distinct 
pattern for slope could be detected, however, a mild trend of increasing density along with 
steepening slope. Noteworthy is that much of the terrain in the area is on mild to moderate 
slope. A vast majority of the tree mortality occurred close to the Linville River; with distances 
ranging from zero to 2,760 m (Figure 9). Twenty five percent of the cumulative distribution 
of dead trees were located less than 60 m from the riverbanks (50% and 75% of were met at 
94 m and 577 m, respectively). 

Spatial pattern of the dead trees was analyzed for 54 sub-areas (Figure 7B). The spatial 
pattern was clustered at all spatial scales from one to 250 m in 36 sub-areas and random at 
all the scales in three (Figure 7C). Mixed spatial pattern, varying between random and 
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clustered, was detected in 15 sub-areas. No dispersed (even) pattern was observed. Clustered 
pattern of dead trees was mainly observed on higher elevations and in the proximity of the 
stream. The number of dead trees within the one km2 sub-areas ranged from zero to 1192 
(Figure 7D). 
 

 
Figure 7. A) Identified dead trees within the Lower Linville River watershed, B) Subdivisions 
for the Ripley’s K analysis, C) Spatial pattern within the subdivisions, and D) the related dead 
tree density.  
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Figure 8. Frequency distributions related to topographic features of elevation, aspect, and 
slope in relation to A) density of dead trees within the study area, and B) for the whole study 
area.    

 
Figure 9. A) Distribution of distances of the detected dead trees in the Lover Linville River 
Watershed, and B) A cumulative distribution of the distances of the dead trees. Black solid 
and dashed lines represent threshold distances of 25% (60 m), 50% (194 m), and 75% (577 
m) of the cumulative distribution. 
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6.2.2. Mapping hemlock mortality within forest landscapes (IV) 
 

The forested area was extracted within the extent of the LiDAR point cloud. The obtained 
classification accuracy was 93.5% (κ = 0.84). The resulting forest canopy cover, totaling 30.2 
km2, represented 76.9% of the classified area. The forest canopy cover was classified into 
dead trees, conifers, and hardwood with an overall classification accuracy of 98.1% (κ = 
0.96).  

Coverage by broadleaved species was the greatest of the classes, over 55% of the total 
classified area. Conifers occupied 42.6%, and dead trees 2.1% of the area. Dead trees 
represented over 0.6 km2 of the forest canopy cover and conifers covered 12.9 km2. The 
resulting classification image linked with a DTM showed that coniferous species were mostly 
located in drainages and on northern and western slopes (Fig. 10). Dead trees were mostly 
aggregated either in the proximity of the river, along drainages, or at higher elevations. 

 
Figure 10. Classification image combined with digital elevation model at the Linville River 
Gorge. Classified conifer patches show as green and dead trees as red.   
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6.3. Insect-induced defoliation in Fennoscandia (V) 
 
Five years was chosen as the number of years for the reference conditions. The ROC curve 
for EVI2 data resulted in an optimal z-score threshold of –2.9. With this z-score threshold, 
50% of the damaged observations were correctly detected with no misclassification of 
healthy observations. The method was also tested with levels of 15% and 20% of defoliation. 
The results indicated that the detection accuracy was not highly affected by the used 
defoliation threshold. The ROC curves of the NDVI data showed a zigzag pattern. This 
inhibited selection of the number of years for reference conditions, as well as optimal z-score 
threshold. Because use of NDVI also resulted in extensive misclassification of healthy plots 
with low TPR rate, EVI2 was assumed to outcompete NDVI in this sub-study. However, the 
preference may depend on the goals of a monitoring task.  

Evaluation was done for the analysis with EVI2 data only. In Outokumpu, 50% of the 
defoliated stands used in the evaluation were detected with a misclassification rate of 22%. 
Only 27% of the damaged stands were detected (misclassification rate of 54%) in Ilomantsi. 
To demonstrate the ability to tailor the method according the purpose, the z-score threshold 
was adjusted. A higher threshold (z = –2.1) was applied. This resulted in misclassification of 
the healthy stands of 50% and 35% for training and testing data set respectively, in 
Outokumpu. In Ilomantsi, the corresponding rates were 46% and 70%. In Abisko, six years 
was assigned as a number of years for reference conditions with the z-score threshold value 
of -6.0. The point closest to (0, 1) suggested a detection rate of 75% with a misclassification 
of healthy sampling units of 19%.  
 
 
6.4. Projecting potential distribution of the hemlock woolly adelgid (VI) 
 
6.4.1. Feature selection for the MaxEnt niche models 
 
The random subset feature selection algorithm showed that only minimal gain in AUC, AICc, 
and/or overfitting was achieved in the MaxEnt niche models for HWA using subsets of more 
than six out of 119 environmental predictors (Figure 11A-C). Maxent models with subsets of 
six variables, selected based upon AUC, performed significantly better regarding to AUC, 
AICc, and overfitting than randomly chose six-variable models (Figure 11D-F). Forty-two 
variables out of the original 119 were used in the top 12 six-variable MaxEnt models (Table 
2). Nineteen of these variables were used more than once. From one to three of the variables 
in each model were climatic factors enabling future climate projections. Out of the selected 
variables, 41.7% were edaphic indices, 37.3% climatic indices, and 20.8% topographic 
indices. The edaphic indices included 25% soil properties (e.g., silt % on top soil from 0-5 
cm), and 16.7% soil taxonomy indices (e.g., % of Ochrepts suborder per 1 km2 pixel). The 
evapotranspiration layers (actual and potential evapotranspiration: AET-PET) were the most 
often used climatic predictors (15.2%). In addition to these climatic predictors, monthly 
temperature/precipitation indices (13.8%), and Bioclim indices (8.3%). The six top ranked 
variables by permutation importance and frequency of appearance in the 12 models were: (1) 
Mean November PET; (2) Slope; (3) Inceptisols Order Ochrepts %; (4) Silt %, 5cm; (5) 
Inceptisols Order Udepts %, and (6) Mean February maximum temperature (Table 2). Eight 
out of the 12 top ranked climatic predictors were from the winter season. The variable 
response curves indicated that intermediate levels of November PET, February maximum 



73 
 

temperatures, deeper slopes, and higher percent of Ochrepts and Udepts soils were optimal 
for HWA. Furthermore, suitability of silt percent of the top soil to 5 cm peaked at about 45%. 

 
Figure 11. Evaluation statistics for the HWA MaxEnt models (mean ± SD) of AUC (A, D), AICc 
(B, E), and (overfitting; C, F). The statistics are computed for top ten models, based upon 
AUC, AICc, and 10 best random subsets out of 250 (A-C). Top 250 six-variable subsets of 
3,000, based upon AUC or AICc, and top 300 out of 3000 random six-variable subsets (D-F). 
Means with an asterisk are significantly better than random models (P < 0.05; Welch t test 
with Holm correction, preceded by significant Welch ANOVA test, P < 0.05). 
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Table 2. MaxEnt model variable permutation importance, ranking, and number of models used 
in for 42 of 119 variables that we used in the top 12 six-variable hemlock woolly adelgid 
models, selected with the random subset feature selection algorithm. 
 

Variable 
MaxEnt Model 

Permutation Importance, 
Mean ± SD (number of 

models)  

Ranking by 
Mean 

Permutation 
Importanceb 

Mean November PET* 43.4 ± 4.8 (4) 1 
Slope 33.4 ± 6.4 (4) 2 
Inceptisols Order Ochrepts 19.4 ± 7.1 (4) 3 
Silt %, 5 cm 12.7 ± 3.3 (5) 4 
Inceptisols Order Udepts 44.3 ± 8.9 (2) 5 
Mean February maximum temperature 40.2 ± 5.4 (2) 6 
Coarse Fragments, 5cm 35.5 ± 5.2 (2) 7 
Ph, 5 cm 19.5 ± 7.4 (2) 8 
Bulk Density, 5 cm 18.7 ± 4.7 (2) 9 
Mean January rainfall 9.1 ± 9.1 (3) 10 
Elevation 8.7 ± 7.1 (3) 11 
Sand %, 30 cm 11.8 ± 3.5 (2) 12 
Silt %, 30 cm 7 ± 0.9 (2) 13 
Entisols Order, orthents 5.3 ± 1.1 (2) 14 
Mean February rainfall 4.5 ± 2.2 (2) 15 
Mean temperature of wettest quarter (Bio 8) 3.5 ± 1.2 (2) 16 
Distance to Low Flow Accumulation Areas  2.5 ± 0.1 (2) 17 
Mean July AET** 1.9 ± 0.8 (2) 18 
Site Exposure Index  0.4 ± 0.5 (2) 19 
Mean January PET 39.5 ± 0 (1) 20 
Temperature seasonality (Bio 4) 38.3 ± 0 (1) 21 
Mean March PET 36.5 ± 0 (1) 22 
Mean February AET 35.6 ± 0 (1) 23 
Mean January maximum temperature 33.2 ± 0 (1) 24 
Mean March maximum temperature 33 ± 0 (1) 25 
Bulk Density, 30 cm 16.2 ± 0 (1) 26 
Ph, 30 cm 14.6 ± 0 (1) 27 
Spodosols Order, Orthods 13 ± 0 (1) 28 
Inceptisols Order, Aquepts 12.2 ± 0 (1) 29 
Mean July PET 7.7 ± 0 (1) 30 
Mean July Minimum temperature 7.6 ± 0 (1) 31 
Alfisols Order, Udalfs 5.3 ± 0 (1) 32 
Sand %, 5 cm 4.8 ± 0 (1) 33 
Distance to Streams  2.3 ± 0 (1) 34 
Topographic Position Index, 9 km circular 

