
Dissertationes Forestales 296 

 

 

 

 

 

 

 

 

 

 

Essays on optimal forest management and water 

protection 

 
Jenni Miettinen 

Department of Economics and Management 

Faculty of Agriculture and Forestry 

University of Helsinki 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Academic dissertation 

To be presented, with the permission of the Faculty of Agriculture and Forestry of the 

University of Helsinki, for public examination in Lecture Hall 1 of the Forest House 

(Metsätalo), Unioninkatu 40, Helsinki, on 25th June 2020, at 12 o’clock. 



2 

 

Title of dissertation: Essays on optimal forest management and water protection 

 
Author: Jenni Miettinen 

 
Dissertationes Forestales 296 

 

https://doi.org/10.14214/df.296 

Use licence CC BY-NC-ND 4.0 

 
Thesis supervisors: 

Professor Markku Ollikainen 

Department of Economics and Management, University of Helsinki, Finland 

 
Professor Lauri Valsta 

Department of Forest Sciences, University of Helsinki, Finland 

 
Pre-examiners: 

Assistant Professor Olli-Pekka Kuusela, Oregon State University, USA 

Research Professor Jussi Uusivuori, Natural Resources Institute Finland, Finland 

 
Opponent: 

Research Professor Tommi Ekholm 

Finnish Meteorological Institute, Finland 

 
ISSN 1795-7389 (online) 

ISBN 978-951-651-682-3 (pdf) 

 
ISSN 2323-9220 (print) 

ISBN 978-951-651-683-0 (paperback) 

 
Publishers: 

Finnish Society of Forest Science 

Faculty of Agriculture and Forestry at the University of Helsinki 

School of Forest Sciences at the University of Eastern Finland 

 
Editorial Office: 

Finnish Society of Forest Science 

Viikinkaari 6, FI-00790 Helsinki, Finland 

http://www.dissertationesforestales.fi 

 

 

 

 

 

https://doi.org/10.14214/df.296
https://creativecommons.org/licenses/by-nc-nd/4.0/


3 

 

Miettinen, J. (2020). Essays on optimal forest management and water protection. 

Dissertationes Forestales 296. 38 p. https://doi.org/10.14214/df.296 

 

 

ABSTRACT 

 
This dissertation develops a framework to examine socially optimal forest management when 

nutrient and sediment loads from forestry are considered as a negative externality. The 

Faustmann rotation model is extended to include the runoff function to describe the water 

quality impacts of nutrient and sediment loads from forestry. 

This thesis consists of an introductory section and four articles that analyze the different 

forest management practices and associated water protection. Examined practices include 

final harvesting in both mineral soils and peatlands, stem-only harvesting and whole-tree 

harvesting in peatlands, and ditch network maintenance. The water protection measures 

included are buffer zones in mineral soil forestry and overland flow fields and sedimentation 

ponds in drained peatlands. 

The main contribution of this thesis is the developed framework for analyzing socially 

optimal forest management when water quality is taken into account. The analysis shows that 

the nutrient and sediment load damages associated with forest management depends highly 

on management practices. The nitrogen load caused by final harvesting in mineral soils 

results in relatively low nitrogen load damages. In contrast, the sediment load damages due 

to ditch network maintenance in the sensitive headwater catchment are very high. 

Furthermore, the cost-effectiveness of water protection measures differs significantly. From 

society´s viewpoint, the buffer zones used in mineral soil forest management are not a cost-

effective water protection measure but when biodiversity benefits are taken into account, in 

addition to water quality, they become socially desirable. Overland flow fields are very cost-

effective water protection measures for peatland forestry. Finally, the water protection costs 

in forestry and agriculture are compared in a river basin model. A cost-effective solution 

requires the highest nutrient reductions in agriculture, though it also implements water 

protection measures, especially in drained peatland forestry. 

 
Keywords: rotation model, even-aged forest management, ditch network maintenance, 

nutrient load, sediment load, cost-effectiveness 
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1 INTRODUCTION  

 

 
1.1 Background and motivation 

 
Forests provide several ecosystem services, such as timber, biodiversity conservation, 

climate regulation, flood prevention and water quality, to society. However, forest 

management also causes negative impacts on several ecosystem services, for instance by 

increasing nutrient and sediment loads to watercourses; accelerating biodiversity loss and 

creating climate impacts through harvesting. These impacts are economically considered as 

negative externalities. This thesis focuses on the negative externalities caused by different 

forest management practices, especially with respect to water quality. 

Even-aged forest management practices causing nutrient and sediment loads include final 

harvesting, regeneration, ditch network maintenance and fertilization (e.g., Grip 1982; 

Ahtiainen and Huttunen 1999; Joensuu 2002; Laurén et al. 2005; Palviainen et al. 2014, 2015; 

Nieminen et al. 2018a). In Finland, the share of the forestry-induced nutrient load covers 5% 

of the total nitrogen load and 8% of the total phosphorus load (Finér et al. 2010). However, 

regionally, forestry may account for a significantly higher share of the total nutrient loads. 

Furthermore, the main adverse effect of forestry as a polluting sector comes especially in the 

form of high sediment loads from drained peatlands. 

Several water protection measures are available to decrease nutrient and sediment loads 

to watercourses, including buffer zones along watercourses, sedimentation ponds, overland 

flow fields and other defensive measures (e.g., Ahtiainen and Huttunen 1999; Joensuu 2002; 

Laurén et al. 2005; Haahti et al. 2018; Nieminen et al. 2018b). While these water protection 

measures decrease the nutrient and sediment loads, there are costs associated with the 

measures; thus, there is a trade-off between reducing damages and increasing costs. 

The traditional Faustmann rotation model (1849) describes the optimal framework for 

decision-making at the stand level when only harvest revenue is taken into account. To 

consider the negative water externalities caused by forestry to the recreationalists and other 

users of aquatic resources, the basic Faustmann model must be extended to include water 

quality aspects via nutrient runoff function and valuation of the damages they cause. The 

extended model allows the social planner to trade-off harvest revenue against negative 

externalities to maximize social welfare. The model can be interpreted as a version of the 

Hartman model (1976), which extends the Faustmann rotation model to include amenity 

values. 

There are few studies linking forest economics and water protection in the social welfare 

framework (an exception is Matero 1996; 2002; 2004). This thesis fills this gap in research 

and provides a full analysis of forest management when negative externalities from nutrient 

and sediment loads are included. 

 

 
1.2 Research objectives 

 
Forest management practices and their impacts on nutrient and sediment loads differ 

depending on, among other things, whether forestry is based on even-aged or uneven-aged 

harvesting. In this thesis, the focus is on even-aged forestry, which entails clear-cutting. 

Even-aged forestry may take place in mineral soils or in drained peatlands. Nutrient and 

sediment loads and means of reducing the loads differ greatly between these land types. 
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In mineral soils, buffer zones can be applied as a water protection measure to reduce the 

nutrient load. The land area allocated to an unharvested buffer zone reduces the harvest 

revenue from the specific harvest area, inducing costs. Additionally, prolonging the rotation 

age postpones the nutrient load damage following the clear-cut. Hence, the question to 

examine is how the social planner simultaneously chooses the optimal rotation age and the 

size of the buffer zone when water quality is included in the analysis? 

In drained boreal peatlands, forest management practices consist of clear-cuts 

accompanied by ditch network maintenance to increase forest growth. Clear-cuts and ditch 

network maintenance induce nutrient and sediment loads, which can be reduced by overland 

flow fields. Both ditch network maintenance and the overland flow field have costs. The 

research question is as follows: how does the optimal rotation age and ditch network 

maintenance effort change due to nutrient and sediment loads, and what is the size of the 

overland flow field to best serve as a water protection measure? 

