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ABSTRACT 

 
 
The World’s forests are facing novel stress due to climate change. Pest insects and 

pathogens are shifting towards new latitudes and heat stress is resulting in increased tree 
mortality and more frequent forest fires globally. Uncertainty in estimating the magnitude of 
climate change induced forest and tree decline requires new methods for unbiased estimation 
of tree decline. The development of remote sensing methods to detect early tree decline has 
been a major challenge due to the subtle nature of the early changes caused by different 
stressors. Multispectral lidar technology has the potential of detecting early tree decline by 
providing accurate three-dimensional and spectral information of tree structure 
simultaneously.   

The main objective of this thesis was to investigate the capabilities of multispectral 
terrestrial lidar in the detection and assessment of tree decline caused by different stressors. 
This was done by investigating the estimation of a remotely detectable indicator of tree 
decline, leaf water content (LWC). Specifically, new methods for measuring LWC using 
multispectral lidar intensity were developed from the leaf to the canopy scale in various 
environments and the relationship between LWC and tree decline induced by various 
stressors was investigated. Furthermore, the developed methods were tested in a forest 
environment to assess the applicability of multispectral lidar in the detection of bark beetle 
infestation in the field. 

Studies I-III focused on investigating the relationship between LWC and lidar intensity 
at multiple wavelengths. First, a hyperspectral lidar instrument was used to detect significant 
changes between fresh and drought-treated Scots pine (Pinus sylvestris L.) and Norway 
spruce (Picea abies L.) trees (study I). Then, a leaf-scale study (II) with Scots pine, Norway 
spruce, Small-leaved lime (Tilia cordata L.), Norway maple (Acer platanoides L.) and Silver 
birch (Betula pendula L.) was conducted and a strong relationship (R2=0.93) between a 
normalized difference index (NDI) calculated from 1550 nm and 690 nm wavelengths and 
LWC was found. This was followed by a study (III) where LWC estimation and pathogen- 
and drought-induced variation in LWC was studied with Norway spruce seedlings. Blue-
stain fungi (Endoconidiophora polonica) inoculated seedlings expressed a rapid decrease in 
LWC while drought-treated seedlings showed more stable LWC until a very severe drought. 
LWC of the seedlings was predicted with an R2 of 0.89 using an NDI with 1550 nm and 905 
nm wavelengths. 

In study IV, the developed method and the relationship between LWC and tree decline 
was investigated in the field with European spruce bark beetle (Ips typographus L.) infested 
trees. It was found that of the LWC metrics studied, gravimetric water content showed 
significant differences in the early stages of infestation and was more sensitive to bark beetle 
induced tree decline than equivalent water thickness (i.e. amount of water per leaf area). 
Linear discriminant models that were developed between infestation severity and lidar 
intensity metrics from 1550 nm and 905 nm wavelengths showed that green attack stage of 
the infestation could classified with an overall accuracy of 90%.  

This dissertation contributes both to the development of an objective and automatable 
method for detecting and measuring tree decline in the field, and to the understanding of the 
relationship between LWC and tree decline with implications to remote sensing. The 
dissertation will be published and popularized as a music video here: http://bit.ly/idanproffa.   

 

https://doi.org/10.14214/df.277
http://bit.ly/idanproffa
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1. INTRODUCTION 

1.1 What is tree decline? 

Forests are one of the most important natural resources and provider of ecosystem services 
on our planet. Forests and trees provide food, medicine and fuel for more than a billion 
people, protect soils and water, and clean the air (FAO 2018). Forests are a home for over 
75% of the terrestrial species on this planet and forest growth sequesters about 30% of annual 
anthropogenic emissions, equivalent of roughly 2 billion tonnes of carbon dioxide (Houghton 
and Nassikas 2018). Forests play a vital role in stopping and mitigating the effects of climate 
change, but their ability to mitigate climate change and sequester carbon largely depends on 
the health condition of forests (Allen et al. 2015; Ellison et al. 2017).  

Tree decline is defined as a prolonged malfunction of tree functions, such as defoliation, 
lowered photosynthetic activity or discoloration of leaves, within this dissertation (Jurskis 
2005). Every functionality of a tree exhibits natural variability that occurs within different 
time scales (Van Gelder et al. 2006). Photosynthetic activity varies daily according to the 
flux of incoming photosynthetically active radiation a tree receives, i.e., less photosynthesis 
occurs on a cloudy day and more on a clear day (Hesketh 1963). The amount of foliage can 
vary yearly according to environmental conditions, such as precipitation or temperature 
(Watson 1958). The magnitude of the variation is not necessarily very significant, but some 
variation is always occurring, i.e. no function is in a completely steady state through the life 
of a tree (Reich et al. 1998). The magnitude of the variation varies with age, site conditions 
and climatic conditions (Dittmar et al. 2003). A declined tree is not functioning typically to 
its environmental conditions and is out of the normal variation of tree functionality (Figure 
1). The decline can be temporary or permanent depending on the consequences of the decline. 
A temporary decline leads to recovery of tree functions at some point of time and a permanent 
decline results eventually in tree death that may be facilitated by pathogens, pest insects or 
abiotic environmental conditions, such as drought and fire. 

The underlying reasons of tree decline can be complex. In the past decades tree decline 
in Europe and North America has been widely attributed to pollution and toxic chemicals in 
the atmosphere, soils and waters (Schulze 1989; Kandler 1992; Kreutzer 1993). Ozone, as an 
atmospheric oxidant, has been identified as a source of tree decline in eastern North America 
(Chevone and Linzon 1988). Since the 1990s, the amount of pollutants in the ecosystems has 
decreased in developed parts of the world due to more sophisticated catalysator systems in 
cars and industrial plants, a trend driven by governmental regulation (Bosteels and Searles 
2002).  

Currently, the global trends in tree decline and tree dieback can be largely attributed to 
climate change that is causing novel tree decline (Auclair 1993; Williams et al. 2013; Allen 
et al. 2015). Climate change is driving a decline in forest productivity and tree survival that 
has been documented at many sites globally (Williams et al. 2013). The causes of decline can 
be attributed to a variety of novel biotic and abiotic stressors that are related to changes in 
temperature and precipitation. Higher temperatures increase forest drought-stress and can 
lead to widespread tree mortality, but the threshold which leads to mortality is not well known 
(Choat et al. 2012; Williams et al. 2013; Allen et al. 2015). Drought-stress can increase the 
intensity of pest insect infestations and pathogen infections, increasing the damage caused by 
defoliators and secondary agents living on woody organs (Figure 2) (Jactel et al. 2012). Shifts 
in pest insect range towards northern latitudes are likely to occur with warming climate, 
potentially causing widespread damage to forests not accustomed to the invasive species 
(Netherer and Schopf 2010). The projection of the on-going climate change and the 
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evaluation of the effects of stress intensification is a challenging task and requires systems to 
assess and monitor the health of global forests with an emphasis on the early-detection of 
forest decline (Trumbore et al. 2015).  

 
 

 

Figure 1. Variation of tree functions with time. 
 

 

 

Figure 2. Ips typographus induced bark damage on Norway spruce stem. 
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Economically the most important coniferous tree species in Europe is Norway spruce 
(Picea abies (L.) Karst.) contributing more than 60% of the total economic value of tree 
species in Europe (Schlyter et al. 2006; Hanewinkel et al. 2013). The species is also of 
national economic importance, as forestry is a major economic activity in northern and north-
eastern parts of Europe. The effects of climate change on Norway spruce have been modelled 
using climate scenarios (Schlyter et al. 2006; Hanewinkel et al. 2013) concluding that the 
frequency and duration of extreme climate events will increase, adding to the susceptibility 
of Norway spruce to pests and pathogens (Schlyter et al. 2006). Decreased forest vitality can 
result in greater amounts of windthrown areas despite the small increase in wind speeds and 
frequency of storms, resulting in exponential growth of feed for the European spruce bark 
beetle (Ips typographus L.) (Schlyter et al. 2006). The combination of higher mean 
temperatures and increased feed amount can result in additional I. typographus generations 
and mass outbreaks that can pose a threat to the health condition of forests (Wermelinger 
2004). Forest decline and changing climate have been estimated to lead to a significant 
decrease in areas that are suitable for the cultivation of Norway spruce in Europe, resulting 
in an economic loss of more than 190 billion euros in forest-land value by the year 2100 
(Hanewinkel et al. 2013).  

1.2 Remote sensing of tree decline 

Forest health assessments have been traditionally based on visual estimation from the air or 
ground, which is expensive and prone to error and bias due to the subjective nature of the 
estimation. Visual mapping of forest damage that can cover larger areas are done from 
helicopters or airplanes and are based on the color and amount of foliage of trees, which does 
not allow for the detection of subtle changes or early signals that precede tree decline. 
Another long-used method to assess tree vigor, growth and probability of tree mortality is the 
measurement of stem wood production by measuring annual ring width or basal area 
increment (Fritts 1976; Waring 1983). There has been some evidence that the reduction in 
stem wood production due to stress can be linked to even greater reduction in defensive 
compounds making the tree susceptible to attack by a variety of insects and pathogens 
(Waring and Pitman 1985; LeBlanc et al. 1992). Obviously, measuring tree rings or growth 
is a highly intensive and time-consuming process, thus, new methods are needed for accurate 
and subjective estimation of forest health for detecting declined trees.  

Remote sensing (RS) methods that have been used to detect and monitor forest decline or 
forest health can be divided by scale: from leaf-level close-range measurements to airborne 
sensing for stand-level or tree-level measurements to satellite-based methods for large-scale 
monitoring (Wang et al. 2010; Lausch et al. 2017). The scale and intensity of forest decline 
varies across continents along with the intensity of forest management, and thus, the 
requirement for spatial resolution depends on the type and the scale of the decline event. 
Generally, the larger the extent of the decline event, the coarser resolution RS data can be 
used for detecting forest decline. Earth observation missions, such as the Landsat mission or 
Copernicus programme, enable the collection of long time-series satellite imagery which 
assists in the detection of forest decline (Anderson et al. 2010; Kennedy et al. 2010; 
Vogelmann et al. 2012). 

Several studies have shown that existing RS methods can detect significant forest and tree 
decline, such as tree mortality, severe defoliation or discoloration, with relatively high 
accuracy using satellite observations (Wulder et al. 2006). Most of the studies conducted so 
far, however, lack in the detection accuracy of subtle or small-scale forest decline events and 
only few methods have shown potential in the detection of early forest decline (Immitzer and 
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Atzberger 2014; Abdullah et al. 2018). The early-detection of forest decline is crucial for 
timely forest management operations, and for maintaining the ecosystem services forests 
provide. High-resolution RS methods have the potential to provide an objective estimate of 
forest condition that is not biased by visual interpretation. 

1.3 Terrestrial lidar systems and data acquisition 

Terrestrial lidar (i.e. terrestrial laser scanning (TLS)) is a technique for measuring three-
dimensional coordinates of targets or surfaces using laser light from a terrestrial position. 
TLS instruments that are used in vegetation mapping utilize two different methods for range 
measurement: round trip time of a light pulse and phase comparison of a continuous wave 
(Lemmens 2011). The pulse-based systems send nano-second pulses of laser light that is 
reflected from the target object. The scanner detects the reflected laser light and the distance 
between the scanner and the object is calculated based on the time measurement between the 
sent and the received pulse. Phase-based systems send a continuous laser light wave that is 
modulated with a harmonic signal. The scanner sensor measures the phase difference 
between the emitted and the received signal and calculates distance to the object. Both 
systems generally utilize a rotating mirror for sending and receiving the laser light in a regular 
grid pattern. 

