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ABSTRACT 
 

 

Airborne laser scanning (ALS) is widely used to predict the total volume of trees in a forest 

stand. However, in operational forestry, it is usually not sufficient to consider the total 

volume only, because the various tree species and timber assortments are priced differently. 

As tree quality strongly affects how harvested logs are assigned to different timber 

assortments, tree quality information prior to harvesting, for example, would improve the 

planning of harvesting operations. The main aim of this thesis was to test different methods 

to predict tree quality, especially sawlog volume, by means of ALS. 

The three sub-studies of this thesis were implemented using datasets from eastern Finland 

(3 datasets) and south-eastern Norway (1 dataset). All the study forests were dominated by 

Scots pine (Pinus sylvestris L.) or Norway spruce (Picea abies (L.) Karst.). The first study 

focused on the effects of transferring tree-level models between inventory areas. In the 

second study, various methods to predict plot-level (30 m × 30 m) sawlog volume were 

tested. The third study focused on the field-calibrations of stand-level merchantable and 

sawlog volumes by using basal area measurements. All the ALS-based predictions were 

made with either linear mixed-effects models or k-nearest neighbor imputations at the tree or 

plot-levels (15 m × 15 m).   

The results showed that there is only weak correlation between the ALS metrics and tree 

quality. Nevertheless, sawlog volume predictions with relative root mean squared error 

values between 20–30 % were obtained after aggregations to the 30 m × 30 m and stand-

levels. Moreover, the study-specific results showed that a notable decrease in accuracy can 

be expected when tree-level models are transferred between inventory areas, and that basal 

area information is not generally useful to increase the accuracy of sawlog volume 

predictions in Norway spruce dominated stands. 
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1 INTRODUCTION 
 

 

1.1 Commercial tree quality 

 

In general, the forestry sector is based on the utilization of sawlogs, pulpwood and energy 

wood. The mechanical forest industry uses sawlogs to produce different timber products, 

whereas the chemical forest industry uses pulpwood to produce, for example, various paper, 

pulp, or cardboard products. Energy wood usually consists of logging residuals and the logs 

of low-value species, which are burned in one form or another to produce energy.  

Different properties are required from the timber end-products, so not all the trees are 

suitable to be sawn. Due to supply and demand, forest industry companies are generally able 

to pay more for trees that can be sawn to produce high-end timber products. For example, the 

price (€ m-3) of sawlogs in Finland has traditionally been about 2–3 times greater than the 

price of pulpwood (Natural Resources Institute Finland 2019). Therefore, sawlog volume is 

by far the most influential attribute that affects the monetary value of the growing trees.  

Sawlogs can be categorized into numerous, more specific, timber assortments, such as 

small diameter sawlogs and veneer logs. As these species-specific assortments realize 

different prices, the evaluation of all the assortments separately would result in more detailed 

information. However, the data used in this thesis were not sufficiently detailed to allow for 

an assessment of the different sawlog assortments, so sawlog volume will be predicted at the 

general level. Nevertheless, as the division between sawlogs and pulpwood is clearly the 

most influential with respect to the value of the growing stock, the absence of more detailed 

information from the different timber assortments is only a minor drawback that will not 

greatly affect the general conclusions.  

In some cases, the term “technical” has been used in combination with tree quality (e.g. 

Maltamo et al. 2009a), although it often includes attributes (in addition to the attributes 

related to sawlog requirements), such as ring width and branch angle, which are not taken 

into account during harvesting operations. Indeed, the pricing of sawlogs in Finland is based 

only on volume, not on the quality of the wood: the same price is paid regardless of ring 

width, for example, even though it affects the density and the strength of the wood (e.g. 

Pihlajamaa and Jantunen 1995), and thus, the strength grade and the optimal end-use of the 

timber products (Hautamäki et al. 2010). Therefore, as tree quality in the practical roundwood 

trade is considered via the quality requirements of the sawlogs, it is justified in this thesis to 

define tree quality from a commercial aspect rather than a technical one. 