Once the optimal forest management is known, a question arises regarding how great the 

required reduction in nutrient loads from forestry should be relative to that in other polluting 

sectors. Economic theory suggests that to reach cost-effectiveness in water protection, the 

marginal abatement costs of different polluting sectors must be equalized for any target level 

of nutrient reductions. For this reason, the marginal abatement costs must be defined for all 

polluting sectors, including forestry. The analysis of the nutrient loads and the measures to 

reduce them provide a starting point for this analysis. 

 
At a general level, the two main research questions of this thesis are as follows: 

1) How does optimal forest management look like when nutrient and sediment loads and 

measures to reduce them are simultaneously taken into account? 

2) How great are the marginal abatement costs of reducing nutrient and sediment loads, 

and what is the forestry’s cost-efficient share in overall nutrient abatement in a river basin 

scale? 

 
The thesis consists of four studies employing both analytical and numerical approaches: 

Study Ⅰ: Diffuse load abatement with biodiversity co-benefits: the optimal rotation age 

and buffer zone size 

Study Ⅱ: Whole-tree harvesting with stump removal versus stem-only harvesting in 

peatlands when water quality, biodiversity conservation and climate change mitigation 

matter 

Study Ⅲ: Boreal peatland forests: ditch network maintenance effort and water 

protection in forest rotation framework 

Study Ⅳ: Cost function approach to water protection in forestry 

 
Table 1 summarizes the key components of the studies. Study Ⅰ examines the water quality 

impacts of final harvesting in mineral soil forests when nutrient loads can be reduced by a 

buffer zone. Study Ⅱ compares two different forest harvesting practices used in peatland 

forestry. Study Ⅲ focuses on the overland flow field and abstaining from ditch network 

maintenance as the means of reducing nutrient and sediment loads from harvesting and ditch 

network maintenance in drained peatlands. Study Ⅳ covers both final harvesting in mineral 

soils and drained peatlands and ditch network maintenance in peatland forestry to estimate 

the marginal abatement costs in forestry drawing on studies Ⅰ and Ⅲ. 

Even though this thesis focuses mainly on the water quality impacts of forest 

management, studies Ⅰ and Ⅱ also include impacts on other related ecosystem services. In 

addition to nutrient load damage, the biodiversity benefits provided by the buffer zone are 
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analyzed in Study Ⅰ. Study Ⅱ includes both several water quality damages (nitrogen, 

phosphorus and mercury load damages) and climate impacts (substitution of fossil fuels, CO2 

emitted by harvesting vehicles and lost woody biomass as a carbon sink).
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Table 1. Summary of the key components of the studies. 

 Forest management practices Water protection 
measures 

Externalities caused by forest 
management  

Numerical approach 

Ⅰ Final harvesting Buffer zone 
 

Nitrogen load damage 
Biodiversity benefits 

Numerical model and 
optimization 

Ⅱ Stem-only harvesting 
Whole-tree harvesting 

No water protection 
methods included 

Nitrogen load damage 
Phosphorus load damage 
Mercury load damage 
Substitution of fossil fuels 
CO2 emitted by harvesting vehicles 
Lost woody biomass as a carbon 
sink 

Numerical evaluation of 
net social benefits  

Ⅲ Final harvesting 
Ditch network maintenance 

Overland flow field 
Abstaining from ditch 
network maintenance 

Nitrogen load damage 
Phosphorus load damage 
Sediment load damage 
 

Numerical model and 
optimization 

Ⅳ Final harvesting 
Ditch network maintenance 

Buffer zone 
Overland flow field 
Sedimentation pond 

Nitrogen load damage 
Phosphorus load damage 
Sediment load damage 

Numerical evaluation of 
marginal abatement 
costs and optimization 
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1.3 Literature review 

 
Previous analytical literature on socially optimal forest management and water quality is 

scarce. Closest to this thesis is the study by Matero (2004), who presented a two-period model 

to analyze cost-effective measures for water protection in Finnish forestry. The study 

included both harvesting and drainage maintenance as forest management practices and 

buffer strips, sedimentation pools and sedimentation fields as water protection measures. 

Matta et al. (2009) employed the Faustmann rotation model to examine biodiversity 

protection in Florida (USA), and among other practices, the study included buffer zones and 

prolonged rotation ages. However, Matta et al. (2009) did not include water quality impacts. 

Analytical studies that apply the Faustmann rotation model to examine water aspects 

typically include water yield (e.g., Clarke 1994; Creedy and Wurzbacher 2001), not water 

quality management. 

For the most part, the previous economic literature on forest management and associated 

water protection includes studies that empirically estimate the costs of water protection in 

forestry, especially the costs of buffer zones. The majority of studies examine forest 

management and water protection in the USA and Scandinavia. Earlier economic studies 

related to buffer zones and their costs in forestry include Ellefson and Miles (1985); 

Yoshimoto and Brodie (1994); Matero (1996, 2002, 2004); Laurén et al. (2007); Zobrist and 

Lippke (2007); Trenholm et al. (2013); Tiwari et al. (2016); and Lundström et al. (2018). 

Ellefson and Miles (1985) analyzed the costs of six different water protection measures, 

including bugger strips, used to reduce the water quality impacts of harvesting in the Midwest 

(USA). Yoshimoto and Brodie (1994) studied spatial restrictions on harvest areas located in 

riparian areas and their effects on the total present net worth from harvesting in Oregon 

(USA). Laurén et al. (2007) studied the water protection costs and benefits in mineral soil 

forestry in Finland. They simulated nitrogen export levels for different combinations of 

buffer zone sizes and cutting intensities to determine the costs of nitrogen reductions. Zobrist 

and Lippke (2007) compared the costs of riparian regulations in two states, western 

Washington and Oregon, in the Pacific Northwest (USA). Trenholm et al. (2013) combined 

contingent valuation and wood supply modeling methods in a cost-benefit analysis of riparian 

buffers in eastern Canada. Tiwari et al. (2016) compared the costs of fixed-width buffer zones 

to variable-width buffer zones in the Kryclan catchment in northern Sweden. A trade-off 

between ecological and economic values related to alternative management of buffer zones 

was studied by Lundström et al. (2018). They developed a decision support system Heureka 

applied to Swedish forest management. 

Large part of the studies from the USA are related to forestry best management practices 

(BMPs) used to prevent non-point pollution related to forest management, e.g., Ellefson and 

Miles (1985); Henly et al. (1988); Shaffer et al. (1998); Kluender et al. (2000); Cubbage 

(2004); and Sun (2006). As in most of these studies, Ellefson and Miles (1985), Henly et al. 

(1988), Shaffer et al. (1998) and Kluender et al. (2000) estimated the costs of these practices. 

Cubbage (2004) provided a review of these studies related to the costs of forestry BMPs. Sun 

(2006) analyzed the welfare impacts of forestry BMPs, including stream management zones, 

on different stakeholders. 

In addition to buffer zones and BMPs, alternative forest management intensities may be 

used to mitigate water impacts in forestry. Miller and Everett (1975) analyzed different forest 

management practices and alternative harvesting intensities and their effects on sediment loss 

in Indiana (USA). Eriksson et al. (2011) analyzed the impacts of the EU Water Framework 

Directive on the net present value of forestry under given requirements on water quality. 

