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ABSTRACT 

Diameter distributions are usually characterized in forest management inventories using 

probability density functions (PDF). Depending on the inventory method, the PDF 

parameters are derived using either predicted or assessed forest attributes. The application of 

PDF is not essential for forest inventories that rely on remotely sensed data, because the 

diameter distributions can be predicted using empirical tree lists via the nearest neighbor 

(NN) approach. This thesis comprises three objectives. The general aim is to investigate NN-

based prediction of diameter distributions in Finnish forest inventories. Firstly, the response 

configurations of the NN approach were examined in the prediction of species-specific 

diameter distributions. Secondly, different remote sensing datasets were utilized in the 

prediction of diameter distribution for logwood-sized trees. For example, bitemporal and 

multispectral airborne laser scanning (ALS) datasets were compared to the Finnish forest 

inventory standard in which unispectral ALS and aerial images are used. Thirdly, two 

approaches that fuse an area-based approach (ABA) and individual-tree detection (ITD) in 

the prediction of diameter distributions were proposed. The results showed that the standard 

response configuration used in NN imputation is suboptimal if diameter distributions are of 

interest. The findings also indicate that the multispectral ALS dataset performs poorly in the 

prediction of logwood volumes by tree species. Instead, the use of bitemporal ALS (leaf-off 

and leaf-on) data provide almost comparable error rates with the use of ALS data and aerial 

images in the prediction of logwood volumes by tree species. The ABA-ITD fusion of 

diameter distributions provided slight improvements in the mean error index values 

associated with the predicted diameter distributions. It should be noted, however, that ITD is 

more sensitive to errors than ABA, for example, in forests with a bimodal or descending 

diameter distribution. Structural analysis of forests using ALS data is a possible indicator for 

the selection of prediction approach. The pulse density of the national ALS data will be 

increased in the 2020s, which opens up the possibility to apply the ABA-ITD fusion approach 

in practical applications.  
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1 INTRODUCTION 

1.1 Tree size distributions in Finnish forest management 

The principal goal of a forest management inventory is to comprehensively describe forests 

for the purposes of forest management planning. Typically, forest attributes (such as volume 

basal area and dominant height) are employed in the planning of silvicultural operations in 

homogenous forest units, namely stands, in a forest estate. These forest attributes can be 

easily seen as the most valuable outputs of forest management inventories, although tree size 

distribution provides a more comprehensive description of a forest. Tree size distributions 

can be characterized using various attributes, for example, diameter at breast height (DBH), 

height, or volume. The use of DBH is usually justified by the tree-level predictive models 

that employ DBH as the primary predictor variable (Laasasenaho 1982; Repola 2009). Tree 

size distribution described using DBH can be considered as a multivariate forest attribute 

from which individual forest attributes originate. In this thesis, the focus is on tree size 

distributions characterized using DBH (i.e. diameter distributions).  

The characterization of diameter distributions is simpler in a managed forest than in a 

natural forest because the silvicultural operations simplify forest structures (Rouvinen and 

Kuuluvainen 2005). Managed Finnish forest stands can be even-aged monocultures, although 

several tree species can also be grown simultaneously in distinct canopy layers. Therefore, 

the diameter distribution of Finnish managed forests usually has up to two distribution peaks 

(without considering tree species). Still, in many cases, the shape of the diameter distribution 

in a managed even-aged forest stand is unimodal, i.e., Gaussian-shaped distribution, due to 

the rapid regeneration after a clear-cut (Rouvinen and Kuuluvainen 2005). In natural 

conditions, Gaussian-shaped diameter distributions are rare because of the disturbance events 

that usually affect only a small proportion of trees in a forest at a time. Therefore, the forest 

structures are irregularly disturbed, both spatially and temporally, thereby leading to more 

complex diameter distributions than in managed forests (Kuuluvainen 2002). For example, 

descending (reverse J), multimodal (e.g. bimodal) and irregular are possible shapes for 

diameter distributions in forests that are not under active silvicultural management. 

Moreover, bimodal-shaped diameter distributions are common in uneven-aged managed 

forests. 

Diameter distributions by tree species are required in Finnish forest inventories due to 

timber procurement requirements, and growth and yield modeling that requires tree species-

specific information. The separation of forest attributes by tree species is possible due to the 

small number of commercial tree species. Scots pine (Pinus sylvestris (L.)), Norway spruce 

(Picea abies (L.) Karst.), and the deciduous species group are separated in Finnish forest 

management inventories. The deciduous species group mainly consists of silver birch (Betula 

pendula Roth), and downy birch (Betula pubescens Ehrh.), as well as aspen (Populus tremula 

(L.)) and alder (Alnus spp.).  

Diameter distribution is a key component in the forest simulators used in forest planning. 

Forest simulators include the models required to simulate, for example, future growth. 

Finnish forest simulators, such as MELA and MOTTI, usually use tree-level growth models 

(Hynynen et al. 2002). It is evident that errors in the initial diameter distributions may 

multiply during the planning period. Therefore, the errors may lead to inoptimality losses 

because of the suboptimal schedule of the silvicultural treatments. Diameter distributions are 

also important descriptors of the structural characteristics associated with a forest. For 
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example, the layered vertical structure of a forest and the variability of tree sizes are 

indicative of biodiversity values (Esseen et al. 1997). Forest management inventories rarely 

focus on the characterization of the vertical structure of forests. Diameter distributions 

correlate with the height distribution of a forest (Loetsch et al. 1973), and therefore diameter 

distributions can be used as an indicator for biodiversity values. 

1.2 Development of diameter distribution modeling techniques 

The comprehensive description of diameter distribution in a forest stand requires that DBH 

is measured for each tree. It is a common practice to omit the smallest trees in forest 

inventories (Keränen et al. 2015). In Finland, diameter distribution is typically truncated 

using a minimum DBH limit of 5 cm. Despite the exclusion of the smallest trees, diameter 

distributions are laborious to measure in the field. Several techniques for the determination 

of diameter distributions without laborious field measurements have been developed (e.g. 

Päivinen 1980; Kilkki et al. 1989). In Finland, the planning of forest management has 

strongly relied on inventories by forest stands (i.e. inventories by compartments or stand-

level inventories) that have also established guidelines for the development of diameter 

distribution modeling. Inventories by forest stands were the principal forest inventory 

approach in Finland from the beginning of the 20th century to the 2010s. Inventories by forest 

stands were carried out by visiting each forest stand of a forest estate. The inventories were 

based on parceling out the forest estates according to homogenous forest stands. This 

approach required a land survey, until around the mid-20th century when aerial images were 

available for the delineation of forest stands (Koivuniemi and Korhonen 2006). The field 

assessments were based on visual assessments and height measurements. Later, a relascope 

was used to measure angle count samples, which enabled more objective stem density and 

basal area measurements than the visual assessments. The volume of growing stock was 

estimated by means of stand volume tables, and height and basal area measurements 

(Nyyssönen 1954). The stand volume tables were applied up to the 1980s, when theoretical 

diameter distributions were introduced for the total growing stock (Päivinen 1980). Later in 

the 1990s, the theoretical diameter distributions were also augmented, so that each tree 

species and all canopy layers were considered separately in the inventories by forest stands 

(Mykkänen 1986; Kilkki et al. 1989; Siipilehto 1999). Hence, the inventories in each forest 

stand were based on angle-count samples, the measurements of mean attributes, and visual 

assessments (Kangas et al. 2004). The measured forest attributes, such as basal area, mean 

diameter and age, were used in the construction of a theoretical diameter distribution.  

The theoretical diameter distribution model is usually based on a probability density 

function (PDF) that is controlled by two or three parameters. Various PDF have been applied 

in the modeling of diameter distributions. In Finland, Cajanus (1914) was the first to apply a 

PDF in the description of diameter distributions; he applied a Gram-Charlier distribution, 

which is a sophisticated version of the Gaussian distribution. Later, several PDFs have been 

proposed for diameter distributions, such as Weibull (Bailey and Dell 1973; Kilkki et al. 

1989), Johnson Sb (Hafley and Schreuder 1977; Siipilehto 1999) and Beta (Loetsch et al. 

1973; Päivinen 1980). The capability to describe the various shapes of the diameter 

distributions depends on the function (Wang and Rennolls 2005). Generally, PDF can only 

describe unimodal diameter distributions, although the flexibility to describe ascending (J-

shaped) and descending (reverse-J-shaped) distributions differs between PDF. A two-

parameter Weibull function has emerged as the most commonly used PDF in the modeling 
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of diameter distributions (Siipilehto 1999). The two-parameter Weibull can describe 

unimodal (Gaussian-shaped), and ascending and descending diameter distributions as well. 

The multimodality of diameter distributions can be dealt with separate modeling of canopy 

layers (Lönnroth 1925; Cao and Burkhardt 1984) or with mixture models (Liu et al. 2002).  

The PDF parameters are usually predicted or recovered by employing easily measurable 

forest attributes as predictor variables (Kilkki and Päivinen 1989; Siipilehto 1999; Siipilehto 

and Mehtätalo 2013). The parameter prediction approach requires predictive models for 

function parameters. For example, Siipilehto (1999) and Kilkki et al. (1989) have proposed 

models for the parameters of the Weibull function. Those models apply forest attributes as 

predictor variables. Instead, the parameter recovery approach utilizes the mathematical 

relationships between forest attributes and the parameters of a PDF. The recovery equations 

can involve forest attributes (Siipilehto and Mehtätalo 2013), moments (Burk and Newberry 

1984) or percentiles (Bailey and Dell 1973). Studies have also proposed approaches that are 

not tied to the application of a PDF, e.g., a percentile (Borders et al. 1987; Kangas and 

Maltamo 2000a) or a nearest neighbor (NN) approach (Haara et al. 1997). The latter is 

referred to as an imputation method. 