There are many requirements that determine whether a tree stem is suitable to be sawn or 

not. It should be noted that the requirements for sawlogs differ among practitioners, i.e. there 

is no unambiguous definition of a sawlog. However, the requirements for sawlogs are well 

established and are similar between Norway, Sweden, and Finland, located mostly in the 

boreal zone. First, the species must be suitable for sawing. In Norway, Sweden, and Finland, 

sawlogs are bucked mainly from Scots pine (Pinus sylvestris L.) or Norway spruce (Picea 

abies (L.) Karst.), but also from birch (Betula spp.) in some cases. Second, the tree must be 

sufficiently sturdy. For example, a minimum diameter of 15–17 cm is commonly applied in 

Finland for pine, spruce, and birch sawlogs, which means that the diameter at breast height 

(DBH) is even larger. Varying minimum lengths are also applied for sawlogs.  

The remaining requirements for sawlogs are usually related to specific defects that are 

not permitted, e.g., sawlogs in Finland are generally not allowed to deviate by more than 1 

cm within a 1 m distance. Curving in multiple directions prevents the bucking of sawlogs 
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completely. Cracks, decay, blue fungal infection, insect holes or internal items are not 

permitted either. In high-quality butt sawlogs, all branches are disallowed, although in regular 

pine sawlogs, the maximum diameter for a living branch is set at 6 cm, and at 4 cm for a dead 

branch (Keski-Suomen Metsäkeskus 1999). In Sweden and Norway, the requirements for 

pine and spruce sawlogs are similar to Finland (SDC 2014). Examples of Scots pine trees 

with good and poor commercial qualities are illustrated in Fig. 1. 

As the requirements for branches are quite restrictive, different attributes related to the 

properties of the tree crown can be used to provide indicative estimates of tree quality. The 

height of the lowest dead branch (i.e. dead branch height) and the starting point of the 

contiguous living crown (i.e. crown base height, CBH) describe, at least indirectly, the 

theoretical proportion of the stem that is suitable for sawlog production, provided there are 

no other defects (Maltamo et al. 2010). In addition, the lowest branches of trees in forests 

usually start to die and fall off due to the decreasing levels of sunlight caused by increased 

competition. This self-pruning is more intensive in the denser forests, so CBH can also be 

utilized to determine the urgency of silvicultural operations (Vauhkonen 2010a). On the other 

hand, competition between trees in young stands has been shown to improve the quality of 

young pines (Turkia and Kellomäki 1987), so it is beneficial to regenerate the pine stands 

with a large number of stems. Moreover, site fertility affects the expected quality, especially 

in the case of Scots pine, so that the quality is usually better in poorer sites (Lämsä et al. 

1990). In addition, genetics affect the tree quality, so tree breeding can also be utilized 

(Haapanen et al. 2016).  

 

 

 

 

 
Figure 1. Examples of Scots pine trees of A) good commercial quality, and B) poor 
commercial quality. Pine B) has a slightly crooked butt and numerous thick dead branches on 
the lower part of the stem. In contrast, pine A) has a straight and branch-free stem. 
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1.2 Airborne laser scanning-based forest inventories 

 

Many remote sensing techniques, such as satellite imagery, aerial imagery, and radar data 

can be utilized in forest inventories (Hyyppä et al. 2000). However, when the different 

techniques have been compared, the most accurate stand-level results have usually been 

obtained with airborne laser scanning (ALS) (Magnusson 2006). Moreover, in the case of 

many forest attributes such as mean height, basal area, and total volume, ALS often results 

in even better stand-level accuracies than those obtained with visual assessments during field-

visits (Haara and Korhonen 2004; Uuttera et al. 2006). Consequently, in many countries (e.g. 

Norway, Sweden, and Finland), ALS data is intensively used in operational stand-level forest 

management inventories (Næsset 2014; Maltamo and Packalen 2014). 

In ALS, an aircraft, usually a fixed-wing airplane, is equipped with a laser scanner. There 

are two main types of data that laser scanners can produce: full-waveform data (see Hollaus 

et al. 2014) and small-footprint, discrete-return data. In this thesis, only discrete ALS datasets 

were used. While the aircraft flies at an altitude of between 500 m and 2 km, the laser scanner 

emits laser pulses downwards. When the pulses hit the ground or vegetation, they backscatter 

and the ALS sensors detect these backscattering echoes (even multiple echoes per emitted 

pulse), and the precise time that each pulse has travelled before the returning echoes are 

received. Thus, by utilizing the known speed of light and the exact position and orientation 

of the scanning system, a three-dimensional (3-D) position where the backscattering occurred 

can be calculated. Eventually, an accurate 3-D georeferenced point cloud can be constructed 

by merging the positions of the separate echoes together. In forestry applications, the point 

density typically varies from < 1 to dozens of pulses m-2, depending on factors, such as the 

sensor used and the flying altitude.  

