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ABSTRACT 

Modern remote sensing-based forest inventory methods utilize airborne light detection and 

ranging (LiDAR) and optical image data for the prediction of forest attributes by tree species. 

These methods assume that the three-dimensional information provided by LiDAR can be 

used to predict the total growing stock attributes, while the spectral reflectance of tree crowns, 

contained in optical image data, are beneficial for the discrimination of tree species. In 

Finland, airborne image data has been found suitable for the discrimination of the most 

common tree species: pine (Pinus sylvestris), spruce (Picea abies) and broadleaves (mainly 

Betula pendula and Betula pubescens). There are, however, numerous issues in the collection 

and use of two different types of datasets in the inventory process, such as incorrect co-

registration of datasets and increased data acquisition and processing costs. 

In the wake of advances in algorithms and hardware, two new data sources have been 

merged as single sensor solutions for tree species-specific forest inventories: stereo matching 

of aerial images and multispectral airborne LiDAR. Both data sources offer structural and 

optical information beneficial in tree species classification. However, due to differences in 

observational geometry, the interpretation, and, thus, the usefulness of the optical information 

may differ between these two data sources. It is, therefore, essential to examine whether the 

differences in data characteristics between stereo matching of aerial images and multispectral 

airborne LiDAR affect the performance of the inventory.   

In this thesis, stereo matching data and multispectral airborne LiDAR data are evaluated 

as single sensor solutions for tree species-specific forest inventories. The results provide a 

unique insight as to how these data sources compare to the traditional use of single 

wavelength airborne LiDAR and aerial images. The findings can be used to support future 

species-specific forest inventories on the selection of remotely sensed data. 

 

 

Keywords: aerial image, area-based method, multispectral airborne laser scanning, stereo 

matching 
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1   INTRODUCTION 

1.1   History of airborne remote sensing in forest inventories 

The predominant purpose of forest inventories has been to support forest management and 

forest resource management with reliable, timely and scalable information of forest 

resources. This information includes, but is not limited to, basal area, height, volume and tree 

species. Continuous changes due to natural disturbances and growth (Oliver and Larson 

1996), the inherent complexity and the scale of the forests, and the information needs of 

stakeholders dictate how forest inventories are planned and conducted. Since the early 20th 

century, auxiliary data sources, such as aerial images, have been used to complement field 

work and to diversify the information content of the inventory (Andrews 1933; Standish 

1945). The first applications of panchromatic aerial images were used as support for 

transportation planning, in the delineation of forest stands, for the identification of tree 

species and the measurement of tree heights from oblique and vertical aerial images (Seeley 

1934). To this day, aerial images are utilized for most of these tasks, albeit using modern 

technologies.  

In order to further enhance the information content and the value of remote sensing-based 

forest inventories, characterization of forest structure using airborne laser scanning (ALS) 

has been practiced since the beginning of the 21st century (Næsset 2002). The adoption of 

ALS brought about a paradigm shift in the forest inventory community, both in research and 

operational forestry, which led to increased efficiency, accuracy and cost savings.  

1.2   Introduction of LiDAR to forest inventories 

Using light amplification by stimulated emission of radiation (LASER), a highly directional 

and powerful optical light beam can be generated (Young 1986). Distance to an object from 

the laser source can be determined using the pulse ranging principle (Wehr and Lohr 1999). 

Because the speed of light is known, this simply entails calculating the travel time of a laser 

pulse between the emitted and received pulse (Jelalian 1992). By emitting pulses in rapid 

succession, detailed 3D point observations, referred to as point clouds, of a target structure 

can be acquired. The realization of range information via laser is widely known as light 

detection and ranging (LiDAR) and is commonly used as an acronym for all laser ranging 

systems. Contemporary LiDAR systems usually record multiple echoes per emitted pulse, 

given that a pulse encounters objects that light can partly penetrate, and the amplitude of the 

backscatter is sufficiently strong to be registered as an echo. 

Rempel and Parker (1964) proposed that LiDAR be used in micro-relief experiments to 

obtain ground and tree heights. However, it was only in the late 1970s that ground measured 

tree heights were compared to LiDAR profiles (Solodukhin et al. 1976; Solodukhin et al. 

1979). Shortly after, similar experiments were carried out elsewhere (Krabill 1984; Maclean 

and Krabill 1986). The LiDAR sensors used in these pioneering studies were, by todays 

standard, very crude (Toth 2009). The sensors had no scanning mechanism, which limited 

the systems to profiling applications. As LiDAR systems with higher pulse repetition 

frequencies became available, a scanning laser system could be built where pulses could be 

directed in a pattern by an oscillating mirror (Wehr and Lohr 1999). This, together with the 
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introduction of global positioning system (GPS), inertial measurement units (IMU), faster 

computer processing capacity and better storage solutions, allowed for the collection of 3D 

georeferenced point cloud data (Nelson 2013). The collection of airborne LiDAR via a 

scanning sensor would later be known as airborne laser scanning (ALS). 

A practical approach to use ALS for the prediction of tree attributes for forest inventories 

was first developed in Norway (Næsset 1997), shortly after the first commercial ALS systems 

became available. Statistical characteristics of LiDAR echoes in an area were regressed 

against field measured stand volume. The method would later be refined (Næsset 2002; 

Næsset 2004; Maltamo et al. 2006) and become known as the area-based approach (ABA). 

The ABA follows the assumption that ALS data for a given forest area can be statistically 

related to its forest attributes. Hence, forest attributes in ABA are predicted by forming a 

model between the features of ALS point clouds and forest attributes measured from a field 

plot. The model can then be applied to prediction units, approximately the size of field plots, 

within the boundaries of the ALS data. Commonly used features describe the vertical 

distribution of echo heights, such as mean, median, percentiles or densities (e.g. Næsset 

2002). Features related to the form of the echo height distribution, such as skewness and 

kurtosis, have also been used in the prediction of forest inventory attributes (e.g. Levick et 

al. 2016). As these variables generally describe the vertical structure of the vegetation, the 

orthometric heights of all LiDAR echoes need to be related to ground level, i.e. subtract the 

height of the ground from the height of the LiDAR echo. As in this thesis, this is often referred 

to as height normalization, which can be carried out by identifying ground echoes (see e.g. 

Axelsson 2000) and constructing a digital terrain model (DTM) from those echoes. Height 

above ground level (AGL) can then be calculated for all points by subtracting the DTM from 

the orthometric point height. 

Shortly after the inception of ABA, a method was developed where physical properties 

were modeled for single trees segmented from the 3D data (e.g. Hyyppä and Inkinen 1999; 

Hyyppä et al. 2001; Persson et al. 2002). The method would later be called individual tree 

detection (ITD). The basic premise of ITD is to first detect and delineate individual trees 

from the point cloud data and then predict the attributes of the detected trees. Properties of 

the segmented trees are determined either directly from the point cloud or by modeling. While 

it does not necessarily perform better than ABA (Yu et al. 2010), ITD does allow for the 

prediction of inventory data at a much finer spatial resolution. Nevertheless, because the 

focus of this thesis is on the applications of new single-sensor airborne data for ABA, ITD is 

not discussed further here. 

1.3   Combining LiDAR and optical data in forest inventories by tree species 

Tree species information is required by most forest management systems, due to species-

specific growth models and treatment schedules, or management operations that are defined 

by tree species. It was evident since the early adoption of ABA that tree species could not be 

predicted using ALS data only (Törmä 2000). This can be attributed to the fact that a field 

plot, albeit a small area, can consist of several different tree species. Therefore, the structure 

of the ALS data, or, more specifically the features calculated from the point cloud, do not 

necessarily explain the tree species distribution.  

There have been attempts to predict tree species using ALS data only with ABA. For 

example, Villikka et al. (2012) reported decreased error rates for conifer and broadleaved 

stem volumes when using leaf-off ALS data instead of leaf-on ALS data. The rationale was 
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that the phenology of the deciduous tree species could be exploited to decrease the prediction 

errors associated with the deciduous trees. The height distributions of LiDAR echoes differ 

much more in between coniferous and deciduous dominated plots in leaf-off data than in leaf-

on data. This results in better tree species discrimination when using LiDAR data only. 