 
1.6 ± 0 (1) 35 

Precipitation of coldest quarter (Bio 19) 1.6 ± 0 (1) 36 
Topographic Position Index, 3 km circular 

 
1.4 ± 0 (1) 37 

Distance to Medium Flow Accumulation 
  

1.2 ± 0 (1) 38 
Mean June AET 1.1 ± 0 (1) 39 
Precipitation of warmest quarter (Bio 18) 0.5 ± 0 (1) 40 
Entisols Order, Psamments 0.5 ± 0 (1) 41 
Precipitation seasonality (Bio 15) 0.1 ± 0 (1) 42 
bMulti Multi-Objective Optimization Ranking by Mean Permutation Importance (0.6 weight) and 
Number Appearances in Top 12 Models (0.4 weight). Variables ranked using weighted joint 
criteria with MCDM R package.  
* PET = potential evapotranspiration, ** AET = Actual evapotranspiration 
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6.4.2. MaxEnt feature subset ensemble model projections 
 

The final MaxEnt FSE models projected habitat suitability HWA over most of the native 
range of the eastern hemlock (entire range of Carolina hemlock) in the USA and the 
southernmost Canada under contemporary climatic conditions (Figure 12). The area of 100% 
model consensus ranged roughly from 44° N in the northeast to 34° N in the South. Within 
the southern part of the range, higher elevation areas of the Southern Appalachians seem to 
be more suitable for HWA than the low elevation areas in the region. A lower number of 
models projected suitability within the westernmost hemlock range and Nova Scotia, Canada. 
The northernmost part the range of eastern hemlock, above 45° N, was mostly projected as 
unsuitable for the species under contemporary climate. The temperature limits according to 
the final MaxEnt models were averaging -15.80 ± 0.47 °C for minimum values for the 
minimum temperature of the coldest month, -7.97 ± 0.46 °C for the minimum values for the 
mean temperature of the coldest quarter. Corresponding values for the maximum values for 
the maximum temperature of the warmest month were 34.24 ± 0.63 °C. The equivalent 
extreme values of the HWA occurrence observations in eastern North America were quite 
similar at -15.00 °C, -7.20 °C, and 32.00 °C, respectively.  

The reverse-casted MaxEnt projections to the native ranges in Asia and western North 
America overlaid with the available HWA occurrence observations and distributions of the 
host Tsuga spp. (Figure 12B-C). The MaxEnt FSE model projection for East Asia projected 
high suitability within the known native HWA regions in Japan, Central Taiwan, and Ulleung 
Island of, Republic of Korea (Figure 12C). High suitability highly correlated with the species 
occurrence observations in these regions. Within the continental Asia, the MaxEnt models 
also projected suitable habitats, but the habitat suitability was not as highly correlated with 
the available HWA occurrences. In the western North America, model suitability was 
generally high among the HWA records in the Cascade Mountains.  Lower suitability was 
projected for the HWA occurrences eastwards of -121.5° W in Washington, Oregon, and 
Idaho. Sensitivity analysis showed that the sensitivity of the MaxEnt model projection to 
Asian islands did not significantly differ from that of in eastern North America, however, it 
was lower for the projections to the continental Asia and western North America. There was 
high variability in the sensitivity reverse transferability indices from the introduced range 
over the Asian continental, Asian islands only, and western North American ranges. No 
significant differences were observed.  
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Figure 12. MaxEnt feature subset ensemble (FSE) projections for A) the introduced range in 
eastern North America and native ranges in A) continental Asia and Asian islands, and C) 
western North America. Tsuga spp. ranges according to Little (1971), Farjon (1990), and 
Holman et al. (2017). 
 

Each of the four future climate MaxEnt FSE models projected range expansion 
northwards and eastwards in the eastern North America (Figure 13A-D). Shifts of the 12 
MaxEnt projection centroids towards north and east differed significantly from zero, in case 
of all four climate scenarios (p < 0.02; Welch t-test with Holm correction). The range shift 
to north under the high CO2 emission climate change scenario for 2070 (2070he85) was 
significantly greater than the other scenarios (p < 0.05; paired Welch t-test with Holm 
correction). Under this most extreme climate change scenario of 2070he85, vast majority of 
the northern range of the contemporary native eastern hemlock distribution was projected 
highly suitable for the HWA. The mean projected northward range shift of HWA ranged 
from 222.12 ± 92.45 km (2050he26) and 467.64 ± 198.85 km (2070he085). Corresponding 
expansions to east varied between 110.32 ± 66.24 and 164.03 ± 152.99 km, respectively. 
Contrary to the range shifts, are of potential distribution did not differ significantly among 
the contemporary climate and future climate scenarios. The projected areas were quite 
variable for the projections under future climate scenarios. The mean elevation for the 
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MaxEnt projections did not differ significantly either in the North or South (p < 0.05, paired 
Welch t-test with Holm correction). 
 

Figure 13. Hemlock woolly adelgid future range shifts in the eastern North America showing 
range addition and range loss under the four different climate change scenarios (A-D). 
Change maps were created by subtracting final MaxEnt models for contemporary climate from 
the corresponding models under future climate scenarios: (A) 2050he26; (B) 2050he85; (C) 
2070he26, and (D) 2070he85. The scale indicates change in the number of models in 
agreement on habitat suitability for HWA. 
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7. DISCUSSION 
 
 
7.1. Classification of pine defoliation by the common pine sawfly (I, II) 
 
7.1.1. Tree-level classification (I) 
 
Random forest classification results were promising for the schemes with two to three 
defoliation classes. For these schemes, laser metrics differed between the healthy and 
defoliated Scot pines. Similar level of accuracy could be obtained for varying pulse densities. 
While the accuracy was somewhat lower for the four-class scheme, most of the trees could 
be assigned at least to the neighboring class. The results are comparable with those of Kantola 
et al. (2010). They combined the same airborne LiDAR data with aerial imagery acquired 
form the area. A classification accuracy of 88.1% was obtained for two defoliation classes 
employing random forest classification. The NIR band of the aerial imagery was the most 
important feature. However, they excluded trees having equal defoliation level to the exact 
threshold value of 20% of defoliation. Aerial images have been utilized before to detect tree-
wise defoliation of Norway spruce (Haara and Nevalainen 2002). An overall classification 
accuracy of 68.9% was obtained with four classes. 

There are uncertainties in the needle loss assessment affecting the classification accuracy. 
Visual defoliation assessment is sensitive to errors. Development of more accurate methods 
for the assessment would also improve needle loss classification and damage detection. 
Defoliation levels were unevenly distributed among the sample trees. Due to cold and wet 
weather, D. pini performance suffered in the summer of 2008, leading to milder defoliation 
and underrepresentation of severely defoliated trees. This influenced the classification of 
defoliated trees, as well as the overall accuracies.  

The raw mean intensity showed as a powerful predictor amongst the 26 LiDAR metrics. 
In theory, intensity based upon wavelength of 1064 nm in the NIR region, should differ 
between healthy and defoliated trees. The intensity of LiDAR returns should be lower for 
stands suffering from defoliation than for healthy stands. In practice, the use of intensity is 
often problematic, because of the need of feature calibration. Classification accuracies of 
81.74% and 83.59% were gained for two classes, both schemes DEF1 and DEF2, 
respectively, when only Int and pene were used as predictors. This may suggest that a full 
waveform LiDAR could be successfully used in detection of defoliation. Further research 
should include evaluation of influence of forest characteristics on defoliation classification 
from LiDAR, such as site type (Vehmas et al. 2009). Distribution of laser metrics probably 
vary based upon size and hierarchy level of a tree (e.g., Korpela et al. 2010).  