In the prediction of forest attributes, the utilization of ALS data is usually based on 

statistical modelling of the relationship between the field measurements and the ALS echoes. 

Two main approaches are the so-called area-based approach (ABA) (Næsset 2004a; Næsset 

2014) and individual tree detection (ITD) (Vauhkonen et al. 2012). In Finnish operational 

area-based ALS inventories that typically cover between 100,000–500,000 hectares, the 

number of plots needed for training data is around 500–800, and the plots are measured 

comprehensively from different site types with different ages to minimize the need for 

extrapolation (Maltamo and Packalen 2014). All the field-measured plots are positioned with 

a sub-meter accuracy using a global positioning system to allow the accurate linkage of ALS 

data and field measurements (Gobakken and Næsset 2009). For each tree with DBH > 5 cm, 

the DBH is measured and the tree species is recorded. In addition, tree heights (H) are 

measured from a subset of trees in each plot (Metsäkeskus 2018).   

In ABA, the ALS metrics are calculated from the ALS echoes that are extracted within 

the field measured plots. Usually, the horizontal coordinates of the extracted echoes are 

ignored, and the metrics are calculated only from the height distribution of the echoes. Before 

the ALS metrics are calculated, the ALS data are normalized so that the height of each echo 

describes the height with respect to the ground-level. In addition, ALS data are commonly 

separated into different echo groups according to the type of echoes (first, last, intermediate). 

ALS metrics that are usually calculated separately for each echo group are the maximum, 

mean, median, standard deviation, coefficient of variation, mode, and variance of heights of 

ALS echoes. In addition, different canopy height percentiles (1, 5, 10, 15, 20...80, 90, 95, 99) 

and proportional canopy densities are usually calculated. Modern laser scanning instruments 

can also record the intensity of all echoes. Intensity describes the power of the backscattered 

echoes and it has been utilized in a forestry context, for example, in tree species classification 
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(Ørka et al. 2009). Intensity metrics are calculated with the same principle as the metrics 

based on echo heights, i.e. they describe the distribution and the percentiles of the intensity 

values of the ALS echoes. 

The relationship between the ALS metrics and forest attributes is then modelled to allow 

the prediction of forest attributes for the area of interest, possibly in a wall-to-wall manner. 

For wall-to-wall predictions, the inventory area is tessellated into a grid with a cell-size that 

usually corresponds to the area that was also used with the sample plots (Næsset 1997a). For 

example, the sizes of grid cells in operational ALS inventories in Finland are fixed to 16 m 

 16 m (256 m2) (Metsäkeskus 2016). The same ALS metrics are calculated for each grid 

cell as for the plots, and the predictions of attributes of interest are then made according to 

the ALS metrics. In general, for stand volume predictions, a relative root mean squared error 

(RMSE%) value of approximately 10–15 % can be expected with ABA (Næsset 2007). 

However, for seedling and sapling stands, the accuracy of ABA predictions is generally poor 

(Maltamo and Packalen 2014).  

In contrast, the ITD approach can be implemented with many different methods. In the 

widely used raster-based method, the measured and field-positioned trees are linked to the 

segments that are delineated from the raster-based canopy height model (CHM). First, the 

CHM with the desired resolution is interpolated from the above ground heights of ALS 

echoes (e.g. Hyyppä et al. 2001) and smoothed to obtain the correct number of local maxima 

from the canopy (Koch et al. 2014). The local maxima are considered as treetops, and the 

segments that represent the individual tree crowns are then delineated using, for example, a 

watershed algorithm (Vincent and Soille 1991). The corresponding ALS metrics (as for the 

plots in ABA) are then calculated for each tree using the ALS echoes within the segments, 

and the relationship between the measured trees and the ALS metrics is further modelled to 

produce tree-level predictions. However, a more straightforward method is to use ALS-based 

tree heights to predict, for example, DBH or the volume of a tree, directly without field 

measurements. If required, the tree-level predictions can be aggregated to stand-level 

predictions (see e.g. Koch et al. 2014, for other ITD approaches). 