They used a linear programming model describing forest management that included 

requirements on concentrations of nitrogen, phosphorus, methyl mercury and dissolved 
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organic carbon in northern Sweden. Duncker et al. (2012) studied the impacts of forest 

management alternatives on several ecosystem services by simulating a virtual normal forest 

located in Central Europe. The estimated ecosystem services and impacts included 

merchantable timber production, land expectation value, biodiversity, water quality and 

quantity, soil fertility, carbon sequestration and carbon stock. Hökkä et al. (2017) analyzed 

how varying ditch network maintenance intensity impacts timber production, profitability 

and nutrient and sediment loading in Finland. 

There are also some catchment-scale studies that have included forestry in the model 

frameworks. Ovando and Brouwer (2019) review studies that examine the interactions 

between forest management and watershed services in economic frameworks. The reviewed 

literature covered various watershed services, including studies on water quality aspects. A 

study by Hjerppe and Väisänen (2015) included forestry as one polluting sector and analyzed 

the cost-effective reduction of phosphorus in 8 different Finnish catchments. They developed 

a KUTOVA tool with 19 different measures to reduce phosphorus loads, of which five were 

used in the forestry sector: buffer zones, overland flow, peak runoff control, drowned weir 

for runoff control and constructed wetlands. Xu et al. (2018) provided an integrated modeling 

framework for Lake Erie’s Sandusky River watershed (Ohio, USA) to analyze both 

phosphorus reduction and economic performance. The model included the conversion of 

cropland to forestry as one option. 

 

 

2 FORESTRY AND WATER PROTECTION IN FINLAND 

 

 
Currently, forestry is estimated to cause a nitrogen load of 1600 Mg year-1 and a phosphorus 

load of 130 Mg year-1 (Finér et al. 2010). The share of forestry as a polluting sector is only 

approximately 5% of the total nitrogen load and 8% of the total phosphorus load in Finland 

(Finér et al. 2010). However, locally, in northern headwater catchments, forestry can be the 

only significant anthropogenic source of nutrient and sediment loads, and its contribution 

may be significantly larger (15% of the total nitrogen load and 20% of the total phosphorus 

load) (Markkanen et al. 2001, Finér et al. 2010). Furthermore, based on recent studies 

(Nieminen et al. 2017a; Nieminen et al. 2018c) suggesting that the nutrient exports caused 

by peatland drainage are not short-term, but rather, there is a permanent legacy effect, drained 

peatlands may contribute to nutrient and sediment loads much more than previously 

estimated. The nutrient and sediment loads from forestry are forms of nonpoint pollution, 

which poses challenges for designing water protection. The loads are generally high during 

the first few years after forest management but may last ten years or even longer. (Finér et 

al. 2010).1 

 

 

                                                 
1 It should be noted that in January 2020, after this introductory article was written, new results 

concerning nutrient and organic carbon export from forests to watercourses in Finland were published. 

According to the new results, forestry causes 12% of the total nitrogen load and 14% of the total 

phosphorus load in Finland. The main reason for the increased significance of forestry as a polluting 

sector is forest drainage. (Finér et al. 2020.) In Studies Ⅲ and Ⅳ of this thesis, the nutrient and sediment 

load figures used are based on previous official estimates of the specific load values, i.e., those reported 

in Finér et al. (2010). 
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2.1 Forest management and water quality in mineral soil and drained peatland forests 

 
Even-aged forest management is a source of nitrogen, phosphorus and sediment loads to 

brooks, rivers and lakes. Currently, the main sources of loading are clear-cutting, site 

preparation, fertilization, burn-clearing and ditch network maintenance (Finér et al. 2010). 

The annual clear-cut area in Finland was between 109,126 ha and 144,818 ha in 2010-2014 

(Natural Resources Institute Finland 2015). Clear-cuts in mineral soil forests and drained 

peatlands are significant sources of nutrient loads. Clear-cutting in mineral soils has been 

observed to enhance both nitrogen and phosphorus loads (Vitousek et al. 1979; Grip 1982; 

Rosén et al. 1996; Ahtiainen and Huttunen 1999; Laurén et al. 2005; Palviainen et al. 2014, 

2015). As the trees are removed, the mineralization of nutrients from soil and harvest residues 

increase, and the nutrient uptake decreases, which increases leaching (Rosén et al. 1996). 

In drained peatlands, ditch network maintenance and clear-cutting have been shown to 

increase sediment and nutrient loads to watercourses (e.g., Manninen 1998; Ahtiainen and 

Huttunen 1999; Lundin 1999; Joensuu 2002; Nieminen 2003, 2004; Nieminen et al. 2010; 

Nieminen et al. 2017b; Nieminen et al. 2018a). Peatlands are wetlands where the high 

groundwater level limits tree growth (Päivänen and Hånell 2012; Sikström and Hökkä 2016). 

As drainage lowers the groundwater level, it increases tree growth (Sikström and Hökkä 

2016). Currently, pristine peatlands are not drained in Nordic countries, but because of ditch 

deterioration over time since drainage, ditches require maintenance every 15-30 years 

(Päivänen and Hånell 2012; Sikström and Hökkä 2016). Ditch network maintenance means 

either clearing the old ditches (ditch cleaning), excavating new ditches between the old 

ditches (supplementary ditching), or executing both practices. When ditch network 

maintenance is implemented, erosion in the ditch network increases, inducing sediment loads 

(Stenberg 2016). Ditch network maintenance is regarded as the most harmful forest 

management measure in Finland, particularly because of high sediment loads but also 

because of the nutrients that adhere to sediments (Finér et al. 2010; Joensuu et al. 2002; 

Nieminen et al. 2017a). 

Nutrient loads from clear-cut areas located in drained peatlands are clearly higher than 

those from clear-cuts in mineral soil forests (Finér et al. 2010). Drained peatland forests 

comprise approximately 25% of forestland in Finland, and a considerable share of them will 

reach maturity within the next 10-30 years. Thus, clear-cuts in drained peatland forests will 

undergo a significant increase in the future. After clear-cutting in peatland forests, the 

groundwater level rises, and both runoff and nutrient loads increase (Lundin 1999; Kaila et 

al. 2014; Sikström and Hökkä 2016). 

While stem-only harvest removes only tree stems, whole-tree harvesting also removes 

harvest residues, such as tree tops, branches and foliage. Additionally, tree stumps have been 

harvested in recent years. Studies from Finnish conditions (Kaila et al. 2014, 2015) suggest 

that the effects of these two harvesting practices on nutrient loads may not differ significantly, 

but the effects of clear-cuts may differ significantly depending on the site characteristics 

(Lundin 1999; Nieminen 2003, 2004). The studies related to the impacts of harvesting on 

mercury (Hg) and methylmercury (MeHg) concentrations show mixed results. Increased 

levels of Hg and MeHg caused by harvesting were found by Porvari et al. (2003), Desrosiers 

et al. (2006) and Skyllberg et al. (2009), but de Wit et al. (2014) found no impact on MeHg 

levels. Furthermore, the study by Eklöf et al. (2013) did not indicate increased total mercury 

(THg) and MeHg concentrations after stump harvesting. When comparing stem-only 

harvesting and whole-tree harvesting with stump harvesting, no clear differences in Hg and 

MeHg concentrations were found by Ukonmaanaho et al. (2016). 

In Study Ⅰ, the nitrogen export data following clear-cutting in mineral soil were from the 

Finnish Forest Research Institute based on load figures used in the FEMMA model (a more 
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detailed description of the data is found in Study Ⅰ). In Study ⅠⅠ, the numerical data on loads 

were based on a catchment experiment conducted in Sotkamo, eastern Finland. The data 

included analysis of total nitrogen, phosphorus and mercury from five drained catchments, 

including both low- and high-fertility sites (a more detailed description of the data is found 

in Study Ⅱ). In Studies III and IV, the nutrient and sediment load figures used were based on 

the specific load values reported in Finér et al. (2010). They expressed how much the loads 

increased above non-managed levels due to forest management. The figures were estimated 

per managed area separately for each forest management practice. (Finér et al. 2010.)  