Modeling an unweighted diameter distribution is referred to as a stem-frequency 

distribution. Diameter distributions can also be weighted. The angle-count sampling applied 

in the inventories by forest stands is based on the measurement of basal area. Therefore, the 

diameter distributions have usually been weighted by basal area in order to be consistent with 

the angle count samples. The usage of basal area weighted diameter distribution is justified 

by the assumption that the basal area weighting places more emphasis on logwood-sized trees 

than unweighted distributions (Päivinen 1980). Later, Maltamo et al. (2007) showed that the 

benefit of the basal area weighting is negligible in terms of the error associated with timber 

volume compared to unweighted (i.e. stem frequency) diameter distribution. Therefore, the 

focus of this thesis is on stem-frequency diameter distributions. 

1.3 Era of remote sensing-based forest inventories 

Remote sensing was permanently integrated into boreal forest inventories during the 21st 

century (Nӕsset 2014; Maltamo and Packalen 2014). The most remarkable technology from 

the point of view of modern forest inventories has been the light detection and ranging 

(LiDAR), which can measure the distance between a target and the LiDAR sensor (Wehr and 

Lohr 1999). The scanning LiDAR sensors can be operated from airborne vehicles equipped 

with a global navigation satellite system (GNSS) receiver, inertial measurement unit (IMU) 

and computational unit with storage capacity. Due to technological developments in GNSS 

and IMU, the scanning airborne LiDAR system can accurately measure georeferenced 3D 

point clouds (Nelson 2013). Airborne LiDAR is henceforth referred to as airborne laser 

scanning (ALS) in this thesis. The acquisition of ALS data for forestry purposes (in Finland) 

is carried out over large areas covering several thousands of forest estates at a time (100,000 

– 500,000 ha), which has improved the cost-efficiency of forest management inventories 

(Maltamo and Packalen 2014). In this thesis, forest inventories that rely on remote sensing 

are referred to as ALS-based forest inventories, since ALS data are typically the most notable 

remote sensing data source. 

The ALS-based forest inventories can be divided into two fundamental categories: area-

based approach (ABA; see Nilsson 1996; Næsset 1997), and individual-tree detection (ITD; 

see Brandtberg 1999; Hyyppä and Inkinen 1999). Approaches that combine characteristics 
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from ABA and ITD have also been proposed (Breidenbach et al. 2010; Lindberg et al. 2010; 

Packalen et al. 2015). Globally, the most applied approach to predict forest attributes is ABA. 

The ITD approach relies on the detection of trees and, therefore, requires high-density (> 5 

pulses ∙ m-²) ALS data. To date, the application of ITD in most operational forest inventories 

has been rare. 

The ALS-based forest inventories that rely on ABA have been conducted operationally 

for many years, for example, in Finland and Norway (Maltamo and Packalen 2014; Næsset 

2014). The ALS-based forest inventories typically employ field sample plots that are used as 

training observations for the construction of predictive models. The features derived from 

remotely sensed datasets are required as predictor variables in the predictive models. The 

prediction relies on the statistical relationships between field measurements and remotely 

sensed data. For example, in Finland, the predictive models that include predictor variables 

derived from ALS data and aerial images are applied to predict forest attributes for 16 × 16 

m grid cells, following the wall-to-wall principle, in the inventory area (Maltamo and 

Packalen 2014). In Finnish inventories, the inventory areas typically cover hundreds of 

thousands of hectares and are inventoried during two sequential years. Finally, the grid cells 

can be used to aggregate predicted forest attributes for larger units, such as forest stands. 

Field measurements and additional visits are sometimes needed, especially in seedling and 

sapling stands. Nevertheless, cost savings of 60 % are assumed when the traditional 

inventories by forest stands are replaced with ALS-based forest inventories in Finland 

(Maltamo and Packalen 2014). The most important reason for such a cost saving is the 

reduced amount of fieldwork compared to the traditional stand-level inventory procedure. 

Inventories by forest stands require a visit to each forest stand (e.g. 100,000 stands per 

inventory area), whereas only a sample of field plots are required in the ALS-based forest 

inventories. Moreover, the ALS-based forest inventory achieves smaller or similar error rates 

associated with forest attributes than the inventories by forest stands when the tree species 

are not considered (see Haara and Korhonen 2004; Wallenius et al. 2012). The remote 

sensing-based recognition of tree species is an issue in mixed forests, in which the inventories 

by forest stands usually outperform the ALS-based forest inventories in terms of the 

prediction errors associated with the minor tree species. 

1.4 ALS-based forest inventories by tree species 

Height-related features derived from ALS data are the most applied features in the prediction 

of diameter distributions and forest attributes. However, height-related features do not 

provide adequate discrimination between tree species in ALS-based forest inventories. 

Modern ALS devices also record echo intensities that have been applied in the classification 

of tree species (Korpela et al. 2009; Vauhkonen et al. 2014). Echo intensities are usually 

determined from the amplitude of return echo. The amplitude describes the power of the laser 

echo returned to the ALS system (Wagner et al. 2006). However, previous studies have 

indicated that the compound of intensity and height-related features may not provide 

satisfactory error rates associated with the prediction of species-specific forest attributes 

(Räty et al. 2016; Kukkonen et al. 2019a).  

Remote sensing data sources other than ALS data (height and intensity features) can 

improve the predictive performance of species-specific models (Packalén and Maltamo 2006; 

Dalponte et al. 2014; Vauhkonen et al. 2014; Kukkonen et al. 2018). Multispectral aerial 

images are most typically employed in species-specific forest inventories (Næsset 2014; 
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Maltamo and Packalen 2014) because reflectance recorded in the near-infrared region of the 

spectrum differs significantly between coniferous and deciduous forests. Moreover, the 

combination of ALS data and hyperspectral aerial images have been proved to discriminate 

between tree species (Dalponte et al. 2013; Dalponte et al. 2014). The joint usage of ALS 

data and aerial images essentially requires two separate data acquisitions, which increases 

costs compared to the collection of ALS data alone. Thus, a single sensor solution would 

significantly reduce the expenses related to data acquisitions. The most promising single 

sensor solution has been a multispectral ALS system (e.g. Optech 2020), which typically 

carries out LiDAR measurements simultaneously, with separate sensors operating at different 

wavelengths (e.g. 1064, 1550, 532 nm). To date, multispectral ALS data have been examined 

for the recognition of tree species (e.g. Axelsson et al. 2018; Kukkonen et al. 2019b) and for 

the prediction of forest attributes (Dalponte et al. 2018; Kukkonen et al. 2019a). In general, 

the results suggest that the predictive performance associated with multispectral ALS data 

outperforms that of unispectral ALS data when tree species are considered. However, 

multispectral ALS data do not outperform the combination of unispectral ALS data and aerial 

images in tree species-specific predictions.  

Satellite imagery and bitemporal ALS datasets can also provide the predictive power 

required in species-specific forest inventories. Kukkonen et al. (2018) observed that Sentinel-

2 satellite images provide almost similar predictive performance in ALS-based species-

specific forest inventories to multispectral aerial images. Repeated ALS measurements have 

been successfully utilized, for example, in the monitoring of forest growth (e.g. Zhao et al. 

2018). Bitemporal ALS have not been applied in species-specific forest inventories prior to 

this thesis. The conditions under which ALS datasets are collected may also influence the 

predictive performance in species-specific inventories. Villikka et al. (2012) showed that 

ALS data collected under leaf-off conditions are better able to distinguish between coniferous 

and deciduous tree species than leaf-on ALS data. 

1.5 Diameter distributions in ALS-based forest inventories 

1.5.1 Area-based approach 

The modeling of diameter distributions in ALS-based forest inventories has relied on the 

techniques inherited from the era of inventories by forest stands. The PDF parameters can be 

predicted using similar principles in the ALS-based forest inventories to those employed in 

the inventories by forest stands. The measured forest attributes of the parameter models are 

replaced with forest attributes predicted by the ALS-based forest inventory. The parameter 

prediction models are not inventory-specific, but the purpose has been to fit general models 

that could be applied to the whole country (Kilkki and Päivinen 1989; Siipilehto 1999). 

Therefore, the locality of the inventory area cannot be adequately addressed. Forest attributes 

predicted using ALS data can also be used in the recovery of parameters associated with a 

PDF (Mehtätalo et al. 2007). However, prediction errors associated with the forest attributes 

may induce convergence problems (Mehtätalo et al. 2007; Siipilehto and Mehtätalo 2013; 

Maltamo et al. 2018). It is evident that convergence problems are more common when tree 

species are considered in the recovery. Moreover, the moments or percentiles needed in the 

parameter recovery can be predicted using ALS data (Gobakken and Nӕsset 2004; Cosenza 

et al. 2019). A system of percentiles of a diameter distribution can also be predicted using 

ALS data, which means that a PDF is not needed at all (Gobakken and Nӕsset 2005). 
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The PDF parameters can also be predicted directly using ALS data (Gobakken and Næsset 

2004). The prediction of parameters is typically difficult, since ALS features are strongly 

related to the vertical structure of the forest but not explicitly to the diameters of trees. The 

prediction of parameters can be accommodated by fitting models separately for the stratified 

data, e.g. by development class (Gobakken and Nӕsset 2004) or thresholds in forest attributes 

(Thomas et al. 2008). However, consideration of tree species or canopy layer increases the 

number of parameters that must be predicted, and the stratification should be known for the 

targets as well. The simultaneous prediction of numerous parameters is possible, although 

the parameters of the density functions do not strongly correlate with the ALS features. For 

example, Thomas et al. (2008) successfully predicted bimodal diameter distributions 

applying a mixture of Weibull models and multiple linear regression. 