 
7.1.2. Plot-level classification (II) 

 
Proportional LiDAR features were the best indicators for plot-level defoliation. Results of 
the analysis supported hypothesis that a larger proportion of LiDAR pulses would penetrate 
deeper into the canopy on the defoliated stands. The obtained classification accuracy with 
two variables of p80 and p90 for two defoliation classes (84.3%) was at the same level as for 
the tree-wise classification (section 6.1.1.). Again, classification results were not highly 
dependent on the pulse density. As in the sub-study I, a classification test with raw intensity 
was done. Classification accuracy of 86.9% was obtained, when Int was incorporated to the 
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model. Similarly, to the tree-level study, full waveform data may provide additional 
explanatory power in needle loss detection. The results are, in some degree comparable to 
the studies conducted within the same region. Ilvesniemi (2009) classified plot-level 
defoliation from aerial photographs. The classification accuracies varied between 38% (9 
classes) and 87.3% (2 classes).  

The subjective method for assessment of defoliation is also a weakness at plot-level. 
However, if the error is random, the effect should be milder at this scale than at single tree-
level. The study area mainly consisted of stands on similar site types and most likely, the 
variation in site types did not hamper the results. It should be kept in mind that a specific 
insect pest prefers certain site conditions. In case of the common pine sawfly, stressed pines 
on dry sites are preferable. These kinds of stands are often areas of initial infestations.  

The novel ITD method to estimate the forest canopy cover can also be considered as a 
forest canopy mask. Instead of the method, canopy cover can be estimated also by 
thresholding the CHM. The approach was assumed, however, computationally more 
demanding. Variation in the forest canopy cover has seen as a major problem in mapping 
insect defoliation (i.e., Kantola et al. 2010, 2011). With the method used her, the effect of 
variation in defoliation in the forest canopy cover can be taken into account with a relatively 
uncomplicated approach. However, in practice, area-based mapping methods may often be 
more suitable than ITD based methods. 
 
 
7.2. Landscape-level hemlock mortality (III, IV) 
 
7.2.1. Evaluating landscape-scale hemlock mortality (III) 
 
Previous studies on HWA induced hemlock mortality include plot- and stand-level studies 
(Orwig and Foster 1998; Paradis et al. 2008; Elliot and Vose 2011; Krapfl et al. 2011; Trotter 
et al. 2013), and medium to low spatial resolution remote sensing (Bonneau et al. 1999; Royle 
and Lathorp 2002; Wimberly and Reilly 2007; Kong et al. 2008). The level of investigation 
has been either small-scale or over a large area. Landscape-scale detailed information on the 
hemlock decline is needed. The high-resolution imagery and rather large spatial scale of the 
investigation facilitated interpretation of ecological impacts in the context of landscape 
functional heterogeneity (Coulson and Tchakerian 2010), i.e., how other living organisms 
may be affected by the removal of hemlock as a component of the forest vegetation 
community. 

The sub-study revealed a high number of dead hemlocks in the upper canopy cover layers 
unevenly scattered throughout the landscapes. Additional mortality that could not be 
observed was present in the suppressed canopy cover layers (Orwig and Foster 1998; Krapfl 
et al. 2011; Kantola, T., personal observation). Topography have been observed to affect 
forest condition and further insect pests and host species (Niemelä et al. 1987; Ruohomäki et 
al. 1997; Kharuk et al. 2007; Baltensweiler et al. 2008). This has also been observed for the 
eastern hemlock (Orwig et al. 2002; Narayanaraj et al. 2010). The distribution of HWA 
infestations is affected both by the distribution of host species and environmental conditions. 
For example, on the contrary to the distribution of living hemlocks (Narayanaraj et al. 2010), 
dead hemlocks were often located at higher elevations. Narayanaraj et al. (2010) observed 
that eastern hemlock was absent above 1250 m in a Southern Appalachian landscape. Similar 
pattern was observed within the native range. Hemlocks outside their optimal range in Japan 
were, e.g., more susceptible to scale insects (McClure 1985). A relatively short-term period 



80 
 

of infestation in the Southern Appalachians may have been a critical factor contributing to 
the HWA dynamics.  

Over seven hectares of gaps in the canopy cover surface was observed. These gaps in the 
canopy surface can facilitate, e.g., establishment and spreading of invasive plant species, such 
as great rhododendron (Rhododendron maximum L.) or mountain laurel (Kalmia latifolia L.). 
However, Kantola et al. (unpublished data) noticed that the majority of the canopy gaps 
observed from the 2010 imagery significantly shrunk or disappeared by 2012.  

Trotter et al. (2013) suggested that effects of HWA on hemlock community are not 
apparent at larger scales.  However, at a landscape scale or smaller, influence of HWA-
induced hemlock mortality to ecosystems may be substantial, particularly to the riparian 
areas, where a high number of dead trees could be identified. The overall reduction in plant 
biomass within the landscapes was modest. However, as keystone species, hemlocks have a 
range of functions within forested landscapes, including moderating environmental 
conditions, and providing resources for wildlife. Stream ecosystems are also substantially 
influenced by the hemlock decline (Ross et al. 2003; Ford and Vose 2007). The aggregated 
pattern of hemlock mortality, especially in riparian areas, may amplify the impacts of HWA 
within the landscapes and removal of hemlocks has more pronounced ecological impacts than 
could be assumed based upon removal of biomass.  

 
7.2.2. Mapping landscape-scale hemlock mortality (IV) 
 
Landsat Thematic Mapper (TM) is the most popular sensor in mapping both living hemlocks 
and hemlock mortality (Bonneau et al. 1999; Royle and Lathrop 2002; Wimberly and Reilly 
2007; Kong et al. 2008). Lower resolution remote sensing may not succeed in providing 
detailed information on hemlock mortality taking into account the pattern of hemlocks within 
the Southern Appalachian landscapes. This kind of two-phase classification strategy could 
be adapted for monitoring infestations by other insect pests, such as gypsy moth, southern 
pine beetle, or emerald ash borer. Similar approach can be applied for large area inventories 
with lower-resolution remote sensing data sets and used in teaching a lower-resolution data.  

The two-phase classification scheme was mandatory in this case to avoid great 
overestimation of the magnitude of tree mortality. The obtained classification accuracies of 
93.5% and 98.1% were high. The accuracy for forest cover classification may be an 
overestimation due to subjectively created testing data set and exclusion of uncertain pixels. 
LiDAR acquired at the same time than the aerial photography may have increased accuracy 
as well as enable a wider selection of classification approaches. The result of 2.1% proportion 
of dead trees within the analyzed area is difficult to compare with results of other studies, 
plot- and stand-wise estimates for hemlock mortality between 0% and 95% have been 
estimated (Orwig and Foster 1998, Elliott and Vose 2011, Krapfl et al. 2011). 

Shadows were omitted from the area of forest cover classification. This may have induced 
error to the results. Topographic corrections for high-resolution data are often problematic. 
Especially in case of very complex topography. During the preliminary examination of the 
data, topographic corrections methods, such as band ratios and Minnaert correction were 
tested. The corrections did not substantially reduce the shades. Further, the spectral resolution 
was compensated. With correct timing of data acquisition, shadowed areas would be less 
pronounced.  

Most dead trees were assumed hemlocks since HWA was the only major mortality agent 
at the time. The area was infested by the southern pine beetle in the early 2000’s (Knebel and 
Wentworth 2007). Other plausible causes for tree mortality included abiotic factors and mild 
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infestations by other species. Dead trees may also include broadleaved species. Secondary 
pests could have also contributed to weakening of trees and further, tree mortality. An 
assessment of a high-resolution aerial image time-series in the Linville River Gorge revealed 
a time span of five or more years that dead trees remain visible in the canopy cover surface 
(Kantola et al., unpublished data). Thus, HWA herbivory may have resulted in mortality of 
about 5% of the overstory conifers, present in the summer of 2012. It has been suggested that 
HWA-induced mortality may be higher for suppressed understory hemlocks than those of 
dominated trees (Orwig and Foster 1998; Krapfl et al. 2011). Although the tree mortality in 
the suppressed canopy cover layers could not be detected, the results give a good insight of 
the scale and distribution of hemlock decline within the size-classes comprising most of the 
biomass. A major portion of the study area was overlapping with that of the sub-study III. 
The results of dead tree coverage were similar with both approaches. The spatial pattern of 
classified dead trees was also similar to the other sub-study. Other studies have shown that 
topography influence microclimate and soil properties further affecting HWA infestations 
(Hodkinson 2005; Narayanaraj et al. 2010). 