The essential problem with ITD is that not all the trees are detected (Persson et al. 2002). 

However, the trees that are not detected are usually smaller in diameter, and so their 

proportion of the total plot volume is minor. For example, Persson et al. (2002) detected 71 

% of the trees but 91 % of the total volume. The detection rate is affected by the detection 

algorithm used and its parameterization (Kaartinen et al. 2012). In addition, difficulties in 

tree species recognition also affect the accuracy of ITD (Vauhkonen 2010b), and successful 

detection of individual trees also requires greater density (thus more expensive) ALS data 

than ABA (Peuhkurinen et al. 2011). Consequently, ITD has not been used in large-scale 

operations as commonly as ABA. Nevertheless, ITD has the potential to produce accurate 

pre-harvest information, especially in mature stands where the tree crowns do not overlap, 

where understory trees have been removed during thinning, and where the tree species is 

already known (Vastaranta et al. 2014).   

 

 

1.3 Currently used approach to predict stand-level sawlog volumes in Finland 

 

In Finnish operational ALS-based forest inventories conducted by the Finnish Forest Centre 

(Metsäkeskus 2017), the current approach to predict stand-level volumes for different 

species-specific timber assortments includes multiple steps, which all accumulate uncertainty 

in the essential predictions. First, ALS data and aerial images are used to produce species-
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specific predictions for all the attributes of interest, such as volume and mean height. Stand-

level species-specific diameter distributions are then predicted (Maltamo and Gobakken 

2014), and the tree-level sawlog volumes for these predicted trees are further estimated using 

taper curves and various sawlog reduction models (Mehtätalo 2002). Stand-level predictions 

are finally obtained by aggregating all the tree-level sawlog volume predictions together.  

The sawlog reduction models are usually fitted with datasets that represent geographically 

large areas, and the used predictors typically have only a loose relationship with actual tree 

quality. For example, a sawlog reduction model for Scots pine in southern Finland (Mehtätalo 

2002), includes predictors, such as tree age, DBH, the x,y-coordinates, height above sea level, 

and different site types (according to Cajander 1949). The capability of such models to adjust 

to local, stand-specific conditions is very poor. Naturally, even more inaccuracy can be 

expected when the sawlog reduction models are applied to predicted trees, instead of those 

that actually grow in the stand.  

Overall, it can be assumed that in a single stand, the accuracy of sawlog volume 

predictions produced with the above-mentioned procedure can be very poor. Holopainen et 

al. (2010) compared the accuracies of predicted sawlog volumes between two inventory 

methods based on ALS and aerial images, and the traditional stand wise field inventory 

(SWFI). The ALS and SWFI were first used to predict stem distributions, and then taper 

curves and sawlog reduction models were used in bucking to predict the tree-level sawlog 

volumes. Holopainen et al. (2010) took into account all the errors related to (1) inventory, (2) 

generation of stem distributions, and (3) stem-form prediction and simulated bucking. The 

accuracies were validated at the stand-level against harvester data. The resulting RMSE% 

values for pine, spruce and birch sawlog volumes were 79.2 %, 33.6 %, and 78.6 %, 

respectively, when the stem distribution was based on the ALS inventory. With SWFI, the 

corresponding RMSE% values were 234.6 %, 32.5 %, and 256.4 %, respectively, i.e. notably 

larger, except in the case of spruce, which was clearly the most dominant species (87 %) in 

the study area. Consequently, the combined errors also had a great influence on the predicted 

total value of the growing stock, as the RMSE% values were 23.8 % and 33.4 % for ALS and 

SWFI, respectively. However, Holopainen et al. (2010) noted that their results and their 

generalizability should be carefully considered as their data consisted of only 12 clear-cut 

stands.  

For the first time, Vähä-Konka et al. (2020) investigated the accuracy of Finnish ALS-

based forest inventory data (Metsäkeskus 2017) against operative harvester data. They used 

large-scale field data from 121 mainly spruce-dominated clear-cut stands (148.3 ha, ~40,000 

m3), and focused on the species-specific volumes by timber assortment (pulpwood or 

sawlog). The RMSE for the dominant spruce sawlog volume was 64 m3ha-1 which 

corresponds to RMSE% of 48.6 %. The RMSE% for the spruce pulpwood was 54.8 %. In 

the case of pine and deciduous timber assortments the corresponding results were even less 

accurate. The sawlog volumes were commonly overestimated whereas the pulpwood 

volumes were underestimated. Vähä-Konka et al. (2020) concluded that better methods to 

predict the quality of harvested trees are needed, and that harvester data have high potential 

to be effectively utilized in the inventories.  