The prediction of diameter distributions has also been investigated from the perspective 

of advanced statistical inference (Magnussen et al. 2013) and sampling theory (Magnussen 

and Renaud 2016). Magnussen et al. (2013) predicted diameter distributions using the Gram-

Charlier A-series expansion (GCAE) of a PDF and the cumulants of ALS-based canopy 

height distributions. Their approach covered a wider range of shapes associated with diameter 

distributions beyond PDF alone. The computationally complex GCAE provided minor 

improvements to the errors associated with diameter distributions compared to the simpler 

approach based on the prediction of distribution deciles. Magnussen and Renaud (2016) 

applied multidimensional scaling and first-return ALS canopy heights for the model-assisted 

estimation of diameter distribution. They proved that multidimensional scaling can be used 

to link the relative frequency distribution of canopy heights to an observed diameter 

distribution. The approach has advantages because it can be applied at different scales 

regardless of, for example, plot sizes.  

The fieldwork associated with ALS-based forest inventories substantially differs from the 

principles applied in the inventories by forest stands, since ALS-based inventories require 

comprehensive field measurements (tree-level, empirical tree lists) from sample plots.  

Therefore, the application of the modeling techniques developed for the inventories by forest 

stands are suboptimal in ALS-based forest inventories when the trees are aggregated to the 

stand-level. The prediction of diameter distribution using measured trees, i.e. empirical tree 

lists and the NN approach, has superseded methods that rely on PDF in Finnish ALS-based 

forest inventories. The option to apply tree lists will be provided in the Finnish operational 

forest inventories in the 2020s.  

Non-parametric approaches for the prediction of diameter distributions usually refer to 

the NN approach (Packalén and Maltamo 2008). The NN approach is the most often used 

approach and has proved to be flexible compared to the approaches that are based on PDF. 

Here, the flexibility implies that the shape of the predicted diameter distribution is not 

dependent on the characteristics associated with a specific PDF. Packalén and Maltamo 

(2008) showed that the prediction of diameter distributions using NN imputation outperforms 

the approach based on the Weibull distribution when tree species were considered in the 

prediction. Peuhkurinen et al. (2008) and Maltamo et al. (2009a) also successfully predicted 

diameter distributions using the NN approach. The most significant advantage of the NN 

approach in ALS-based forest inventories is that the predictions are constructed using a local 

field dataset (per inventory area). The localization of the diameter distribution predictions 

can better consider the regional variation in forest attributes than, for example, diameter 

distributions predicted using national-level parameter models. 



15 

 

1.5.2 Individual tree detection 

The critical issues related to the prediction of diameter distributions using the ITD approach 

are: (1) the detection of suppressed trees, and (2) the prediction of DBH associated with 

detected trees. After that, the construction of diameter distributions from predicted DBH is a 

straightforward process. The prediction of diameter distributions using ITD has been studied 

(Lindberg et al. 2010) but operational applications that apply ITD have been rare. 

A common ITD approach is to use a canopy height model (CHM) that is interpolated 

using ALS echoes returned from the forest canopy. Subsequently, the CHM is smoothed, and 

individual treetops are detected from the CHM using a local maxima algorithm (e.g. Persson 

et al. 2002). Finally, the tree crowns are delineated using image processing techniques, such 

as a watershed algorithm. The delineation of individual trees can also be implemented from 

ALS data without the image processing techniques and CHM (Reitberger et al. 2009; 

Duncanson et al. 2014; Kansanen et al. 2019a). Despite the segmentation algorithms, 

detection of suppressed trees is a major challenge as laser pulses emitted from the ALS device 

cannot properly penetrate dense canopy layers (Persson et al. 2002). Moreover, a group of 

trees can be difficult to detect as distinct trees (Packalen et al. 2013). The errors related to the 

detection of suppressed trees may not have a critical effect on the errors associated with 

predicted volumes but are surely critical shortcomings from the point of view of diameter 

distributions (Persson et al. 2002; Vauhkonen 2020).  

Error rates associated with the prediction of DBH have a significant effect on the 

goodness of diameter distribution predicted using ITD. The DBH of logwood-sized trees are 

more difficult to predict than pulpwood-sized trees, since the increase in tree height 

diminishes as a tree matures. Moreover, DBH values are affected by numerous factors, such 

as site fertility and silvicultural activity. In many cases, those factors are difficult to 

incorporate into the models due to a lack of data. The ITD approach also requires that tree 

species are reliably predicted because the DBH-height relationships depend on tree species. 

Mixed-effects models are commonly used in the prediction of DBH (Kalliovirta and Tokola 

2005), and NN imputation (Maltamo et al. 2009b) and copulas (Xu et al. 2019) have also 

been successfully applied. To overcome the challenges related to the prediction of DBH, the 

features associated with the characteristics of crown segments can be used in conjunction 

with traditional ALS-based height and intensity features (Vauhkonen et al. 2010). However, 

the error rates associated with predicted DBH in the previous studies have been relatively 

large (at lowest, errors of 2–3 cm). 

1.5.3 Fusion of area-based approach and individual-tree detection 

Several studies have investigated the fusion of ABA and ITD for the prediction of diameter 

distributions. Typically, the principle has been that the trees in the dominant canopy layer are 

predicted using ITD and the trees below the dominant canopy layer are predicted using the 

principles of ABA. Maltamo et al. (2004) predicted diameter distributions using only ITD 

information, although there is a risk of large errors associated with the stem numbers in the 

smallest diameter classes. The shortest detected tree by ITD was used as a cut-off point for 

the height distribution of detected trees. The cut-off point divided the height distribution into 

the Weibull-based predicted diameter distribution part (left tail) and the ITD part (right tail). 

Finally, the height distribution was transformed into a diameter distribution using the DBH 

models. They showed that the fusion of ITD and the Weibull-based prediction provided 

smaller error rates associated with timber volume and stem number than using ITD alone. As 
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observed in Maltamo et al. (2004), ITD underestimates the stem number and, therefore, 

ABA-based forest attributes, such as stem number, are used to calibrate ITD-based diameter 

distributions (Lindberg et al. 2010; Ene et al. 2012). Lindberg et al. (2010) presented a 

calibration framework that reduced the large bias associated with stem numbers predicted 

using ITD. They calibrated the ITD-based diameter distribution to be consistent with the 

ABA-based diameter.  

Several studies have indicated that ABA outperforms ITD in the prediction of understory 

trees (Xu et al. 2014; Hou et al. 2016; Shin and Temesgen 2018). Xu et al. (2014) followed 

the idea of the cut-off point presented in Maltamo et al. (2004) and applied both a replacement 

approach and histogram matching to fuse the diameter distributions predicted using ABA and 

ITD. Here, the replacement approach generally means that the right tail of the ABA 

distribution is replaced with the ITD distribution.  Later, Hou et al. (2016) also adapted the 

idea of a cut-off point to the prediction of species-specific diameter distributions. In general, 

the studies showed that the fusion of ABA and ITD decreased the error rates associated with 

the predicted diameter distributions. Hou et al. (2016) suggested that the logwood-sized trees 

can be predicted with smaller error rates using ITD than ABA. Similar findings concerning 

the errors associated with predicted logwood volumes were also reported by Peuhkurinen et 

al. (2011). Shin and Temesgen (2018) also fused the diameter distributions predicted using 

ABA, ITD, and a cut-off point. They focused on assessing the effect of parameters, such as 

different height-related cut-off points, CHM resolutions, and the magnitude of CHM 

smoothing, on the predictive performance of the ABA-ITD fusion. Their main finding was 

that the parameters are dependent on the forest characteristics, and that fusion parameters, 

therefore, should be selected separately for each target forest.  

1.6 Evaluating the goodness of predicted diameter distributions 

The evaluation of predicted diameter distribution against observed diameter distribution is 

not as straightforward as in the case of forest attributes, such as volume or basal area. The 

performance of the diameter distribution prediction method is typically carried out using 

forest attributes derived from the diameter distribution (Packalén and Maltamo 2008; 

Peuhkurinen et al. 2008), error indices (Reynolds et al. 1988; Gobakken and Næsset 2004; 

Packalén and Maltamo 2008), or statistical tests (Poudel and Cao 2013; Strunk et al. 2017). 

However, there is no consensus as to which one is the best measure. The selection of measure 

depends on the purpose for which the predicted diameter distribution will be used. The error 

rates associated with timber assortment volumes, namely logwood and pulpwood volumes, 

are valid measures if the economic value of a forest is deemed to be of interest. However, the 

shape of diameter distributions may not be measured sufficiently with the error rates 

associated with predicted timber assortment volumes. Error indices or statistical tests may be 

more robust to assess the goodness of predicted diameter distribution when the shape of 

distribution is of interest. An issue related to the simultaneous use of several measures is that 

they can be discordant. 

The error indices and statistical tests are easy to apply and interpret, since they are 

typically based on stem numbers associated with fixed diameter classes. Reynolds et al. 