However, the acquisition period of leaf-off LiDAR data is very narrow between two seasons: 

spring and summer. Early data collection is affected by snow cover on both the ground and 

trees. Late data collection, on the other hand, might be affected by emerging leaves on the 

branches of deciduous trees. 

Moreover, LiDAR intensity, i.e. the amplitude of the received pulse (Wehr and Lohr 

1999), has been presumed to provide information relevant for target classification as it is an 

indicator of target characteristics (extent, orientation, density, surface roughness, brightness 

and reflectance etc.). Because the crowns of different tree species are characterized by 

distinctive features, such as density, size and orientation of foliage, LiDAR intensity could 

be beneficial in tree species classification (Ørka et al. 2007). Applications of LiDAR intensity 

in tree species classification have been mainly studied using ITD (e.g. Korpela et al. 2010b, 

Cao et al. 2016). LiDAR intensity is affected by a multitude of environmental factors, in 

addition to target geometry, such as range, sensor configuration, incidence angle and 

atmospheric conditions (Coren and Sterzai 2006). In part because these factors are not 

straightforward to correct or to normalize, practical applications of LiDAR intensity in tree 

species classification, using ABA, have been limited. Moreover, it is not obvious how a 

complex and mixed tree species composition translates to intensity within an area. Yet, there 

are a few studies where LiDAR intensity have been used to predict tree species with ABA. 

For example, Donoghue et al. (2007) showed that intensity could be used to predict the 

proportion of a specific spruce species.  

As means to provide more reliable tree species-specific attributes for forest inventories, 

optical information of images from both air- and spaceborne platforms have been used 

together with ALS data. The methods that produce tree species-specific attributes by means 

of ALS and aerial images using ABA have been developed in Finland (Packalén and Maltamo 

2006, 2007, 2008, Kukkonen et al. 2018). The predictions of tree species-specific attributes 

are usually based on a nearest neighbor imputation (k-nn), where most similar observations, 

with respect to ALS and image features, are searched from a training sample of field plots. 

Here, structural information of ALS is assumed to correlate with the total attributes, while 

the reflectance of tree canopies captured by an image sensor is assumed to contain 

information relevant for tree species discrimination. The imputation of tree species 

composition with ABA has been criticized to favor dominant tree species at the expense of 

minority tree species (Ørka et al. 2013). However, the most notable benefit of the approach 

is that the attributes of all tree species can be predicted simultaneously, thereby producing 

predictions of the tree species-specific attributes that are coherent with total growing stock 

attributes. 

Multi-temporal satellite image data can be used in tree species analysis due to 

phenological differences between tree species (see e.g. Wolter et al. 1995, Hill et al. 2005, 

Persson et al. 2018). Modern moderate spatial resolution satellite constellations, such as 

Sentinel-2 and Landsat-8, have high temporal resolutions. Frequent revisits improve the 

likelihood of capturing unobscured images during phenological activities, which are often 

swift and dependent on local climate conditions. Although satellite images have considerable 

potential in tree species analyses, the objective of this thesis is to compare airborne platforms 

and thus extensive discussion on applications of satellite data for tree species-specific forest 

inventories is omitted. 
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To clarify the terminology used in this thesis, the term “optical” is used when referring to 

passive remote sensing information of aerial images (near infrared, in addition to visible 

spectrum), and the term “spectral” is reserved for multiple- and single wavelength LiDAR. 

The term “optical image feature” (OIF) refers to features calculated directly from the aerial 

images, rather than features calculated from the stereo matching point cloud data. 

 

1.4   Single sensor solutions for forest inventories by tree species 

The solution to the tree species problem described in the previous section requires the 

collection and co-registration of two different types of remote sensing data: LiDAR and aerial 

images. This can have adverse effects on both the planning and execution of the flight 

missions and on the properties of the data. Numerous environmental conditions, including 

solar angle, cloud cover, temperature, precipitation and wind speed, need to be considered 

when planning optical data acquisition (Pepe et al. 2018). LiDAR data collection, on the other 

hand, is not as restricted by environmental conditions and can even be acquired during the 

night when wind speeds are most stable (Gatziolis et al. 2008). Although it is possible to 

mount both LiDAR and camera sensors on board a fixed wing plane (May 2008; Teledyne 

Optech 2019), they often have different acquisition parameters with regard to flying altitude, 

illumination dependence and coverage. Hence, the most sensible solution, in many cases, is 

to acquire LiDAR data and aerial images separately. Not only is this expensive but can also 

introduce problems when combining the two data if they have been captured when temporally 

distant to each other.  

Merging data from an active sensor, such as a laser scanner, with a passive sensor, such 

as a camera, is never straightforward (Wang et al. 2007; Holmgren et al. 2008; Liu et al. 

2015; Dash et al. 2017). Airborne LiDAR data and aerial images have been combined in 

several ways. The most obvious approach is to simply assign Digital Number (DN) values of 

pixels to corresponding LiDAR points using x and y coordinates (Dash et al. 2017). Assuming 

that the data has been georeferenced (i.e. orthorectified), the method requires no information 

about the interior or exterior orientation of images and is, therefore, easy and computationally 

inexpensive to implement. However, DN values cannot be reliably assigned for elevated 

targets using this approach due to relief displacement. Also, the original DN values could be 

altered at multiple stages of orthorectification (Valbuena et al. 2011). Another method is to 

use collinearity equations (Holmgren et al. 2008; Packalén et al. 2009), where 3D LiDAR 

points are assigned to a 2D image plane using interior (sensor and optics) and exterior (yaw, 

pitch and roll) orientation. The method is more reliable for elevated targets but exhibits errors 

in LiDAR points that are occluded in the image frame and is computationally more expensive 

than fetching a DN value from an orthorectified image. The errors caused by occluded points 

can, to a certain extent, be mitigated by averaging the retrieved DN values  

Because of the issues outlined above, a single sensor where 3D data and spectral data are 

recorded simultaneously appears appealing. Recently, two data collection methods have been 

proposed to provide both structural and spectral information as a single sensor unit: 

multispectral airborne LiDAR and photogrammetric processing of aerial images to point 

clouds. 
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1.4.1   Beyond two dimensional images 

The ability to make observations in three dimensions from planar images is not a recent 

discovery; analog photogrammetry has been practiced for decades (Konecny 1985). 

However, in the 21st century, the processes of stereo photogrammetry have evolved from 

analog workstations to a fully digital environment where 3D point clouds, like LiDAR, can 

be derived from overlapping images. This data will be referred to as image point clouds (IPC) 

hereafter. In the literature, processes that create depth from stereo images are referred to as, 

for example, image matching (Haala 2011), stereo matching (Hirschmüller 2008) or digital 

photogrammetry (St-Onge et al. 2008). In this thesis, the term stereo matching will be used.  

Stereo matching is the process of creating depth from overlapping stereo images (Bolles 

et al. 1987). In this context, depth simply means the distance of an object from the projection 

center of the camera. The principle of how depth is calculated is similar to the way that depth 

perception works: when the observer is in motion, the apparent movement of an object at a 

distance from an observer is less than an object near to an observer. What this means is that 

when two images are taken of a scene, an object appearing in the right image is at a different 

location to the same object in the left image. However, this distance is not only a function of 

the baseline (distance between the cameras), but also of how far away the object is from the 

camera. Closer objects move a longer distance between the left and right image. For rectified 

images, this distance is known as disparity (horizontal distance measured in pixels) in 

computer vision terminology (Okutomi and Kanade 1993). With known disparity, focal 

length and baseline, a distance from the camera can be calculated. Stereo matching 

algorithms can be roughly classified into two categories: local methods and global methods. 

Recently, a new category of deep stereo matching has been established, as convolutional 

neural networks have been utilized to produce depth images (see e.g. Mayer et al. 2016; Seki 

and Pollefeys 2017). The basic outline of local stereo matching algorithms is presented in the 

next paragraph, as the stereo matching algorithms used in this thesis operate using either local 

methods, or semi-global methods.  

A disparity calculation requires the observation of the same target from two images. This 

is a trivial task for a human operator but can be incredibly difficult for an algorithm. There 

are several algorithms with different implementations that have been developed for this 

purpose (e.g. Hirschmüller 2008; Jin and Maruyama 2012; Chen and Li 2017). In general, 

local stereo matching algorithms are applied to rectified image pairs and they have four 

distinct steps: (1) initial cost calculation, (2) cost aggregation, (3) disparity computation and 

(4) disparity refinement. Here, cost means the similarity of a pixel in the left and right image. 