 

 

1.4 Predicting commercial tree quality with ALS data 

 

The effects of commercial tree quality culminate in cuttings when part of the sawlogs are 

usually downgraded to pulpwood due to defects (Malinen et al. 2007; Barth et al. 2015). 
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Therefore, meaningful predictions of tree quality attributes, especially sawlog volume, 

requires that the tree species and diameter distributions are known or are predicted first. Only 

when the growing stock is known or is predicted to be sawlog-sized and of a suitable species, 

is it meaningful to also predict the quality attributes that may reduce the sawlog volumes. 

Consequently, the theoretical sawlog volume in which the required species-specific 

diameter–length dimensions are considered, but the defects are not, is also a very informative 

tree quality attribute.  

Quality related tree- or forest-level attributes can be predicted by means of ALS data in 

the same way as the more traditional attributes. Thus, sawlog volume, theoretical sawlog 

volume and CBH, as well as various other quality related attributes (Bollandsås et al. 2011), 

can be predicted if suitable training data is available. Alternatively, some approaches that are 

based directly on the 3-D structure of segmented ALS echoes have also been developed for 

the prediction of CBH, for example (Holmgren and Persson 2004; Popescu and Zhao 2008; 

Vauhkonen 2010a). With these approaches, no training data are needed to produce the 

predictions. However, some local field data is likely useful to reduce bias, just like in the case 

if tree heights are determined directly from the ALS data. 

 

1.4.1 Sawlog volume 

 

In the case of sawlog volume, the collection of training data is a challenge as currently there 

are only two approaches to carry it out: (1) visual bucking of the standing stock, or (2) 

harvesting with a modern cut-to-length (CTL) harvester. Both approaches have some serious 

drawbacks, and research related to the topic is sparse. Also, terrestrial laser scanning (TLS) 

and laser scanners mounted on unmanned airborne vehicles (UAV) flying under the canopy 

(Hyyppä et al. 2020) or at low altitude above the canopy (Windrim and Bryson 2020) have 

the potential to be used to measure stem forms, and to detect defects from tree stems, but they 

have not been used in practice to date.  

In visual bucking, the stem of a sawlog-sized tree is visually inspected from all directions 

for any defects that would prevent the bucking of sawlogs. The start and end points of these 

defects are recorded to separate the parts of the stem that are not suitable for inclusion in a 

sawlog. The actual “bucking” is implemented afterwards. First, diameter and length are 

estimated for the parts of the tree that fulfil the quality requirements, by using taper curves 

that employ DBH, H and possibly diameter measurements at upper heights as well, such as 

6 m (D6). These partial stems are then bucked into logs, while the required diameter-length 

dimensions of sawlogs are also considered. For example, the minimum length can be set at 

3.7 m, which ensures that no parts of a stem shorter than this length can be cut to sawlog. 

The same taper curves are also used to calculate the theoretical sawlog volume. First, the 

height at which the defined minimum diameter of the sawlog is reached, is predicted with 

taper curves. Then, the stem below that height is bucked into sawlogs with length restrictions 

also considered, so that the sum of the volume of the bucked sawlogs is maximized. 

The problem of visual bucking is that it is very laborious and, therefore, expensive to 

carry out – especially at the operational scale where the costs would be unrealistic. In practice, 

visual bucking is also somewhat subjective and measurement errors may occur. Moreover, 

as only external defects can be detected, visual bucking might not be appropriate for all 

species. For example, Norway spruce quite often exhibits butt rot or decay, which may be 

difficult to detect by visual assessment only. For Scots pine, internal defects are less common 

(e.g. Uusitalo 1997) and, therefore, visual bucking is more suitable.  
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The accuracy of sawlog volume predictions produced with visual bucking depend 

completely on the decisions and professionalism of the fieldworker. In fact, also the ground 

truth for the sawlog volume of an individual tree is difficult to determine unambiguously with 

a CTL harvester. This is because in operational cuttings the eventual sawlog volume of any 

given tree is affected by the applied bucking approach. Therefore, the accuracy and reliability 

of visual bucking is very case-specific and difficult to validate in practice. Nevertheless, 

visual bucking is implemented in Finnish National Forest Inventory (NFI) measurements, but 

only a proportion of the trees per plot are assessed. To determine accurate sawlog volumes 

for the whole plot, each sawlog-sized tree should be visually bucked, which would be very 

time-consuming.  