 

 
2.2 Water protection measures in forestry 

 
Water protection measures applied in Finnish forestry differ depending on the associated 

forest management practice and whether the target is to reduce the nutrient and sediment 

loads from mineral soil forests or from drained peatland forests. A buffer zone is a strip 

between a clear-cut site and a watercourse, and it is used as a water protection measure to 

reduce the increased nutrient load after clear-cutting in mineral soils (Norris 1993; Ahtiainen 

and Huttunen 1999; Laurén et al. 2005). It can be left uncut or selective cuttings may be 

conducted. The nutrient retention capacity of the buffer zone depends on its soil type, 

topography, hydrological pathways, vegetative cover, microbial activity and the area of the 

buffer zone relative to the treated upslope area (Gundersen et al. 2010). Requirements 

concerning buffer zone widths in Finland are provided in forest management guidelines and 

forest certification systems, and they vary from 5 to 30 meters (Finnish FSC Association 

2010; PEFC Finland 2014; Äijälä et al. 2019). 

In drained peatland forestry, various water protection measures to reduce both nutrient 

and sediment loads to watercourses are used, such as overland flow fields, sedimentation 

ponds, peak runoff control dams, sedimentation pits and ditch breaks (Joensuu et al. 1999; 

Liljaniemi et al. 2003; Nieminen et al. 2005; Väänänen et al. 2008; Marttila et al. 2010; 

Marttila and Kløve 2010; Vikman et al. 2010; Hynninen et al. 2011; Haahti et al. 2018; 

Nieminen et al. 2018b). In this thesis (studies Ⅲ and Ⅳ), we concentrated on two water 

protection measures most often used in peatland forestry, namely, overland flow fields and 

sedimentation ponds. 

Overland flow fields are constructed between the drained area and a watercourse by 

directing drainage waters from the drained peatland area to a pristine or restored mire. The 

efficiency of overland flow fields to reduce nutrient and sediment loads depends on their size, 

ground vegetation, slope and type of surface soil. (Nieminen et al. 2005.) Overland flow 

fields are efficient, especially when the size of the overland flow field is at least 0.5-1% of 

the upstream catchment area and the nutrient and sediment loads are high (Sallantaus et al. 

1998; Nieminen et al. 2005; Silvan et al. 2005; Väänänen et al. 2008; Vikman et al. 2010). 

The Finnish forest management guidelines for water protection recommend that the 

minimum size of the overland flow field be 1% of the catchment area (Joensuu et al. 2012). 

Sedimentation ponds are excavated in the main outlet ditch to slow water flow from the 

drained area and enable sedimentation (Joensuu et al. 1999; Nieminen et al. 2018b). In 

drained peatlands, the size of the sedimentation pond usually varies from 40 m3 to 500 m3 

(Joensuu et al. 1999). Sedimentation ponds are used to reduce the sediment load, and their 

efficiency mostly depends on their volume, the amount of the annual sediment load entering 

the pond, and the characteristics of inflowing sediment (Nieminen et al. 2018b). The 

recommended size of the sedimentation pond is given in the Finnish forest management 

guidelines for water protection (Joensuu et al. 2012). Sedimentation ponds are the most 
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common water protection measure used in drained peatlands, but their efficiency varies 

significantly (Joensuu et al. 1999; Nieminen et al. 2018b). Overland flow fields are used 

infrequently in practical forestry even though they may be very efficient, and unlike 

sedimentation ponds, they are able to reduce both dissolved nutrient and sediment loads. The 

use of overland flow fields is restricted to sloping areas, as the blocking of ditches in flat 

areas to create an overland flow field may cause the water table to rise in the upstream forest 

area, impairing tree vitality and growth there. (Nieminen et al. 2018b.) 

Finally, in addition to the technical water protection measures presented above, it might 

sometimes be reasonable to reduce the nutrient and sediment loads by not implementing ditch 

network maintenance. This is particularly true at sites where the financial profitability of 

ditch network maintenance is low (Ahtikoski et al. 2008, 2012). 

 

 
2.3 Co-benefits of forest management and water protection 

 
Forest management and associated water protection offer several co-benefits. This thesis 

covers the biodiversity benefits provided by the buffer zone (Study Ⅰ) and the climate impacts 

of stem-only harvesting compared to whole-tree harvesting (Study Ⅱ). 

Buffer zones used in mineral soils in conjunction with final harvesting provide various 

terrestrial and aquatic biodiversity benefits (Kuglerová et al. 2014), such as maintaining 

microclimatic environments (Brosofske et al. 1997), protecting bird communities (Spackman 

and Hughes 1995; Hagar 1999; Pearson and Manuval 2001) and riparian plant communities 

(Hylander et al. 2002; Selonen and Kotiaho 2013; Elliott et al. 2016; Oldén et al. 2019), 

controlling stream temperature (Sweeney and Newbold 2014) and protecting 

macroinvertebrates (Newbold et al. 1980; Sweeney and Newbold 2014) and fish (Horwitz et 

al. 2008; Sweeney and Newbold 2014). Furthermore, buffer zones act as riparian corridors 

between terrestrial and aquatic environments (Naiman et al. 1993). Most often, regulations 

and guidelines are provided to protect the aquatic environment and are less focused on 

terrestrial biodiversity (Gundersen et al. 2010; Phoebus et al. 2017). In addition to the width 

of the buffer zone, the structure of the vegetation, species composition and forest 

management activities in the buffer zone area affect the impacts that a buffer zone has on the 

stream (Broadmeadow and Nisbet 2004). 

All harvesting has climate impacts, as carbon is released to the atmosphere, but harvesting 

practices matter. Climate impacts of stem-only harvesting and whole-tree harvesting with 

stump removal differ due to the use of forest residues and stumps in the latter alternative. 

Forest biomass has been previously regarded as a carbon neutral or low-carbon energy 

source, as carbon dioxide emissions from biomass combustion are compensated by the 

growth of new tree generation (e.g., Stupak et al., 2007). However, the climate impacts of 

forest bioenergy have been found to depend on various aspects, such as the regulator´s time 

horizon and preference and the social cost of carbon as a measure of damage (Repo et al. 

2011; Repo et al. 2012; Rautiainen et al. 2018). Furthermore, the climate impacts of forest 

biomass depend highly on the type of biomass considered. Climate impacts of burning stumps 

are much higher than, for example, the impacts of burning small branches and foliage (Repo 

et al. 2012; Rautiainen et al. 2018). The study by Repo et al. (2015) showed that forest 

bioenergy may have significant climate impacts because the time lag between carbon loss in 

combustion and carbon sequestration of the new tree generation takes decades. Finally, as 

concluded by Rautiainen et al. (2018), in addition to time preference and the social cost of 

carbon, the climate impact of forest residues also depends on the type of energy source that 

the forest bioenergy is compared with, such as coal or natural gas, as the carbon contents 
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differ. According to the Intergovernmental Panel on Climate Change (IPCC) guidelines, 

carbon dioxide emissions from biomass combustion can be counted as zero in the energy 

sector if these emissions are taken into account in the land use, land use change and forestry 

sector (LULUCF) (IPCC 2006). 

 

 

3 THEORETICAL FRAMEWORK 

 

 
This section outlines how the Faustmann rotation model can be extended to cover nutrient 

and sediment loads caused by forest management practices and associated water protection 

measures. The model describes socially optimal forest management in both mineral soil and 

peatland forests. 