The lower the cost, the more similar the pixels. Usually pixel-wise cost calculation is far too 

noisy. Hence, some other indices are used, such as mutual information (Hirschmüller 2008), 

or area-based matching of a rectangle surrounding the pixel using, for example, correlation 

(Gupta and Cho 2010) or hamming distance of census transformed pixels (Lim et al. 2016). 

In step (1), a cost is calculated for every pixel (x1, y1) in the base image with respect to every 

pixel in row y1 in the matched image. In step (2) the costs are smoothed using a chosen 

aggregation function (Tombari et al. 2008), and afterwards the disparity is calculated for each 

pixel in step (3) using a chosen strategy (e.g. winner takes all), thus resulting in an initial 

disparity image/map. In step (4), the noise and outliers in the disparity image are removed, 

for example, by a median filter or a left to right consistency check. The steps described in 

this paragraph are approximate designs, and different implementations have different 

strategies, therefore the stereo matching algorithm chosen for this thesis will be explained 

later in more detail in Section 2.3.1.  
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Stereo matching offers both structural and optical information as a single instrument. It 

has the benefit of providing optical information from the same geometry as the point cloud 

and does not have the shortcomings of combining ALS and image data, as explained in 

Section 1.2. However, the exact method of how the DN values of images are assigned to IPC 

data is proprietary in most commercial software, thus limiting its suitability in scientific 

analyses. Also, as images can only view the surface of an object, IPC data does not portray 

structure like LiDAR (White et al. 2013). LiDAR penetrates the canopy, often recording 

multiple echoes per emitted pulse, thus providing a rather even representation of the vertical 

structure and the ground (Lefsky et al. 2002). On the other hand, IPC data provides a detailed 

description of the above visible canopy and, when visible, the ground. Observing the ground 

underneath the canopy layer can be quite difficult in dense forests, requiring an alternative 

method for height normalization, such as ALS data.  

1.4.2   Stereo matching in forest inventories 

Although prediction errors associated with total growing stock volumes have generally been 

greater using IPC data, when compared to ALS data (e.g. Bohlin et al. 2012; Järnstedt et al. 

2012; Straub et al. 2013; Vastaranta et al. 2013; Yu et al. 2015), this might not have adverse 

effects on the timing of forest management operations (Kangas et al. 2018). The reason that 

total growing stock volume is predicted with larger errors using IPC compared to ALS could 

be, for example, the result of how inconsistent illumination affects the generation of IPC data 

(St-Onge et al. 2008; Gobakken et al. 2015). However, White et al. (2015) have concluded 

that no systematic difference in regard to the outcome of ABA was observed in their study 

area between IPC data acquired from different dates with different solar angles. The reason 

for the discrepancy in prediction errors associated with total volume can also be attributed to 

topography, data acquisition parameters or photogrammetric processing strategies, as some 

studies have reported rather similar prediction errors using IPC data and ALS data (Pitt et al. 

2014; Puliti et al. 2017; Ullah et al. 2017; Giannetti et al. 2018). 

While the total growing stock volume is not necessarily as highly relatable to features 

calculated from IPC data than from ALS data, the use of both structural and optical features 

can be beneficial in the prediction of tree species-specific attributes, as already discussed in 

Section 1.3. Tuominen et al. (2017) reported prediction errors (RMSE) of 59.8–142.2 % for 

tree species volumes using IPC and optical image features, and 57.3–136.0 % using IPC and 

satellite image features at the plot-level in a study site in central Finland. Puliti et al. (2017) 

reported plot-level prediction errors of 48.9–113.8 % for tree species-specific volumes from 

a forest located in south-eastern Norway using IPC and OIF.  

Even though stereo matching data are usually notably cheaper than ALS data, the use of 

IPC as a data source in forest inventories often assumes that ALS data is available for the 

inventory area, as DTM derived from IPC data can be prone to errors in areas of dense 

canopy. The search for ground points can incorrectly assign canopy points as ground in places 

where the ground surface is occluded over large areas. Also, interpolation within the DTM 

can be inaccurate if extensive areas of ground surface are hidden beneath the canopy. There 

have been experiments where IPC-derived DTM was used to normalize point heights to the 

ground level (Alonzo et al. 2018). Also, the use of DTM-independent features for the 

prediction of total growing stock volumes using IPC has been explored recently (Giannetti et 

al. 2018). However, neither approach conclusively answers whether they can be applied in 

areas where a significant proportion of the forests have a closed canopy. Nonetheless, open-

access nationwide ALS data is currently readily available in many countries. As topography 
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rarely changes drastically over time, even quite dated ALS-based DTM is suitable for the 

height normalization of ALS echoes. 

1.4.3   LiDAR in multiple wavelengths  

The first commercial airborne multispectral ALS sensor, Optech Titan (Teledyne Optech 

2019), captures LiDAR data in three different wavelengths: 1550 nm (channel 1), 1064 nm 

(channel 2) and 532 nm (channel 3). Commercial dual-wavelength airborne LiDAR systems 

have been available, although their primary applications have been to capture geospatial data 

of the coastline and shallow waters. Multispectral airborne LiDAR will be referred to as M-

ALS (multispectral airborne laser scanning) hereafter. Not only does M-ALS increase the 

echo density of the point cloud but, in theory, also allow for more accurate tree species 

discrimination compared to traditional single wavelength (hereafter unispectral) ALS 

systems (see Section 1.1). This means, for example, that the ratios of different LiDAR 

channels could be beneficial in classification. It should be noted, however, that intensity is 

also affected by other factors in addition to reflectance characteristics, such as observational 

geometry and target shape (e.g. Korpela et al. 2010a).  

The Optech Titan is comprised of three laser transmitters. The laser transmitters are 

slightly angled with respect to each other: the 1064 nm channel is pointing nadir, the 1550 

nm channel 3.5 degrees forward and the 532 nm channel 7.0 degrees forward. This means 

that it does not observe the exact same target location at all wavelengths. As a result, the 

spectral information provided by the Optech Titan cannot be interpreted with the same 

rationale as a conventional passive sensor. Point-wise analyses are thus unrealistic because 

the exact same target area is very rarely observed from all three channels. Hence, methods 

that classify objects, such as individual trees (ITD) or field plots (ABA) should be more 

appropriate. 

1.4.4   Multispectral LiDAR in forest inventories 

At the time of preparing this thesis, M-ALS is not yet operational in forest inventories. The 

adoption of the technology is not only limited by a lack of research, but also by the fact that 

the collection of the M-ALS data is currently more expensive than the collection of both 

unispectral LiDAR and aerial images. Increased costs can, in addition to more valuable 

hardware, be attributed to the fact that M-ALS data need to be acquired at a lower acquisition 

altitude than the traditional 1064 nm or 1550 nm single wavelength LiDAR data. Lower 

flying altitudes are required in order to obtain comprehensive data from the 532 nm channel.  

Initial research on forest inventory applications of M-ALS were aimed at confirming the 

assumption that M-ALS intensity would be analogous to optical information of aerial images 

by classifying individual tree species. In their study, Yu et al. (2017) classified pine, spruce 

and broadleaved trees and reported overall accuracy (OA) of 85.9 % for 1167 detected 

(detection rate 61.3 %) trees using both structural and intensity features of M-ALS. Axelsson 

et al. (2018) classified 179 mature solitary trees from nine genera and obtained 76.5 % OA 

using both intensity and structural features of M-ALS data. Budei et al. (2018) found that the 

combined features from all three channels provided the highest classification accuracy (75 

%) in the classification of 10 manually delineated tree species. The only experiments to date 

where M-ALS data has been applied using ABA were published by Dalponte et al. (2018) 

and Räty et al. (2019). Dalponte et al. (2018) found that M-ALS data provided better results 

than conventional ALS data in predicting a variety of forest characteristics, including the 
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Shannon diversity index (SDI) of tree species. The SDI was predicted with the lowest error 

rate by calculating the predictor variables, considering all echoes across all channels. In 

contrast, Räty et al. (2019) reported that a combination of LiDAR and aerial images were 

superior to M-ALS data in the prediction of tree species-specific logwood volumes in 

Finland. 