Another avenue for the collection of sawlog volume information is the use of modern 

CTL harvesters. The computer in a modern CTL harvester measures and records, among 

other things, diameter at 10 cm intervals along the stem and uses these measurements and 

length measurements to calculate the volume for each bucked log. These volumes are then 

saved into stem and harvester production files. Therefore, the collection and utilization of 

sawlog volume information by means of CTL harvester is inherently easy. Nonetheless, the 

main problem of harvester-based sawlog volume information has been the lack of accuracy 

in the positioning of trees. Typically, as for example in the study of Holmgren et al. (2012), 

the spatial accuracy of harvester-based tree data has been about 10 m. This is because the 

positioning system has usually been mounted on the back of the harvester, and for each 

harvested tree the position has been determined as the position of the machine at the time of 

felling. In other words, the movement of the boom, which may move up to 10 m around the 

machine, is often completely ignored. In addition, the positioning of the moving harvester 

often includes inaccuracies caused by the positioning system used, local topography, weather 

conditions and forest structure. Even in clear-cuts, the shading of large standing trees can be 

assumed to weaken the positioning of an occasionally but repetitively moving machine 

(Kaartinen et al. 2015). The accuracy of approximately 10 m for tree positions is not suitable 

for ALS–based inventories where the overall accuracy is related to the error in the positioning 

of plots (Gobakken and Næsset 2009). In addition, effective utilization of harvester data, 

especially with ABA, from cuttings other than clear-cuts is difficult (Saukkola et al. 2019). 

However, retention trees, which may be required by the forest certificate system (e.g. PEFC, 

FSC), are also problematic because they should be manually positioned and measured. The 

bucking approach used in this instance and the professional abilities of the driver also affect 

the distribution between the accruals of sawlog and pulpwood volumes (Kuusisto and Kangas 

2008).  

Nevertheless, the versatile potential of harvester-based data in modern forestry has been 

recognized (Lindroos et al. 2015; Kaartinen et al. 2015), and systems that provide sub-meter 

accuracy for tree positions have been experimentally developed in recent years (Hauglin et 

al. 2017). These systems record the angles and directions of the moving parts of the boom, 

and, therefore, the position of the tree can be accurately calculated with respect to the 

positioning system that is mounted on the top of the machine. The harvester manufacturer 

Komatsu Forest (Umeå, Sweden) has also recently integrated such a system into their 

harvesters (Saukkola et al. 2019), but there are no publications or official reports about the 

accuracy for tree positions. However, at least in one Finnish experiment (Melkas and Riekki 

2017) sub-meter accuracy for tree positions was not reached. 

Due to limited availability of the quality information of the logs, the quality of trees has 

been completely ignored in some studies where sawlog volume has been predicted 

(Peuhkurinen et al. 2007; Vauhkonen et al. 2014), or the quality has been predicted with stem 
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data banks that have originated from other areas (Peuhkurinen et al. 2008). Few studies have 

addressed cases where sawlog volume has been predicted locally with ALS data. Widely 

differing datasets and methods have been used in these studies, which complicates the 

comparison of the results. For example, it can be assumed that the level of homogeneity, with 

respect to tree quality and species proportions of the studied stands, has a considerable effect 

on total accuracy. Nevertheless, with ABA in boreal forests, the resulting RMSE% values for 

the predicted sawlog volumes have been between 20–30 % at both the plot- and stand-level.  

Bollandsås et al. (2011) used harvester-based sawlog volume information in modelling. 

However, they did not obtain the exact position for each harvested tree, so they used the 

position of the harvester at the time of felling to determine the grid cell that each harvested 

tree was located in. To minimize the effects of geo-referencing errors between the ALS and 

field data, Bollandsås et al. (2011) used uncommonly large grid cells (50  50 m: 0.25 ha) in 

modelling. Despite the large-sized grid cells, the authors reported that due to inaccuracies in 

positioning, approximately 20–25 % of the harvested trees were still assigned to the wrong 

grid cells. Nevertheless, they fitted a model with sawlog volume as the response variable and 

ALS metrics as the predictors. The resulting RMSE% value was 24 % at the 50  50 m level. 