A substantial portion of the area occupied by conifers was assumed hemlocks (Newell 
and Peet 1998; Knebel and Wentworth 2007). Other possible conifers included four pine 
species (Pinus spp.) (Newell and Peet 1998; Elliot et al. 2013). Distinguishing hemlocks from 
pines is challenging and susceptible to errors (Royle and Lathrop 1997; Orwig et al. 2002; 
Koch et al. 2005). The lack of field data inhibited testing of species recognition. Hemlock 
could not be separated from pines by naked eye with good accuracy. Hemlock dominated 
stands have been detected with accuracies of 69% from ASTER (Koch et al. 2005), 72% 
combining ASTER and Landsat data (Kong et al. 2008), and 83% utilizing AVIRIS 
hyperspectral images (Airborne Visible/Infrared Imaging Spectrometer) (Pontius et al. 2005). 
Using auxiliary information on suitable conditions for species, such as soil and topographic 
information may increase the accuracy of species separation. These variables could also be 
used in approximation of infestation probability. 
 
 
7.3. Mapping defoliation in Fennoscandia (V) 
 
The novel method for detecting forest damage utilized z-scores and ROC curves. The sub-
study pointed out both the potential and disadvantages in using low spatial resolution remote 
sensing in monitoring forest disturbance. The z-score thresholds are land cover specific rather 
than site-specific and may applicable for similar land cover classes over an extensive area. 
Evaluation of the z-score method was conducted in two different regions of Fennoscandia. 
The results were moderate, at the best, in highly fragmented landscapes of eastern Finland. 
However, the z-score method could be also applied to a higher spatial resolution data to 
increase accuracy in this kind of environments. However, often increase in spatial resolution 
decrease the temporal resolution leading to a higher probability of cloudy data. The method 
was more successful on in more homogenous forest area in northern Sweden. The observed 
relatively high detection accuracy showed a potential of the method in certain forest areas. 
The results were unsatisfactory in Ilomantsi, were the long history of an insect outbreak most 
likely affected the detection (see Sulla-Menashe et al. 2014). The prolonged gradation phase 
of the common pine sawfly prevented establishment of the reference conditions. This shows 
the importance of available years of remote sensing data preceding the outbreak. This period 
facilitates sufficient identification of the reference conditions. It is also possible that Scots 
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pine canopy does not fully recover between insect outbreaks affecting establishment of the 
reference conditions affecting detection.  

The main contributing factor for the poor performance within fragmented landscapes is 
likely the low spatial resolution of MODIS data resulting in mixed pixels. Typical landscapes 
within populated regions in Fennoscandia are fragmented and the matrix consist of urban 
areas, agricultural fields, water, and forest. MODIS or other low spatial resolution data may 
be inadequate as a sole sensor for forest health monitoring within similar landscapes. 
Ilvesniemi (2009) reached a classification accuracy of 85.9% for two defoliation classes 
using Landsat images in Palokangas. Her results were only slightly better with aerial 
photography. Karjalainen et al. (2010) used multi-temporal ERS-2 and Envisat satellite SAR 
based backscattering intensities for 400 m × 400 m grid cells to assess defoliation. They 
obtained an accuracy of 67.8% for two defoliation classes in the Palokangas area. The 
accuracies obtained in the sub-study V were generally lower than in studies on MODIS in 
homogeneous forest landscapes (Kharuk et al. 2007; de Beurs and Townsend 2008). This 
method may perform better in deciduous forests or in areas under frequent infestations. 
Although a recovery period after on outbreak by a defoliator may be long for both conifers 
and broadleaved species (Tenow 1996; Lyytikäinen-Saarenmaa and Tomppo 2002), 
broadleaved tree species may be able to establish sufficient levels of foliage even the next 
year for reference conditions between the outbreaks. Severity of defoliation influences the 
monitoring success. An overall intensity in eastern Finland was lower than in Abisko, but 
also fluctuating annually. Further, timing of defoliation may be a factor affecting detection 
accuracy. The needle consumption occurred in both Outokumpu and Abisko during early 
summer (Kantola, personal observations; Tenow et al. 2007). The common pine sawfly feeds 
later in the season, in July-September in Ilomantsi area, i.e., well after the season max. Late 
season low solar elevation angles affect reflectance, and further vegetation indices. 
Furthermore, the sampling sites in Abisko were either highly defoliated of close to healthy. 
In the eastern Finland, higher heterogeneity among the stand-level defoliation may have 
affected the results as well. It can also be assumed that the method could work well in 
detection of drastic changes in forest health status, such as in case of wider bark beetle 
outbreaks.  

High level of landscape fragmentation is quite common in many countries, especially in 
Europe. Use of MODIS data within areas with similar condition, i.e., level of landscape 
fragmentation may lead to underestimation of disturbed area. Higher spatial resolution data 
should be preferred if a sufficient cloud free data during the season is available. However, at 
northern latitudes, such as Fennoscandia, reasonable short growing season limits the number 
of data acquisitions.  For example, in 2013, only small fractions of Abisko outbreak area were 
visible in Landsat images.  
 
 
7.4. Potential distribution of hemlock woolly adelgid in North America (VI) 

 
7.4.1. Feature selection for the MaxEnt niche models 
 
Soil features were the most powerful variables in the MaxEnt niche models for HWA, 
calibrated within the introduced range, followed by climate and topographic variables. The 
soil features influencing HWA distribution, including proportion of silt in top soil (0-5 cm) 
and Ochrepts soils in the Inceptisols, most likely reflect the importance for the HWA host 
species in the eastern North America. Former studies on niche modeling of the eastern 
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hemlock suggested importance of climate, land cover, and soil property in defining hemlock 
habitats (Iverson et al. 2008; Prasad et al. 2004). Soil properties potentially important for 
eastern hemlock included soil productivity and soil texture, which is related to the silt 
percentage found as an important predictor in the MaxEnt models. Furthermore, according 
to Prasad et al. (2008) Inceptisols soil order is important in hemlock niche models 
corresponding with the importance of Ochrepts and Udepts soils of the Inceptisols (Table 2).   

In the eastern hemlock models, the most important climate variables included mean July 
temperature and annual precipitation (Prasad et al. 2008). In the HWA MaxEnt model, mean 
January and February precipitation were observed as important predictors. In previous HWA 
studies, minimum winter temperatures have been identified as a major limiting factor for 
HWA distribution (Paradis et al. 2008; McAvoy et al. 2017; Tobin et al. 2017). However, 
only the mean minimum October temperature was found among the used 27 climatic 
variables in the final models and it was not an important predictor. In contrast, the used 
RSFSA feature selection method ranked mean November PET and mean February maximum 
temperature as the top climatic variables. Often, only the 19 Bioclim climatic indices are 
utilized in niche models. In this study, other climate features, such as monthly AET/PET and 
temperature/precipitation indices were much more important that the Bioclim features. 

Of the topographic features, slope was identified as the most important predictor. It was 
the second top ranked features for all the used ones. Deeper slopes can be most likely 
associated with suitable hemlock habitats. High resolution topographic features of 30 m, 
including elevation and distance to stream, have been found to affect the landscape-level 
spatial pattern and performance of both HWA and eastern hemlock (Narayanaraj et al. 2010; 
Kantola et al. 2014). However, in a study by Trotter and Shields (2009), elevation explained 
only 2% of the variation in HWA survival in the eastern USA. 
 
7.4.2. MaxEnt niche models for the introduced range of the hemlock woolly adelgid 
 
The MaxEnt FSE projection for HWA range covers most of the eastern hemlock range in the 
introduced eastern North America, including minor areas in southern Canada, such as 
southern Nova Scotia (Figure 12). The projection extends further north along the Atlantic 
coast area than inlands. The northernmost part of the eastern hemlock range (> 45° N) may 
be unsuitable for HWA under contemporary climate. The mid-continental hemlock range, 
excluding southwestern Michigan, in the coastal Lake Michigan may remain unsuitable for 
HWA. This can be related to more maritime climate corresponding better to the native range 
of the species in Japan.  

Although some observations suggest that HWA tolerates quite cold temperatures and 
lengths of cold periods, rapid changes in temperature changes and the frequency of extreme 
cold temperatures, especially later in the season effect the HWA populations (Paradis et al. 
2008; Skinner et al. 2003). Adelgids may die after exposure of a mean winter temperature of 
−5°C or for a period of 93 days of daily minimum temperature below −10°C (Paradis et al. 
2008). The MaxEnt models in the introduced range covered areas with minimum temperature 
and mean temperature of the coldest quarter of -15.80°C and -7.97°C, respectively. These 
values agreed well with those from the HWA occurrence observations (-15.00°C and -
7.20°C, respectively). According to Skinner et al. (2003), only about 14% of the most 
northern HWA survived from cold exposure to -15 °C in March, in eastern North America. 
Tobin et al. (2017) reported high mortality to HWA from the cold exposure below -15 °C, as 
well. Accordingly, the HWA distribution may already be close to the northern limit under 
contemporary climates in the eastern North America.  However, HWA may be able to 
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develop greater tolerance for cold weather facilitating future expansion farther to the north 
(Skinner et al. 2003). In addition, the historical climate data represents the years 1950-2000 
(Hijmans et al. 2005). Temperatures have already been elevating since then (Dukes et al. 
2009; IPCC 2014), and the potential range of HWA may have already started to shift 
northwards. According to Parmesan (2006), various species have already responded to this 
rather mild change in climate.  