TLS can utilize different wavelengths in the laser source. Technical aspects and eye-
safety limit the amount wavelengths that can be used in commercial scanners due to high 
amount of energy carried by shorter wavelengths. Popular wavelengths are located in the near 
infrared (NIR) or shortwave infrared (SWIR) region, e.g., 905 nm, 1064 nm and 1550 nm 
(Toth and Petrie 2018). Other wavelengths that have been used include green laser (534 nm), 
red laser (690 nm) and NIR at 785 nm. Because shorter wavelengths carry more energy 
increasing the risk of eye injuries, NIR or SWIR wavelengths are more commonly used. 
Generally, TLS systems employ only a single wavelength, but prototype sensors have been 
developed with dual-wavelength or even hyperspectral capabilities. The Salford Advanced 
Laser Canopy Analyser (SALCA) captures full-waveform of backscattered radiation at 1063 
nm and 1545 nm wavelengths (Danson et al. 2014). Hakala et al. (2012) presented the first 
full waveform terrestrial lidar with eight tuneable channels in the visible and NIR region. 
Later, a hyperspectral lidar (HSL) with 32 channels has been developed (Sun et al. 2017), but 
these multispectral lidars utilize white supercontinuum laser as the laser source which due to 
eye-safety issues hinders their operability outside the laboratory environment. Thus far, no 
commercial TLSs with several wavelengths have been developed, but there is a commercial 
airborne lidar system with 532 nm, 1064 nm and 1550 nm wavelengths (Yu et al. 2017).  

In addition to capturing the 3D structure of objects, TLS measures the intensity of the 
reflected light energy which correlates with the reflectivity of the object at the wavelength 
used in the TLS system. This enables the simultaneous mapping of object 3D structure and 
reflectivity at a very narrow band of the electromagnetic spectrum (Yu et al. 2017). The 
nature of the reflected light in lidar can be described by the radar equation (Eq. 1), which 
states that received power (𝑃𝑃𝑟𝑟) is affected by transmitted power (𝑃𝑃𝑡𝑡), aperture size (D), the 
optical efficiency of the lidar system (Q), the laser beam divergence (𝛽𝛽), the atmospheric 
transmission losses (T), the range (R), and the backscattering cross-section of the target (𝜎𝜎):  

 
𝑃𝑃𝑟𝑟 = 𝑃𝑃𝑡𝑡𝐷𝐷𝐷𝐷

4𝜋𝜋𝛽𝛽2
𝑇𝑇2 𝜎𝜎

𝑅𝑅4
    (1) 

 
where 𝜎𝜎 is formed by target reflectance, geometry and the illuminated area. According to 

the equation, 𝑃𝑃𝑟𝑟 is linearly dependent on transmitted power, aperture, optical efficiency and 
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target reflectance. The effect of atmospheric transmission losses is neglectable in TLS in 
forest environments where target distances rarely exceed 30 m. The effect of R is affected by 
the target shape due to spherical losses. Large surfaces, linear targets and blob-like objects 
all show a different response due to the changes in the backscattered irradiance field (Wagner 
et al. 2006). A large surface that fulfils the laser footprint entirely will show a fourfold 
decrease in 𝑃𝑃𝑟𝑟 when R is doubled, whereas wires and leaves that cover the laser footprint 
partially will show a decrease of 8 or 16 times (Korpela 2017). Due to the varying shape of 
targets in tree canopies, range normalization is challenging for absolute radiometric 
calibration.  

TLS intensity is affected by incidence angle of the laser beam. The Eq. 1 shows that 𝑃𝑃𝑟𝑟 is 
in linear dependence with 𝜎𝜎, which is comprised of target reflectance, geometry and 
illuminated area (Kaasalainen et al. 2011). The illuminated area increases as incidence angle 
increases for extended surfaces. Several studies have explored methods for incidence angle 
correction (Kaasalainen et al. 2011; Krooks et al. 2013; Tan and Cheng 2016). The correction 
methods require the calculation of incidence angle, which is usually done by fitting a plane 
to the 3D coordinates of the TLS data. This is challenging for small-leaved vegetation with 
few lidar hits per leaf requiring very high-resolution data, not to mention needle-leaved 
vegetation that does not necessarily fill a single laser beam footprint.  

Multispectral lidar has the potential to overcome the aforementioned challenges. If two 
wavelengths are influenced by incidence angle in a similar manner, the ratio of the two should 
cancel the effect. This has been studied using HSL data with a small collection of leaf 
samples, concluding that the effect incidence angle on spectral indices (simple ratio and 
normalized difference index) is dependent on the internal structure and surface properties of 
leaves (Kaasalainen et al. 2016). In another study that included boreal tree species, both 
coniferous and deciduous, the conclusion was that lidar derived vegetation indices change 
with the laser incidence angle and that leads to systematic error that cannot be corrected with 
physical modelling for an individual point (Kaasalainen et al. 2018). Instead, larger areas 
should be used to average the geometric effects of varying incidence angles.  

The relationship between raw lidar intensity measured by the instrument and target 
reflectance should be considered in the calibration of lidar intensity. Many TLS systems have 
shown a non-linear dependence between target reflectance and the measured intensity that 
should be corrected using external objects with known reflectance (Kaasalainen et al. 2005; 
Kaasalainen et al. 2009). Additionally, the effect of target moisture on lidar intensity should 
be acknowledged when developing methods using lidar intensity data (Kaasalainen et al. 
2010). 

The varying effect of distance on lidar intensity from different target geometries could be 
neglected with a lidar system using two or more wavelengths that are perfectly collinear and 
have same beam divergence, resulting in completely overlapping lidar footprints at multiple 
wavelengths. Then, based on Eq. 1 the effect of range would be the same on each wavelength 
enabling the calculation of spectral indices that are not affected by target distance. However, 
thus far, this topic has not been investigated.  

1.4 Analyses of terrestrial lidar intensity in vegetation 

Terrestrial lidar, or terrestrial laser scanning (TLS), can be used for very high-resolution 
modelling of vegetation structure to estimate e.g. tree structural attributes, above-ground 
biomass or canopy gap fraction (Danson et al. 2007; Calders et al. 2015; Liang et al. 2018). 
Traditionally, the utilization of TLS data has been based on the three-dimensional structure 
of the point clouds produced by TLS, since the instruments provide accurate range 
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measurements. However, recently the use of lidar intensity (i.e., the strength of the reflected 
light) has gained more attention in the science community due to its ability to retrieve 
information on the reflectivity of a target at the lidar wavelength (a very narrow band of the 
electromagnetic spectrum), in addition to capturing the 3D structure of the target. Many 
studies have investigated the radiometric calibration of lidar intensity, but the task has proven 
to be challenging for forest canopies which are characterized by complex shapes (Kashani et 
al. 2015; Korpela 2017).  

The utilization of lidar intensity, or reflectance, is based on the effect of vegetation 
structure and biochemical properties on the reflectance of leaves, needles and vegetation 
canopies (Figure 3). Different biochemical components tend to affect the reflectance 
spectrum of leaves at a certain part of the electromagnetic spectrum, which can be employed 
for the assessment of the various components using narrow bands (Feret et al. 2008; Du et al. 
2016). Models such as the PROSPECT leaf reflectance model can be used to estimate the 
effect of the variable of interest on reflectance spectra (Jacquemoud and Baret 1990; Feret et 
al. 2008).  

The interpretation of lidar intensity in RS is generally based on statistical features that 
describe the value distribution and the shape of the intensity distribution. This process may 
be preceded by various calibration procedures of the measured intensity described earlier, 
and in the case of multispectral lidar data, the calculation of various indices, such as simple 
ratio or normalized difference index that describe the ratio of multiple wavelengths (Chen 
1996; Gillies et al. 1997). In empirical modelling, the calculated features are then compared 
with a “ground truth” (e.g., measured structure or biochemical property), which is the gold 
standard in RS, in order to find relationships between measured lidar intensity and the 
variable of interest. Empirical models have been widely applied in lidar studies, e.g., for 
linking forest stand or tree-wise structural information with lidar measurements (Naesset 
1997; Hyyppä et al. 2008).  

The ability of TLS in describing vegetation structure accurately has raised interest in very 
high-resolution mapping of the biochemistry of plants. Thus, TLS intensity has been used to 
assess several biochemical components, such as the leaf photoprotective mechanism, 
chlorophyll content, crop nitrogen content, and leaf water content (LWC) using single-
wavelength TLS (Eitel et al. 2010; Eitel et al. 2014; Magney et al. 2014; Zhu et al. 2015). 
These studies have found good agreement between the variable of interest and TLS intensity 
despite the early stage of TLS intensity adaptation in research. 

Multispectral lidar has the potential to be especially suitable for the assessment of the 
biochemical composition of plants. As was shown earlier, leaf structure and various 
biochemical components of leaves have their own unique response in terms of reflectance 
throughout the electromagnetic spectrum. However, as can be seen in Figure 3, the responses 
may overlap. The employment of two wavelengths can assist in separating the effect of the 
variable of interest from a structural component. By using one wavelength inside the range 
of the spectrum where the structural component exhibits changes, while the second 
wavelength is located in a range that is sensitive to the variable of interest, it is possible to 
rule out the effect of the structural component inside the spectral range of the variable of 
interest.  

Multi- and hyperspectral lidar has been used to assess rice and oat leaf nitrogen content 
and Scots pine shoot and rice leaf chlorophyll content (Nevalainen et al. 2013; Nevalainen et 
al. 2014; Du et al. 2016; Sun et al. 2017; Sun et al. 2018). These studies have shown that 
simultaneous retrieval of reflectance and structure at very high-resolution has high potential 
in the estimation of biochemical properties. However, these studies are mainly focused on 
small-scale laboratory tests with limited field applicability.  
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Figure 3. Reflectance spectra of a leaf with varying biochemical and structural parameters 
modelled with the PROSPECT-5 model by varying one model parameter while others were 
constants. Leaf mass per area (LMA), chlorophyll a+b content (Cab), leaf internal structure 
parameter (N) and carotenoid content (Car) was modelled. Vertical lines stand for laser 
wavelengths 690 nm and 1550 nm (Adapted from study II.) 
 

The utilization of lidar intensity in estimating LWC has been preliminary investigated. 
The first to show the potential of dual-wavelength TLS intensity at 1064 nm and 1550 nm in 
estimating LWC was Gaulton et al. (2013). They showed promising results with single leaves 
of a variety of not-forest species, but the sample number was small. Zhu et al. (2015; 2017) 
used a single wavelength 1550 nm TLS to estimate LWC of deciduous species at single leaf 
and canopy-level in a laboratory environment using radiometric corrections to reduce the 
effect of incidence angle resulting in a good agreement between observed and predicted 
LWC.  