Korhonen et al. (2008) bucked field measured trees with a taper curve and then estimated 

sawlog volumes by employing an existing sawlog reduction model (i.e. they did not have 

local measured information of tree quality). The sawlog volumes of the trees within the same 

sample plots were summed together, and two linear mixed effect models with sawlog volume 

as the response variable and ALS metrics as predictors were fitted separately for pine and 

spruce dominated plots. Finally, they used real harvester data from 14 clear-cut stands to 

validate the accuracy of model predictions in a wall-to-wall manner. The pine model was 

used on three stands, and the spruce model on the remaining 11 stands. The resulting stand-

level RMSE% value for sawlog volume was 18 %.  

Studies where sawlog volume has been predicted outside Nordic countries by means of 

ALS data are really rare. In mixed hardwood forests in USA, Hawbaker et al. (2010) used 

regression models to predict also the sawlog volume for circular plots with a radius of 15.25 

m. At best, they obtained an R2 value of 0.65 for the sawlog volume model. In tropical loblolly 

pine (Pinus taeda L.) plantations, on the other hand, Silva et al. (2017b) used the Random 

Forest method and obtained a RMSE% value of 7.7 % for the predicted sawlog volume in 20 

m × 30 m plots. However, in both Hawbaker et al. (2010) and Silva et al. (2017b) the 

estimates for sawlog volumes in the field data were based solely on the requirements about 

DBH and log lengths, not any defects as in Nordic countries. Even though the qualitative 

defects might not have as large of an effect to sawlog volume in USA and Brazil as in Nordic 

countries, the results of Hawbaker et al. (2010) and Silva et al. (2017b) should be rather 

compared to theoretical sawlog volume in Nordic countries. In addition, the more accurate 

predictions of Silva et al. (2017b) compared to what have been observed in boreal forests can 

at least partly be explained by the greater homogeneity of the trees in intensively managed 

plantations. Nonetheless, it is clear that balanced comparison between results obtained in 

different continents and different forest zones is really difficult.  

Sawlog volume can be predicted also on tree level. Kankare et al. (2014b) predicted the 

sawlog volume for 144 individual Scots pines with ALS, TLS, and a combination of both 

(TALS). With TLS and TALS, they first estimated DBH, D6 and H from the laser point 

cloud, and then employed them in stem curve models. With ALS, H was observed from the 

point cloud, then used as an input to predict DBH, and the stem curves were then predicted 

using H and predicted DBH. Finally, sawlog and pulpwood volumes were estimated by 

bucking the stems, while considering the minimum diameters for sawlogs. The predictions 
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were validated against harvester measurements. The RMSE% values associated with 

predicted sawlog volumes were 22.1 %, 21.7 %, and 36.0 %, for TLS, TALS, and ALS, 

respectively. Kankare et al. (2014b) did not consider the defects in bucking, and 11 of the 

harvested trees were extreme outliers with respect to quality. The omission of those 11 trees 

from the analysis decreased RMSE% values to 17.5 %, 16.8 %, and 34.7 %, respectively. 

The notable change in the RMSE% values emphasizes the importance of considering defects 

in sawlog volume predictions. Barth et al. (2015), on the other hand, reported that in most 

cases the ALS-based tree-level predictions for different species-specific timber assortments 

were more accurate than the predictions based on traditional field work. However, they did 

not provide any numerical results for the sawlog volume predictions, only graphical 

histograms.  

In addition to sawlog volume, sawlog proportion can also be modelled. Sawlog proportion 

determines the proportion of wood that is suitable for bucking of sawlogs in the total volume 

of all trees within the stand. Thus, sawlog proportion describes more the average quality 

(sawlog reduction) of the trees than the actual sawlog volume. This aspect is emphasized if 

the total volume cannot be predicted accurately. In an abstract for a conference, Hauglin et 

al. (2018b) reported a RMSE% value of 28.7 % for the predicted sawlog proportion. Maltamo 

et al. (2009a) also predicted the sawlog proportion, but at the tree-level. They used k-MSN 

in their predictions, and the resulting RMSE% value was 8.7 % for sawlog proportion of 

individual Scots pine trees. These trees were visually bucked in the field to determine the 

sawlog volumes.  