 

 
3.1 Socially optimal forest management and water protection in mineral soil forests 

 
Consider a social planner maximizing harvest revenue while also considering the nutrient 

load to watercourses caused by final harvesting. The planner uses buffer zones as a measure 

to decrease the nutrient load. The buffer zone is a permanently unharvested share of land 

between a harvest area and a watercourse. The planner operates on a mineral soil forest stand 

next to a watercourse. Nutrient loading starts after the final harvesting of the stand and is 

expected to last 𝑥 years. The share of the buffer zone from the area of the forest stand is 𝑚, 

and for a forest stand of a given size and shape, 𝑚, uniquely defines the width of the buffer 

zone. Thus, 𝑚 refers to the size of the buffer zone. The nutrient load from the forest stand 

area after final harvesting, 𝑔(𝑠, 𝑚), is expressed as a function of the size of the buffer 

zone and the time since the clear-cut, 𝑠. If the size of the buffer zone increases, the nutrient 

load is reduced, and the first derivative is negative, 𝑔𝑚 < 0. However, the rate of reduction 

decreases as the size of the buffer zone increases (𝑔𝑚𝑚 > 0). The size of the forest stand is 

normalized to unity. For any share of the buffer zone, the nutrient load from the area of the 

stand is 𝑧 = (1 − 𝑚)𝑔(𝑠, 𝑚). Then, adding a monetary value to describe the damage from 

the decreased water quality caused by the nutrient load after final harvesting, 𝐷(𝑧) describes 

the nutrient load damage as a function of the periodic nutrient loads, 𝑧: 

 

𝐷(𝑧) = 𝐷[∫ (1 − 𝑚)𝑔(𝑠, 𝑚)𝑒−𝑟𝑠𝑑𝑠
𝑥

0
].   (1) 

 
From equation (1), the nutrient load is reduced via two channels: the harvested area 

decreases and the buffer zone fixes released nutrients. A positive linear damage function is 

assumed. The regeneration cost is c , the timber price is p and the real interest rate is r; 

these variables are assumed to be constant. 

Different approaches can be considered to model social welfare in a rotation framework 

that combines a choice of optimal harvesting and a buffer zone reducing water quality 

damage. We focus on cases where bare land is either planted or naturally regenerated. Timber 

volume is a function of rotation age and is denoted by 𝑓(𝑇) with conventional concavity 

properties. Consider first the case where bare land is planted. The steady state cycle of net 

harvest revenues and water quality damages from final harvest follows (𝑃 denotes 

regeneration by planting): 
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𝑆𝑊𝑃 = {(1 − 𝑚)[𝑝𝑓(𝑇) − 𝑐] − 𝐷(𝑧)}𝑒−𝑟𝑇(1 − 𝑒−𝑟𝑇)−1 − 𝑐. (2) 

 
 

The social planner chooses the optimal rotation period, 𝑇, and the size of the buffer zone, 

𝑚, to maximize social welfare. The first-order conditions are as follows: 

 
𝑆𝑊𝑇

𝑃 = (1 − 𝑚)[𝑝𝑓𝑇(𝑇) − 𝑟𝑝𝑓(𝑇)] + 𝑟𝐷(𝑧) − 𝑟S�̂�𝑃 = 0  (3) 

   

𝑆𝑊𝑚
𝑃 = −[𝑝𝑓(𝑇) − 𝑐] − 𝐷´(𝑧)[∫ 𝑧𝑚(𝑠, 𝑚)𝑒−𝑟𝑠𝑑𝑠

𝑥

0
] = 0  (4) 

 
where 𝑆�̂�𝑃 = 𝑆𝑊𝑃 + 𝑚𝑐. Equations (3) and (4) describe the choices of the optimal 

rotation age and the size of the buffer zone, respectively. 

 
Assuming alternatively a natural regeneration of the stand leads to the model presented 

in Study Ⅰ. In this case, the social welfare is as follows (𝑁 denotes natural regeneration): 

 
𝑆𝑊𝑁 = {(1 − 𝑚)[𝑝𝑓(𝑇)𝑒−𝑟𝑇 − 𝑐] − 𝐷(𝑧)𝑒−𝑟𝑇}(1 − 𝑒−𝑟𝑇)−1. (5) 

 
The social welfare described in equation (5) differs from the social welfare defined in 

equation (2) due the different timing of actions, replacement of planting costs by costs 

associated with natural regeneration in (5) and consequent difference discounting net harvest 

revenue. The first-order conditions are as follows: 

 
𝑆𝑊𝑇

𝑁 = (1 − 𝑚)[𝑝𝑓𝑇(𝑇) − 𝑟𝑝𝑓(𝑇)] + 𝑟𝐷(𝑧) − 𝑟𝑆𝑊 = 0  (6) 

   

𝑆𝑊𝑚
𝑁 = −[𝑝𝑓(𝑇)𝑒−𝑟𝑇 − 𝑐] − 𝐷´(𝑧)𝑒−𝑟𝑇[∫ 𝑧𝑚(𝑠, 𝑚)𝑒−𝑟𝑠𝑑𝑠

𝑥

0
] = 0 (7) 

 
The first-order condition describing the choice of the optimal rotation age in equation (6) 

differs from the respective condition in equation (3) in terms of bare land value. Comparing 

equation (7) to equation (4) shows that in equation (4), the social benefits from the nutrient 

load reduction by the buffer zone are lower as well as the net harvest revenue lost due to 

differences in how the harvest revenue and nutrient load damage terms are discounted. 

However, the main findings with respect to first-order conditions are similar in both 

alternative formulations of the model. As shown in Study Ⅰ, including the nutrient load 

damage in the Faustmann rotation model tends to lengthen the optimal rotation age. 

Furthermore, the optimal size of the buffer zone is determined so that the marginal net harvest 

revenue is equal to the marginal damage from the reduced nutrient load. 

Theoretical results are new in the forest economics literature and can be used to describe 

water policies in forestry. Furthermore, the model can be used to examine other forest 

management practices, water protection measures and in addition to nutrient loads, also other 

water pollutants can be taken into account in optimizing water protection in forestry. Finally, 

to analyze social welfare, it is useful to include in the framework also other ecosystem 

services provided by forestry, such as biodiversity conservation (Study Ⅰ) and climate 

regulation (Study Ⅱ), and simultaneously analyze socially optimal forest management with 

several ecosystems taken into account as externalities. 
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This basic description of the theoretical model was modified in the following articles of 

the thesis. First, in Study Ⅱ, the model was used to examine the two alternative harvesting 

practices in peatlands: whole-tree harvesting and stem-only harvesting. Second, in Study Ⅳ, 

the marginal abatement cost functions in mineral soil forestry were derived based on this 

theoretical framework developed in Study Ⅰ. However, in Study Ⅳ, the model was modified 

such that the initial stand was assumed instead of starting with bare land. Furthermore, the 

framework can be added with investment in forest management, such as ditch network 

maintenance, which is presented in the next section. 

 

 
3.2 Socially optimal forest management and water protection in drained peatland 

forests 

 
Defining the socially optimal forest management and water protection in drained peatlands 

follows the analytical framework developed for mineral soils in Study Ⅰ. In drained peatlands, 

however, one does not start with bare land. Instead, in previously drained peatlands, the 

starting point is an initial stand, as there are trees in the stand that have been born before and 

after the first-time drainage of pristine peatland. 