(1988) proposed the error index for the evaluation of the goodness-of-fit of diameter 

distribution models. They applied the error index that sums all the errors associated with the 

stem frequencies of all diameter classes. However, they also suggested that the errors in stem 

numbers could be computed as a proportion of the total stem number when the prediction 
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errors associated with stem number are ignored. The proportional formulation of the error 

index has been adapted and modified in the context of ALS-based forest inventories 

(Gobakken and Næsset 2004; Packalén and Maltamo 2008). The proportional form of the 

error index is at a specific range, which facilitates the interpretation of index values.  

1.7 Objectives 

The general aim of this thesis is to enhance the NN approaches used in the prediction of 

diameter distributions. The NN distributions can be easily adapted to ALS-based forest 

management inventories in Finland, since the required field data have already been measured. 

Topics concerning the configurations of the NN imputations, remotely sensed data, and the 

fusion of ABA and ITD approaches are covered in this thesis. The specific objectives of this 

thesis are as follows: 

 

(1) To examine how the response configurations of NN imputations affect the 

predictive performance associated with species-specific diameter distributions (I). 

(2) To calibrate the predicted diameter distributions with predicted total volume and to 

evaluate the effect of calibration on the errors associated with diameter distributions 

(I). 

(3) To evaluate the predictive performance of NN imputation when different 

combinations of remote sensing data are used in the prediction of diameter 

distributions of logwood-sized trees. The most interesting data combinations to 

evaluate are multispectral ALS, and bitemporal ALS datasets (II). 

(4) To examine the fusion of diameter distributions predicted using ABA and ITD. The 

specific aim is to examine forest characteristics as criteria for the selection of ABA, 

ITD, or fusion approaches in the prediction of diameter distributions (III). 

2 MATERIALS AND METHODS 

2.1 Study site and field data 

The study site used in this thesis covers about 43,000 hectares and is located in eastern 

Finland (Figure 1). The study site represents a typical Finnish managed forest dominated by 

coniferous tree species. The main tree species are Norway spruce, Scots pine, Silver birch, 

and Downy birch. All deciduous species are considered as a single tree species group. This 

study only considers young, middle-aged, and mature forests, whereas seedling or sapling 

forests were not included in the analyses. 

Two plot samples were established in the study site. The first sample consisted of 424 

circular plots. The second sample consisted of square-shaped plots, which are larger than the 

circular plots and represent forest stands. The circular sample plots were used in papers I and 

II. The square-shaped sample plots (hereafter 30 × 30 m plots) were used for validation 

purposes in paper II (n = 105). In paper III, the analyses were implemented using only 

coniferous dominated 30 × 30 m plots (n = 92). The coniferous dominated plots were selected 

because the restriction provided simplified circumstances to evaluate the performance of the 

proposed approaches.     
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The circular plots were measured between June and September 2016. The radius of 

circular plots was either 9 m (71 % of plots) or 12.62 m (29 % of plots). The radius of 12.62 

m was selected if the stem number inside the plot was less than 20. Most of the circular plots 

were distributed over the study area using a systematic cluster sampling design. The distance 

between adjacent clusters was 1200 m. The centers of the circular sample plots were 

accurately positioned by means of a GNSS receiver. The coordinates of the plot centers were 

post-corrected using reference stations. The study site is a part of the operational forest 

inventory operated by the Finnish Forest Centre, and so 27 % of the circular plots were 

distributed in the inventory area using different sampling designs. Although the sampling 

design employed by the Finnish Forest Centre is different to the systematic sampling design 

employed here, the actual field measurements were quite similar in all the circular plots 

(Suomen metsäkeskus 2016).  

Field measurements in the 30 × 30 m plots were carried out between June and October 

2017. The plots were sampled from the systematic sampling design by means of a priori 

knowledge concerning the development classes and the proportions of the dominant tree 

species observed in the set of circular sample plots. The development classes were estimated 

using an ALS dataset collected in summer 2016, and the dominant tree species were fetched 

from the Multi-source National Forest Inventory data (Natural Resources Institute Finland 

2013; see Tomppo and Halme 2004). In the field, the XY coordinates were determined for 

each measured tree using CHM (resolution 0.5 m) and the triangulation approach proposed 

by Korpela et al. (2007). The XY locations of the trees were used when the 30 × 30 m plots 

were divided into 15 × 15 m subplots (hereafter subplots; n = 420). The analyses were 

implemented at the subplot-level, but the results were eventually aggregated to the 30 × 30 

m level (forest stand).  

In each plot, DBH and tree species were measured for each tree with a DBH ≥ 5 cm. Tree 

height was also measured for each tree, except in the plots measured by the Finnish Forest 

Centre, where the tree heights were only measured for a subset of trees and those trees were 

used in the calibration of the random parts of the height model of Eerikäinen (2009). Stem 

volumes were computed for each tree as a function of DBH and tree height using the models 

presented in Laasasenaho (1982). Logwood and pulpwood volumes were computed using 

taper curves (Laasasenaho 1982) with bucking parameters that were shown in paper I. The 

logwood and pulpwood volumes are theoretical, i.e. quality reductions were not considered. 

Volumes were computed by tree species, although the birch model was used for all deciduous 

species. Dead trees were excluded since they usually do not have a prominent role in the 

dominant tree layer in Finnish managed forests. Only plots located entirely within a forest 

stand were used in this study. Finally, the attributes of individual trees were aggregated to 

the plot-level and multiplied out to the hectare-level. Means and standard deviations of forest 

attributes associated with the field data are presented in Table 1.   

In paper III, the shapes of the diameter distributions were visually determined for each 

30 × 30 m plot using the empirical diameter distributions (bin width: 4 cm). The empirical 

diameter distributions were assigned to the following shape classes (hereafter DDSC): 

Gaussian, reverse J, and bimodal. For representative examples of DDSC, please refer to 

Figure 2 in paper III. 
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Figure 1. Location of the study area and sample plots in Finland. 

 

 

Table 1. Means and standard deviations (sd) of the main forest attributes in the field datasets. 

DGM = the diameter of basal area median tree, HGM = the height of basal area median tree. 

  Circular plots  15 x 15 m plots  30 x 30 m plots 

Attribute Population Mean Sd  Mean Sd  Mean Sd 

Volume (m³ ∙ ha-1) Scots pine 76.0 83.4  77.1 90.7  77.1 85.1 

 Norway spruce 87.7 109.1  87.5 109.9  87.5 103.5 

 Deciduous 22.8 36.1  41.0 62.2  41.0 58.4 

 Total 186.4 100.4  205.6 94.6  205.6 86.1 

Basal area (m² ∙ ha-1) Scots pine 8.79 8.8  8.9 9.7  8.6 9.2 

 Norway spruce 9.9 10.5  9.8 10.3  9.8 9.7 

 Deciduous 2.9 4.2  4.4 5.9  4.4 5.6 

 Total 21.6 8.2  22.8 7.7  22.8 6.8 

DGM (cm) Scots pine 21.0 6.5  22.2 7.7  22.6 6.9 

 Norway spruce 17.1 8.4  17.8 9.8  17.7 9.2 

 Deciduous 14.8 7.5  16.8 8.5  17.4 8.6 

HGM (m) Scots pine 17.6 4.8  18.6 4.4  18.9 5.0 

 Norway spruce 14.8 6.5  15.0 7.1  15.1 7.0 

 Deciduous 15.3 5.5  17.0 6.5  17.4 6.4 
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2.2 Remotely sensed material  

Four different remote sensing datasets were used in this thesis: multispectral leaf-on ALS 

dataset (M–ALS data), two unispectral leaf-off ALS dataset (S11–ALS and S16–ALS data), 

and aerial images. In paper I, the S16–ALS dataset was used in conjunction with the aerial 

images. In paper II, all abovementioned remote sensing datasets were used. In paper III, M–

ALS dataset was only used. 

The M–ALS dataset was collected under leaf-on conditions in June 2016 at an altitude of 

850 m above ground level using a fixed-wing airplane. The airplane was equipped with a 

Teledyne Optech Titan laser scanning system that can capture up to four range and intensity 

measurements per emitted pulse. The Titan laser scanning system has three different sensors 

that operate at the wavelengths of 1550 nm (first channel), 1064 nm (second channel, M–

CH2–ALS data), and 532 nm (third channel). The scanning half-angle was fixed at 20 

degrees. The parameters used in the data acquisition resulted in an average density of 4.8 

pulses per square meter for the first and second channel, and 3.7 pulses per square meter for 

the third channel for each flight line. Since the lateral overlap was 55 %, the observed pulse 

densities are at least twice as dense as the aforementioned pulse densities.  

The unispectral S16–ALS dataset was acquired under leaf-off conditions between 30 

April 2016 and 3 May 2016 at an altitude of 2400 m above ground level. The dataset was 

collected using a fixed-wing airplane that was equipped with a Leica ALS60 laser scanner 

system. The Leica ALS60 can capture up to four range and intensity measurements per 

emitted pulse. The scanning half angle was set at 20 degrees and the lateral overlap was 20 

%. The parameters of the data acquisition resulted in a nominal pulse density of 0.8 pulses 

per square meter. 

The unispectral S11–ALS dataset was collected under leaf-off conditions between 25 

April 2011 and 26 April 2011 at an altitude of 2200 m above ground level. The dataset was 

collected from an airplane equipped with the Leica ALS60 laser scanning system. The 

parameters of the data acquisition were broadly similar to those that were used in the 

acquisition of S16–ALS. The parameters of the data acquisition resulted in a nominal pulse 

density of 0.9 pulses per square meter. Since the S11–ALS dataset was collected 

approximately five years before the field measurements, it was essential to detect the 

implemented silvicultural operations between the data acquisitions. These silvicultural 

operations were detected by comparing the S16-ALS and S11-ALS datasets. The detection 

approach was explained in paper II. 