1.5 Relationship between leaf water content and tree decline 

LWC can be expressed using a variety of different metrics. They are based on the 
measurement of leaf fresh weight and leaf dry weight, which can be measured using a scale. 
Additionally, the leaf area may be measured for calculating the amount of water per leaf area, 
which is important in RS studies since the distribution of biochemical components per leaf 
area affects leaf reflectance (Feret et al. 2008). Leaf gravimetric water content (GWC) can 
be calculated with two different methods, which differ in the divider. The amount of water is 
divided by leaf fresh weight (GWC) using the following equation (Cheng et al. 2011): 
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𝐺𝐺𝐺𝐺𝐺𝐺 = 𝐹𝐹𝐹𝐹−𝐷𝐷𝐹𝐹
𝐹𝐹𝐹𝐹

∗ 100%    (2) 
 
where FW is the leaf fresh weight and DW is the dry weight. Equivalent water thickness 

(EWT) is calculated with the equation (Danson et al. 1992): 
 
𝐸𝐸𝐺𝐺𝑇𝑇 = 𝐹𝐹𝐹𝐹−𝐷𝐷𝐹𝐹

𝐴𝐴
( 𝑔𝑔
𝑐𝑐𝑐𝑐2)    (3) 

 
where A is the leaf area. Although the metrics are based on the amount of water within a 

leaf, EWT and GWC metrics do not necessarily correlate, but EWT is correlated with leaf 
thickness and leaf mass per area (Datt 1999).  

Tree decline induced by a variety of pest insects, pathogens and drought can result in 
changes in LWC. Defoliation caused by the gypsy moth larvae (Lymantria dispar L.) has 
been shown to result in declined oak leaf quality including reduced GWC and increased dry 
matter content (Schultz and Baldwin 1982). There is evidence that leaf defoliators cause 
changes in plant secondary metabolites as a defence mechanism including the increase in leaf 
toughness, i.e. increased dry matter content  (O’Reilly-Wapstra et al. 2012). 

Drought directly affects the water status of trees when evapotranspiration is larger than 
precipitation (Bréda et al. 2006). The resulting drought stress can be observed also in the 
GWC that decreases with increasing water stress (Tucker 1980). GWC has been identified as 
a good indicator of water stress and it is related to water potential (Siddique et al. 2000). 
Sinclair and Ludlow (1985) have stated that GWC would be a better indicator of plant water 
status than water potential, which has been identified as a sensitive indicator of water stress 
(McCutchan and Shackel 1992).  

The European spruce bark beetle (Ips typographus L.) has been identified as a disturbance 
resulting in significant decrease in EWT already in the early stages of infestation (Abdullah 
et al. 2018). The disturbance is caused by the combination of larvae that feed on the phloem 
of the trees and a blue stain fungal pathogen (Endoconidiophora polonica) that disturbs the 
flow of water within the xylem (Horntvedt et al. 1983). The blue stain fungi is able to kill 
healthy trees alone if inoculated in sufficient amounts (Horntvedt et al. 1983). The mountain 
pine beetle (Dendroctonus ponderosae Hopkins) has been shown to affect similarly the water 
balance of tree crowns (Skakun et al. 2003). It is also a pest insect which lays eggs under the 
bark introducing a blue stain fungus into the sapwood at the same time (Coops et al. 2006). 
The jack pine budworm (Choristoneura pinus Freeman) larvae causes defoliation in the upper 
part of the crown resulting in drying of the needles and in cases, widespread tree mortality 
(Radeloff et al. 1999).  

LWC is a key measure also in estimating the ignition probability of forest fires (Chuvieco 
et al. 2004). In forest fire studies, LWC is often expressed as fuel moisture content (FMC), 
which is calculated by the same equation as GWC described above (Chuvieco et al. 2002). 
Thus, tree and forest decline that results in decreased FMC can lead to increased forest fire 
risk. While insect damaged timber may be usable for certain forest products, forest fires 
damage timber completely, cause massive CO2 emissions and can jeopardize human lives 
and settlements as has been recently documented e.g. in California, U.S (Ramirez et al. 2018).  

1.6 Aims and structure of this dissertation 

This dissertation investigates multispectral terrestrial lidar data and evaluates its capability 
in detecting declined trees. Specifically, the dissertation studies the relationship between lidar 
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intensity and LWC, evaluates LWC as a tree decline indicator and investigates the capability 
of lidar intensity in detecting declined tree health of varying levels.  

The primary aim of the dissertation was to develop a new RS method for the estimation 
of tree health condition by providing accurate LWC measurements using multispectral lidar 
intensity. The role of forests globally is crucial in the mitigation of climate change due to 
their ability to sequester carbon from the atmosphere. Information on the condition and health 
of forests is a key to be able to evaluate whether forests are acting as a source or a sink of 
carbon. Thus, the second aim was to enhance the understanding of the link between tree 
decline and LWC. By combining LWC measurements and other measures of tree decline, I 
aimed at evaluating multispectral lidar intensity information for the detection of tree decline.   

The structure of this dissertation can be divided into three topics as follows: The first 
topic of the dissertation was dedicated to the development of a novel method for the mapping 
of LWC (Figure 4). First, the potential of multispectral lidar in the detection of drought 
related tree decline was studied (Study I). This was followed by an extensive leaf-scale study 
on the accuracy of EWT estimation using multispectral lidar with the most significant species 
in boreal forests (Study II). After this, the developed method was applied to Norway spruce 
seedling canopies to assess the accuracy of the method for live plants and study the response 
of EWT to varying drought treatments and the inoculation of a fungal pathogen (Study III). 
Finally, the applicability of the developed methods was tested with Norway spruce in a 
mature forest environment (Study IV). 

The second topic of the dissertation was dedicated to investigating the relationship 
between LWC and tree decline for enhanced understanding of the usability of different LWC 
metrics in the detection of tree decline. This topic was based on the data acquired in two 
studies with different disturbances: a greenhouse study with Norway spruce seedlings (Study 
III) where drought and fungal pathogen treatments were applied and a study in a forest 
environment with mature Norway spruce infested by I. typographus (Study IV). 

The third topic of the dissertation was dedicated to estimating the capability of 
multispectral terrestrial lidar in detecting tree decline by observing tree decline symptoms. 
First, the response of multispectral lidar intensity to different disturbance treatments was 
studied in a greenhouse environment with Norway spruce seedlings (Study III). This was 
followed by testing similar methods in the detection of varying tree decline caused by I. 
typographus in mature Norway spruce forest (Study IV). 

 
 

 

Figure 4. The topics of the dissertation and the corresponding studies. 
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2. MATERIAL AND METHODS 

2.1 Experiment design 

The studies in this dissertation were performed in various environments with different 
experiment setups (Figure 5). The conducted investigations have progressed from detailed 
small-scale measurements in the laboratory step-by-step towards tests in the field with mature 
trees. The study I was conducted in a laboratory setting where single trees (3-3.5 m height) 
were measured using HSL with the top of the canopy facing the scanner, simulating an 
airborne data acquisition (Table 1). The dataset consisted of nine Norway spruces (Picea 
abies L.) and nine Scots pines (Pinus sylvestris L.) that were measured with HSL from 3-
meter distance before and after a drought treatment. The drought treatment was implemented 
by leaving the cut trees outside without a water supply for 12 days. 

The study II was also based in a laboratory environment where single leaves and groups 
of needles were used as material. Five species important for forest and urban landscapes in 
Northern Europe were selected for the study: Norway spruce, Scots pine, Silver birch (Betula 
pendula L.), Norway maple (Acer platanoides L.) and Small-leaved lime (Tilia cordata L.). 
Single leaves and groups of needles were attached to black cardboard frames for TLS 
measurements, which was conducted as a time-series investigation as the leaves dried 
naturally. Each of the 101 leaf and needle samples was measured 12 times on average during  
 

 

 
 

Figure 5. The different scales of the terrestrial lidar measurements used in the studies. Top 
left: study I, top right: study II, bottom left: study III and bottom right: study IV. 
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the experiment, resulting in a dataset with 1,180 data points including a measured reference 
EWT and measured lidar intensity at 1550 nm and 690 nm wavelengths. 

The experiment in study III was implemented in a greenhouse with tree seedlings during 
12 weeks between May and August 2016. A total of 145 Norway spruce seedlings of 2-years 
old was divided into different treatment groups to induce variation in LWC. Two kinds of 
disturbance were implemented: drought and inoculation with a fungal pathogen. The drought 
group consisted of four subgroups that had different watering regimes: 75%, 50%, 25% of 
normal irrigation and a group with normal irrigation until a complete stop of watering for 
three weeks. The pathogen group was inoculated with a fungal pathogen (Endoconidiophora 
polonica) that is associated with the European spruce bark beetle (I. typographus). 
Approximately 12 seedlings were randomly collected for TLS measurements and destructive 
sampling of EWT at eight time intervals.  

The field measurements of study IV were conducted in the municipality of Ruokolahti in 
SE Finland in August 2017. There has been an on-going bark beetle infestation by I. 
typographus since 2010 in the study area affecting the condition of Norway spruce. The tree 
damage due to the infestation was mitigated by a cold summer in 2017, thus, the infestation 
symptoms were low and moderate within the area during data collection. The study area is 
characterized by mature Norway spruce forest that is mixed with European rowan (Sorbus 
aucuparia L.), European aspen (Populus tremula L.) and Silver birch (Betula pendula Roth.). 
A total of 33 Norway spruces were selected according to the infestation symptoms for further 
measurements of EWT, GWC and TLS. The infestation symptoms were classified in the field 
by experts based on the condition of foliage (defoliation, discoloration) and bark (resin flow, 
bark structural damage, bark beetle insertion holes) allowing the calculation of an attack score 
level. The attack level score was calculated by summing the symptom classifications. Then, 
based on the attack level score value, the trees were classified in groups of no infestation, 
low infestation and moderate infestation. The EWT and GWC measurements were done by 
sampling the canopy foliage at two heights using a shotgun.  

2.2 Biochemical measurements 

Biochemical measurements were done in studies II-IV for the investigations. LWC was 
measured based on leaf and needle samples in studies II-IV. The calculation of EWT requires 
leaf area measurements which were done using photointerpretation methods. In study II, the 
samples were photographed with a reference target with a known area and leaf area was 
segmented based on RGB values of the images (Easlon and Bloom 2014). A flatbed scanner 

 

Table 1. Summary of the species, number of plants, scale and environment of each sub-
study. 
 

Study Species Number of plant 
samples 

Scale Environment 

I Norway spruce, Scots pine 18 Canopy-level Laboratory 
II 
 

Norway spruce, Scots pine, 
Small-leaved lime, Norway 
maple, Silver birch 

101 Leaf-level Laboratory 

III Norway spruce 145 Branch-/canopy-
level (seedlings) 

Greenhouse 

IV Norway spruce 33 Canopy-level Forest 
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was used in studies III-IV for scanning of the sample and the resulting image was segmented 
using the RGB values.  

The fresh leaf and needle samples in studies II-IV were weighted immediately after 
sampling or lidar measurements using a precision scale. The samples were dried in 60°C for 
48 h to measure dry weight. In studies II-IV, EWT was investigated. Studies II and IV 
investigated also leaf mass per area (LMA). 

 
𝐿𝐿𝐿𝐿𝐿𝐿 = 𝐷𝐷𝐹𝐹

𝐴𝐴
      (4) 

 
where DW is dry weight and A leaf area. In study IV, GWC was also calculated (specified in 
the introduction section). 

2.3 Terrestrial lidar measurements 

Five different TLS instruments were used to measure tree and leaf samples in the studies. In 
the first study (study I), HSL was used, which sends white laser light using a supercontinuum 
laser source (Hakala et al. 2012). The HSL is capable of recording the full waveform of the 
returned lidar pulses at eight wavelengths located in the visible and NIR region (Table 2). 
The HSL is based on time-of-flight measurement for calculating the distance between the 
target and the scanner, and it is a prototype instrument for laboratory tests limiting its 
employment in the field. The HSL can measure multiple returns per lidar pulse. 