In all previous studies, M-ALS provided better results when compared to unispectral 

ALS. All current research is in agreement that intensity information from the three channels 

is advantageous in tree species classification. However, based on the current literature, it is 

not yet obvious how, or to what extent, M-ALS data would benefit forest inventories by tree 

species using ABA. 

1.5   Objectives of this PhD thesis 

The main goal of this PhD thesis is to assess whether single sensor data (stereo matching or 

M-ALS) are beneficial in forest inventories. In more detail, the objectives are: 

 

i. Evaluate how IPC data, combined with optical image features, performs in 

predicting forest inventory attributes, compared to unispectral leaf-on or leaf-

off ALS data combined with optical image features (Study I). 

ii. Assess how M-ALS data compares to the use of aerial images and unispectral 

leaf-on or leaf-off LiDAR data in the prediction of boreal tree species 

composition. (Study II). 

iii. Compare IPC and M-ALS data in the prediction of tree species-specific 

volumes (Study III). 

2   MATERIALS 

2.1   Study areas 

Two boreal forest areas were used in this thesis, hereafter referred to as Hamina (study I) and 

Liperi (study II & III) (Figure 1). Hamina is located in Kymenlaakso, whereas Liperi is 

located in the region of North Karelia, Eastern Finland. The main tree species in both study 

areas are Scots pine (Pinus sylvestris), Norway spruce (Picea abies) and broadleaved tree 

species, namely downy birch (Betula pubescens) and silver birch (Betula pendula). Both 

study areas are predominantly privately owned, with timber production the main objective of 

forest management and planning. 
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Figure 1. Study areas and field plots. 

2.2   Field data 

Field data from four different field campaigns are used in this thesis. One field campaign was 

conducted in Hamina (HP1) and three in Liperi (LP1, LP2, LP3). Field data were collected 

from Hamina during the summer 2013 (HP1). The radius of the plot was either 9 m or 12.62 

m depending on the number of trees observed within the 9 m radius. Diameter was measured 

for every tree with a diameter at breast height (DBH) of at least 5 cm. Height was measured 

for a subset of trees. Heights for the remaining trees were calculated using the functions based 

on Näslund (1937) model form. 

 

Table 1. Field data used in studies I – III. 

Study Field data 

I HP1 

II LP1, LP2 

III LP1, LP2, LP3 
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Field data from Liperi were collected during summers 2016 (LP1 & LP2) and 2017 (LP3). 

In LP1, field plots were selected by systematic sampling, and trees within the field plots were 

measured using the same general strategy. The LP1 study area consisted of circular field plots 

in systematically sampled square-shaped clusters of four plots. The distance between the 

plots was 300 m and the distance between clusters was 1200 m. The radius of the plot was 

either 9 m or 12.62 m depending on the number of trees observed within the 9 m radius. The 

radius was increased to 12.62 m if there were < 20 trees within the 9 m radius from the plot 

center. In LP1, tree species, height and DBH were measured for all trees with a DBH ≥ 5cm. 

LP3 consisted of 30 m x 30 m square plots that were non-probability sub-sample from an 

original systematic sample using information in regard to development classes and dominant 

tree species at the plot-level. Trees were measured with the same strategy as in LP1, with the 

difference that the location of each tree was determined using the approach described in 

Korpela et al. (2007). With known locations for each measured tree, the 30 m x 30 m plots 

were divided into four 15 m x 15 m cells. 

The LP2 field plots were measured as part of an operational forest management inventory 

(FMI) conducted by the Finnish Forest Centre (SMK). The LP2 plots were distributed in L-

shaped clusters. The field plots were measured with the same general strategy as in LP1 and 

LP3, except that heights were measured for a subset of trees, as opposed to all trees. These 

sample trees were selected by tree species based on the observed diameter distribution at the 

plot. Locally calibrated multivariate linear mixed-effects model (Eerikäinen, 2009) was used 

to calculate the heights for the remaining trees. The stem volumes of trees were calculated as 

a function of diameter and tree height using the models of Laasasenaho (1982). 

The different field data used in the studies are presented in Table 1. The LP1 field plots 

are used in studies II and III, although, different subsets of field plots were used. The reason 

for this was due to the differences in prediction methods and response variables. Because the 

dominant tree species was predicted using a linear classifier in II, only field plots located 

entirely within a single forest stand were used. This decision did not exclude mixed species 

forest stands, but rather plots that would bring about unwanted effects due to different forest 

management operations. These field plots were later included in III, because k-nn was used 

with separate validation field plots.  

2.3   Remotely sensed data 

2.3.1   Airborne laser scanner data and aerial images 

A total of three different ALS datasets and two aerial image datasets were used in this thesis. 

The acquisition parameters of the ALS data are presented in Table 2 and the acquisition 

parameters of aerial images are presented in Table 3. The true point density of the Optech 

Titan data used in this thesis is greater than stated in Table 3, as the lateral overlap of adjacent 

flight lines of the data was over 50 %. In all ALS data, echoes were classified as ground and 

non-ground echoes with the method described in Axelsson (2000), and afterwards, the ground 

echoes were used to construct a DTM. The AGL heights for all echoes were then calculated 

by subtracting the DTM from orthometric echo heights. 

The intensity values of all three bands of Optech Titan were corrected for range. Details 

of the range correction are presented in study II. Range corrected intensity values were used 

in studies II and III. 
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Table 2. Summary of airborne laser scanning (ALS) acquisitions. PRF = pulse repetition 

frequency, mrad = milliradian. 

  Optech Titan  
Leica 

ALS60 

Leica 

ALS70 
1550nm 1064nm 532nm 

Acquisition date 2–10 July 

2016 

2–10 July 

2016 

2–10 July 

2016 

3 May 

2016 

25 June 

2013 

Studies II & III II & III II & III III I 

Flying altitude (m) ~850 ~850 ~850 2400 1900 

Scan angle (degrees) ±20 ±20 ±20 ±20 ±20 

PRF (kHz) 250 250 250 98.4 67.6 

Beam divergence 

(mrad, 1/e) 

0.35 0.35 0.70 0.15  0.15 

Pulse density (per 

m2) 

4.8 4.8 3.7 0.8 0.75 

 

Table 3. Summary of aerial image acquisitions. Hyphen indicates unknown.  

 DMC Z/I Intergraph 

Microsoft Ultracam XP 

Multispectral Panchromatic 

Acquisition date 23–24  

May 2016 

23–24  

May 2016 

12 June 2013 

Studies II & III III I 

Flying altitude (m) 4100 4100 6000 

Sensor size (pixels) 3456 × 1920 13824 x 7680  17310 x 11310 

Focal length (mm) 30 120 100 

Spectral bands Red, green, blue  

and NIR 

Pan Red, green, blue  

and NIR 

GSD (cm) 150 40 35 

Side-/endlap (%) 30 / 80 30 / 80 45 / 80 
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2.3.2   Stereo matching of aerial images 

In this thesis, stereo matching of aerial images was carried out using two different matching 

algorithms: The Semi-Global Matching (SGM) algorithm (Hirschmüller 2008) and Next-

Generation Terrain Extraction (NGATE; Zhang et al. 2007). In study I, SGM and NGATE 

were compared, whereas only SGM was used in study III. A general outline of the matching 

process, i.e. disparity computation, is given Section 1.4.1. 

SGM has been widely recognized as a robust stereo matching algorithm that produces 

matching accuracies comparable to global matching methods at a much lower computational 

complexity (Hirschmüller 2008; Hirschmüller et al. 2012). The novel idea of SGM lies in the 

optimization, or aggregation, of pixel disparities after the initial disparity calculation 

(discussed in Section 1.3.1). SGM proposes that the NP-hard optimization problem of global 

stereo matching could be estimated by two-dimensional scanline optimization. Instead of 

traversing a single line, SGM performs the optimization in multiple directions at each pixel. 

Penalties for both small and large disparity differences along the lines between neighboring 

pixels are enforced in the optimization. If the disparity difference between the previous pixel 

and the current pixel in a scan line is > 1, a larger penalty is added to the cost of the disparity 

at the current pixel. After all scanlines have been calculated, the smallest aggregated cost is 

chosen for each pixel.  