Returned ALS echoes were assigned to three echo categories according to the return 

order: first, last, and intermediate. If only one echo was captured per emitted pulse, the echo 

was assigned to both the first and last category. The ground echoes were identified by the 

method proposed by Axelsson (2000). The ground echoes were used to interpolate a digital 

terrain model (DTM) using a Delaunay triangulation. The normalized (i.e. aboveground) 

heights were computed by subtracting DTM from the initial orthometric echo heights. 

Intensity values associated with the M–ALS and S–16–ALS datasets were normalized for the 

range as presented in Korpela et al. (2010). 

The aerial images were captured with a DMC Z/I Intergraph (01-0128) digital camera on 

23 and 24 May 2016. The aerial images were captured from an airplane flying at an altitude 

of 4100 m above ground level using a nominal lateral and longitudinal overlap of 30 and 80 

%, respectively. The camera has a focal length of 30 mm and is capable of recording four 

spectral bands: red, green, blue, and near-infrared. The camera has 3456 × 1920 pixels in 
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multispectral bands, which resulted in a ground sampling distance (GSD) of about 160 cm. 

The aerial images were not orthorectified nor pansharpened. 

2.3 Feature extraction 

Several statistical features were extracted from the height and intensity measurements of the 

ALS data. The set of features included: mean, standard deviation, maximum, minimum, 

kurtosis, skewness, the percentiles of echo height measurements and intensities, and densities 

with fixed height values. Echo proportions by echo categories were also computed. In papers 

II and III, the ratio features were computed between the height and intensity features 

extracted from the different channels of the multispectral ALS data. The features were 

computed by echo categories, and a height cut-off was set at 1.3 m to avoid the effect of 

ground echoes. The densities were always computed without the cut-off. For the ABA 

inventories, the features were computed at the plot-level, whereas for ITD the features were 

computed at the level of the segmented tree crowns. 

The features extracted from the aerial images comprised mean, standard deviation, 

minimum, and maximum. The features were computed by the spectral bands. The spectral 

values were fetched from the pixels of aerial images for the first echoes of ALS data by 

projecting them over the aerial images by means of external and internal orientation. Due to 

the overlapping aerial images, several pixel values were assigned to an individual ALS echo. 

To accommodate this, the mean of the overlapping pixel values was used. 

2.4 Nearest neighbor approach 

In the literature, predictions using the NN approach are usually referred to as NN imputations 

(Vauhkonen et al. 2010; Packalen et al. 2012). Henceforth, the NN approach is also called 

NN imputation in this thesis. The NN imputation with ABA was applied to predict diameter 

distributions (I, II, and III) and to predict the DBH of trees detected by ITD (III).  

The NN imputation searches for the most similar references from training data for a target. 

The similarity between the target and reference observations is measured using a distance or 

similarity metric. Several distance metrics have been studied in the context of forest 

inventories (McRoberts et al. 2017), but the most similar neighbor (MSN) distance (Moeur 

and Stage 1995) has performed well in species-specific forest inventories (Packalén and 

Maltamo 2007). The MSN distance applies canonical correlation analysis, which means that 

the similarity measurements between target and reference plots are not only based on the 

predictor variables, but that the response configuration has an effect too. On the one hand, 

this characteristic is advantageous when predictions are carried out with a multivariate 

response configuration, but on the other, a user must consider the selection of a response 

configuration. The MSN distance is computed as follows: 
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𝑇

(𝑝 × 1)
(1) 

where 𝑑2
𝑢𝑗 is the squared distance, 𝒙𝑢 and 𝒙𝑗  are row vectors comprising predictors (p refers 

to the number of predictors) from a target (u) and reference (j) plot, Γ is the matrix of 

canonical coefficients of predictor variables, and Λ is the diagonal matrix of squared 

canonical correlations. 

In addition to the selection of a distance metric, the user of the NN imputation has to 

decide the number of neighbors (please refer to section 2.5), the selection routine for predictor 

variables (please refer to section 2.9), and the weighting scheme for the NN. In this thesis, 

the squared MSN distances were inversed in order to use them as weightings for the NNs.  

2.5 Prediction of diameter distributions using the area-based approach 

The prediction of diameter distribution using the NN imputation is technically similar to the 

prediction of univariate forest attributes. Instead of a set of forest attributes, empirical tree 

lists are retrieved from reference plots and assigned to a target. The interesting viewpoint in 

the diameter distributions predicted by NN imputation lies in the simultaneous prediction of 

diameter distributions and forest attributes. Due to the multivariate response configurations 

in NN imputations, the species-specific prediction is straightforward to implement, since 

separate models by tree species are not necessarily needed. Especially in species-specific 

imputations, it should be noted that the NN imputation is incapable of extrapolation outside 

the training data, and the training data, therefore, must represent all possible combinations of 

tree species compositions and tree sizes.  

Here diameter distributions were predicted using both simultaneous NN imputation and 

separate NN imputation by tree species. The simultaneous NN imputation uses one model to 

predict species-specific diameter distributions, whereas separate NN imputation by tree 

species uses separate models for each tree species (group) of interest. Different response 

variable configurations were established for both imputation methods. The motivation for the 

examination of the predictive performance associated with the different response 

configurations originates from the MSN distance and multivariate NN imputation. The 

multivariate response configuration optimized for the prediction of specific forest attributes 

may not be an optimal alternative for the prediction of diameter distributions. Table 2 shows 

all the response configurations that were tested in the NN imputation of diameter 

distributions. The response configurations typically included forest attributes, but attributes 

related to the empirical diameter distributions, such as Weibull parameters, were also tested. 

The parameters of the Weibull distributions (c = shape and b = scale) were estimated by 

maximizing a likelihood function in the empirical data. In addition to the response 

configurations, the NN imputation is also affected by a hyperparameter k. The k parameter 

determines the number of neighbors and was fixed at 5 in this thesis, excluding the imputation 

of DBH in paper III (k fixed at 1). The prediction using the NN imputation is also dependent 

on the number of predictor variables. Depending on the preliminary runs, the number of 

predictor variables was fixed at 10 (II and III) or 11 (I).  
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Table 2. Response configuration used in the nearest neighbor (NN) imputation in paper I. 

SET2 was also used in the species-specific prediction of logwood volumes presented in paper 

II. V = volume; G = basal area; N = stem number; DGM = the diameter of basal area median 

tree; HGM = the height of basal area median tree; Vlog = logwood volume; Vpulp = pulpwood 

volume; D10, D20, …, D90 = percentage points (10, 20 % etc.) computed from empirical 

diameter distribution; F6, F8, …, F34 = empirical stem frequencies (bin width: 2 cm) by 

diameter classes; b = the scale parameter of Weibull distribution; c = the shape parameter of 

Weibull distribution.  

 Attributes of response 
configuration 

Abbreviation of 
response configuration 

Simultaneous 
NN imputation 

V, G, N, DGM, HGM SET1 

G, N, DGM SET2 

G, N, DGM, HGM SET3 

V, N, DGM, HGM SET4 

G, N, DGM, D30, D80 SET5 

G, N, DGM, c, b SET6 

V, Vlog, Vpulp SET7 

Vlog, N/G SET8 

Separate NN 
imputation by 
tree species 

V, G, N, DGM, HGM SETsep1 

G, N, DGM SETsep2 

D10, D20, ..., D90, N SETsep3 

D10, D20, ..., D90 SETsep4 

V, Vlog, Vpulp SETsep5 

F6, F8, …, F34 SETsep6 

2.6 Calibration of diameter distribution with total volume 

The response configuration does not usually include total volume when species-specific 

forest attributes are of interest, which negatively affects the errors associated with total 

attributes. Therefore, it makes sense to calibrate the diameter distributions predicted using a 

multivariate NN imputation with separately predicted total volume (I). The calibration with 

total volume resembles the calibration estimation approach (Kangas and Maltamo 2000b), 

but here only one attribute is used in the calibration procedure.  

A linear regression model with three predictor variables was fitted for total volume. The 

predicted total volume, and the sum of predicted species-specific volumes (from NN 

imputation), were used to compute a calibration factor for each plot. The frequencies of each 

tree in a predicted diameter distribution of a plot were multiplied by a calibration factor. The 

formulation of the calibration factor can be seen in Equation 4 in paper I. 



24 

 

 

 

2.7 Prediction of diameter distributions using individual tree detection 

The ITD approach applied in paper III, follows the approaches presented by Persson et al. 

(2002), Pitkänen et al. (2004) and Packalén et al. (2008). First, CHM was interpolated using 

the maximum echo heights within the cells (resolution 0.5 m). CHM was then smoothed to 

reduce the information. The smoothing was based on the Gaussian filter, and the level of 

smoothing depended on the ALS-measured height of a forest. Individual treetops were 

detected from CHM using a local maxima algorithm. Finally, the detected crowns were 

segmented using a watershed algorithm (Gauch 1999) with a drainage direction (Narenda 

and Goldberg 1980). 

The diameters of detected trees were predicted by applying the NN imputation. The 

detected trees were linked to the observed trees only when the linkage could be done reliably. 

The linkage was based on the Euclidean distance and the height difference between the 

observed and detected tree. Those linked trees were used as training data, whereas all the 

detected trees were the targets of prediction in the NN imputation. A leave-30 × 30 m plot-

out cross validation was applied to predict the DBH of the detected trees. 