The operability in the field and the range of wavelengths was limited in the HSL. Thus, 
in the following studies (II-IV), commercially available TLS instruments were used, which 
allowed field-operability and the utilization of longer wavelengths that are more sensitive to 
LWC. In study II, two commercially available TLS instruments were used: a Leica HDS6100 
(Leica Geosystems AG, Heerbrugg, Switzerland) operating at 690 nm wavelength and a 
FARO X330 (FARO Europe GmbH & Co. KG, Korntal-Münchingen, Germany) operating 
at 1550 nm wavelength. In study III, three TLS instruments were employed: the Leica 
HDS6100, the FARO X330 and a FARO S120 operating at 905 nm wavelength. In study IV, 
two scanners were used: the FARO X330 and a Trimble TX5 (Trimble Inc., Sunnyvale, CA, 
USA) operating at 905 nm wavelength. The Trimble TX5 is essentially the same instrument 
with same technical specifications as FARO S120, but from a different brand. All the 
commercially available scanners mentioned above utilize phase-shift measurement technique 
for range determination. The selection of TLS instruments was based on theoretical 
assumptions and practical availability at the time of the investigation.  

The technical specifications of the different scanners used in the studies are somewhat 
similar, except for the HSL, which is a hyperspectral time-of-flight instrument and can record 
full waveform. In the commercial scanners that were used in studies II-IV, the beam 
divergence is very similar (0.19 mrad, Leica: 0.22 mrad) and beam diameter at exit is 3 mm, 
except for FARO X330: 2.25 mm. The similar optical specifications resulted in similar 
viewing geometries since the beam diameter, i.e. lidar footprint, varied only slightly (5.1-6.3 
mm) at a distance of 15 m. The commercial scanners produced discrete point clouds with 
xyz-coordinates and an intensity value recorded at 12-bits.  

The TLS measurements were conducted from the same distance although several 
scanners were used in studies II-IV to avoid the effect of distance on the measured intensity. 
In study II, the scanners were placed next to each other, as close as was possible, facing the 
targets. In studies III-IV, the scanners were attached on the same tripod consequently. The 
boxing in the FARO and Trimble scanners was the same, thus, the TLS measurements were 
performed from the same position, although different scanners were used. Examples of the 
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point clouds of each study are visualized in Figure 6, where one can observe the high detail 
of the measurements and the slight difference in point density in each study. A reference 
panel with known reflectance was used in each TLS measurement. Three (study III) or four 
(study IV) external sphere targets were placed in the scanned scene to facilitate the 
registration of the point clouds. 

2.4 Post-processing of lidar point clouds 

Post-processing of lidar point clouds was required to separate the target of interest from the 
surroundings. In studies I-II, the area of interest was manually delineated from the point 
clouds, and no georeferencing of point clouds was required. Post-processing of the 
coordinates of the lidar point clouds into a common coordination system was necessary in 
studies III-IV to facilitate the point delineation process and the merging of the point clouds. 
Three (study III) or four (study IV) external sphere targets were placed in each scan for the 
co-registration of the point clouds into a common coordinate system. The point clouds in 
studies III-IV contained a lot of “ghost points” that are points in between targets (Balduzzi et 
al. 2011). The number of ghost points was reduced by applying a statistical outlier filter, 
which filters points that are far from other points. The distance threshold is calculated with 
the following equation: 

 
𝐿𝐿𝑀𝑀𝑀𝑀𝑀𝑀 = 𝐿𝐿𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 + 𝑀𝑀𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑀𝑀 ∗ 𝑠𝑠𝑠𝑠𝑠𝑠,   (5) 

 
where MaxD is the maximum distance of a point to be included, MeanD is the mean distance 
of the neighboring points, nSigma is a standard deviation multiplier threshold, and std is the 
standard deviation of the distance of the neighboring points. 

To separate lidar intensity response from tree needles and bark or stem the point clouds 
were classified into needle and stem points in studies III-IV. The classification was done with 
manual segmentation in study III and automatically in study IV. The automatic classification  

 
Table 2. Technical specifications of the lidar instruments used in the studies. 
 

Laser 
scanner 

Beam 
diver-
gence 
(mrad) 

Beam 
diameter 
at exit 
(mm) 

Beam 
diame-
ter at 15 
m (mm) 

Wavelength(s) 
(nm) 

Intensity 
recording 
(DN) 

Ranging 
error 
(mm) 

Used 
in 
studies 

Hyperspectral 
lidar 

0.35 2 7.25 554.8, 632.5, 
691.1, 725.5, 
760.3, 795.0, 
899.0, 1000.4 

Full 
waveform 

±12 I 

FARO X330 
 

0.19 2.25 5.10 1550 −2048 to 
2033 

±2 II, III, 
IV 

Trimble TX5 
 

0.19 3 5.85 905 −2048 to 
2033 

±2 IV 

FARO S120 
 

0.19 3 5.85 905 −2048 to 
2033 

±2 III 

Leica 
HDS6100 

0.22 3 6.3 690 -1228 to 
2048 

±2 II 
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Figure 6. The point clouds of each study visualized. The cardboard frames can be seen in 
the point cloud of study II. 

 
was based on multiscale dimensionality features, that were calculated using a training sample 
of 40,000 manually classified points (Brodu and Lague 2012). In study IV, the point clouds 
at 905 nm and 1550 nm wavelengths were merged point-by-point by calculating the nearest 
point.  

2.5 Calibration of lidar intensity 

Calibration of lidar intensity was required to reduce the effect of distance, incidence angle, 
cross-sectional geometry and instrument specific behaviour (Kaasalainen et al. 2009). The 
full waveform data in study I was processed using Gaussian function fitting and an external 
reference target to acquire backscattered reflectance values (Hakala et al. 2012). The raw 
intensity digital number values in the commercial scanners (used in studies II-IV) were 
converted into relative reflectance using empirically developed regression models between 
reflectance and raw intensity measurements (Kaasalainen et al. 2009). The empirical data 
consisted of three (studies II-III) or five (study IV) Spectralon (Labsphere, North Sutton, NH, 
USA) reflectance panels that were measured with the scanners and with an ASD FieldSpec 
Pro FR (Analytical Spectral Devices, Inc., Boulder, CO) field spectrophotometer. The FARO 
and Trimble scanners showed a non-linear relationship between raw intensity and reflectance, 
thus, a logarithmic model was applied in the conversion process (Figure 7) (Kaasalainen et 
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al. 2008). The Leica scanner showed a linear relationship allowing the utilization of a linear 
regression model. In all the studies, an external reflectance target was used to normalize for 
the effects of the ambient environment (e.g. temperature). 

In study II, an incidence angle correction was applied on the intensity to correct for the 
curvy and wrinkled surface of the leaves (Figure 8). The incidence angle was calculated by 
finding a surface normal for each point. A plane was formed by finding the nearest points 
within a radius of 4 mm and fitting a plane to the points. The incidence angle was calculated 
for the fitted plane with the following equation: 

 
cos𝛼𝛼 = 𝐏𝐏∙𝐍𝐍

|𝐏𝐏|∗|𝐍𝐍|
 ,    (6) 

 
where α is the incidence angle, P is the lidar beam vector from the TLS to the surface, 

and N is the surface normal vector. 
 An empirical scattering model that combines the Lommel-Seeliger law and the 

Lambert’s cosine law was used to correct the incidence angle effect in study II (Kaasalainen 
et al. 2011). The correction was done with the following equation: 

 
𝐼𝐼(𝜀𝜀) = 𝑀𝑀(𝜔𝜔,𝑛𝑛)(1 − 𝑏𝑏(𝜔𝜔,𝑛𝑛)(1 − cos 𝜀𝜀)),   (7) 
 

where I is backscatter intensity at angle 𝜀𝜀, 𝜔𝜔 is the albedo and 𝑛𝑛 the grain size of the material. 
The parameter b is a Lambertian component and parameter a is the intensity at zero incidence 
angle. The model parameters were evaluated visually from density scatterplots. The species 
of interest in studies III-IV was Norway spruce with needles, thus, an incidence angle 
correction was not applied. 

The removal of specular (i.e. mirror-like) backscatter intensity was tested in study II to 
compensate for the different reflective properties of leaf surfaces. A model that is a mix of 
Lambertian and non-Lambertian reflectance was used to simulate leaf reflectance as follows 
(Poullain et al. 2016): 

 

𝐼𝐼 = 𝑓𝑓 �𝑘𝑘𝑑𝑑 cos𝛼𝛼 + 1 (1−𝑘𝑘𝑑𝑑)
𝑐𝑐𝑐𝑐𝑐𝑐5 𝛼𝛼

𝑀𝑀−�
𝑡𝑡𝑡𝑡𝑡𝑡2𝛼𝛼
𝑚𝑚2 ��,   (8) 

 
where I is the backscatter intensity, f is the backscatter intensity at normal incidence angle, 
kd is the fraction of diffuse backscatter intensity, α is the incidence angle and m is the surface 
roughness parameter. The model parameters were visually estimated using density 
scatterplots of intensity and incidence angle to find the fraction of specular backscatter 
intensity. 

Distance calibration of lidar intensity was conducted to reduce the effect of distance on 
measured intensity. The acquisition of TLS measurements was performed from a constant 
distance in studies I-III and no range correction were applied on the intensity. The TLS data 
in study IV contained various ranges and a range correction of the intensity was necessary. 
Both scanners, FARO X330 operating at 1550 nm and Trimble TX5 operating at 905 nm 
wavelength, showed a similar trend in the relationship between intensity and distance (Figure 
9). The intensity showed a peak in near ranges followed by a positive slope towards longer 
ranges, which is a result of internal amplification in the scanner. The different amplification 
algorithms in different scanners complicate the utilization of intensity data since model 
specific correction parameters are required. The range correction was done using a 
polynomial model fitted between empirically acquired range and intensity measurements 
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(Tan and Cheng 2016). A reflectance panel was measured at 2-meter intervals from 3 m to 
33 m distance and a 10-degree polynomial model was fitted to the data.  

 
 
 
 

 

Figure 7. The relationship between measured raw intensity and measured reflectance of 
FARO S120, X330 and Leica HDS6100. (Figure adapted from study III.) 

 
 
 

 

Figure 8. A sample of a Norway maple leaf measured with the FARO X330 with a 
constructed surface illustrating the curvy nature of the leaf surface. The colours represent 
raw intensity values. (Figure adapted from study II.) 
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Figure 9. The relationship between intensity and distance at 1550 nm and 905 nm 
wavelengths before and after the distance correction. (Figure adapted from study IV.) 

2.6 Lidar intensity metrics 

Lidar intensity metrics are used to describe the measured intensity distribution to investigate 
the relationship between lidar intensity and the variable of interest. For each investigated 
point cloud representing a sample, a set of different intensity metrics was calculated (Table 
3). They describe the intensity value distribution in different ways using statistics.  

The statistical metrics that were used could be divided into two categories: value-based 
metrics and shape-based metrics. The value-based metrics (used in studies I-IV), such as 
mean, standard deviation (std), percentiles or quantiles, are dependent on the values of the 
intensity distribution, i.e. the success of the intensity calibration process is in direct relation 
to these metrics (Figure 10). The shape-based metrics (used in study IV), such as kurtosis, 
skewness or Shannon diversity index, are dependent on the shape of the distribution (e.g. 
how the value distribution compares to a normal distribution), but independent of the actual 
values in the distribution (Figure 11). Two distributions with different ranges and means can 
be the same in terms of skewness, for example. Thus, the intensity calibration process and its 
success in outputting comparable absolute reflectance does not affect the shape-based metrics 
as much as the value-based metrics. 