The maximum temperature of the warmest month in the MaxEnt projection for HWA was 
slightly higher than that of found for HWA occurrence observations (34.24°C vs. 32.00°C). 
The projected range extends south of the native eastern hemlock distribution, which already 
is defining the southern rage of HWA. Effect of heat exposure on HWA is not much studied. 
Mech (2015) investigated cumulative effect of temperature on HWA mortality. Hundred % 
mortality was reached at temperatures above +30 °C, supporting the projected southern HWA 
range. 

 
7.4.3. MaxEnt projections to the native ranges of the hemlock woolly adelgid 

 
Under optimal conditions, MaxEnt models would have been calibrated based upon species 
occurrence observations in the native range, in East Asia. Menke et al. (2009) also calibrated 
niche models for an invasive insect species using data from the invaded range. They 
suggested that inconsistencies in sampling and regional climatic variation may induce errors 
to models when projected outside of the already occupied area in the new environments. 
Despite the inadequate information on HWA range in Asia, the reverse-casted MaxEnt FSE 
projection was in accordance with the known information on the Asian range, particularly in 
the Asian islands (Figure 12B). All the final MaxEnt models projected suitability in the HWA 
origin, the Japanese islands. There is no available hemlock or HWA observations from the 
most northern Hokkaido Island and it also was projected mostly as unsuitable. High 
suitability was also projected for other known HWA populations, such as Taiwan and 
Ulleung Island of Republic of Korea (Havill et al. 2016). The generally successful projection 
to Asia may indicate that HWA is at or at least close to equilibrium in the eastern North 
America. Furthermore, the lower sensitivity of the model projections to continental Asia and 
western North America support the assumption of HWA in the eastern North America is 
originating from the Asian islands. 

Extensive information on HWA distribution in the western North America was not 
available. However, the projected FSE model was in general in accordance with the HWA 
occurrence observations in the region, especially along the Cascade Mountains (Figure 12C). 
This projected range covers much of the western portions of the native ranges of western 
hemlock (Tsuga heterophylla [Raf.] Sarg.) and mountain hemlock (Tsuga mertensiana 
[Bong.] Carrière) from northern California to the southernmost British Columbia, Canada. 
However, all the models did not project suitability for HWA occurrences in Idaho to the East. 

The reverse-casted MaxEnt projections suggest that Japan and the Cascade Mountains of 
Washington and Oregon would match environmentally best with the invasive HWA range. 
These areas also correspond with the native ranges of the primary introduced HWA predators 
in the eastern North America. These include Laricobius nigrinus (Coleoptera: Derodontidae) 
from the western North America and Sasajiscymnus tsugae (Coleoptera: Coccinelidae), and 
L. osakensis from Japan (Havill et al. 2014). The MaxEnt projections could be used for 
refining source locations for biocontrol agents. For example, more cold tolerant strains of L. 
nigrinus from more interior western USA could establish more successfully into New 
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England (Havill et al. 2014; Mausel et al. 2011) if the conditions are more closely matching 
those of in the eastern North America. 
 
7.4.4. Future MaxEnt projections under changing climate 
 
The future MaxEnt projections predicted an HWA range shift of 221-468 km to the north and 
110-164 km to the east.  The FSE projection under high emission scenario for 2070 
(2070he85) indicates HWA suitability throughout most of the current eastern hemlock range 
(~46° N; Figure 13A-D). Minor isolated areas may remain uninfested. Paradis et al. (2008) 
estimated the future HWA suitability in the northern range with a threshold value of -5 °C of 
mean winter temperature. By the end of the century, all the northeastern states in the USA 
could be suitable for the species (Paradis et al. 2008). The Maxent future projections in the 
sub-study similarly projected northern boundary to roughly correspond to the US/Canadian 
border in the northeast and following roughly 35° N. This range also includes large areas of 
southern Canada. Ellison et al. (2018) projected HWA spread to north until 2050. Their 
projections extended further north of Lake Ontario (~46° N), similar to the 2070he85 
projections. Moreover, no HWA habitat suitability was projected to Nova Scotia by Ellison 
et al. (2010). HWA have been already able to spread into Nova Scotia, which was projected 
by the current and future climate models in the sub-study. McAvoy et al. (2017) suggested, 
based on winter temperatures that HWA may almost reach the northern eastern hemlock 
range extending to ca. 46.5°-48° N. They also suggested that HWA may increase winter 
survival at the northern latitudes intensifying the impacts. 

In general, warming climate increases insect metabolism and reduces the risk of winter 
mortality (Bale et al. 2000). However, declined fitness due to elevated temperatures may limit 
HWA range in the south, when temperatures beyond optimal are encountered (Lemoine and 
Burkepile 2012). Too high summer temperatures may shift the southern HWA range to 
northwards and upwards along the Southern Appalachians (Figure 13A-D). However, the 
future MaxEnt models did not project evident upward shift. There are indications, however, 
that HWA may adapt to temperature extremes (Skinner et al. 2003; Parmesan 2006; Sussky 
and Elkinton 2015).  

Niche model projections may not reveal much of the potential of species for crossing new 
geographical barriers. Future projections are more suitable for estimating the potential range 
than probability or timing of establishment (Fitzpatrick et al. 2012). However, taken the high 
HWA dispersal potential into account, the species may be able to invade the whole ecological 
niche (Trotter and Shields 2009). Furthermore, species dispersal ability may advance at the 
range extremes as a response to the climate change (Parmesan 2006). Adaptation of invasive 
species may be very fast during the range expansion (Butin et al. 2005). Climate change 
influence the host species as well, especially the hemlock species (Hastings et al. 2017). 
Combined effects of climate change and HWA infestations may further increase to risk of 
extinction of the eastern hemlock species (Hastings et. al. 2017). Adaptation of eastern and 
Carolina hemlock is concerning due to their slow growth rate, restricted environmental 
preferences, and weak seed dispersal (Hastings et al. 2017). HWA may benefit from sub-
optimal conditions for the host species (Niemelä et al. 1987; McClure 1997; Morin et al. 
2009).  
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7.4.4. Impacts and interactions of the hemlock woolly adelgid 
 
Other factors than used in the sub-study, including dispersal, competition, species 
interactions, and landscape change with various human impacts influence distributions. 
However, many of these factors are important only at higher spatial resolutions. The MaxEnt 
models for HWA may not be equivalent with to the conditions where the species can survive 
and persist. According to Parmesan (2006), effects of genetic constraints and asymmetric 
gene flow are more pronounced close to the borders of distributions leading to lower survival. 
On the northern HWA range, lower survival may induce isolated local HWA populations 
with much lower impacts on eastern hemlock. 

Management of HWA to mitigate negative impacts is challenging. Trotter and Shields 
(2009) outlined four reasons behind the rapid rate of spreading and the high negative impacts 
of HWA within the introduced range: (1) HWA has bivoltine and parthenogenic life cycle 
allowing rapid reproduction and reducing the Allee effect because populations are not 
dependent on sexual reproduction; (2) HWA is lacking natural enemies, despite major 
biocontrol efforts; (3) HWA uses many vectors increasing the dispersal potential; and (4) 
eastern and Carolina hemlocks have very low resistance against the species. Climate change 
may not have high negative impacts on HWA, even though originating from a single 
genotype (Havill et al. 2016), the introduced population appears to have a high spreading 
potential and rapid adaptation ability (Parmesan 2006). The impacts on eastern hemlock 
communities can be magnified in the future due to slow adaptation ability of the host. 