NGATE is among the most common stereo matching algorithms reported in literature. 

Unfortunately, the way that NGATE performs the matching is not described in detail, because 

it is a proprietary algorithm of BAE Systems. It was reported in Zhang et al. (2006 & 2007) 

that NGATE combines two algorithms in the matching process: area-based image correlation 

and edge matching. Image correlation is used to constrain and guide the edge matching and 

vice versa. It is not known, however, how these two algorithms operate or complement each 

other in greater detail.   

Different parameter combinations were tested with both NGATE and SGM. In SGM, the 

only configurable parameter was the color band that was to be used in the matching. In 

NGATE, different combinations of parameters were tested. These parameters included the 

window size, algorithm (image correlation and/or edge matching) and the use of adaptive 

correlation strategy. Only the results of the most optimal parameter combinations, with 

respect to prediction error, are reported here. 
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3   METHODS 

3.1   Feature extraction 

Features used in the modeling can be divided into point cloud features and OIF. All point 

cloud features, both LiDAR and stereo matching, were calculated from AGL point cloud 

data, and OIF were computed by first linking points to unrectified images. In study I, stereo 

matching features were calculated separately using a low-resolution (10 m resolution pre-

ALS era, hereafter “10m DTM”) and high-resolution “ALS DTM” in order to assess the 

feasibility of applying stereo matching data in geographical areas where LiDAR data is 

unavailable.  

3.1.1   Point cloud features 

Point cloud features were calculated from both ALS and IPC data using the same procedure. 

While not explicitly stated in Table 4, point cloud features were calculated separately for 

first-of-many + only (F), and last-of-many + only (L) echo classes in the case of LiDAR data. 

From the stereo matching data, point cloud features were calculated using all point 

observations. IPC data do not contain intensity features. M-ALS features include ratios of 

point cloud features from different channels and point cloud features calculated from a 

combined set of echoes from different channels. 
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Table 4. Features of LiDAR and aerial images. Multispectral LiDAR (M-ALS) point cloud 

features were computed separately for each channel, for each combination of 2–3 channels 

and ratios of channels. Abbreviations: h = height; i = intensity; ai = aerial image; R = red; G = 

green; B = blue; N = near infra-red; DN = digital number. Channel number is depicted in the 

subscript in the case of M-ALS features. 

Feature Description 

I – Cloud features from LiDAR and IPC 
 

hP10, hP20, … , hP90 Height percentiles 

iP10, iP20, … , iP90 Intensity percentiles  

hD1, hD2, hD5, hD10, hD15, hD20 Density at a fixed height 

iMax, hMax Maximum 

iMin, hMin Minimum 

iStd, hStd Standard deviation 

iMed, hMed Median 

iMean, hMean Mean 

iSkew, hSkew Skewness 

iKurt, hKurt Kurtosis 

Prop Echo class proportion 

 

II – M-ALS features  

I532; I1064; I1550 Single channel features (I) 

I1550 / I1064; I1550 / I532; I1064 / I532 Ratios of single channel (I) features 

I1550+1064; I 1550+532; I 1064+532; I 1550+1064+532 Single channel features (I) computed from 

combined set of echoes from different channels 

III – Optical image features 
 

aiMax B;G;R;N Maximum DN 

aiMin B;G;R;N Minimum DN 

aiStd B;G;R;N Standard deviation of DNs 

aiMean B;G;R;N Mean DN 

aiMaxB/G, aiMax B/R, …, aiMean R/N Ratios of spectral image features 

3.1.2   Optical image features 

Collinearity equations were used to attach optical information from unrectified aerial images 

to 3D points using a similar method as described in Packalén et al. (2009). The same method 

was used with both the IPC and LiDAR data. The channel-wise (red, green, blue and near-

infrared) DN value from different images for each LiDAR echo was averaged from all images 

in which the 3D point was observed. These values were then used to calculate the OIF (Table 

4). 
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3.2   Prediction methods 

3.2.1   Linear regression 

A linear regression model fit by ordinary least squares was used in study I to predict stem 

number, basal area, DGM, HGM and total volume at the plot-level. For each response 

variable and each data source, the number of predictor variables was fixed to three. This was 

carried out to avoid overfitting and to exclude the effect that differences in the number of 

predictor variables have on model performance. 

3.2.2   LDA classification 

In study II, dominant tree species with respect to stem volume was determined at the plot-

level for pine, spruce or broadleaved trees. Linear discriminant analysis (LDA) was used as 

a classifier. LDA is methodologically similar to ANOVA (analysis of variance) and linear 

regression analysis. While the dependent variable is continuous in ANOVA and linear 

regression analysis, LDA deals with categorical variables. The objective of LDA is to find a 

linear combination of features that primarily characterize or separate two or more classes 

from one another (Hastie et al. 2009). The initial test showed that five features provided a 

good compromise between model performance and overfitting. 

3.2.3   k-nn imputation 

In studies II and III, the proportions of tree species and tree species volumes, respectively, 

were predicted using k-nn imputation. In both studies, the most similar neighbor (MSN) 

(Moeur and Stage 1995) distance metric was used to determine the k-nn from the training 

data. This method is often referred to as k-MSN. It is a nearest neighbor method, where the 

distance to neighbors is determined with a weighting matrix produced by canonical 

correlation analysis. The method is explained in more detail in Packalén and Maltamo (2007). 

In all k-nn models, the prediction is calculated as the weighed mean of the nearest neighbors. 

In study II, tree species proportions were imputed simultaneously for all tree species, as is 

typical in k-nn (e.g. Packalén and Maltamo 2007). However, in study III, volumes by tree 

species were imputed separately for all tree species in order to make the predictions 

comparable between data combinations. The prediction for total volume was calculated as 

the sum of the species-specific volume predictions.  

3.3   Variable selection  

Different variable selection strategies, dictated by the complexity of the optimization task, 

were used with the prediction methods. Two different approaches for variable selection were 

applied: a combination of stepwise and exhaustive variable selection, and heuristic variable 

selection. In all studies, the usefulness of OIF as predictor variables was evaluated by 

performing variable selection and performance assessment separately for only point cloud 

features and for point cloud features complemented with OIF. 
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3.3.1   Linear regression 

It would be ideal that all combinations of predictor variables could be assessed when 

choosing predictor variables for a model. However, it is often impossible to deterministically 

select an optimal subset of predictor variables from a large population, as the number of 

potential combinations of variables quickly increase to a point where it is impractical to test 

them all. In study I, predictor variables for the linear regression models were selected by first 

decreasing the number of potential variables to a maximum of 50 using the stepwise feature 

selection. After this, all possible combinations of three variables were assessed with RMSE 

as criterion. Different transformations for the predictor variables and response were 

calculated prior to variable selection: square root, exponential (only predictor variables) and 

natural logarithm.  

3.3.2   LDA and k-nn 

Features for LDA and k-nn models were selected using heuristic optimization. A simulated 

annealing algorithm, similar to the algorithm in Packalén et al. (2012), was implemented. A 

crucial aspect in variable selection using a heuristic algorithm is how the current solution 

should be modified. The algorithm gradually decreases the number of variables replaced from 

the current solution as a function of temperature. In the beginning, 50 % of the variables were 

randomly replaced. Thereafter, the number of variables to be randomly replaced was obtained 

by multiplying the current number of variables to be replaced by the temperature (values 

ranging from 0.05–1.0). A minimum of one variable was replaced at any given time. This 

means that as the algorithm converges, fewer variables are replaced by others. Also, the 

probability to accept a worse solution, often referred to as acceptance probability, decreases 

as a function of temperature. When the lowest allowed temperature has been reached, in this 

case 0.05, the algorithm terminates.   

3.4   Performance assessment 

The various data sources and data combinations evaluated in this thesis are listed in Table 5. 

All point cloud data were evaluated with and without OIF. The OIF were calculated using 

the same procedure in all studies. In studies I & II, prediction performances were validated 

using plot-level leave-one-out cross validation (LOOCV). In study III, k-nn models were 

validated using independent validation plot data (LP3). Forest attributes were first predicted 

for the smaller 15 m x 15 m rectangular prediction units. Predictions for the 30 m x 30 m 

plots were aggregated from the four prediction units within them. A similar aggregation, 

albeit with a larger set of prediction units, is used in practical applications where predictions 

of forest attributes are calculated from cells for forest compartments using ABA.  
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Table 5. Point cloud data sources used in this thesis. 