The calculation of the intensity metrics was based on the intensity data at single 
wavelengths and calculated spectral indices. In study I, a normalized vegetation difference 
index (NDVI) (Gillies et al. 1997) was calculated based on wavelengths at 691 nm and 795  
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Table 3. List of intensity metrics, wavelengths used, and the units of interest for which the 
metrics were calculated. 
 

Study Unit N Wavelengths 
(nm) 

Intensity metrics 

I tree 36 554.8, 632.5, 
691.1, 725.5, 
760.3, 795.0, 
899.0, 1000.4 

mean, min, max, std, quantiles 

II leaf 1180 690, 1550 mean 

III seedling / 
branch  

145 690, 905, 
1550 

mean, min, max, std, percentiles 10, 
20, 30…, 90 

IV tree (foliage 
and stem) 

29 905, 1550 mean, min, max, std, percentiles 10, 
20, 30…, 90, kurtosis, skewness, 
Shannon diversity index, range, 
density bandwidth, density 

 
 
 

  
 

  

 

Figure 10. A set of value-based metrics visualized on a normal distribution. The letter “p” 
denotes “percentile”.  
 

nm, and a modified water index (WI) (Peñuelas et al. 1997) was calculated based on 
wavelengths at 899 nm and 1000 nm. In studies II-IV, a simple ratio (SR) and a normalized 
difference index (NDI) was calculated based on the wavelengths in each study. In study II, 
these were referred as normalized laser difference index (NLDI) and laser ratio index (LRI). 
All possible combinations of wavelengths were used to calculate the spectral indices. 
 

𝑁𝑁𝑀𝑀𝑁𝑁𝐼𝐼 =  𝐼𝐼795− 𝐼𝐼691
𝐼𝐼795+𝐼𝐼691

    (9) 
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Figure 11. A set of shape-based metrics (skewness and kurtosis) visualized.  
 

  
𝐺𝐺𝐼𝐼 = 𝐼𝐼1000

𝐼𝐼899
     (10) 

 
𝑛𝑛𝑆𝑆 =

𝐼𝐼λ1
𝐼𝐼λ2

     (11) 

 
𝑁𝑁𝑀𝑀𝐼𝐼 =

𝐼𝐼λ1−𝐼𝐼λ2
𝐼𝐼λ1+𝐼𝐼λ2

    (12) 

 
The 𝐼𝐼 in the equations denotes calibrated intensity and the footnote the wavelength used 

(λ1 and λ2 are the wavelengths of the scanners in studies II-IV). The HSL used in study I was 
able to record multiple returns; thus, the metrics were calculated separately for single, first 
and second returns. In studies II-IV, the metrics were calculated based on all the points in 
each point cloud since the scanners provided single return data.  

2.7 Statistical methods 

After obtaining the material that consisted of vegetation samples and a set of intensity metrics 
describing each sample, statistical methods were used to investigate their relationship. The 
statistical difference in the calibrated intensity between the drought-treated and fresh 
untreated trees in study I was evaluated using paired t-tests. Similar approach was used to 
determine the differences in LWC between the different infestation classes in study IV with 
unpaired t-tests. Linear simple regression models were employed widely in studies II-IV to 
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evaluate the dependency between calibrated lidar intensity metrics and LWC. In study IV, 
ordinal logistic regression modelling was used to evaluate the ability of individual intensity 
metrics in explaining different infestation symptoms (discoloration, defoliation, resin flow 
on stem) and the infestation class by comparing the statistical significance and McFadden 
pseudo R2 (equation 14) of the models. Similarly, simple linear regression models were 
developed between attack level score, LWC metrics and the intensity metrics as predictors to 
compare the predictive power of each intensity metric. In addition, multiple regression 
models were used to assess the ability of intensity metrics in explaining LWC and attack 
level score (i.e. infestation severity). The coefficient of determination (R2) (equation 15) with 
cross-validation was used to evaluate the goodness-of-fit and the ability of the predictors in 
explaining the independent variable. Root mean square error (RMSE) (equation 16) and 
RMSE % (equation 17) were used to evaluate the accuracy of the predictive models. 
 

𝐿𝐿𝑀𝑀𝑀𝑀𝑀𝑀𝑠𝑠𝑠𝑠𝑀𝑀𝑀𝑀 𝑝𝑝𝑠𝑠𝑀𝑀𝑝𝑝𝑠𝑠𝑝𝑝 𝑆𝑆2 =  𝑑𝑑0−𝑑𝑑
𝑑𝑑0

   (13)
  

𝑆𝑆2 = 1 − ∑ (𝑦𝑦𝑖𝑖−𝑦𝑦�𝑖𝑖)2𝑖𝑖
∑ (𝑦𝑦𝑖𝑖−𝑦𝑦�)2𝑖𝑖

    (14) 
 

𝑆𝑆𝐿𝐿𝑛𝑛𝐸𝐸 = �∑ (𝑦𝑦𝑖𝑖−𝑦𝑦�𝑖𝑖)𝑡𝑡
𝑖𝑖=1

2

𝑛𝑛
    (15) 

 
𝑆𝑆𝐿𝐿𝑛𝑛𝐸𝐸 % = 100 ∗  𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅

𝑦𝑦𝑚𝑚𝑡𝑡𝑚𝑚−𝑦𝑦𝑚𝑚𝑖𝑖𝑡𝑡
   (16) 

 
where d0 is the deviance of a null model, d is the deviance of the model, 𝑀𝑀 is the number 

of observations, 𝑦𝑦𝑖𝑖 is the observed value for the measurement 𝑛𝑛, 𝑦𝑦�𝑖𝑖 is the predicted value for 
the measurement 𝑛𝑛, 𝑦𝑦� is the mean of the observed data, 𝑦𝑦𝑐𝑐𝑚𝑚𝑚𝑚 and 𝑦𝑦𝑐𝑐𝑖𝑖𝑛𝑛 are the maximum and 
minimum of the observed data, respectively.  

The multiple regression models in study IV were developed with a stepwise algorithm 
and evaluated using adjusted (Adj.) and predicted (Pred.) R2 to prevent overfitting of the 
models. The model selection was done using the Schwarz Bayesian information criterion, 
which penalizes for model complexity (Schwarz 1978). Additionally, variance inflation 
factor was calculated for the models to evaluate and prevent multicollinearity between 
predictor variables. The dependencies between biochemical components and infestation 
symptoms in study IV were evaluated using Pearson’s correlation coefficient, when both 
variables were continuous, and Spearman correlation was used for variables with an ordinal 
scale. The ability of lidar intensity metrics in classifying infestation class was evaluated with 
linear discriminant analysis with a two-class (not infested, infested) and a three-class scheme 
(no, low and moderate infestation). The intensity metrics were chosen based on the 
comparison of intensity metrics ability to explain different infestation symptoms. A 
maximum of three variables were chosen in the linear discriminant analysis. The 
classification accuracy of the model was assessed using leave-one-out cross-validation since 
the low number of samples did not allow the creation of a separate data set. All the statistical 
analyses were conducted within the R software package (R Core Team 2013). 
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3. RESULTS 

3.1 Leaf water content mapping: method development (studies I-IV) 

In this first part of the results section, I discuss the results of the method development of 
LWC mapping, which was one of the main themes of this dissertation. The development of 
the methods begun with a simple test in study I, where the potential of HSL in detecting 
drought-induced reflectance changes in the canopies of single trees was assessed. It was 
shown that HSL was able to detect significant differences after the drought treatment using 
a NDVI derived from the 795 nm and 691 nm wavelengths. The difference was more 
pronounced using first or single returns. The drought induced alterations in spectral 
reflectance were more apparent in the NIR spectrum than in the visible wavelengths (Figure 
12). However, the instrument was not capable of measuring lidar intensity at longer 
wavelengths in the SWIR region (> 1000 nm), which is more susceptible to variation in LWC. 
One disadvantage of HSL was that it is a laboratory instrument not suitable for measurements 
in the field. Thus, further investigations were required to assess the accuracy of multispectral 
lidar in quantifying LWC with instruments that operate in the SWIR region (1100-3000 nm) 
and could be operated in the field.  

The leaf reflectance spectra of varying EWT was simulated using a leaf-level reflectance 
model (PROSPECT-5) in study II to determine suitable wavelengths for LWC mapping 
(Figure 13) (Feret et al. 2008). It was shown that LWC affects leaf reflectance in wavelengths 
above 1200 nm and the greatest range of variation, and thus, sensitivity to LWC, was 
observed around the 1500 nm wavelength. The selection of available wavelengths in TLS 
instruments is limited, but the 1550 nm wavelength is used in many, e.g. in FARO X330, 
which was available for further investigations. Thus, FARO X330 with 1550 nm wavelength 
was tested for estimating changes in LWC, which was accompanied by a Leica HDS6100 
operating at 690 nm wavelength located at the red-light spectrum that showed constant 
reflectance with changing LWC. 

After assessing the potential of multispectral lidar in detecting drought induced changes, 
the accuracy of the method in estimating LWC was investigated at leaf-level using 1550 nm 
and 690 nm wavelengths (Study II). The relationship between EWT and the lidar intensity 
was studied using simple regression modelling. Strong correlations between lidar intensity 
and EWT were found for each species (R2 = 0.61-0.86). The NDI and SR indices did not 
show significant improvement over 1550 nm wavelength in the deciduous species but did for 
the conifer species (R2 of 0.48-0.53 vs. 0.61-0.69), likely due to the more complex geometry 
of the coniferous targets. A very strong relationship between EWT and NDI was found by 
pooling all species together (R2 = 0.93) (Figure 14). The calibrated lidar intensity was further 
processed to remove the effect of incidence angle the fraction of specular backscatter 
intensity. However, it was found that the additional correction processes did not affect the 
result significantly, likely due to the constant angle of the samples in relation to the scanner 
position. 

Further investigations of simulated leaf-level spectra gave more insights of the effects of 
leaf structure on reflectance. By using leaf reflectance simulations, it was shown that the 
1550 nm wavelength is sensitive to leaf internal structure, which is not apparent at 690 nm 
wavelength. Thus, it was concluded that multispectral lidar at the investigated wavelengths 
can accurately measure EWT at leaf-level in a controlled setting, but the selection of 
wavelengths was suboptimal due to the inability of 690 nm wavelength in normalizing the 
variation in the internal structure of leaves that affects reflectance at 1550 nm. Also, LMA 
was found to significantly (p<0.0001) correlate with 1550 nm wavelength adding uncertainty 
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Figure 12. Reflectance of fresh (black lines) and drought-treated (red lines) trees. The line is 
the mean reflectance and the bars represent their standard deviations. (Figure adapted from 
Study I.) 
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to the reliable estimation of EWT. Since the measurements were done as a time-series, the 
variability of LMA was not an issue in the data set (i.e. each sample with single LMA value 
was measured multiple times). However, LMA is likely to vary in natural environments 
increasing uncertainty in EWT estimation. Therefore, the suitability of the method for the 
estimation of EWT with live plants was investigated in study III.   