Suppose that the drained peatland stand is located next to a watercourse. Let the initial 

stand age be 𝐴 and the time of final harvesting be 𝑇. Thus, the time until final harvesting is 

𝑇 − 𝐴. We assume the first commercial thinning has been made. Given that time has elapsed 

since the first-time drainage, ditches are in poor condition and need improvement. Ditch 

network maintenance is needed to recover forest growth. The forest growth of the stand 

depends both on the age of the stand, 𝑇, and on the ditch network maintenance effort, 𝑛, and 

can be denoted as 𝑓(𝑇 − 𝐴; 𝑛) (Chang 1983; Amacher et al. 1991). The properties of the 

growth function (as the relevant range of the rotation age is assumed) are 
𝜕𝑓

𝜕𝑇
= 𝑓𝑇 > 0, but 

𝜕2𝑓

𝜕𝑇2 = 𝑓𝑇𝑇 < 0; and 
𝜕𝑓

𝜕𝑛
= 𝑓𝑛 > 0, but 

𝜕2𝑓

𝜕𝑛2 = 𝑓𝑛𝑛 < 0; and 
𝜕2𝑓

𝜕𝑇𝑛
= 𝑓𝑇𝑛 > 0 as the impact of 

marginal change in the ditch network maintenance effort on the current annual increment is 

positive (Chang 1983). The unit cost of the ditch network maintenance effort is 𝑤, the timber 

price is 𝑝, and the real interest rate is 𝑟 (all assumed to be constant). The net harvest revenue 

function, 𝑉, is described as: 

 
𝑉 = 𝑝𝑓(𝑇 − 𝐴; 𝑛)𝑒−𝑟(𝑇−𝐴) − 𝑤𝑛.   (8) 

 
Modeling of the nutrient and sediment load damages from ditch network maintenance 

and final harvesting follows a similar description as that in Section 3.1 for nutrient load 

damages in mineral soil forestry. Nutrient and sediment load caused by ditch network 

maintenance starts at stand age 𝐴 when ditch network maintenance is implemented. Let 𝑔1 

denote nutrient loading, 𝑔2 denote sediment loading and 𝑘 denote the number of years that 

the nutrient and sediment load are assumed to last after ditch network maintenance has been 

implemented. The marginal damage from nutrient and sediment loads (assumed to be 

constant) are 𝑑1 and 𝑑2, respectively. Hence, the nutrient load damage from ditch network 

maintenance is 𝑑1 ∫ 𝑔1(𝑠, 𝑛, 𝐵)𝑒−𝑟𝑠𝑑𝑠
𝑘

0
, and the sediment load damage from ditch network 

maintenance is 𝑑2 ∫ 𝑔2(𝑠, 𝑛, 𝐵)𝑒−𝑟𝑠𝑑𝑠
𝑘

0
, where 𝑠 denotes time and 𝐵 denotes the size of the 

overland flow field. 

Increasing the ditch network maintenance effort increases the nutrient and sediment loads 

in an increasing or linear fashion, i.e., 𝑔𝑛
𝑖 > 0 and 𝑔𝑛𝑛

𝑖 ≥ 0 for 𝑖 = 1, 2. The properties of the 
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load function with respect to the size of the overland flow field are similar to those presented 

previously for the buffer zone, 𝑔𝐵
𝑖 < 0, but 𝑔𝐵𝐵

𝑖 > 0 for 𝑖 = 1, 2. The size of the overland 

flow field has no impact on how the ditch network maintenance effort increases the nutrient 

and sediment load, as the overland flow field is located outside the area where ditch network 

maintenance is implemented. Thus, the cross derivative is zero, 𝑔𝑛𝐵
𝑖 = 0 for 𝑖 = 1, 2. The 

nutrient and sediment load damage from ditch network maintenance is: 

 

𝐷(𝑧𝐷) = 𝑑1 ∫ 𝑔1(𝑠, 𝑛, 𝐵)𝑒−𝑟𝑠𝑑𝑠 + 𝑑2 ∫ 𝑔2(𝑠, 𝑛, 𝐵)𝑒−𝑟𝑠𝑑𝑠
𝑘

0

𝑘

0
  (9) 

 
In addition to ditch network maintenance, final harvesting causes nutrient loading. The 

number of years that the nutrient load takes place after final felling is denoted by ℎ. The 

nutrient load function is 𝑔3, and we assume that 𝑔𝐵
3 < 0 and 𝑔𝐵𝐵

3 > 0. Thus, the damage 

function can be expressed as: 

 

�̂�(𝑧𝐻) = 𝑑1 ∫ 𝑔3(𝑠, 𝐵)𝑒−𝑟𝑠𝑑𝑠
ℎ

0
   (10) 

 
The unit cost of the overland flow field is denoted by 𝛾, and the social welfare in the 

steady state is denoted by 𝑊, where the latter is exogenous based on Chang (1998). Equations 

(8), (9) and (10) are combined to describe social welfare, which the social planner maximizes: 

  

𝑆𝑊 = 𝑝𝑓(𝑇 − 𝐴; 𝑛)𝑒−𝑟(𝑇−𝐴) − 𝑤𝑛 − 𝛾𝐵 − 𝐷(𝑧𝐷) − 𝑒−𝑟(𝑇−𝐴)�̂�(𝑧𝐻) + 𝑒−𝑟(𝑇−𝐴)𝑊. 

     (11) 

 
The social planner chooses the optimal rotation period, 𝑇, the ditch network maintenance 

effort, 𝑛, and the size of the overland flow field, 𝐵. The first-order conditions are as follows: 

 
𝑆𝑊𝑇 = 𝑝𝑓𝑇 − 𝑟𝑝𝑓 + 𝑟�̂�(𝑧𝐻) − 𝑟𝑊 = 0    (12) 

 

𝑆𝑊𝑛 = 𝑝𝑓𝑛 𝑒
−𝑟(𝑇−𝐴) − 𝑤 − 𝐷´(𝑧𝐷)

𝜕𝑧𝐷

𝜕𝑛
≤ 0    (13)  

 

𝑆𝑊𝐵 = −𝛾 − 𝐷´(𝑧𝐷)
𝜕𝑧𝐷

𝜕𝐵
− 𝑒−𝑟(𝑇−𝐴)𝐷´(𝑧𝐻)

𝜕𝑧𝐻

𝜕𝐵
= 0.   (14) 

 
The optimal rotation age is chosen based on equation (12): adding nutrient load damage 

to the Faustmann rotation model tends to lengthen the optimal rotation period. According to 

equation (14), the optimal choice of ditch network maintenance effort requires that the 

increased marginal harvest revenues due to ditch network maintenance should equal the sum 

of the unit costs of ditch network maintenance and the marginal nutrient and sediment load 

damages caused by ditch network maintenance. The optimal size of the overland flow field 

should be expanded to a point where the overland flow field unit costs are equal to the social 

benefits of the decreased nutrient and sediment loads. 

Later, in Study Ⅳ, the model is modified to describe an initial stand with one rotation to 

derive the marginal abatement costs of nutrients and sediments in peatland forestry. 

Additionally, in Study Ⅲ, the overland flow field is the assumed water protection measure 

but other water protection measures can be included in the model as well, and in Study Ⅳ, it 

is also used for sedimentation ponds. 
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4 SUMMARIES OF THE ESSAYS  

 

 
4.1 Diffuse load abatement with biodiversity co-benefits: the optimal rotation age and 

buffer zone size 

 
This study analyzed the socially optimal rotation age and the optimal size of the buffer zone 

when harvest revenue, water quality and biodiversity benefits were considered as the 

ecosystem services provided by the forests. The theoretical model was developed based on 

the classical Faustmann rotation model (1849), which was extended to include the impacts 

of clear-cutting on water quality. New theoretical findings on how including water quality in 

the optimization problem affects optimal forest management were found. First, the prolonged 

rotation ages postpone the stream of nutrient load damage in the infinite series of rotation 

ages. Second, the size of the buffer zone is increased until the harvest revenue lost from the 

buffer zone equals the marginal benefits from reduced nutrient load damage. 