Abbreviation Definition Study 

Leaf-off-U-ALS Unispectral leaf-off airborne LiDAR  II & III 

Leaf-off-U-ALS(+OIF) Unispectral leaf-off airborne LiDAR and optical image features II & III 

Leaf-on-U-ALS Unispectral leaf-on airborne LiDAR I - III 

Leaf-on-U-ALS(+OIF) Unispectral leaf-on airborne LiDAR and optical image features I - III 

M-ALS Multispectral airborne LiDAR II & III 

M-ALS(+OIF) Multispectral airborne LiDAR and optical image features II & III 

IPC Airborne image point cloud I & III 

IPC(+OIF) Airborne image point cloud and optical image features I & III 

 

Prediction strategies were similar in all studies; predictions were produced as an average 

of several variable selections. The intention of this decision was not to construct ensemble 

models, but rather to lessen the unwanted effects of randomness due to the heuristic nature 

of simulated annealing, or in the case of linear modeling, account for randomness due to 

bootstrapping of samples. The number of iterations varied depending on the computational 

complexity and the number of candidate predictor variables. In study I, predictions were 

calculated as the average result of 1000 iterations of features selection using a random 

bootstrap sample (n = 172) in each iteration. In study II, predictions were computed using 

the average values of over 1000 iterations of features selection in the classification of 

dominant tree species and over 100 iterations of features selection in the prediction of tree 

species proportions. In study III, predictions of volume by tree species were averaged over 

100 iterations of features selection. 

Prediction errors were assessed in all studies with root mean square error (RMSE%) and 

in study III with mean difference (MD) as well. As MD is calculated as the difference 

between the means of predicted and observed values, it is mathematically equivalent to bias. 

The classification accuracies of dominant tree species in study II were assessed with 

producer’s accuracy (PA), user’s accuracy (UA), overall accuracy (OA) and Cohen’s Kappa. 

The current practice in Finland is to utilize a combination of ALS data (single wavelength, 

leaf-off or leaf-on) and aerial images. This was used as the performance baseline in this thesis 
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4   RESULTS 

4.1   Stereo matching in the prediction of forest inventory attributes (I) 

A comparison of the performance of NGATE and SGM based point clouds, and ALS data in 

the prediction of selected forest attributes is presented in Table 6. As expected, ALS data 

consistently outperformed the stereo matching data with all response variables both with and 

without OIF. The inclusion of OIF did not noticeably affect the prediction errors. The 

differences between ALS and stereo matching data were most apparent in the prediction 

errors associated with volume (20.4 % vs. 28.6 %), basal area (18.1 % vs. 26.6 %) and stem 

number (29.6 % vs. 42.6 %). 

 

Table 6. Summary of root mean square error (RMSE%) values of linear regression models of 

various forest attributes over 1000 bootstrap samples using Next-Generation Terrain 

Extraction (NGATE), Semi-Global Matching (SGM) algorithms, and airborne laser scanning 

(ALS) data both with and without optical image features (OIF). The parameter combination of 

NGATE or the spectral band of SGM that yielded the lowest error rate is presented and is 

marked inside parenthesis. I–IV indicates the four different parameter combinations of 

NGATE, N = near-infrared, R = red, G = green.  

 Response NGATE SGM Leaf-on-U-ALS 

 Stem number 47.9 (I) 46.7 (N) 31.4 

 Basal area 27.4 (III) 26.6 (R) 18.1 

ALS DTM 3D DGM 14.2 (II) 15.0 (R) 13.6 

 HGM 8.6 (I) 10.0 (R) 5.7 

 Volume 28.6 (III) 29.5 (G) 20.5 

 Stem number 42.6 (III) 42.8 (R) 29.6 

 Basal area 26.6 (III) 26.6 (R) 18.2 

ALS DTM 3D + OIF DGM 14.5 (II) 16.0 (R) 13.6 

 HGM 8.9 (II) 10.7 (N) 5.9 

 Volume 27.9 (III) 29.3 (G) 20.4 

 Stem number 54.9 (I) 49.9 (R) - 

 Basal area 27.6 (III) 26.6 (R) - 

10m DTM 3D DGM 30.5 (I) 23.0 (G) - 

 HGM 22.6 (III) 16.4 (G) - 

 Volume 29.1 (III) 29.8 (R) - 

 Stem number 44.1 (II) 43.7 (N) - 

 Basal area 27.0 (III) 26.9 (R) - 

10m DTM 3D + OIF DGM 20.6 (II) 20.1 (R) - 

 HGM 16.1 (III) 15.6 (R) - 

 Volume 29.0 (III) 30.0 (G) - 
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The differences in the prediction errors between the two stereo matching algorithms, or 

even between the various parameter combinations of NGATE and the spectral bands of SGM, 

were minor and neither consistently outperformed the other (Table 6). However, when using 

the 10m DTM in the normalization of stereo matching point clouds, SGM yielded the lowest 

error rates for every response variable except volume. In contrast, NGATE seemed to 

perform better when ALS DTM and OIF were used. As was the case with ALS data, stereo 

matching data did not noticeably benefit from OIF when ALS DTM was used. Interestingly, 

the inclusion of OIF led to a noticeable decrease in the prediction errors associated with stem 

number, DGM and HGM when using NGATE stereo matching data normalized with low-

resolution DTM. The same was true when using SGM, albeit the decrease in prediction error 

was less, as the prediction errors were already lower compared to NGATE. 

Prediction errors associated with basal area, stem number and volume were not noticeably 

influenced by the resolution of the DTM. Similar prediction errors were observed for these 

forest attributes using both LiDAR and 10m DTM with NGATE and SGM. In contrast, the 

use of 10m DTM resulted in a noticeable increase in the prediction error associated with 

DGM and HGM, compared to the use of ALS DTM. 

4.2   Prediction of tree species composition using M-ALS (II) 

4.2.1   Classification of dominant tree species 

The plot-level leave-one-out cross validated classification results for dominant tree species 

are presented in Table 7. The benefit of OIF was greater with leaf-on-U-ALS than with M-

ALS.  The classification accuracies of pine and spruce were high in all four feature groups. 

Optical image features mainly contributed to the increase in discrimination of the 

broadleaved class. Likewise, multispectral LiDAR provided considerably better 

classification results (UA 78.2 %; PA 51.1 %) for the broadleaved class when compared to 

U-ALS data (UA 74.0 %; PA 16.8 %). The inclusion of OIF always resulted in the greatest 

classification accuracies. The M-ALS alone performed almost as well as leaf-on-U-ALS(+OIF) 

(Kappa 0.79 vs. 0.81, respectively).  

 

Table 7. Classification accuracies associated with the different data combinations. OA 

denotes overall accuracy, UA denotes user’s accuracy, PA denotes producer’s accuracy and 

OIF denotes optical image features. 

 

Kappa OA 

Pine Spruce Broadleaved 

UA PA UA PA UA PA 

Leaf-on-U-ALS 0.72 85.0 91.5 92.0 79.4 95.7 74.0 16.8 

Leaf-on-U-ALS(+OIF) 0.81 89.1 93.7 92.2 85.1 94.5 86.0 57.0 

M-ALS 0.79 88.2 92.2 91.7 85.7 94.5 78.2 51.1 

M-ALS(+OIF) 0.81 89.7 93.6 92.6 86.6 94.0 84.6 62.4 
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4.2.2   Feature importance 

Features of the LDA models of dominant tree species were ranked by the frequency in which 

they were included in the model. A feature was regarded as important if it was chosen 

frequently over a large number of iterations by the heuristic variable selection. The five most 

frequently chosen features by dataset are presented in Table 8. Intensity features were ranked 

high, especially when using M-ALS or M-ALS was complemented with OIF. The kurtosis 

and skewness of height distribution were also ranked high in all data sources. It is worth 

noting that the kurtosis of channel 2 intensities from last echoes was top ranked in all datasets 

and their combinations. 