The ITD was only applied in coniferous-dominated forests, and diameter distributions 

were not predicted by tree species. However, a mixture of deciduous and coniferous species 

exists on several plots. Therefore, it is necessary to consider the species-specific height-

diameter relationships in the prediction of diameters. To overcome issues related to the 

differences between tree species, the MSN distance and multivariate response configuration 

were applied in the NN model. The multivariate response configuration was comprised of 

species-specific responses (Dpine, Dspruce, and Ddeciduous). For each tree, the multivariate 

response included one species-specific DBH value, and the other two species-specific DBH 

values were set to zero. Therefore, one DBH value was assigned to each tree because the 

number of nearest neighbors (k value) was fixed at 1. Finally, the diameter distributions were 

constructed using 4 cm diameter classes for each 30 × 30 m plot. 

2.8 Fusion of diameter distributions predicted by ABA and ITD 

Frameworks for the fusion of ABA and ITD diameter distributions were established in paper 

III. Initially, the fusion of diameter distributions predicted by ABA and ITD was evaluated 

by finding an optimal fusion parameter (F.BEST) utilizing empirical diameter distributions. 

The theoretical framework was adapted to practice by presenting fusion based on predicted 

weightings (F.PRED). In addition, a fusion based on replacement (F.REPL) was proposed 

that applies the pre-determination of forest structures in the selection of ABA or ITD.  

F.BEST and F.PRED apply a linear weighting function for ITD and ABA diameter 

distributions by diameter classes for each plot. The weightings associated with the diameter 

classes can be adjusted using the slope parameter of the weighting function. The weighting 

function is fitted separately for each plot. The slope parameters of F.BEST were optimized 

for each plot by minimizing the error associated with the fused diameter distribution. The 

stem frequencies of fused diameter distribution were computed as a weighted average of 

ABA and ITD stem frequencies in each diameter class (bin size: 4 cm). The slope parameter 

could have negative and positive values at a fixed range. The intercept of the weighting 

function was fixed on the y-axis at the point where the ABA and ITD diameter distributions 

are equally weighted. Therefore, the horizontal line (slope 0) gives equal weighting to ABA 

and ITD for each diameter class of diameter distribution. Instead, the minimum and 
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maximum slope values imply 100 % ABA and 100 % ITD diameter distributions, 

respectively. The slopes were converted to angles (β) at the range of [0°, 90°] where 45° 

implies the fusion with equal weightings for ABA and ITD. The principle of the weighting 

scheme is illustrated in Figure 4 in paper III. The F.PRED approach is based on a similar 

weighting scheme as the F.BEST approach. The prediction of β values was implemented 

using a regression model with two predictor variables. The β values that were optimized in 

the F.BEST approach were used as a training dataset. The predictor candidates comprised 

ALS features, as well as forest attributes derived from the ABA and ITD predictions.  

The F.REPL approach originates from the hypothesis that the predictive performance of 

ITD varies according to the forest structure. Therefore, the F.REPL approach aims to select 

the optimal method (ABA or ITD) for each target of interest. Thus, the targets must be pre-

classified according to DDSC. Multinomial logistic regression (MLR) modeling was used to 

predict DDSC for each plot using features derived from ALS data and forest attributes 

predicted by ABA and ITD. The classification was implemented applying a leave-30 × 30 m 

plot-out cross validation. 

2.9 Selection of predictor variables 

The predictor variables of the NN imputations were selected using an optimization-based 

algorithm. The same algorithm was also modified for an MLR model in paper III. The 

optimization-based variable selection was implemented using a simulated annealing (SA) 

algorithm (Kirkpatrick et al. 1983). Packalén et al. (2012) proposed the SA-based algorithm 

for the selection of predictor variables in NN imputation. The algorithm searches for the 

combination of a fixed number of predictor variables that minimizes the loss function. In the 

case of NN imputation, the loss function was computed as the mean of root mean square error 

(RMSE) values associated with the predicted response variables. In classification (MLR), an 

inversed Cohens´ kappa was used as a loss function. The optimization starts with a random 

guess and the iteration is stopped when a predetermined number of iterations has been met. 

An iterative search algorithm was applied to the linear regression models fitted for total 

volume (I) and for the fusion parameter (III). The predictor variables for the regression 

models were selected using an algorithm that searches for the optimal combination of a fixed 

number of predictor variables with respect to RMSE using total enumeration.  

2.10 Performance assessments 

Prediction errors of logwood and pulpwood (i.e. timber assortments) volumes by tree species 

were used to evaluate the goodness of the diameter distributions. In paper II, logwood 

volumes were also computed separately for dominant and minor species. The predictions 

associated with timber assortment volumes were evaluated using relative RMSE (RMSE%, 

referred to as the error rate) and mean difference (MD%) in papers I and II: 
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where �̂� and 𝑦 refer to a predicted and an observed forest attribute, respectively, n is the 

number of field plots, and �̅� is the mean value associated with the observed forest attribute. 

Two different variants of error indices were also used to evaluate the goodness of 

diameter distributions. Both error indices used in this thesis originate from the error index 

described in Reynolds et al. (1988). In paper I, the error index (hereafter ErrorIndex1) was 

computed as the remainder between observed and predicted stem frequencies by diameter 

classes, and the errors in diameter classes are divided by the observed stem number. This 

error index is applied in the ALS context, for example, in Gobakken and Næsset (2004) and 

Maltamo et al. (2018). In paper III, the variant of the Reynold’s error index (hereafter 

ErrorIndex2) proposed by Packalén and Maltamo (2008) was used. The values of 

ErrorIndex2 are within the range [0, 2] in which the minimum implies total agreement and 

the maximum total disagreement between distributions. ErrorIndex2 only measures the 

similarity in the shape of distributions, whereas ErrorIndex1 also considers the error 

associated with stem numbers. The error indices were computed as follows: 

 

𝐸𝑟𝑟𝑜𝑟𝐼𝑛𝑑𝑒𝑥1 =  ∑ 100 ×

𝑚
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|
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𝑁
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𝑁
|

𝑚

𝑖=1
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where 𝑓𝑖 and 𝑓𝑖 are the stem frequencies associated with the observed and predicted diameter 

distributions in diameter class i, m is the number of diameter classes, and 𝑁 and 𝑁 refer to 

the stem number of observed and predicted diameter distributions, respectively. 

The classification using an MLR model was applied in the prediction of DDSC in paper 

III. The classification performance of the MLR modeling was evaluated using Cohen’s kappa 

(κ) and overall accuracy (OA). 
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3 RESULTS 

3.1 Response configurations in nearest neighbor imputation (I & II) 

3.1.1 Simultaneous NN imputation  

The results indicated that the response configuration used in NN imputation affects the error 

rates associated with predicted diameter distributions. In general, it can be stated that the 

configuration applied in Finnish operational forest inventories (SET1) is a suboptimal 

alternative for the prediction of diameter distributions (Table 3). The results described in 

paper I showed that SET2 generally outperformed the other response configurations that were 

used with the simultaneous NN imputation. Compared to the error rates associated with 

logwood volumes predicted using SET1, SET2 achieved 6.3, 10.5, and 15.8 % improvements 

in the error rates for pine, spruce, and deciduous species, respectively. This indicates that the 

forest attributes that are strongly associated with diameter distributions (e.g. basal area, mean 

diameter and stem number) are appropriate response variables, whereas attributes with a 

weaker association with diameter distribution may induce an increase in error measures. For 

example, SET2 provided smaller error rates associated with the predicted diameter 

distributions than those that included the height attribute (SET3 or SET4). ErrorIndex1 values 

were generally in agreement with the error rates and indicated that SET2 outperformed SET1 

in the prediction of diameter distributions by tree species (see Figure 4 in paper I). The MD% 

values associated with the coniferous species were minor but were greater for the deciduous 

species.  

3.1.2 Simultaneous NN imputation versus separate NN imputation by tree species 

The findings in paper I showed that the smallest error rates associated with predicted species-

specific diameter distributions were achieved using SETsep1 (Table 3). The configuration of 

SETsep1 resulted in a mean RMSE value of 78.2 % (species-specific timber assortment 

volumes). The corresponding mean RMSE values of the simultaneous imputation were 95.0 

% and 87.3 % with SET1 and SET2, respectively. The results indicated that SETsep1 provides 

smaller error rates associated with spruce and deciduous logwood volumes, and for all 

pulpwood volumes, compared to SET2. However, the error rates associated with predicted 

total and pine logwood volumes were slightly smaller for SET2 than SETsep1. The mean 

ErrorIndex1 values related to the logwood-sized trees were, however, contradictory to the 

error rates (see Table 6 in paper I), and the results indicated that the shape of the deciduous 

diameter distribution may not be predicted as accurately using SETsep1 (compared to SET2). 
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Table 3. Relative root mean squared error (RMSE%) and mean difference (MD%) (in 

parenthesis) associated with predicted species-specific logwood and pulpwood volumes. For 

abbreviations, please refer to Table 2.  