Extent of the impacts of invasive alien species are difficult to predict and they may be 
highly variable within the introduced regions (Kulhanek et al. 2011). In general, effects are 
expected to be milder close to the rages of habitat suitability. Conversely, lower suitability 
for the host species may increase the risk of high impacts. High species abundance correlates 
more strongly with the high risk than species presence. Abundance data is rarely collected 
for invasive species (Bradley et al. 2012). This is also the case with HWA. Additional 
information is required on factors affecting HWA abundance at high spatial scale to estimate 
the risk of high impacts, including impacts of anthropogenic factors or interrelation between 
different trophy levels, and habitat suitability of the host species. For example, higher HWA 
densities were observed in Japanese ornamental hemlocks than in forests due to less optimal 
conditions better control by natural enemies in forests (McClure (1997). Host tree abundance 
was observed as major factor supporting HWA dispersal (Morin et al. 2009). Host tree quality 
may also influence HWA invasions. For example, hemlocks growing on mountainous areas 
are often stressed by climate, and thus maybe more susceptible for invasion (Niemelä et al. 
1987).  
 
 
7.5. Outlook for the future 
 
7.5.1. Next generation forest health monitoring systems 
 
World’s forests are encountering massive outbreaks of both native and invasive insect pests. 
Infestations by these pests are increasing the demand of forest health monitoring. Sufficient 
information for reliable risk assessment, integrated with forest management planning have to 
be obtained from wide areas. Sometimes even highly detailed information on disturbance is 
needed. An optimal solution to deliver for the high demand of accurate, efficient, and cost-
effective methods for forest health monitoring is to include these methods into 
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comprehensive wall-to-wall forest monitoring systems. These systems should be applied 
across political and geographical boarders and over spatial and temporal scales. This includes 
monitoring over a variety of different forest ecosystems, including varying climate zones, 
forest structures, and management practices. The needed information is complex, up-to-date, 
and required to acquire in timely manner. These systems should provide timely disturbance 
detection, and assessment of intensity and spatial scale, as well as information on disturbance 
trends and projections. Ideally, these systems would also be able to identify the damage agent, 
however, this is in many cases a very difficult task. Modern modeling techniques to evaluate 
range shifts, impacts, and risk related to insect pests should also be included to the systems. 
Often, evaluating the future risks and magnitude of impacts is the only way leading to 
mitigations of future disturbance events. The information would enhance IPM, forest health 
management, and support risk assessment, and decision-making under increasing levels of 
uncertainty. These systems should support flexible use of varying resolution data and 
auxiliary information. Although low-resolution data is often enough for the demands of large-
area monitoring, sometimes more detailed information is needed; such is case of ephemeral 
or scattered disturbance. At the best, these systems should be automated with only low level 
of human involvement. Accordingly, these systems are of a major challenge. In order to 
accomplish such elegant and complex systems, extensive future research is needed. This has 
to include, in addition to development of remote sensing methodology, substantial level 
improvement of standardized terminology, and data collection across the political 
boundaries.  
 
7.5.2. Main challenges 
 
There are several significant issues hindering accurate continental to global scale assessments 
of forest disturbance (Frolking et al. 2009). (1) Cloud coverage interfere remote sensing at 
all spatial scales, especially in case of humid tropical and temperate forests (Zhao et al. 2005; 
Sano et al. 2007). (2) Problems induced from varying definitions and assessment data and 
methodology (Grainger 2008; Houghton and Goetz 2008). Further, (3) development of robust 
and general algorithms with high transferability for finer spatial scales is difficult (Woodcock 
et al. 2001; Foody et al. 2003). In addition, (4) small-scale disturbance are difficult to detect. 
Collectively, these small‐scale disturbances are important also at the global scale (e.g., Asner 
et al. 2002). 

Predicting effects of climate change on insect pests is a complex due to various reasons 
(Bradshaw and Holzapfel 2006; Parmesan 2006). In case of species habitat suitability, four 
different types of uncertainty can be associated with future projection (Dukes et al. 2009). 
These include uncertainties related to internal ecosystem processes, climate change 
projections, forthcoming human actions, as well as the uncertainties due to lack of data on 
the species in question. Unfortunately, the first three types are very difficult to avoid (Dukes 
et al. 2009). In addition to climate change, biological invasions and range shifts are causing 
great uncertainty in forest health management (Liang et al. 2014; Dukes et al. 2009). 
According to Dukes et al. (2009), the approach of studying species-specific responses to 
climatic factors, despite the usefulness to forest managers, is too slow and limited to add 
needed information on the responses of complex forest ecosystems to the climate change. 
Comprehensive modeling systems are needed to evaluate host–pathogen, host–pest, and 
invasive plants interactions in a context of a forest ecosystem (Dukes et al. 2009). This kind 
of approach would deliver a range of expected responses of the complex systems. However, 
increased understanding of these forest ecosystems is needed to enable successful use of these 
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kinds of modeling systems (Dukes et al. 2009). Responses of forest insect pests will never be 
precise. However, well-targeted research in the near future could lead to better quantitative 
and geographically relevant projections (Dukes et al. 2009). Usually there are other 
disturbance agent present with insect pests at the same time. Further, there may be more than 
one insect pest present at the time of monitoring. It would be important to distinguish damage 
by an insect pest from those of other agents in order to evaluate the impacts of the species in 
question (Senf et al. 2017b). However, this topic is less studied or discussed (Senf et al. 
2017b). It is usually assumed that the study species is the only damaging agent within the 
area, or a mask is applied to rule out unlike areas to be affected by the species (as in the sub-
study IV). These approaches may lead to overestimation of accuracy (Senf et al. 2017b). 
Insect disturbance have been separated from significantly different disturbance, as fire or 
forest management (e.g., Goodwin et al. 2008; Meigs et al. 2015; Senf et al. 2015). Further, 
methods for disturbance identification are developed (e.g., Kennedy et al. 2015; Hermosilla 
et al. 2016). However, distinction between subsequent damage, such as wind throws − bark 
beetles, or drought – defoliation, is highly challenging (Seidl and Rammer 2017; Senf et al. 
2016). Future research should include methodology for improved discrimination of 
disturbance by various agents. Although, it should be also acknowledged that insect pests are 
often interacting with other species and disturbance agents and the impacts may not always 
be separable (Senf et al. 2017b). 

Early stage insect infestations are often difficult to detect with remote sensing. That 
applies for both bark beetles and defoliators. The typical initial phase of a bark beetle 
infestation is called green attack. Mild changes are already present in the foliage but those 
are much harder classified than the later stages of red and grey attack. Research on detecting 
the green attack with remote sensing is scarce (Lausch et al. 2013). Forest health management 
practices are mainly based on high spatial resolution remote sensing and the red attack phase. 
At this point, efficient preventative measures are often too late. These remote sensing 
operations, however, are used to target field surveys for detecting green attack and related 
actions for mitigation (Lausch et al. 2013). Mild defoliation, as well as severity of defoliation 
is difficult to assess accurately form remote sensing data (Dennison et al. 2009; Zhang et al. 
2010; Rullan-Silva et. al 2013). Visual assessment of defoliation level is widely used due to 
lack of accurate automated methods. Unfortunately, this method is prone to errors. Observers 
should be able to take into account, e.g., variation in foliage biomass between years, within 
season, and between site types. In addition, other factors induce error to the assessment. Leaf 
area index by itself, although correlated with defoliation cannot be used as it is in 
classification of defoliation. Relative defoliation is largely related to the stand characteristics, 
such as soil fertility. For example, a healthy Scots pine growing on poor soil has less needles 
than another one growing on more fertile site type (Innes 1993). A new automatic system to 
assess severity of defoliation is needed. That could also utilize LAI. The method would need 
an extensive library with calibrated LAI measurements under varying forest conditions and 
levels of defoliation.  

Current knowledge on ecosystem resilience and sustainability decreases as the scale 
increases from the level of habitat management to landscape management and design (Landis 
2017). The new implementations of remote sensing and modeling techniques may be used to 
increase wide-scale understanding of the complex interactions of forest health. Most of the 
studies on remote sensing of insect outbreaks are focused on quite restricted areas (Senf et 
al. 2017b). More research is needed, in which large areas over a gradient of climate and other 
conditions are covered (Senf et al. 2017b). Large-scale assessments would give valuable 
insight of insect disturbance patterns over landscapes and regions (Hicke et al. 2012; Kautz 
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et al. 2016; Trumbore et al. 2015). With remote sensing and increasing computational power 
these kinds of large-scale assessments would be achievable (Hermosilla et al. 2016; Senf et 
al. 2017b). Senf et al. (2017b) suggest the main limiting factor for regional assessment is the 
method transferability as most of them are for specific occasions.  

In addition to the problems related to detection or identification of insect pest 
disturbance, there are uncertainties and challenges related to other characteristics affecting 
the accuracy of insect disturbance monitoring. For example, tree species recognition and thus 
delineation of host pattern and distributions effect the disturbance detection. For instance, 
tree species identification between confers is challenging (Orwig et al. 2002; Koch et al. 
2005). In case of insect pests, information on the pattern and distribution of the host trees, as 
well as the tree species composition is often limited. Improved methods for these tasks will 
improve disturbance monitoring as well, e.g., providing information on the extent and 
impacts of the infestation and on delineating the number of possible disturbance agents.  
 