Based on the numerical model applied to Finnish conditions, it may not be optimal for a 

social planner to implement a buffer zone if the decreased nitrogen load is included as the 

only ecosystem benefit provided by the buffer zone. The lost harvest revenue from the buffer 

zone is high and, on the contrary, the nitrogen damage is low as the amount of nitrogen 

leaching from the clear-cut area remains low. As the biodiversity benefits provided by the 

buffer zone area were also taken into account, the socially optimal size of the buffer zone 

was 4% of the total managed area. Thus, it was concluded that the biodiversity benefits 

provided by the buffer zone may be higher than the benefits provided by the decreased 

nitrogen load damage. 

 

 
4.2 Whole-tree harvesting with stump removal versus stem-only harvesting in peatlands 

when water quality, biodiversity conservation and climate change mitigation matter 

 
The second article examined the social net benefits of stem-only and whole-tree harvesting 

regimes when water quality, biodiversity benefits and climate impacts were evaluated in 

peatland forestry. As the estimated climate impacts of forest management alternatives clearly 

depend on how society views the climate impacts of wood use, we examined two different 

alternative climate policies: the carbon neutral bioenergy policy and a carbon non-neutral 

bioenergy policy. The Faustmann rotation model was extended to include the nutrient 

(nitrogen and phosphorus) and mercury load damage, biodiversity benefits and climate 

impacts in the theoretical framework. A new theoretical finding is that for stem-only 

harvesting under a carbon neutral bioenergy policy, adding climate damage lengthens the 

rotation age. This result reinforces the findings regarding the biodiversity benefits and 

nutrient load damages and their effects on the optimal rotation age from earlier studies 

(Amacher et al. 2009; Study Ⅰ). Under a non-neutral bioenergy policy, the impact of climate 

damage is ambiguous for stem-only harvesting. For whole-tree harvesting with stump 

removal, the effect of climate impacts on the optimal rotation age remains ambiguous in both 

harvesting regimes. 

In the numerical application to Finnish forestry, we compared the social net benefits for 

a given rotation length under alternative climate policies. The numerical results showed that 

under the carbon neutral bioenergy policy, whole-tree harvesting with stump removal 

provided the highest social net benefits. If society chooses to follow the carbon non-neutral 

bioenergy policy, stem-only harvesting will produce the highest social net benefits. In this 
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latter case, it should be noted that the social net benefits were negative for the three studied 

catchments and positive for only one catchment for stem-only harvesting. We can conclude 

that how society views bioenergy policies clearly defines which harvesting practice is 

optimal. Furthermore, as already shown in previous studies (Ahtikoski et al. 2012, Sikström 

and Hökkä 2016), peatland forestry with ditch network maintenance may have low financial 

profitability in some peatland sites. 

 

 
4.3 Boreal peatland forests: ditch network maintenance effort and water protection in 

a forest rotation framework 

 
In drained peatlands, ditch network maintenance maintains the increased forest growth 

achieved by first-time ditching (Päivänen and Hånell 2012). However, at the same time, ditch 

network maintenance and final harvesting in peatlands increase nutrient and sediment exports 

to watercourses (e.g., Joensuu 2002; Nieminen 2003, 2004; Nieminen et al. 2010). Ditch 

network maintenance is considered the most harmful forest management measure, 

particularly due to significantly increased sediment exports (Joensuu et al. 2002). In the social 

optimum, ditch network maintenance provides benefits as it increases harvest revenues. 

However, the negative externalities caused by water quality impacts of ditch network 

maintenance and final harvesting induce damages. Overland flow fields and abstaining from 

ditch network maintenance were the options to reduce both the nutrient and the sediment 

loads caused by forest management practices. This study contributes to the earlier economic 

literature of forestry and water protection by analytically and numerically describing a 

damage value for sediment load caused by ditch network maintenance when an overland flow 

field is used as a water protection measure. 

The first key theoretical finding is that in optimizing the ditch network maintenance 

effort, the marginal harvest revenues from increased forest growth due to ditch network 

maintenance should be equal to the unit costs of ditch network maintenance and water quality 

damages caused by ditch network maintenance (see also Matero 2004 for a similar result). A 

new theoretical finding is that the size of the overland flow field is increased until the unit 

costs of the overland flow field equals the marginal benefits from reduced nutrient and 

sediment load damages caused by final harvesting and ditch network maintenance. 

A numerical case study is applied in northeastern Finland, concentrating on the water 

quality impacts of final harvesting and ditch network maintenance on ecologically sensitive 

headwater streams. We use extensive field data collected from 33 forest streams to determine 

the sediment load damage value and data on nutrient and sediment loads from drained 

peatland sites to find the socially optimal solution with a numerical model. Depending on the 

parameters used, it may not be socially optimal to implement ditch network maintenance in 

all drained forest sites. The reason behind this result is the low increase in harvest revenue 

due to ditch network maintenance compared to the high nutrient and sediment damages 

caused by forest management and the costs of water protection. 

If ditch network maintenance is nevertheless implemented, the optimal size of the 

overland flow field varies greatly (from 0.28% to 4.32% of the catchment) depending highly 

on its costs and the determined sediment load damage value. The current recommendation 

according to the Finnish forest management guidelines for water protection is that the 

overland flow field should be at least 1% of the catchment (Joensuu et al. 2012). According 

to the numerical results, especially if the high sediment load damage value is assumed, the 

optimal size of the overland flow field is higher than the current recommendation. 
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4.4 Cost function approach to water protection in forestry 

 
This study describes the marginal abatement cost functions for nutrients and sediment in 

forestry, which have not been analyzed in previous literature. Furthermore, as the European 

Water Framework Directive (WFD) emphasizes cost-effectiveness when aiming to reach a 

good environmental status in all water bodies by 2027, defining the marginal abatement costs 

of nutrients in forestry is highly needed to compare these costs to other polluting sectors, 

such as agriculture and wastewater treatment plants. Additionally, the marginal abatement 

costs of sediment were calculated. 

The marginal abatement costs are defined for three water protection measures used in 

Finnish forest management: buffer zones, overland flow fields and sedimentation ponds. 

First, the analytical marginal abatement cost of nutrients in both mineral soil with final 

harvesting and peatland forestry with ditch network maintenance and final harvesting were 

developed. Second, the marginal abatement costs of sediment in peatland forestry with ditch 

network maintenance were described. Then, the marginal abatement costs were numerically 

calculated using data from Finnish forestry. 

Study Ⅳ shows that marginal abatement costs of nutrients are high (from 470 € kg-1 Ne 

and 2472 € kg-1 Ne, when the nutrient reduction target was 10% and 30%, respectively) when 

using buffer zones as a water protection measure in mineral soils. This result is due to the 

high costs of establishing the buffer zone with uncut trees located in the buffer zone area and 

the low nutrient exports caused by final harvesting in mineral soil forests. On the other hand, 

it was found that marginal abatement costs of nutrients using overland flow fields in peatlands 

when ditch network maintenance and final harvesting is implemented are low (0.02 € kg-1 Ne 

at the 10% abatement level and 0.04 € kg-1 Ne at the 30% abatement level). 