 SET1 SET2 SETsep1 

Vlogtot 36.4 (-1.3) 35.0 (-0.5) 35.5 (1.0) 

Vlogpine 67.1 (-1.5) 62.9 (-2.6) 66.8 (1.4) 

Vlogspruce 69.7 (0.8) 62.4 (2.8) 57.2 (1.4) 

Vlogdecid 211.0 (-21.1) 177.6 (-15.8) 155.9 (-5.3) 

Vpulptot 38.2 (2.2) 36.0 (1.3) 33.9 (-0.2) 

Vpulppine 60.9 (2.1) 62.3 (0.5) 56.3 (-1.0) 

Vpulpspruce 64.9 (4.2) 62.4 (3.1) 54.4 (-0.2) 

Vpulpdecid 96.7 (-1.2) 96.1 (-0.6) 78.3 (1.1) 

 
 

In paper II, species-specific diameter distributions were only considered for logwood-

sized trees. The results showed that if only logwood-sized trees are of interest, it is reasonable 

to employ simultaneous NN imputation with species-specific logwood volumes as response 

variables. However, the results reported in paper II were in line with the results of paper I, 

where separate NN imputation by tree species provided smaller error rates associated with 

deciduous species compared to simultaneous NN imputation. 

3.2 Calibration of diameter distributions with predicted total volume (I) 

The prediction of total volume using the regression model provided a RMSE value of 17.2 

%. The results showed that the calibration with total volume generally decreases the error 

rates and ErrorIndex1 values associated with predicted diameter distributions. The 

improvements were especially observed in errors associated with species-specific and total 

logwood volumes. The error rates associated with predicted pulpwood volumes increased in 

some cases. The effect of the total volume calibration (using SET2 and SETsep1) on RMSE 

values associated with predicted logwood and pulpwood volumes are presented in Figure 2. 
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Figure 2. Effect of the calibration with total volume (I). The upper row refers to the results 

computed using the SET2 response configuration, whereas the lower row refers to the results 

obtained with SETsep1. For the abbreviations of response configurations, please refer to Table 

2. Negative values indicate that the calibration increased the root mean squared error 

(RMSE%) value. 

3.3 Remotely sensed data in the prediction of logwood volumes (II) 

3.3.1 Multispectral ALS data 

The results showed that the NN imputation using the M–ALS dataset achieved slightly 

smaller error rates associated with species-specific logwood volumes than the M–CH2–ALS 

dataset alone. In general, the M–ALS dataset provided smaller error rates associated with 

minor species than the M–CH2–ALS dataset. Instead, the S16–ALS dataset (acquired under 

leaf-off conditions) outperformed the M–ALS dataset in the species-specific predictions. The 

combination of the M–CH2–ALS or S16–ALS datasets and aerial images clearly 

outperformed the M–ALS dataset in the prediction of logwood volumes. This is evident in 

the error rates associated with species-specific, dominant, and total logwood volumes. The 

error rates associated with the dominant and total logwood volumes are presented in Figure 

3. For detailed presentation of results please refer to paper II. 
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Figure 3. Relative root mean squared error (RMSE%) values associated with predicted 

dominant and total logwood volumes by remote sensing datasets (II). The dashed line shows 

the error rates associated with the separate nearest neighbor (NN) imputation by tree species, 

whereas the solid line refers to the simultaneous NN imputation in which species-specific 

logwood volumes are used as response variables. AI = aerial images. For the abbreviations 

of the airborne laser scanning datasets please refer to section 2.2.  

 

3.3.2 Bitemporal ALS data 

The simultaneous usage of M–CH2–ALS and S16–ALS datasets outperformed the 

combination of the M–CH2–ALS dataset and aerial images, in the prediction of logwood 

volumes by tree species. In general, the decreases in the error rates were most significant 

with deciduous logwood volumes but clearly visible with coniferous species as well (please 

refer to Figure 4 in paper II). The combined use of the M–CH2–ALS and S16–ALS datasets 

also provided the smallest error rates associated with (using simultaneous NN imputation) 

dominant and total logwood volumes (Figure 3). The combination of the recent leaf-on and 
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older leaf-off ALS datasets (M–CH2–ALS + S11–ALS) also outperformed the combination 

of the M–CH2–ALS dataset and aerial images, in the prediction of logwood volumes. 

3.4 Fusion of diameter distributions predicted using ABA and ITD (III) 

3.4.1 Evaluation of ABA, ITD, and F.BEST 

The findings showed that ABA outperformed ITD in forests with reverse-J or bimodal 

diameter distributions. Instead, ITD resulted in smaller ErrorIndex2 values than ABA in 

forests with Gaussian-shaped diameter distributions. The results suggested that bimodal-

shaped diameter distributions are insufficiently described using ITD because it may not detect 

small trees in the leftmost peak of diameter distribution. The mean ErrorIndex2 values of 

0.30 and 0.46 were achieved using ABA and ITD, respectively. 

The F.BEST fusion outperformed ABA and ITD resulting in a mean ErrorIndex2 value 

of 0.21. The performance benefits achieved using F.BEST were clearly dependent on DDSC, 

which is demonstrated using example plots in Figure 4. The findings suggested that the 

F.BEST approach would not provide improvements on the errors associated with predicted 

diameter distributions in forests with Gaussian-shaped diameter distribution but the fused 

distribution is exactly the ITD distribution  (left-hand column in Figure 4). The findings 

indicated that the fusion may not provide improvements (compared to ABA-based diameter 

distributions) in reverse-J forests due to the poor performance of ITD in the small diameter 

classes (middle column in Figure 4). In many cases, the ITD predicted trees in the dominant 

canopy layer more reliably than ABA (right-hand column of Figure 4). In this example, the 

distribution associated with the dominant canopy layer is better characterized using ITD (or 

the fusion of ABA and ITD) than ABA. The leftmost peak of the distribution is typically 

underpredicted with the ITD approach, and the fusion with ABA can, therefore, be 

recommended in bimodal forests.  
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Figure 4. Examples of the performance of area-based approach (ABA), individual tree 
detection (ITD), and theoretical ABA-ITD fusion (F.BEST) in different forest structures.  

 

3.4.2 Practical evaluation of the fusion approaches  

The results indicated that the successful application of F.PRED is difficult in practice. In 

general, βF.BEST did not correlate well with the predictor variable candidates. For the model 

fitted using the training data, the coefficient of determination was 0.24 and the standard error 

was 30.2°. Although, the model fit was poor, the mean ErrorIndex2 values computed from 

the diameter distributions (predicted by F.PRED) was 0.28. The F.PRED approach achieved 

slightly smaller mean ErrorIndex2 values than ABA (cf. 0.28 and 0.30).  

The F.REPL approach requires the pre-classification of the plots according to DDSC. The 

MLR model predicted the DDSC with kappa = 0.75 and OA = 83.70 %, when the leave-30 

× 30 m plot-out cross validation was applied. The F.REPL approach achieved a mean 

ErrorIndex2 value of 0.29, which implies a minor improvement compared to ABA.  
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4 DISCUSSION 

4.1 Major findings of the thesis 

The results reported in paper I showed that the response configuration, which included 

species-specific forest attributes (SET1), is a suboptimal choice for the prediction of species-

specific diameter distributions. The findings also indicate that the separate NN imputation by 

tree species achieves smaller error rates than simultaneous NN imputation in general. The 

findings show that optimal configurations comprised basal area (G), stem number (N) and 

diameter of basal area median tree (DGM), whereas volume (V) was not included, which 

means that the errors associated with volume attributes are not minimized in the feature 

selection. This is somewhat problematic from the point of view of operational inventories, 

since total and species-specific volumes are important attributes in forest planning. In 

general, the smallest error rates associated with, for example, species-specific volumes could 

be achieved by setting them as response variables. This effect results from the canonical 

correlation analysis applied in the computation of the MSN distances and the loss function 

of the feature selection. The calibrations can be used to decrease the error rates associated 

with total attributes (such as total volume), when they are not response variables. 

The calibration with total volume decreased the error rates related to the volumes by tree 

species. However, the effect of the calibration on the error rates associated with the predicted 

timber assortments is not straightforward, since the relationship with total volume is 

ambiguous. For example, the calibration used here assumes the same calibration factor for 

each tree in a plot. Therefore, pulpwood and logwood volumes are calibrated using a similar 

calibration factor, which may not always be the optimal choice. To deal with this, the 

calibration could also be applied with any attribute that can be predicted with smaller errors 

using a univariate model, rather than a multivariate NN model. For example, the calibration 

could be implemented in terms of total logwood or pulpwood volume. All in all, the 

calibration with total volume, in particular, decreased the error rates associated with the 

logwood volumes. This calibration approach has similarities with the calibration estimation 

(Deville and Särndal 1992), which is typically used to calibrate theoretical diameter 

distribution (based on PDF) models to match with the separately predicted forest attributes. 

The error rates associated with the prediction of species-specific diameter distributions 

are highly dependent on the success of species recognition. The results of paper II clearly 

show that the multispectral ALS data (1064, 1550, and 532 nm) do not outperform the 

combination of unispectral ALS data and aerial images in Finnish remote sensing-based 

forest inventories. Kukkonen et al. (2019a) also concluded that the error rates associated with 

species-specific volumes are noticeably larger using a multispectral ALS system than the 

combination of unispectral ALS and aerial images. In general, single sensor solutions for 

species-specific forest inventories are attractive because the operation of several sensors 

always increases data acquisition costs and complicates the data collection. The main issue 

related to the typical data acquisition for Finnish forest inventories is that ALS data and aerial 

images should be collected as simultaneously as possible, although simultaneous data 

collection with different sensors is not straightforward since the successful acquisition of 

aerial images, for example, is sensitive to weather and light conditions (Packalen et al. 2009). 