7.5.3. Developing remote sensing in insect disturbance monitoring 
 
Despite the decreased need of field data resulting from development of modern monitoring 
methods, it is still widely used and needed as a reference. Senf et al. (2017b) found that in 
situ data collected in the field was the most utilized reference data in modeling insect 
disturbance. The amount of fieldwork, although the data is valuable, is desired to decrease 
due high costs, consumed time, and limiting spatial extent. Further, availability and quality 
of inventory data highly varies among the countries (Levers et al. 2014; Gschwantner et al. 
2016; Neumann et al. 2016; Senf et al. 2017b). Large area remote sensing applications are 
often hindered by difficulties to match varying data, such as plot size, and spatial resolution 
of remote sensing data (Senf et al. 2017b). Senf et al. (2017b) suggested that researchers 
should publish the field data with spatial information used for the research. At the time of 
planning new inventories, fusion of data sources should be considered. For example, 
interpretation of very-high spatial resolution imagery is regarded as an important source of 
reference data in monitoring bark beetle infestations that can be utilized for wide areas with 
reasonable costs (Meddens et al. 2011; Olofsson et al. 2014; Senf et al. 2017b). Further, high-
resolution remote sensing data can be utilized in scaling down field data for lower spatial 
resolution data (Wulder et al. 2004). One recent method for creating reference data is Landsat 
spectral trajectories. The method utilizing dense Landsat time series and corresponding 
image chips have already been used in disturbance detection (Cohen et al. 2010; Kennedy et 
al. 2012; Hermosilla et al. 2015; Meigs et al. 2015; Potapov et al. 2015). The method allows 
plot-level assessment of disturbance over a range of spatial extents (Senf et al. 2017b). 
However, detection of often more subtle damage by insects can be difficult, compared to, 
e.g., forest fires (Senf et al. 2017b).  

Remote sensing is one of the most rapidly developing field of technology. The 
advancement is driven by development of sensors and increasing performance of the 
information infrastructure (Toth and Józ’ków 2016). New platforms, especially the 
introduction of UAVs and other remotely piloted aircrafts are contributing to the 
development (e.g., Pajeres 2015). High spectral resolution hyperspectral sensors, often 
carried by UAVs, can also contribute to more efficient detection of insect disturbances in the 
future. Increasingly available very high spatial remote sensing data may significantly 
improve monitoring of insect disturbance (Senf et al. 2017b). Used in detection, mapping and 
classifying of disturbance, but also as good quality reference data. However, this data should 
be accessible to researchers at reasonable costs (Senf et al. 2017b). Citizen science data is 
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already utilized in ecology (e.g., Tracy et al. 2019). A new platform of crowd sensed data, 
including imagery and video data, is also becoming increasingly available (Toth and Józ’ków 
2016). Crowd sensing refers to a large group of individuals collectively sharing mobile 
sensed data. Crowd sensing have already been used in, e.g., monitoring air quality (Liu et al. 
2018) and assessing road conditions (Piao and Aihara 2017). These methods could be also 
utilized, at least to some extent, in recording anomalies in forest environments, especially in 
areas of high human population density, such as urban forests.  

A major leap in remote sensing applications can still be expected (Wulder and Coops 
2014). Quite recently, large remote sensing data sets and entire space missions, such as 
Landsat archive or Sentinel Missions of the European Space Agency (ESA), have been 
opened to public giving a new advantage for the development of remote sensing technologies 
and applications (Wulder et al. 2012; Wulder and Coops 2014; Majasalmi et al. 2016). 
Further, open source tools for processing remote sensing data are continuously developed 
(Wegmann et al. 2016). This current advancement in remote sensing will improve forest 
health monitoring techniques as well. High intra-annual remote sensing data seem to improve 
detection and impact evaluation of damage by defoliating insects, especially of broadleaved 
species (Senf et al. 2017b). However, currently only low-resolution data, such as MODIS can 
deliver such dense data. Unfortunately, these data have unsatisfying spatial resolution for 
detecting disturbance within fragmented landscapes (sub-study V). Remote sensing of 
defoliating insect will most likely improve with modern medium to high-resolution satellite 
data with increasing intra-annual data, such as with quite recent launches of Sentinel-2 
satellites (Senf et al. 2017b). The two satellite provide up to 10 m spatial resolution with a 
ten-day revisit time each (5-days combined).  One increasing trend is to blend remote sensing 
data with a high temporal resolution with higher spatial resolution data. The temporal scale 
of the high spatial resolution data is increased with blending auxiliary spatial and temporal 
characteristics of high temporal resolution data. The goal is to generate synthetic observations 
at high spatial and temporal resolutions (Lunetta et al. 1998; Hilker et al. 2009). Use of full 
waveform LiDAR in disturbance monitoring should also be investigated further. Instead of 
single wavelength LiDAR, multiple wavelengths can also be acquired. For example, a four-
band LiDAR system was tested in distinction of green and dry leaves. (Wei et al. 2012). They 
obtained point clouds on four separate wavelengths and calculated vegetation indices, 
including LiDAR NDVI, that were used in the detection. This kind of technology may open 
new opportunities in disturbance mapping, as structural and spectral changes could be 
assessed simultaneously.  

Remote sensing archives already offer information over past several decades. This long-
term data could add new information to the quite poorly documented history of insect 
outbreaks (Assal et al. 2014). Although Landsat time-series of approximately 30 years are 
used for historical assessments of insect disturbances, their full potential has not been used 
much (Pflugmacher et al. 2012; Assal et al. 2014). The Landsat time-series could be extended 
to over 40 years if the older Landsat MSS data were integrated (Senf et al. 2017b). This 
extended timeline could provide information on, e.g., insect population dynamics and cover 
several outbreak cycles, as well as enable testing current hypotheses on the underlining 
drivers (Senf et al. 2016). Historical data can also be used to predict future impacts, climatic 
change related changes in outbreak patterns, or range expansions of invasive damage agents. 

Spaceborne satellite technology provide often a convenient approach for development of 
future monitoring methods for insect-induced disturbance. Computation capacity have been 
increased to the needed level to analyze high‐resolution data, but the availability and cost of 
the data are still included to limiting concerns (Frolking et al. 2009). Satellite data can be 
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obtained without remote sensing campaigns at reasonable costs. New methods are facilitating 
improved and timely monitoring. However, to enable efficient and flexible forest health 
monitoring systems, satellite-based applications need to be developed further. Standardized 
and transferable workflows are needed to improve the quality of comparable information and 
the operational level implementations (Pause et al. 2016). Current problems hindering 
development of standardized processes, over the political boundaries, results in from in situ 
data quality and quantity, such as those related to quality of methodology or availability of 
data (Pause et al. 2016). In addition, political and commercial restrictions can affect data 
availability (Pause et al. 2016). The issues related to local policies needs to be addressed in 
order to reach the next level in the system development (Nabuurs et al. 2015). New lower 
spatial resolution satellite-based hyperspectral, polarimetric, RADAR, and LiDAR sensors 
are developed or already been launched (Lausch et al. 2016a). These new sensors can 
contribute substantially to wide scale forest health monitoring (Lausch et al. 2016a).  

Single satellite systems are improving spatial and spectral resolutions. Sensor agile 
configuration enabling in-track and cross-track stereo data acquisition are developed (Poli 
and Toutin 2012). Further satellite-based systems are in transition from single sensor systems 
to a co-operative remote sensing approach (Toth and Józ’ków 2016). Certain satellite sensors 
operate flying in tandem (Krieger et al. 2007), such as Sentinel-2 and -3. Data constellations 
of several sensors, although having the spatial resolution based on the coarsest one, allow 
shorter revisit times (Murthy et al. 2014). Constellation refers to satellite operating 
synchronized under shared control, overlapping in coverage. These techniques enable 
observation of a certain location even several times a day (Murthy et al. 2014). These 
constellations are gradually developed based upon satellite ‘families’ (Toth and Józ’ków 
2016). Constellation of Landsat, SPOT and GeoEye/WorldView families were pioneering 
this technique (Toth and Józ’ków 2016). For example, RapidEye system is a constellation of 
five identical satellites on the same orbit reducing the revisit time and providing unique 
measurement capabilities (Tyc et al. 2005; Toth and Józ’ków 2016). While constellations of 
multispectral sensors is the most common, the systems can include other sensors, such as a 
SAR sensor in the Kompsat constellation (Lee 2010). European Space Agency have plans to 
include other sensors to the Sentinel family satellites (Copernicus program) (Toth and 
Józ’ków 2016). Recent advancements include flocks of nano- or microsatellites sharing the 
same orbit, and thus allowing frequent observations (Toth and Józ’ków 2016). 