The method that was developed in study II to estimate LWC was tested with live Norway 
spruce seedlings in study III. To consider the conclusions made in study II about the optimal 
selection of wavelengths, a third TLS instrument was employed operating at 905 nm 
wavelength (in addition to 1550 nm and 690 nm). The 905 nm wavelength is sensitive to the 
internal cell structure and density of leaves (i.e. LMA) according to the simulations 
conducted in study II. It was found that the lidar intensity metrics could explain 89% (R2) of 
the variation in EWT using an NDI calculated from 1550 nm and 905 nm wavelengths 
(Figure 15). This was significantly better than metrics calculated from the combination of 
1550 nm and 690 nm (R2 = 0.82) or the 1550 nm wavelength only (R2 = 0.79). The 
segmentation of leaf and stem points improved the results for the single wavelength data, but 
not for the NDI. The calculated NDIs from the segmented stem points showed also strong 
linear relationships with EWT (R2 = 0.66–0.75).  Based on the results of conifer species in 
studies II and III, a conclusion was made that using a spectral index calculated from two 
wavelengths can reduce the effect of varying incidence angles and varying shape of the 
receiving area.  

After conducting studies on estimating LWC with multispectral lidar in controlled 
environments the investigations were taken into the field to test the method in a mature forest 
environment. In study IV, the estimation of LWC, that was measured as EWT and GWC, 
was investigated at tree-level. Simple linear regression models were developed between 
EWT, GWC and individual intensity metrics showing that kurtosis of both 905 nm and 1550  

 
 

 

Figure 13. Reflectance spectra of a leaf with varying LWC, expressed in terms of EWT, 
simulated with the PROSPECT-5 model. All other model parameters were kept constant. 
(Figure adapted from study II.)  
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Figure 14. The relationship between EWT and calibrated intensity at 1550 nm, 690 nm and 
calculated spectral indices: NLDI and LRI. (Figure adapted from study II.)  
 

nm wavelength were among the best predictors for EWT (R2=0.33). Significant relationships 
(R2=0.34–0.38) between the mean and percentiles of NDI measured from the stem and GWC 
was found indicating that the moisture content of bark is linked to canopy water content. The 
developed multivariate regression models explained 68% and 48% of the variation (Adj. R2) 
in EWT and GWC, respectively (Figure 18). The variables chosen by the stepwise algorithm 
were based on canopy intensity metrics for EWT and on stem intensity metrics for GWC. 
The intensity metrics that were chosen to the multivariate regression models were mostly 
based on the NDI and 1550 nm wavelength value distributions, supporting the results from 
the previous studies.  
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Figure 15. The relationship between intensity metrics from all, leaf and stem points and 
EWT in study III. (Figure adapted from study III.) 
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3.2 Effects of various disturbances on leaf water content (studies III & IV) 

The second part of the dissertation was focused on understanding biochemical changes 
induced by tree decline and investigated LWC as an indicator of tree decline. More 
specifically, this part aimed at enhancing the understanding of the link between tree decline 
and LWC by studying trees with varying types of decline (Table 4).  

The first study that investigated this theme in this dissertation was conducted in a 
controlled environment with seedlings that were exposed to different disturbances. In study 
III, the effect of drought on LWC was investigated by exposing Norway spruce seedlings to 
drought of varying intensities. The effect of drought was verified by measuring growth, 
which showed significant differences between the treatment groups (i.e. groups with different 
watering schemes) and was linearly negative with the intensity of the drought. The effect of 
drought on LWC was significant but mixed. On average, the less water the seedlings 
received, the smaller the LWC expressed as EWT was, but the differences between the groups 
were small and they overlapped. Thus, no significant differences within a certain 
measurement time were observed between the groups. The number of seedlings was small at 
each measurement time, hindering the statistical significance though. As the experiment went 
on and further reductions in the irrigation amount were made to intensify the drought 
treatment, EWT decreased significantly. It seemed however, that the greatest reduction was 
apparent only when the seedlings were close to mortality due to the lack of water. This is 
likely due to hydraulic failure in the xylem from cavitation resulting in halted flow of water 
from the roots to the needles that can result in plant death (Barigah et al. 2013).  

A group of seedlings were inoculated with a pathogen blue-stain fungus that is associated 
with I. typographus. The response of EWT to the inoculation of E. polonica was a rapid 
decrease in the seedlings that showed infection symptoms (Figure 16). Most of the infected 
seedlings lost at least 50% of the EWT compared to uninfected seedlings during 2-3 weeks 
after inoculation. The change could be observed also visually as the new soft growth of 
needles wilted. About 50% of the inoculated seedlings were able to resist the pathogen and 
did not exhibit infection symptoms, which can be observed in Figure 16 with many seedlings 
not exhibiting a clear decline in EWT. Despite the inoculation, some of the seedlings did not 
exhibit any signs of infection even after 60 days. 

 
 

Table 4. A summary of the disturbance types causing tree decline in studies III and IV. 
 

Disturbance type Primary or secondary disturbance Study 
Drought Primary III 

Endoconidiophora polonica Primary III 

Endoconidiophora polonica Secondary (associated with I. 
typographus infestation) 
 

IV 

Ips typographus Primary IV 
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Figure 16. Changes in EWT after inoculation with E. polonica. 
 
 

 

Figure 17. Boxplots of GWC and EWT in no infestation, low infestation and moderate 
infestation groups. Different letters on top of the boxes indicate significant difference at 
p<0.05 -level. (Figure adapted from study IV.) 

The second study that contributed to studying the link between tree decline and LWC was 
study IV and it was conducted in a mature Norway spruce forest that showed various levels 
of infestation by I. typographus. The infestation was characterized by low to moderate 
damage with green-attack trees infested by I. typographus, which did not exhibit visual 
signals of tree decline, and trees with moderate damage including yellowing and defoliation 
of the crown. The trees were divided in three classes: not infested, low infestation (including 
green-attack) and moderate infestation. A significant decrease in GWC was detected in all 
the infestation classes, but no significant differences were found in EWT (Figure 17). EWT 
was shown to correlate very highly with leaf mass per area (LMA) (r = 0.93), and 
significantly with the height of the needle sample (r = 0.34). These results indicate that EWT 
varies due to local illumination conditions since LMA has been shown to be positively 
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correlated with daily photon irradiance, i.e. needles that receive more light have larger LMA 
and thus larger EWT due to the high correlation in the dataset (Poorter et al. 2009). EWT has 
been shown to decrease due to green-attack of I. typogrpahus but the samples in the study 
were taken from sunlit branches in the top of canopy, which is likely to decrease the variation 
in EWT measurements (Abdullah et al. 2018).  

The different measures of LWC showed to behave differently with increasing infestation 
severity. GWC was identified as a suitable indicator of tree decline for I. typographus infested 
Norway spruce, but GWC and EWT did not correlate due to the relative insensitivity of GWC 
to varying LMA. There was no significant correlation between GWC and LMA (r = -0.20) 
indicating that GWC is a more independent measure of LWC, which is not affected by LMA. 
GWC was shown to correlate significantly (p<0.05) with the field measured indicators of tree 
decline: defoliation, discoloration, bark resin flow and bark beetle insertion holes. Structural 
bark damage was the only tree infestation symptom which did not show significant 
correlation with GWC. Of all the observed infestation symptoms, GWC was the most 
affected by the discoloration of the crown indicating that discoloration (i.e. changes in 
pigment content and chlorophyll) and GWC are correlated. Significant decreases in GWC 
were detected between all the infestation classes: not infested, low infestation and moderate 
infestation were separated (p<0.05). The relationship between the attack level score and 
GWC showed to be linearly negative. None of the tree decline indicators correlated 
significantly with EWT. 

3.3 Detection of tree decline (studies III & IV) 

The third aim of the dissertation was to investigate the capability of multispectral lidar in 
detecting tree decline. In study III, different disturbances were imposed to induce tree decline 
in Norway spruce seedlings. Drought treated seedlings showed lower growth rates, but the 
variation in LWC was relatively small until the drought was very severe. The detection of 
tree decline was based on lidar estimated LWC; thus, the detection was only possible after 
very severe drought.  

The seedlings, which were inoculated with E. polonica in study III and showed infection 
symptoms, resulted in a rapid decrease in LWC. The decrease was clearly detectable using 
the developed linear regression model of LWC and a simple threshold could be used to 
separate the declined seedlings from the healthy ones.  

Study IV was focused on the detection of tree decline in a mature spruce forest 
environment. Observed symptoms of tree decline (resin flow, canopy discoloration and 
defoliation) showed to significantly affect lidar intensity at both 905 nm and 1550 nm 
wavelengths. Discoloration of the crown affected the intensity metrics most significantly 
according to ordinal logistic regression models developed between bark beetle infestation 
symptoms and individual intensity metrics. On average, the 905 nm wavelength explained 
the severity of infestation symptoms slightly better than the 1550 nm wavelength, but the 
differences were small between the two wavelengths. The multivariate regression models 
that were developed to predict the attack level score using lidar intensity metrics explained 
50% (Adj. R2) of the variation in the attack level score (Figure 18). The discrimination 
between non-infested and infested trees was possible using a simple threshold allowing for 
the early detection of I. typographus infestation before visible discoloration of the tree 
crowns. The early detection was enabled by the ability of the intensity metrics in detecting 
the resin flow. From figure 18, one can observe how the infestation classes are aligned across 
the LWC metrics. A relationship between infestation severity and GWC can be observed but 
regarding EWT, the infestation classes are dispersed along the EWT values quite randomly.  
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Figure 18. Observed vs. predicted values of attack level score, GWC and EWT obtained 
with multiple linear regression models. Circled points in the attack level score plot are green 
attack trees with no discoloration of the crown. Adjusted R2 values are reported within the 
plots. (Figure adapted from study IV.) 

Linear discrimination analysis was used to test the classification of infestation classes 
using lidar intensity metrics. The results showed that NDI and 905 nm wavelength metrics 
resulted in a 66% overall accuracy with three classes (no, low and moderate infestation). The 
classification accuracy of low and moderate classes was low resulting in a poor overall 
classification accuracy. A test with a two-class scheme with not infested and infested classes 
showed that a better accuracy was achieved (90% overall accuracy). The producer’s accuracy 
for the no infestation class was 75% in both classification schemes. The intensity variables 
that were selected as classifiers were largely based on the distribution of 905 nm wavelength 
and NDI. The range of 905 nm of the stem was selected for both classification schemes 
indicating that the detection of resin flow on the stem contributed to the early detection of 
bark beetle infestation.  

4. DISCUSSION 

4.1 Leaf water content as a tree decline indicator 

In this dissertation, the use of LWC as a tree decline indicator was examined. It was shown 
that LWC can vary significantly already in the early stages of bark beetle induced tree 
decline. However, there are significant differences in the LWC metrics that can be used. 
GWC showed to be sensitive to early tree decline while EWT did not vary significantly even 
in the moderate infestation class. It should be noted that the LWC measurements of each tree 
were comprised of two samples at different heights; thus, the sampling intensity may not be 
sufficient to detect significant differences in EWT due to the large variation of EWT within 
mature Norway spruce trees. EWT was affected by the location of the sampled branch in the 
canopy and was strongly correlated with LMA, which was found to significantly affect 1550 
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nm wavelength and calculated indices with 690 nm wavelength. These results raise a 
question: How accurately EWT can indicate leaf water status and tree decline if it is strongly 
linked to leaf structural properties that change over time and depend on local environmental 
conditions? If EWT is dependent on local illuminance conditions similar to LMA (Poorter et 
al. 2009), tree canopy position in relation to other trees is affecting EWT. Tree decline events 
are generally subtle in nature and forest managers need early information for decision 
making. The detection of small differences is complicated, if the natural variability of the 
tree decline indicator is large.  