Furthermore, in the study, the marginal abatement costs of sediments in peatlands were 

calculated using either overland flow fields or sedimentation ponds as a water protection 

measure in ditch network maintenance. It was shown that the marginal abatement costs of 

sediments might be lower when using an overland flow field as a water protection measure 

instead of a sedimentation pond. 

Finally, the calculated marginal abatement costs of nutrients were used in a river basin 

model to analyze the cost-effective abatement solution when, in addition to forestry, 

agriculture is included as a polluting sector in the model. The river basin model included four 

different water protection measures: buffer strips and restrictions on nitrogen fertilizer in 

agriculture, buffer zones in mineral soil forestry and overland flow fields in peatland forestry. 

In a cost-effective solution, 3% (1%) of the total nutrient reduction is made in forestry and 

97% (99%) is made in agriculture when the reduction target is set as 10% (30%). 

 

 

5 DISCUSSION AND CONCLUSIONS  
 

 
The main contribution of this thesis is to extend the Faustmann rotation model to include 

water quality. The inclusion of nutrient and sediment load damage functions offers a social 

optimum framework to examine different forest management practices and associated water 

protection measures. The model can be conveniently applied to other ecosystem services, 

such as biodiversity conservation and climate change mitigation, as co-benefits. 
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5.1 Main findings 

 
Buffer zones have received much attention in the literature. This study suggests that in the 

social optimum, the buffer zone may be more reasonable for biodiversity reasons than 

reducing the water quality impacts of final harvesting in mineral soil forests (Study Ⅰ). This 

result is simply because the nitrogen loads caused by final harvesting are quite low and there 

are high-value trees that cannot be cut in the buffer zone area. The result that a buffer zone 

implies high costs is also supported by earlier studies (Laurén et al. 2007; Trenholm et al. 

2013). However, the study by Hjerppe and Väisänen (2015) finds buffer zones in forestry a 

cost-efficient water protection measure in the catchment-scale study. 

Ditch network maintenance has been a significant part of forest management in peatlands. 

While ditch network maintenance is privately optimal in most but not all sites, it is socially 

optimal even in fewer cases due to the high sediment load damage and overland flow field 

costs following the implementation of ditch network maintenance (Study Ⅲ). This result was 

also supported by a previous study by Matero (2004). 

From a cost-efficiency point of view, the marginal abatement costs of nutrients in forestry 

relative to those from other sectors are important. The developed cost estimates for buffer 

zones are very high, considerably higher than those in agriculture (Helin et al. 2006; Helin 

2014; Lötjönen and Ollikainen 2019) or in wastewater treatment plants (Hautakangas et al. 

2014). In contrast, the marginal abatement costs of nutrients using overland flow fields in 

peatlands are very low compared to other polluting sectors. As the water protection costs in 

forestry and agriculture are compared in a river basin scale, a cost-effective solution requires 

the highest nutrient reductions in agriculture, though it also implements water protection 

measures, especially in drained peatland forestry. 

Finally, it can be concluded that the impact of different forest management practices on 

water quality and the associated nutrient and sediment load damages differs highly. Final 

harvesting in mineral soil forestry causes very low levels of nitrogen loads to watercourses 

(Finér et al. 2010) and thereby relatively low nitrogen load damages (Study Ⅰ). In contrast, 

ditch network maintenance in drained peatlands causes very high water quality impacts due 

to high sediment loads (Joensuu et al. 2002; Finér et al. 2010) and high sediment load 

damages, especially in headwater streams (Study Ⅲ). Furthermore, the effectiveness and 

costs of different water protection measures in forestry differ. In Studies Ⅰ and Ⅳ, it was 

concluded that from society´s viewpoint, the buffer zones used in mineral soil forestry are 

very expensive water protection measures. On the other hand, overland flow fields are very 

effective in reducing nutrient and sediment loads with relatively low costs, as Studies Ⅲ and 

Ⅳ show. 

Detailed practical recommendations can be presented based on this thesis. First, the buffer 

zones used in mineral soil forestry following final harvesting might not be a cost-efficient 

water protection measure. However, as their importance on biodiversity is high (e.g., 

Gundersen et al. 2010; Tolkkinen 2020), from a social viewpoint, buffer zones should be 

used in practical forest management because they provide biodiversity and other co-benefits. 

Furthermore, in drained peatlands, overland flow fields are recommended as a cost-efficient 

water protection measure. The results show that overland flow fields have very low marginal 

abatement costs of nutrients. Thus, it would be worthwhile to consider whether overland flow 

fields could be used as permanent water protection measures in drained peatland forests, as 

recent studies also show that nutrient loads are high from drained peatlands even when there 

are no recent forest management practices implemented (Nieminen et al. 2017a, 2018a). It 

should be noted, however, that the use of overland flow fields is limited to sloping areas 

(Nieminen et al. 2018b). Finally, as ditch network maintenance is not a socially optimal 

choice in all drained peatland sites, the subsidy on ditch network maintenance paid to private 
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landowners based on the Act of the Financing of Sustainable Forestry in Finland should be 

redesigned. The subsidy should focus more clearly on water protection measures and the 

society should consider to what extent it is desirable to promote ditch network maintenance 

in peatland forestry in the future. 

 

 

5.2 Further research needs 

 

Additional data on several aspects of water protection in forestry are needed to improve the 

numerical analysis of water protection in forestry. In particular, more knowledge on the costs 

of water protection measures, their effectiveness in reducing nutrient and sediment loads and 

valuation of nutrient and sediment load damages are highly needed. 

Water protection measures used in forestry may potentially provide other co-benefits, 

such as biodiversity conservation or climate change mitigation. To analyze the overall social 

optimum related to water protection measures used in forest management, further research 

on co-benefits provided by these measures would be beneficial. As Study Ⅰ shows, co-

benefits, such as biodiversity, might even have higher social benefits than the water quality 

aspect. Additionally, it could be important to analyze the carbon storage and greenhouse gas 

dynamics related to buffer zones (Gundersen et al. 2010) in the social optimum framework. 

Furthermore, as ditching has significant negative biodiversity impacts (Lõhmus et al. 2015; 

Saarimaa et al. 2019) while the overland flow field could potentially provide significant 

biodiversity benefits, further research is needed on the biodiversity impacts of ditch network 

maintenance and overland flow fields. The rotation framework presented in this thesis could 

also be applied to assess the biodiversity impacts of ditch network maintenance in addition 

to water quality impacts. Furthermore, the climate impacts from peatland forestry would be 

highly valuable to include in the analysis due to high greenhouse gas emissions from drained 

peatlands (Nieminen et al. 2018d). 

Economic studies on water policy instruments targeted at forest management are missing 

(Ollikainen 2016) and are needed to redesign the policy instruments used in forestry. For 

example, based on the Act on the Financing of Sustainable Forestry in Finland, financing 

may be granted for private forest owners implementing ditch network maintenance and the 

associated water protection measures in peatlands. As Study Ⅲ concludes, further research 

on whether the subsidies should be more than currently targeted on water protection measures 

in peatlands instead of also subsidizing the ditch network maintenance effort is needed. 

Additionally, more regionally targeted policies and their effects should be analyzed, as the 

water quality impacts of forest management highly differ regionally (e.g., Markkanen et al. 

2001; Hökkä et al. 2017). 

Finally, as the social costs associated with ditch network maintenance in peatlands are 

high, further research is needed on forest management alternatives without ditch network 

maintenance relying on continuous cover forestry and fertilization. The reasoning behind 

these both options is that studies show that if the forest stock is high enough, the need for 

ditch network maintenance decreases (Sarkkola et al. 2010, 2013). 
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