 

Table 8. Features importance with different datasets and their combinations. Frequency 

represents the percentage of linear discriminant analysis (LDA) models containing that 

variable out of the total 1000 iterations. OIF denotes optical image features. Explanations for 

the abbreviations of features can be found in Table 5. 

 Five most frequent features Frequency (%) 

U-ALS iP90F1064  

iKurtF1064  

PropF1064  

iP70F1064  

hSkewL1064  

65.0 

60.5 

56.5 

51.5 

20.4 

U-ALS(+OIF) iKurtF1064  

aiMeanN1064  

iP70F1064  

PropF1064  

hStdL1064  

56.6 

53.7 

34.4 

25.8 

25.7 

M-ALS iKurtF1064  

iP50F1550+532  

iMedF1550+532  

iKurtF1064+532  

hSkewL1550+532  

43.5 

38.4 

35.4 

31.8 

22.4 

M-ALS(+OIF) iKurtF1064  

aiMeanN1064  

hSkewL1550+532  

aiMeanRG532  

iP60L1550/1064  

51.4 

25.5 

22.1 

20.5 

19.8 
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4.2.3   Proportions of tree species 

The proportions of tree species at the plot-level were predicted simultaneously for pine, 

spruce and broadleaved trees using k-nn imputation. The results are presented in Table 9. 

Both leaf-on-U-ALS(+OIF) and M-ALS(+OIF) provided considerably lower RMSE values for 

the broadleaved class than the data sources without OIF. The prediction errors associated 

with the other classes was also reduced with the inclusion of OIF. The M-ALS data yielded 

lower prediction errors compared to leaf-on-U-ALS, especially in the case of broadleaved 

trees.  

 
Table 9. Species proportion predictions with nearest neighbor (k-nn) imputation with (+OIF) 

and without (-OIF) optical image features. Root mean square error (RMSE; percentage 

points, p.p.) values between observed and predicted species proportion are presented. 

 Pine Spruce Broadleaved 

-OIF +OIF -OIF +OIF -OIF +OIF 

Leaf-on-U-ALS 19.0 16.7 20.5 19.3 22.6 15.4 

M-ALS 18.2 16.0 19.5 17.8 19.5 15.0 

 

  



30 

 

4.3   Prediction of volume by tree species with stereo matching and LiDAR (III) 

Prediction errors associated with tree species volumes and total volume using the different 

ALS and IPC data in the Liperi study area are presented in Figure 2. Prediction errors 

associated with total volume were rather similar when using the different ALS datasets. The 

IPC data yielded the highest prediction errors of total volume, both with (26.7 %) and without 

(28.8 %) OIF. The prediction errors of pine and broadleaved trees decreased noticeably when 

OIF were used. The prediction errors associated with total volume and spruce volume were 

only slightly decreased by the addition of OIF in all point cloud datasets.  

 

 

Figure 2. Prediction errors for species-specific volume (Vpine, Vspruce and Vbroadleaved) and total 

volume (Vtotal) using leaf-off unispectral airborne laser scanning, leaf-on airborne laser 

scanning, multispectral airborne laser scanning (M-ALS) and image point clouds (IPC) data 

with and without optical image features (OIF) in the validation plots.        
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Prediction errors associated with volumes were, in general, rather similar between the 

tested single-sensor solutions, IPC(+OIF) and M-ALS. With respect to pine and broadleaved, 

IPC(+OIF) yielded lower error rates than M-ALS. M-ALS data, however, yielded lower 

prediction errors for total volume and for spruce volume. When examining the mean of 

prediction errors across all response variables (Table 10), IPC(+OIF) performed marginally 

better than M-ALS (42.4 % vs. 44.7 %). However, based on this overall performance, these 

single-sensor alternatives were clearly poorer compared to leaf-on-U-ALS(+OIF) (33.3 %) and 

leaf-off-U-ALS(+OIF) (34.3 %). 

Prediction errors were lower with M-ALS (mean RMSE: 44.7 %) than leaf-off-UALS 

(mean RMSE: 48.8 %) when OIF were not included (Table 10). Based on literature, leaf-off 

ALS data should discriminate between coniferous and broadleaved tree species better than 

leaf-on ALS data. It appears that M-ALS does discriminate between the two groups, similar 

to leaf-off-UALS. Also, the volumes of pine and spruce were predicted noticeably better with 

M-ALS data than with leaf-off-UALS data. (Figure 3). 

The MD% values for all the response variables using the different data combinations in 

the Liperi study area are presented in Table 11. Here, the results are interpreted as unsigned 

values (|MD%|). whereas in Table 11 the results are displayed as signed values. In general, 

the inclusion of OIF decreased the |MD%| values in both the LiDAR and IPC data. The 

|MD%| value was very high with the IPC data. Inclusion of OIF reduced the |MD%| values 

most in the case of broadleaved trees, although the respective reduction in |MD%| values of 

leaf-off-U-ALS was marginal with respect to broadleaved trees. With the IPC data, the 

|MD%| values of most volume predictions were noticeably reduced when OIF were used. 

 

 

Table 10. Mean root mean square error (RMSE%) values obtained for pine, spruce, 

broadleaved and total volume in the test plots in the Liperi study area using the different 

methods.  

 

Mean RMSE% without optical 

image features 

Mean RMSE% with optical 

image features 

Leaf-on-UALS 62.8 33.3 

Leaf-off-UALS 48.8 34.3 

M-ALS 44.7 35.2 

IPC 98.9 42.4 

 

Table 11. Mean difference (MD%) of species-specific tree volume and total volume using leaf-

off airborne Light Detection and Ranging (LiDAR), leaf-on airborne LiDAR, multispectral 

airborne LiDAR (M-ALS) and image point clouds (IPC) data with and without optical image 

features (OIF) in the validation field plots. Values in parenthesis indicates MD% values when 

OIF were included. 

 
Pine Spruce Broadleaved Total 

Leaf-on-UALS 3.6 (-6.3)  -2.1 (-2.5) -18.8 (-4.8) -2.9 (-4.4) 

Leaf-off-UALS -4.0 (-5.8) -0.4 (-0.1) -14.8 (-13.5) -4.4 (-4.7) 

M-ALS 1.5 (-3.5) -2.6 (-2.3) -12.5 (-7.3) -2.8 (-3.6) 

IPC -8.0 (-3.1) 33.8 (12.3) -28.4 (1.2) 6.5 (4.3) 
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5   DISCUSSION 

This thesis continues the recurring discussion on how the selection of remote sensing data 

sources affects the performance of forest inventories by tree species. The contribution of this 

thesis to this discussion are primarily the advantages and the disadvantages of using only a 

single data source, as opposed to the combined use of multiple data sources. Commonly, 

optical image features, derived from aerial images, are used alongside ALS-based features to 

predict tree species-specific forest attributes. However, recent advances in both software and 

hardware have allowed for the collection of structural and optical information using a single 

sensor. The aim of this thesis was to compare the prediction errors of forest attributes when 

using image point clouds, made using stereo matching of aerial images, or multispectral ALS 

data, compared to the combined use of single wavelength leaf-on or leaf-off ALS data and 

optical image data. The results provide an insight on whether it is feasible to conduct remote 

sensing-based tree species-specific forest inventories using only data from a single airborne 

sensor. As the different data sources are evaluated based solely on their respective 

performances in predicting forest attributes, discussion regarding the implications for 

acquisition costs can be left for later studies.   

In a forest inventory context, aerial images are undeniably a more abundant data source 

than LiDAR data, as aerial images are also commonly acquired periodically for purposes 

other than forestry, such as mapping and surveying (Stepper et al. 2017). LiDAR data, on the 

other hand, are generally collected from large forest areas for specific purposes, such as DTM 

generation, and are acquired less frequently. Thus, aerial images and their derivatives have 

notable potential in operational forestry applications as a stand-alone data source, as well as 

providing supporting data for LiDAR.  

The results of this thesis corroborate that optical image features are beneficial in the 

prediction of tree species-specific forest attributes in a boreal forest environment in Finland. 