 
7.5.4. Near real-time insect disturbance monitoring 
 
Early and accurate detection of outbreaks is a requirement of efficient remote sensing based 
forest health monitoring systems. Adequate early warning systems are desirable as they 
would facilitate effective controlling and mitigation efforts (Lange and Solberg 2008; Kharuk 
et al. 2009). These methods include continuous detection of ephemeral forest disturbance 
episodes across large spatial scales (Rullan-Silva et al. 2013). With effective real-time or near 
real-time applications, systems of early detection, i.e., early warning would be achievable. 
For such systems, temporal composite images are aggregated in the way that wall-to-wall 
cloud-free coverage are enabled (Prados et al. 2006). In addition, improvement in quality of 
time-series and algorithms are needed (Cohen et al. 2010; Rullan-Silva et al. 2013).  

Satellite-based technology can provide for the real-time disturbance detection 
(Verbesselt et al. 2012). Remote sensing can be employed in early warning of large-scale 
insect outbreaks emerging from local epicenters (Simard et al. 2012; Seidl et al. 2015; Senf 
et al. 2017b). At the best, the high impacts of these outbreaks could be mitigated (Foster et 



92 
 

al. 2017). So far, there are not many studies on use of remote sensing in context of near real-
time monitoring of insect-induced disturbances. Further, operational level applications, such 
as the Forwarn system (https://forwarn.forestthreats.org/), are rare. Main reasons for low 
utilization of remote sensing in real-time monitoring may include complex prepossessing and 
processing of remote sensing data, lack of ground-truth data, and the low availability of 
remote sensing data with sufficient spatial and spectral resolutions (Wulder et al. 2009). 
Further, high costs and biological and logistical aspects to be considered, hinder the 
development (Wulder et al. 2009). Currently, near real-time applications are developed for 
MODIS data due to the ready-to-use products that are available soon after the data acquisition 
(Senf et al. 2017b). Applications with higher resolution data should be developed in the near 
future along with the increased development of ready-to-use medium resolution products, 
data streams combining several medium-resolution sensors, cloud-based processing 
environments with standard disturbance detection algorithms, such as the Google Earth 
Engine (Wulder et al. 2015; Senf et al. 2017b). The development of UAV methods provides 
another suitable platform for rapid assessments of insect-induced disturbances (Senf et al. 
2017b). So far, the applications for monitoring insect-induced disturbance are scarce (Näsi 
et al. 2015, 2018). Although methods for early detection of insect disturbance need 
substantial development, some research exists (e.g., Wulder et al. 2009; Foster et al. 2016). 
Remote sensing has also been utilized in assessing ecosystem vulnerability to insect 
infestations. The information can be used in management operations to control large-scale 
outbreaks (Senf et al. 2017b). Research include hyper-spectral detection of changes in 
chlorophyll absorption (Lausch et al. 2013) and detection of stand level stress from Landsat 
time-series as an indicator of susceptibility to bark beetle infestations (Hais et al. 2016).  
 
 
8. CONCLUDING REMARKS 
 
 
Frequency and intensity of insect induced forest disturbances are increasing. The main factors 
contributing this pattern include climate change and related extreme weather events, and 
invasions by non-native insect pests due to human actions, such as trade and traffic. Insect 
outbreaks and infestations of both native and alien species pose a greater threat to resiliency 
of forest ecosystems as well as to human welfare than earlier in the recorded history. Efficient 
and affordable methods for predicting and monitoring these events are needed in order to 
prevent, control, and mitigate the various negative impacts of pest insects, as well as to 
support decision-making.  

Pattern, frequency, spatial extent, and intensity of forest disturbances vary between 
different damaging agents. In addition to the insect pests, factors contributing to the scale and 
realized impacts of a disturbance are multitude. These factors include various biotic, abiotic, 
and anthropogenic factors, such as weather patterns, tree- and stand characteristics, natural 
enemies, or landscape topology and fragmentation, just to name few. The factors have, often 
unpredictable, interactions affecting insect pest insect and the induced damage. A multitude 
of uncertainties are present in evaluating impacts of insect infestations. For example, it is 
difficult to predict timing, location, intensity, or scale of an insect outbreak. Furthermore, 
other natural disturbances may trigger insect outbreaks and vice versa. These uncertainties 
bring about a high complexity into development of efficient monitoring systems, compared 
to traditional forest inventory tasks.  
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Remote sensing can provide spatially contiguous data with options of reuse the data and 
revisit the areas of interest even at a high temporal resolution. A wide selection of sensors 
with varying resolutions, sampling schemes, combined with methods of spatial modeling to 
map and monitor insect induced damage gives advantage to remote sensing technology over 
in situ measurements in the field. However, at least in the near future, field inventories are 
needed to improve accuracy of remote sensing applications.  

 Data and methods, including the remote sensing sensor, as well as suitable scale and 
resolutions should be chosen based on the disturbance and situation in question. For instance, 
high-resolution information may be suitable, if the damage is small scale or tree-level 
information is needed. Further, high spatial resolution is needed, if the pattern of infestation 
is scattered and small-scale, or symptoms cannot be detected with lower resolution data. 
Typically, the costs increase along with the resolution. However, acquisition of high-
resolution data from a relative smaller area can usually be organized promptly with moderate 
cost by using, e.g., UAV or small aircraft as a platform. Combining different resolution 
remote sensing may often enhance monitoring. Lower resolution data may be more suitable 
to estimate large-scale impacts or detect damage with more intense detectable symptoms. 
Auxiliary information, such as forest inventory data, disturbance history, topography, etc., 
may improve evaluation accuracy in many cases. It has to be kept in mind that, e.g., forest 
policies and practices differ between countries and continents. Available road-network, 
rugged topography, and level of landscape fragmentation give more restrictions to method 
selection, as well as to spatial resolution.   

Timing of data acquisition is crucial in context of damage detection. Quite often, early 
detection and timely management operations are the only way to mitigate an already initiated 
insect outbreak. In the best case, open access remote sensing archives with high temporal 
resolution could facilitate continuous monitoring of wide forest areas. Continuously 
improving satellite technology may respond to these needs. Concurrently with the time-series 
and continuous monitoring, one-time data acquisitions are still needed. This may be 
necessary, e.g., in order to evaluate initial infestation of high mortality agents or areas of high 
value. Traditionally, spatial resolution of the data affects the temporal resolution as well. For 
example, lower spatial resolution satellite sensors acquire data form the same location more 
often than higher resolution sensors.  

Equivalent to remote sensing, in case of spatial modeling approaches for assessing insect-
induced damage or species distributions, scale and resolution of an insect damage has to be 
taken into account. The insect pest in question and geographic location, including the specific 
characteristics for the region, affect the needed information and relevant environmental 
factors. The sale of investigation employing spatial models can range from small areas to 
global approximations. However, often spatial modeling techniques are very useful in 
projecting large scale impacts or making future predictions. Often, these approaches of 
remote sensing and spatial modeling should be combined instead of being contrasted. Various 
factors may inhibit acquisition of remote sensing or collection of filed reference. Particularly 
in these cases, spatial models can facilitate the impact evaluation. The feasibility of modeling 
methods is emphasized when predicting and projecting future events, including simulation 
of various forest management operations, especially those connected with the climate change 
related changes in insect population dynamics. An explicit category of spatial modeling, 
ENM has increased in popularity. Unfortunately nick modeling methods are not used often 
enough, especially in case of invasive species. Information on species ranges and habitat 
suitability, particularly under the changing climate can direct monitoring and mitigation 
efforts within most probable areas of new infestations. Information from the niche models 
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help, e.g., planning of forest health management operation. Coupled with dispersal models 
they also provide an estimate on the time-table for operations and plausible arrival time of 
the species.  

Modern disturbance monitoring systems should employ both remote sensing and 
modeling methods. In many cases, a combination of different data sources and methodology 
can enhance forest health monitoring and management efforts. Monitoring systems should 
be flexible and transformable in order to respond various needs in the field of forest health 
monitoring. Plenty of valuable research on remote sensing and modeling of insect induced 
damage has been conducted, especially during last few decades. Results of this work has 
already been partly adapted at the operational level in different countries. However, 
considerably more research is still needed before comprehensive disturbance monitoring 
systems are developed and are able to facilitate automatic wall-to-wall applications at the 
managing level. Rapidly developing remote sensing and modeling techniques, as well as 
improving computing power and data base systems will permit continual improved forest 
health monitoring and management. 
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