The drought treatments in study III showed little effect on EWT. EWT decreased 
significantly only after severe drought. The results were acquired in a controlled environment 
with Norway spruce seedlings. The generalization of the results to a natural forest 
environment is challenging. As was shown in study IV, mature trees can have large variation 
in EWT even within a single tree. Seedlings have more homogeneous canopies and 
environmental conditions, such as illumination, were constant between the seedlings. 
Therefore, it is difficult to draw conclusions of the effects of drought on more mature trees 
that have grown in varying conditions. The seedlings showed significant decrease in length 
growth with increasing drought intensity, but otherwise they showed no visual symptoms of 
decline. It could be due to the young age of the seedlings, that they are able to adapt to the 
lower irrigation amounts more easily than mature trees. Previous studies have shown that 
Norway spruce is less affected by drought in terms of basal area growth at a younger age 
(Kohler et al. 2010). The evapotranspiration from the small seedling canopies is less than 
from the large surface of mature tree foliage, allowing the seedlings to cope with a relatively 
broader range of irrigation amounts. 

The seedlings that were inoculated with E. polonica in study III showed a rapid and 
significant decrease in EWT. The infected seedlings showed also visual symptoms of wilting. 
E. polonica damages the water transportation cells in the xylem and effectively blocks the 
flow of water to the canopy. E. polonica is a fungal species that lives in symbiosis with I. 
typographus. The bark beetle helps the fungi to relocate and the fungi assists the bark beetle 
in damaging the host tree for successful reproduction of the bark beetle (Brignolas et al. 
1998). It is likely that E. polonica was one of the major factors causing the tree decline 
symptoms also in the test forest in study IV. Based on the experiments, E. polonica can cause 
rapid tree decline that is observable with LWC measurements.  

A range of studies have investigated the reflectance properties of trees and its relation to 
tree decline. Skakun et al. (2003) used satellite-based observations to detect mountain pine 
beetle damage red-attack damage and found that a wetness index separated the healthy and 
declined forest areas with relatively good accuracy, supporting the use of LWC as a tree 
decline indicator. Higher resolution satellite-based RS data has been shown to be able to 
detect red crowns due to  mountain pine beetle damage using a ratio of red and green 
reflectance, which was compared to a wetness index provided by the Landsat satellites 
(Coops et al. 2006). Immitzer et al. (2014) tried to use high-resolution satellite RS data to 
separate healthy, green-attack and dead trees with Norway spruce, resulting in overall 
classification accuracy of around 70%. However, there was significant overlap in the spectral 
response of the healthy and green-attack trees. Senf et al. (2015) found that both the mountain 
pine beetle and the western spruce bud worm reduced the wetness of the forest measured 
with Landsat satellites, also supporting the findings in this thesis that LWC is a suitable 
indicator for detecting tree decline. 

Based on the field data with mature Norway spruce trees, it can be concluded that GWC 
is a more sensitive and robust indicator of tree decline and it should be preferred over EWT 
in measuring and detecting tree decline. Certainly, the tree species and the causes of tree 
decline are limited in this dissertation; thus, generalization of the results over a variety of 
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species and sources of decline is limited. However, as Norway spruce is one of the most 
important species economically in Europe and one the most widely planted spruces, there is 
potential for significant societal impact in developing tree decline indicators for this species 
(Schlyter et al. 2006). The mapping of GWC using RS methods is generally more challenging 
than EWT, because leaf reflectance is affected by leaf area (Feret et al. 2008). However, if 
GWC is more stable and varies less, as was shown in this dissertation, the absolute measuring 
accuracy requirement is less than for EWT for detecting significant differences.  

The high correlation between LMA and EWT questions the applicability of EWT in 
describing leaf and canopy water status in Norway spruce. If the local illumination conditions 
or the developmental stage of needles affect EWT, how such variation could be considered 
to detect changes caused by tree decline? This is a difficult task and would require more 
information complicating the retrieval of tree decline estimates using EWT as a proxy. TLS 
could enable such approaches with detailed 3D information but future a more direct approach 
would be to further develop the estimation of GWC in future studies. 

4.2 Measuring leaf water content with multispectral lidar 

A variety of scales was investigated for the estimation of leaf and needle EWT (Table 5). The 
studies started from single leaves and groups of needles, then moved on to seedlings in study 
III and finally to mature Norway spruce trees in study IV. Based on the results, it was evident 
that multispectral TLS can estimate EWT at high accuracy in controlled environments where 
environmental conditions, plant material and scanning angles are relatively constant. The 
results showed that an NDI calculated from 905 nm and 1550 nm estimated EWT with the 
highest accuracy of the investigated wavelengths. Similar results have been obtained with 
other species also in controlled indoor environments (Zhu et al. 2017; Elsherif et al. 2018). 
The absolute measurement accuracy of EWT varied between different leaf structures 
deciduous species showing a higher measurement accuracy than coniferous species. This is 
likely due to the more uniform geometry of the leaf target resulting in less variation and error 
in the lidar intensity measurement. The shape of needles in coniferous species results in a 
more complex target geometry increasing the amount of multiple scattering (Korpela 2017). 
NDI seemed to be able to partially reduce the effect of multiple scattering since the greatest 
improvements in EWT estimation (compared to 1550 nm wavelength) were shown for 
coniferous species.   

The application of the LWC measuring method in a forest environment was not as 
successful as the develop regression models explained EWT only moderately compared to 
the previous studies conducted in controlled environments. This may result from the 
following reasons. The reference EWT measurements may have been inadequate, as the trees 
exhibited larger variation in EWT than expected. If the independent variable contains a lot 
of error in the regression models, the accuracy of the predictors in explaining the independent 
variable (EWT in this case) is difficult to estimate. The classification of points into stems and 
needles may have too much error. As the scanning was conducted with single scans, the point 
density and detail in structure is lower than using multiple scans to reconstruct a tree. The 
point classification was based on dimensionality features, thus, the detail of structure in the 
point clouds directly affects the accuracy of the classifiers. Or then more likely, the distance 
calibration of lidar intensity lacks in correcting for the distance effect from needles due to 
varying relationship between lidar intensity and distance with different target geometries. 
The results from study IV in the field showed that the shape of the intensity distribution 
(measured with metrics such as kurtosis or skewness) provided the greatest predictive power 
in terms of EWT estimation. The fact that the strongest relationship between leaf GWC and  
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Table 5. Summary of the results of the estimation of EWT.  
 

Study Type of material 
and treatment 

Type of model or test Best predictors R2 

I Cut trees (3 m 
height) left with no 
watering 

Paired-sample t-tests 725–1000 nm, 
NDVI 

- 

II Cut leaves left to 
dry in cardboard 
frames 

Linear regression 
models 

NDI (690 & 1550 
nm) 

0.93 

III Seedlings with 
different watering 
regimes and 
pathogen 
inoculation 

Linear and multiple 
regression models 

70th and 60th 
percentiles of 
NDI (905 & 1550 
nm) 

0.89–
0.91 

IV Mature trees with 
varying bark 
beetle infestation 
symptoms 

Linear and multiple 
regression models 

kurtosis of 905 
nm and 1550 nm 
and range of 
NDI 

0.16–
0.68 

 
 
intensity measurements was found from the percentiles and the mean of NDI of the stem, 
which is a less complex target, gave further evidence that the canopy measurements contain 
error that is caused by multiple scattering and varying receiving area.  

The estimation of GWC from canopy intensity measurements failed and only very weak 
correlations could be observed. This could partly be due to intensity calibration issues, but 
also result from the effect of leaf area on measured intensity since EWT showed a significant 
relationship with lidar intensity. However, a strong correlation between measured intensity 
of the tree stem and GWC was observed indicating that bark moisture content is linked to 
canopy GWC. Further indication of the link between tree stem and leaf moisture content was 
given in study III where the segmented seedling stem points showed a strong relationship 
with EWT. No bark moisture content measurements were conducted in the studies, so this 
conclusion remains on a speculative level and requires further investigations.  

4.3 Using multispectral lidar intensity in tree decline detection 

The ability of multispectral lidar in detecting tree decline was based on slightly differing 
approaches in studies III-IV. The rapid decline in EWT due to fungal pathogen inoculation 
and the high correlation of EWT and multispectral lidar intensity in study III enabled the 
detection of pathogen induced tree decline. The drought induced tree stress was less 
observable by lidar intensity due to relatively constant EWT until very severe drought was 
present. The investigations conducted in the field (study IV) showed that also other tree 
decline symptoms beside declined LWC can be detected from the lidar measurements. Both 
the multivariate regression models and linear discriminant analyses revealed that the 
detection of resin flow on the tree stem was a significant factor in detecting declined trees in 
addition to canopy intensity metrics at both 905 nm and 1550 nm wavelength.  Multivariate 
regression models developed between multispectral intensity metrics and bark beetle 
infestation severity showed moderate agreement with a selection of intensity metrics from 
both the stem and the canopy. The classification of infested and not infested trees showed an 
overall accuracy of 90%, but it should be noted that there was no separate dataset for an 
independent accuracy assessment. The classification accuracy of infested trees into low and 



43 
 

moderate infestation was low. Therefore, multispectral TLS showed potential in providing 
objective tree decline measurements, but the low number of sample trees (n=29) and a single 
study area limit the generalization of the results. Thus, further investigations are required to 
confirm the results and assess the accuracy of the method in different forest sites with varying 
structural and spatial properties.  

Regarding the distance correction of intensity, there are few matters of to consider. The 
shape of leaves varies in deciduous species, but the physical process of lidar backscattering 
is relatively homogeneous as the leaves form a continuous surface where most lidar hits are 
covered entirely by the target. As with coniferous species, there is large variation in the shape 
of the target illuminated by the laser beam. A single lidar pulse can illuminate a single or 
several needles with its footprint, the gap between the needles can vary and the neighboring 
needles may have a small distance difference to the scanner. The result is very diverse in 
terms of the shape and geometry of the surface that causes a reflection of light that is captured 
by the TLS instrument (Figure 19). Ultimately, this causes varying decay with distance and 
random variation in the lidar intensity measurement, which is complicated to take into 
account (Kaasalainen et al. 2018). However, the utilization of several wavelengths, i.e. 
multispectral lidar, seems to reduce this error, as the estimation of EWT was significantly 
improved in the three studies (II-IV) by using a spectral index. Similar results have been 
obtained previously by studying the dependency between incidence angle and spectral 
indices (Kaasalainen et al. 2016). 

 
 

 

Figure 19. Schematic figure of the differences in the surface that is illuminated by laser light 
in deciduous and conifer species. The laser beam diameter is 5.3 mm in diameter in the 
figure which is equal to 12 m distance with the FARO S120 scanner. 
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The distance calibration of lidar intensity can be an ill-posed problem for tree canopies, 
especially for conifer species for which it is more difficult to determine how the lidar beam 
has illuminated a target (Hovi 2015). Since the distance effect on lidar intensity is dependent 
on the shape of the illuminated area, a new calibration method is required for accounting this 
effect (Korpela 2017). So far, the calibration models that have been developed for TLS are 
largely based on the assumption that the target surface is large enough to cover the lidar beam 
entirely. While this assumption holds for many deciduous species, coniferous species mostly 
have needles that are smaller in width than the laser beam diameter at target, resulting in 
different backscattering properties and stronger decay of the returning light with distance. 
Hence, different parts of tree crowns (stems, needles) need appropriate distance correction 
algorithms for absolute and comparable calibration of lidar intensity between targets of 
different shapes. The shape of tree crowns and individual branches vary according to site 
index and position in relation to other trees further complicating the modelling. However, the 
dense point clouds produced by TLS have sufficient structural detail for such an approach to 
be possible. Developing such calibration procedures would be a major step towards the 
utilization of lidar intensity as a robust tool for classifying e.g. tree health, biochemical 
properties and wood quality. Another approach to tackle the distance calibration challenge, 
would be to develop a new multispectral lidar sensor that have perfectly collinear lidar beams 
at several wavelengths with the same beam divergence resulting in same lidar footprint at 
multiple wavelengths. In theory, if the wavelengths are similarly affected by distance, the 
calculated ratios of two wavelengths would not be affected by the distance calibration issue.  