Studies have indicated that aerial images could be replaced with high-resolution satellite 

imagery in certain circumstances. Kukkonen et al. (2018) showed that satellite imagery 

provides almost comparable predictive power to aerial images in species-specific forest 



34 

 

 

 

inventories. The application of satellite imagery results in cost savings, but the limited 

availability of cloud-free images may be an issue in operational practices. The likelihood of 

acquiring cloud-free images would improve if the revisiting times associated with satellite 

instruments were shorter. However, it must be noted that forest operators may still prefer 

aerial images to satellite imagery for other purposes, such as stand delineation.  

The results presented in paper II indicate that the bitemporal ALS dataset performs 

equally well in the species-specific prediction of logwood volumes as the combination of 

unispectral ALS data and aerial images. This finding may also be extended to the prediction 

of species-specific forest attributes in general. The results, however, indicate that the greatest 

benefit of a bitemporal dataset for species-specific predictions is achieved when ALS datasets 

are collected under leaf-off and leaf-on conditions. This finding indicates that the improved 

predictive performance of species-specific attributes is affected by the leaf conditions of 

deciduous forests under which the ALS dataset was acquired. Finnish forest inventories 

typically apply ALS datasets that are collected under leaf-on conditions. The collection of 

leaf-off data is a challenge due to the narrow acquisition season in Finnish conditions 

(Villikka et al. 2012). 

The availability of bitemporal and multitemporal ALS datasets will increase in the near 

future due to the repetition of national ALS data acquisitions. The usage of older datasets 

would be reasonable from the point of view of economic efficiency. Few studies have 

proposed approaches that utilize repeated ALS data in forest inventories. One interesting 

approach is data assimilation, which can involve a time series of remotely sensed data in the 

prediction process (Nyström et al. 2015). The aim of the data assimilation technique is to 

update forest inventory predictions using the time series of remotely sensed data and field 

measurements. In general, the data assimilation technique requires more than two data 

acquisition points, which means that bitemporal data are not adequate for analyses. 

Bitemporal ALS data have been applied, for example, in the detection of growth and change 

(e.g. Nӕsset and Gobakken 2005; Bohlin et al. 2017). The approach presented in paper II 

requires that the ALS features were computed from a bitemporal dataset, and any further 

features related to, for example, the differences in ALS datasets were not considered. The 

application of the approach itself is straightforward but bitemporal ALS datasets may involve 

areas where forests have been thinned or clear-cut. The silvicultural activity that occurs 

between the data acquisitions may distort the prediction routines. In paper II, the silvicultural 

activities were detected using the changes in density features derived from ALS datasets, but 

the approach was not validated owing to a lack of ground truth data. 

Previous studies have indicated that the increment in pulse density itself does not 

significantly decrease the error rates associated with the ALS-based forest inventories 

(Gobakken and Nӕsset 2008; Strunk et al. 2012). An examination of the results presented in 

paper II also indicates that pulse density does not explicitly affect the error rates related to 

the predicted diameter distributions. Instead, the high-density ALS dataset enables the 

application of the ITD approach. The findings in paper III generally showed that ITD has 

several shortcomings in the prediction of diameter distributions in boreal conditions. The 

main issue that makes the application of ITD such a challenge for the prediction of diameter 

distribution is the inaccurate detection of trees in dense young or multi-layered forests. 

However, trees in a dominant canopy can be, in general, reliably detected using ITD, which 

makes the fusion of ABA and ITD compelling, when compared to the use of ABA alone. 

The findings described in paper III suggest that the shape of the diameter distribution will 

be indicative of which prediction approach (ABA, ITD, or ABA-ITD fusion) performs best. 

The results reported in paper III show that the prediction of diameter distributions in bimodal 
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and Gaussian forests benefits from the utilization of ITD. The findings indicated that the 

application of weighting-based fusion (F.PRED) is a challenge, since the prediction of the 

fusion parameter (βF.PRED) is difficult. Instead, the fusion, which was based on the 

replacement of ABA distributions with ITD distributions in Gaussian forests (F.REPL), could 

be adapted in operational forest inventories. The requirement of the F.REPL approach is that 

DDSC must be predicted with a sufficient level of accuracy, since the F.REPL approach 

applies ABA and ITD explicitly according to DDSC. Therefore, the misclassifications may 

lead to severe errors in the prediction of diameter distributions when diameter distribution 

predicted by ITD is assigned to, for example, a bimodal plot.  

4.2 Future research 

The application of bitemporal ALS data requires further research in regard to the features 

extracted from the ALS datasets and the time difference between data acquisitions, for 

example. Features that involve the relationships between ALS datasets could provide 

information that correlate with forest characteristics, such as forest growth. Here, the features 

were broadly similar to those used in Finnish ABA inventories. The time difference between 

the acquisitions was five years. However, the difference may be greater or less than five years 

in practical cases where nation-wide ALS datasets are applied. 

There are also other new remote sensing data sources that could be considered in the 

prediction of diameter distributions in the future. For example, interest in the application of 

unmanned aerial vehicles (UAVs) has increased substantially in recent years (Colomina and 

Molina 2014). The UAVs applied for forestry purposes are typically equipped with digital 

cameras (multi- or hyperspectral) but LiDAR sensors are also used (Sankey et al. 2017). The 

UAV-based forest inventories cannot cover large areas, which effectively means high costs 

per area unit. However, the use of UAVs in the prediction of diameter distributions in forest 

management planning and timber procurement should be considered as, in some cases, field 

visits to forest stands are needed anyway. For example, the utilization of operational forest 

inventory data and an UAV inventory at the level of individual forest stands (e.g. mature 

stands marked for cutting) may decrease the errors associated with species-specific diameter 

distributions. In specific forest structures and types, the determination of DBH from UAV 

data may also be feasible (Kattenborn et al. 2018; Puliti et al. 2020). Smaller error rates 

associated with diameter distributions are especially important for timber procurement. 

Terrestrial laser scanning (TLS) could be used in the collection of field samples in the 

future (Pitkänen et al. 2019). In order to replace current field measurements, TLS 

measurements should provide at least as accurate data as the present methods, and the 

acquisition costs should be affordable. It is evident that TLS could measure some attributes 

better than the present measurement approaches, for example, TLS data can be used to derive 

stem curves (Liang et al. 2014). However, the direct measurement of tree height may be an 

issue due to the lack of visibility in a forest (Liang et al. 2016). The visibility issue also means 

that the TLS point cloud measured from a single point cannot be used to detect all trees as 

such, since trees can be concealed behind other trees (Kansanen et al. 2019b). Difficulties in 

recognizing tree species from TLS point clouds may also induce errors into the TLS 

measurements (Othmani et al. 2013). For these reasons, TLS may not be the definitive 

technique for the measurement of diameter distributions in forest inventories.  

It is also possible to collect LiDAR data from forests during field visits or while 

conducting silvicultural operations. For example, a person carrying a LiDAR system, or a 
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harvester equipped with a LiDAR sensor, might be attractive alternatives for data acquisition. 

These alternatives could be more reasonable than TLS systems because the movement related 

to data acquisition itself does not cause additional costs. 

Forthcoming shifts in remote sensing-based forest inventories may be strongly related to 

the management and exploitation of different data sources in an optimal way. It is critical to 

know which datasets should be involved in the inventory process in order to achieve the 

smallest errors, for example, at the scale of individual forest stands, or at the national-level. 

In addition to the utilization of data sources, methodological shifts may be possible and could 

provide smaller prediction error rates for forest attributes. For example, the forthcoming shift 

from techniques that rely on PDF to NN-based tree lists is a step forward in the prediction of 

diameter distributions in Finnish forest inventories. Future studies may also pursue the 

incorporation of deep learning approaches to the field of forest inventories (Niska et al. 2010; 

Garcia-Gutiérrez et al. 2016). Nevertheless, the predictive performance, robustness and 

simplicity of the multivariate NN approach are superior characteristics for Finnish forest 

inventories. It should be noted that deep learning approaches are not as transparent as the NN 

approach from the point of view of the user. On the one hand, it is evident that investigations 

related to the application of deep learning in ALS-based forest inventories are welcome. Yet, 

on the other hand, the errors associated with species-specific forest inventories are more 

likely to be reduced by the selection of optimal remote sensing and field data rather than by 

introducing new modeling approaches. 

5 CONCLUSIONS 

The response configuration used in the NN imputation of species-specific diameter 

distributions influences the error rates associated with the predicted diameter distributions. 

In general, the results in this thesis showed that the Finnish operational standard (15 species-

specific forest attributes as response variables) resulted in larger error rates associated with 

the predicted diameter distributions compared to the response configuration in which the 

species-specific volumes and heights were omitted. The findings also indicate that the 

separate NN imputation by tree species outperforms simultaneous NN imputation, especially 

in the prediction of minor tree species.  

The multispectral ALS data provided smaller errors associated with predicted logwood 
volumes than leaf-on unispectral ALS data alone. However, the errors were greater compared 

to those achieved with the combined use of unispectral ALS data and aerial images. The 

bitemporal datasets provided comparable predictive performance for logwood volumes than 

the combination of ALS data and aerial images.  

The results indicate that ITD is more prone to errors than ABA, in forests with reverse-J 

and bimodal diameter distributions. However, the ITD approach outperformed ABA in the 

prediction of Gaussian-shaped diameter distributions. Two approaches were proposed to fuse 

the diameter distributions predicted using ABA and ITD, in a practical setting. Both 

approaches resulted in a minor improvement in mean error index values compared to the 

ABA approach, which indicates that ITD could provide additional information to ABA in the 

prediction of diameter distributions in boreal conditions.  
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