Inclusion of optical image features mainly improved species-specific predictions, specifically 

minority tree species. The prediction of total volume was less affected by the inclusion of 

optical image features. This is an expected result, as the structural information of LiDAR is 

assumed to correlate with the total forest attributes, while the reflectance of tree canopies is 

considered to contain information relevant for tree species discrimination. As observed in 

study III, the prediction error of the summed tree species-specific volume predictions was 

marginally reduced by the addition of optical image features, while the prediction errors 

associated with tree species volumes were noticeably reduced. This can be because similar 

sized trees generally result in similar volume predictions, regardless of tree species.  

Stereo matching of aerial images is emerging as an alternative data source for forest 

inventories. With similar properties to LiDAR data, the data are easy to integrate into existing 

computation routines. However, the most notable distinctions between the two data sources 

are that the density of the canopy and the ground beneath the canopy are not well 

characterized by stereo matching data. These differences can cause fundamental problems 

when stereo matching data are used in the prediction of forest attributes. Currently, there is 

no available solution that would allow stereo matching to provide information from within 

the canopy. In addition, without external DTM the AGL heights are prone to errors in areas 

where the ground is obscured by a dense canopy (e.g. Graham et al. 2019). As observed in 

study I, the lack of accurate ALS-based DTM may increase the prediction errors of some 

forest attributes but the prediction errors of basal area and total growing stock volume were 
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similar both with and without ALS DTM, and the prediction error of stem number was only 

marginally increased. The availability of nationwide ALS data and ALS DTM is rapidly 

increasing in many countries. As topography rarely changes drastically over time, DTM can 

be used in other campaigns in the future without having to collect new ALS data for DTM 

purposes.  

In accordance with the findings from a number of previous studies (e.g. Bohlin et al. 2012, 

Järnstedt et al. 2012, White et al. 2015), the ALS data in this thesis yielded lower prediction 

errors for forest attributes than stereo matching data. Also, the differences in prediction errors 

associated with total volume and tree species volumes between ALS and stereo matching 

data observed in studies I & III were similar to those reported in studies where stereo 

matching was compared to ALS in a boreal forest biome (e.g. Kangas et al. 2018). While the 

results might not be comparable between different geographical areas, the majority of current 

literature, including this thesis, agree that ALS data outperforms stereo matching data in the 

prediction of forest attributes. However, it should be noted that with respect to prediction 

errors, the differences between these two data sources is large between studies.  

In this thesis, M-ALS data alone did not perform as well as U-ALS(+OIF) in the prediction 

of tree species-related attributes. The M-ALS data were outperformed by U-ALS(+OIF) data 

both in classifying dominant tree species and predicting the proportions of tree species in 

study II, and in predicting tree species volumes in study III. The difference in prediction 

errors between M-ALS and U-ALS(+OIF) were marginal in the classification of dominant tree 

species. The differences were, however, more pronounced in the prediction of tree species 

composition and in the prediction of tree species volumes. When classifying dominant tree 

species, the improvement in the classification accuracy when using only M-ALS or U-

ALS(+OIF) compared to U-ALS were mainly attributable to the increased classification 

accuracy in the broadleaved plots. From this observation, a conclusion can be drawn that the 

intensity features of M-ALS data can provide information relevant to the classification 

between the two groups: conifer and broadleaved, similarly to optical image features. The 

prediction errors of both tree species composition and tree species volumes were reduced by 

using M-ALS compared to U-ALS. Therefore, the multispectral features of M-ALS data can, 

to a certain degree, distinguish between tree species, albeit not to the same extent as optical 

image features. These observations are supported by previous studies, which conclude that 

LiDAR intensity is, in addition to spectral reflectance, largely affected by the canopy 

conditions of the forest area (e.g. Korpela et al. 2010b). As the canopy conditions of 

broadleaved and coniferous tree species are particularly distinctive, LiDAR intensity should 

be well suited to distinguish between the two tree-classes, as observed in the case of the M-

ALS intensity data in this thesis. Similar findings have been reported in literature. For 

example, Kim et al. (2009) concluded that LiDAR intensity can be used to distinguish 

broadleaved tree species from coniferous tree species. 

Most of the previous studies where forest attributes have been predicted using M-ALS 

data have applied the ITD approach (Yu et al. 2017; Axelsson et al. 2018; Budei et al. 2018). 

Classifying field plots (with ABA) is different as field plots usually consist of a variety of 

tree species, whereas a delineated tree crown may consist of a single tree species. ABA aims 

to classify either dominant tree species or proportions of tree species, while the goal in ITD 

is to classify individual trees. Also, ITD approaches have disadvantages when tree-level 

predictions are aggregated to a larger area, due to tree detection and delineation errors.  

The intensities of M-ALS are considered beneficial in the classification of tree species, 

both using ABA (Dalponte et al. 2018; Räty et al. 2019) and ITD (Yu et al. 2017; Axelsson 

et al. 2018; Budei et al. 2018). Although prediction errors or classification accuracies are not 
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directly comparable between ITD and ABA, we can examine whether similar features were 

important predictors. It should be noted that ITD features might benefit more from the 

increased point density of M-ALS than ABA (Gobakken & Naesset 2008). Therefore, the 

pivotal benefit of M-ALS in tree species-specific ABA should be in the novel features 

computed from the echoes of three LiDAR wavelengths. In this thesis, these features were 

calculated from the intensities of a combined set of echoes from two wavelengths (1064 nm 

and 1550 nm).  

To the best of this author’s knowledge, only two studies, in addition to this thesis, have 

applied ABA in the prediction of boreal tree species attributes using M-ALS. Räty et al. 

(2019) found that M-ALS features slightly decreased the prediction errors associated with 

logwood volumes compared to features calculated from U-ALS data. Dalponte et al. (2018) 

predicted the Shannon diversity index of tree species. In their experiment, using all three M-

ALS channels performed better (R2 = 0.85) than using only U-ALS data (R2 = 0.80). They 

also reported that intensity features were important predictors of Shannon diversity index. It 

is difficult to compare the results of this thesis and the results of Dalponte et al. (2018), as 

predicting species richness is not directly relatable to predicting tree species composition. 

Similar to the results of this thesis, Dalponte et al. (2018) found that intensities from a 

combined set of echoes from different channels were beneficial. In this thesis, intensities of 

a combined set of echoes from two wavelengths were beneficial in tree species 

discrimination, although the intensity ratios of the different M-ALS features were not 

apparently important. One possible solution to further improve the classification accuracy of 

M-ALS, would be to filter the point cloud to only include points that have comparable 

observations to similar incidence angles from all other channels, although the 532 nm channel 

could not have sufficient observations remaining after the filtering process due to the smaller 

number of original observations.  

In this thesis, the definition and requirement of a single sensor system is that both 

structure and optical image features can be acquired using a single instrument. Such a setup 

offers advantages, not specific to ABA, but also in inventories using the ITD approach. 

However, ITD may not benefit from optical image features as much as ABA because ITD 

can, to a certain extent, utilize the geometry of tree crowns (Li et al. 2013) or features of full-

waveform LiDAR data (Yao et al. 2012) in tree species classification. Recognizing this, it is 

difficult to foresee how single sensor systems will be developed and utilized in future forest 

inventories. Nonetheless, the demand for a single sensor solution for forest inventories by 

tree species can be expected to increase as the acquisition of airborne data is progressively 

shifted to smaller unmanned platforms.  
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6   CONCLUSIONS 

Based on the results of this thesis, both stereo matching of aerial images and M-ALS appear 

promising for tree species-specific forest inventories. Both data sources can be easily 

incorporated into existing forest inventory routines. 

Stereo matching data, either with or without optical image features, do not perform as 

well as U-ALS or U-ALS(+OIF) data in predicting total volumes but do perform almost as well 

as U-ALS(+OIF) data in predicting tree species volumes. In contrast, M-ALS data perform 

more or less equally with U-ALS and U-ALS(+OIF) in predicting total volumes but are not 

comparable to U-ALS(+OIF) in predicting tree species volumes. Both stereo matching data and 

M-ALS data do provide lower prediction errors for tree species volumes than U-ALS data 

alone.  

Despite the fact that stereo matching data are widely available, their use in forest 

inventories may be restricted to areas where ALS DTM is available. M-ALS does not have 

this restriction but, on the other hand, is a substantially more expensive data source than 

stereo matching data. This thesis has demonstrated the potential of M-ALS data for the 

prediction of species-specific stand attributes under the requirements of Finnish forestry.  
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