The imperfections in the calibration procedure discussed above seem not to prevent 
entirely the detection of declined trees with multispectral TLS. As was shown in study IV, 
the metrics that are based on the shape of the intensity distribution showed statistical power 
in explaining infestation symptoms and LWC. The multivariate regression models explained 
only a moderate proportion of the variation in measured tree decline, but more importantly, 
the detection of early stages of bark beetle infestation showed potential. The intensity metrics 
were better able to discriminate not infested and infested trees than the infestation severity 
within the infested trees (low and moderate infestation). Thus, the lidar intensity could exhibit 
tree decline despite the shortcomings of the intensity distance calibration. Similar approaches 
have been used for measuring forest structural attributes with image point clouds from 
unmanned aerial vehicles using only the shape-based metrics of the upper canopy layer 
(Giannetti et al. 2018). Similarly to the results acquired in study IV, significant increase 
around 905 nm has been found due to severe mountain pine beetle damage and in the green 
attack stage of bark beetle attack using spectrophotometer measurements (Ahern 1988; 
Cheng et al. 2010). 

The detection of tree decline using multispectral lidar could be improved with an optimal 
selection of wavelengths. According to Abdullah et al. (2018) the most significant changes 
were observed between 730 nm and 1370 nm region between not infested and bark beetle 
green attacked Norway spruce. In that study, significant differences (p<0.05) were also 
observed in SWIR region between 1430 nm and 1500 nm, which is outside the 1550 nm 
wavelength used in this dissertation. On the other hand, SWIR region between 1420 nm and 
1850 nm wavelength has shown significant differences in green attacked tree foliage in 
another study (Abdullah et al. 2018). Other bands that have been found suitable for early 
detection of bark beetle infestation include 1310–1390 nm and 1000–1050 nm regions 
(Cheng et al. 2010). Engelmann spruce (Picea engelmannii (Parry ex Engelm)) that was in 
the green attack stage showed increased reflectance in SWIR region from 1450 to 2500 nm 
while NIR region showed no alterations (Foster et al. 2017). Early mountain pine beetle did 
not show significant changes around 970 nm wavelength, but did for 1200 nm wavelength 
(Niemann et al. 2015). Based on these studies, the optimal selection of suitable wavelengths 
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seems not clear as results from different studies are somewhat conflicting and likely there are 
species- and site-specific differences in foliage response to bark beetle infestation. Also, the 
timing of data collection slightly differs between studies affecting the ability to detect the 
progressive changes in leaf chemistry that are induced by growth and accumulation of dry 
material within cells.  

Further investigations are required to determine the optimal wavelengths to detect 
different tree decline symptoms such as resin flow on tree stem or discoloration of the crown. 
Other decline symptoms should be linked to the spatial structure of tree canopies such as 
defoliation that has been accurately estimated using TLS (Huo and Zhang 2019). A 
combination of optimal wavelengths and spatial features that can estimate individual 
symptoms of tree decline at high accuracy could yield considerably better estimates of tree 
decline. However, the calibration of lidar intensity data needs to be developed further to 
exploit the full potential of the intensity measurements. Furthermore, the available selection 
of wavelengths is generally limited in multispectral lidar instruments, which can hinder the 
utilization of optimal wavelengths. 

Passive hyperspectral imaging methods can utilize a wider range of wavelengths and have 
shown capabilities in detecting tree decline caused by bark beetle infestation (Lausch et al. 
2013; Näsi et al. 2015). The 3D structure of tree canopies can be reconstructed from 
geolocated images using structure from motion methods enabling 3D point clouds with 
spectral information (Näsi et al. 2018). These methods are based on the passive detection of 
reflected sun energy and thus are sensitive to illumination conditions and shadowing. 
Hyperspectral imaging has shown that it can discriminate severely declined or dead trees 
with good accuracy but generally the early detection of subtle changes in the canopy has been 
challenging (Fassnacht et al. 2014; Näsi et al. 2018). A recent study, however, has 
successfully detected bark beetle green attack stage with Sentinel-2 satellite imagery in an 
area with large areas of green attacked trees and future improvements can be expected as 
methods and technologies develop (Abdullah et al. 2018). 

4.4 Outlook for future method development 

There are several matters that should be investigated to take the developed methods further. 
First, the scaling up of tree decline measurements from individual trees to compartment or 
even regional scale using multispectral lidar should be studied. The use of airborne 
multispectral lidar in detecting declined trees for mapping larger areas needs to be 
investigated in future studies to examine its capabilities. Questions, such as, what kind of 
pulse density or how many lidar measurements per tree are needed for tree decline detection? 
The viewing geometry and detail of measurements varies between airborne and terrestrial 
measurements and how this affects the detection of decline? How the multisensory airborne 
lidar instruments can measure LWC from above? It could be expected that the top of the 
canopy has less variability in LWC than the whole tree facilitating the measurements, since 
a significant correlation between sampling height and EWT was found in study IV. Also, 
EWT has shown significant differences already in the green attack stage when only sunlit 
needles from top of the canopy were sampled, but no differences were found in study IV 
(Abdullah et al. 2018). Another question is if the airborne sensors can observe early tree 
decline. The lidar measured stem characteristics were found useful with TLS but the stem is 
not measurable from above canopies. Another way to scale up would be using the TLS 
measured tree decline as a reference for satellite measurements. Sentinel-2 data has shown 
potential in detecting early forest decline but its potential is not well known due to the young 
age of the satellite products (Abdullah et al. 2018). Secondly, the detection of decline with 
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more species and causes of tree decline needs to be studied to assess the full potential and 
accuracy of multispectral lidar in tree decline detection. There are many species that affect 
trees similarly (e.g. I. typographus and D. ponderosae); thus, conclusions for wider 
applicability can be made, but the effects of defoliators and bark beetles on tree physiology, 
for instance, are different. 

Considering sensor development and intensity calibration, there are several questions that 
need to be addressed. The varying effect of distance on lidar intensity due to target geometry 
requires for a novel correction method or other data-driven approaches that could diminish 
the effect of this issue. Could sensors with collinear lidar beams at several wavelengths with 
same beam divergence and similar optical properties be developed? And what are their 
capabilities in improving the utilization of intensity data? A ratio of two wavelengths could 
help removing the problem if both wavelengths are similarly influenced by distance. There 
are research lidar instruments that utilize white supercontinuum laser source, but these are 
dangerous to be used in the field due to eye-safety issues because of the high-power laser. 
Collinear lidar beams have potential in reducing the effects of target geometry, varying 
receiving area and incidence angle on the measured intensity but the topic has not been 
thoroughly investigated. Lidar intensity with airborne lidar data has shown potential in 
detecting tree decline in terms of defoliation also with single wavelength intensity, but the 
feasibility of using it has been drawn back due to complications in calibrating the intensity 
data (Kantola et al. 2013).  

Point cloud technologies are increasingly used in forest monitoring and forest resource 
assessments and new sensors are being developed decreasing the cost of data collection (Eitel 
et al. 2016; Liang et al. 2018). Lidar sensors have been deployed on a variety of different 
platforms ranging from backpacks to all-terrain vehicles and from drones to satellites (Lin et 
al. 2011; Kukko et al. 2012; Flener et al. 2013; Qi and Dubayah 2016). In the future, 
technological and navigational advancements will allow for more efficient and thorough lidar 
measurements compared to using TLS which is time consuming considering the requirements 
of forest planners. Time-series of 3D forest structure measurements will create new 
possibilities to refine forest inventories and measure e.g. growth at unpreceded detail (Eitel 
et al. 2016). Tree growth in relation to its leaf area index is an important indicator of tree 
decline; thus, new ways to measure forest health will be enabled in the future (Waring 1983). 
Time-series data of lidar derived LWC measurements could also enhance the understanding 
of tree LWC dynamics and provide new means for detecting declined trees. This dissertation 
has shown that multispectral lidar can provide accurate tree decline information with a one-
time measurement. Future studies should focus on utilizing this information on a wider scale 
with point cloud ecosystems that span from terrestrial to airborne and even spaceborne 
measurements to help decision makers in managing forests in a sustainable manner in the 
face of climate change and enhance the understanding of tree decline processes at different 
scales. 

5. CONCLUSIONS 

New methods for detecting and estimating tree decline were developed and evaluated in this 
dissertation. The condition and health of World’s forests are jeopardized due to climate 
change. All the ecosystem services forests provide, such as carbon storage and uptake, 
renewable material, income for rural livelihoods, edibles and other non-timber forest 
products and outdoor activities, are directly affected by the health and condition of forests. 
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There is large uncertainty in the resilience of forests under changing climate and one of the 
key questions to be able to solve this problem is how to measure tree decline objectively in 
an efficient manner. This dissertation was dedicated to solving this problem in the field.  

The first aim of this dissertation was to develop a method for the estimation of LWC using 
multispectral lidar. The developed methods showed that accurate estimates of LWC can be 
achieved in controlled environments where measurement distance and plant material are 
relatively constant. The estimation accuracy of LWC in the field was hindered by lidar 
intensity distance calibration, which was less successful for tree canopies.  

The second aim was to investigate the relationship between LWC and tree decline. 
Results from the LWC measurements of bark beetle infested trees showed that LWC metrics 
differ significantly. GWC was sensitive to early tree decline while EWT showed no changes 
due to tree decline but correlated highly with LMA. Norway spruce seedlings that were 
inoculated with a blue-stain fungus showed a rapid decline in LWC while drought-treated 
seedlings showed constant levels of LWC until very severe drought was induced. These 
results gave new insight to the utilization of LWC as a tree decline indicator. 

The last and third aim was to evaluate multispectral lidar in detecting declined trees. It 
was found that several indicators of tree decline affect lidar intensity significantly allowing 
the detection of the decline using multispectral TLS, but further studies are required for a 
reliable accuracy assessment in forest environments. In a forest environment, the 
measurement of tree decline should be linked to tree infestation symptoms of the stem and 
the canopy accounting for both changes in LWC and structural variability due to e.g. 
defoliation. By using multispectral TLS intensity, it was possible to detect early signs of tree 
decline and classify bark beetle infested trees with fair accuracy. Intensity distance 
calibration methods require further development to improve the accuracy of the methods and 
to allow robust comparison of different datasets. 

This work outlines the feasibility and the limits of multispectral TLS in the detection of 
declined trees and points towards future research topics that should be addressed for a more 
robust utilization of lidar intensity and improved detection of tree decline. It has been shown 
before that TLS can measure the structure of trees with high detail and now the detection of 
tree decline and LWC mapping can be added to the vast list of possibilities this technology 
provides.  
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