 

1.4.2 Crown base height  

 

Whereas the collection of sawlog volume information for training data is a challenge, 

measurement of the CBH of a tree is rather straightforward. Provided that tree height is 

measured, for example, with an ultrasound instrument (e.g. Haglöf Sweden 2016), as is often 

the case nowadays, the additional measurement of CBH takes only a few seconds. However, 

if tree height is not measured for each tree but only for some sample trees, then the relative 

laboriousness of measuring CBH for each tree may be too onerous. Nevertheless, as a 

consequence of the ease of field measurements and the evident relationship with tree quality, 

numerous studies that include the prediction of CBH either at the tree-level (e.g. Pyysalo and 

Hyyppä 2002; Maltamo et al. 2009a), the plot-level (Dean et al. 2009; Bollandsås et al. 2011; 

Maltamo et al. 2018), or both the tree- and plot-level (Næsset and Økland 2002; Maltamo et 

al. 2006) have been published. In addition, the relationship between CBH and the forest fuel 

has been identified (Gajardo et al. 2014), thus providing motivation for research into the 

prediction of CBH by ALS in those parts of the world where the risk of forest fires is also 

great, and where the tree quality aspect is of less importance (Riaño et al. 2004; Andersen et 

al. 2005; Erdody and Moskal 2010; Gonzalez-Ferreiro et al. 2017). 

In published studies, various methods have been used to predict CBH. For example, 

Maltamo et al. (2010) compared different approaches to predict the mean crown height in 

Norway spruce dominated stands. They tested multiple methods in which the ALS data was 

utilized in three ways by (1) using statistical modelling, (2) directly analyzing the properties 

of the 3-D point cloud, or (3) combining 1 and 2. They validated the results at the actual 

stand-level by utilizing harvester data, and the resulting RMSE values varied between 1.7 

and 3.6 m. Methods based on regression analysis and the alpha shape technique (Vauhkonen 

2010a) have been found  to be the most suitable for the prediction of CBH. Furthermore, 

Maltamo et al. (2018) compared four different alternatives to predict plot-level CBH in Scots 
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pine dominated forests in eastern Finland: (1) k nearest neighbor (k-NN) imputation with full 

field-measured tree lists that included CBH measurements as training data, (2) tree-level 

mixed-effects model, (3) plot-level alpha shape (Vauhkonen 2010a), and (4) plot-level 

regression analysis. Thus, alternatives 1, 2, and 4 were based on statistical modelling and 

alternative 3 was based on the direct interpretation of the point cloud. The resulting RMSE% 

values for the basal-area-weighted mean CBH were between 20.9–29.6 %. The conclusion 

was that the k-NN imputation approach would be the most suitable for Finnish ALS-based 

multivariate forest management inventories (Maltamo and Packalen 2014), as it would be 

sufficient to just add CBH to the set of field measured attributes.   

In general, the accuracy of predicted CBH has usually been from one to several meters. 

Maltamo et al. (2010) concluded that a minimum error of 1 m seems inevitable if CBH is 

predicted with ALS data, due to the structure of the lower parts of the canopy. Regardless, 

the comparison of results between datasets should be carried out with caution as the variation 

within the data has a strong effect on the resulting accuracy. Moreover, tree species 

proportions have been shown to affect the accuracies of the different alternatives (Maltamo 

et al. 2018).  

Despite the promising results and the evident relationship with tree quality and various 

other interesting attributes, CBH has not yet been measured in practical inventories (e.g. 

Maltamo and Packalen 2014). One reason could be that the additional and more accurate 

information gained has not been considered sufficiently useful to cover the extra financial 

costs (see Kangas et al. 2010). However, k-NN based plot-level predictions of CBH, with 

RMSE values between 1–1.5 m, could be incorporated into ALS-based forest management 

inventories rather easily and cost-efficiently (Maltamo et al. 2018). Predictions with such 

accuracy could potentially be utilized in practice when cuttings are scheduled and prioritized 

between stands (Maltamo et al. 2010; Kangas et al. 2012).  

 

 

1.5 Potential approaches to increase the cost-effectiveness of ALS-based inventories 

 

The total costs of an ALS inventory consist of multiple parts (see Næsset 2014). Perhaps the 

most evident sections for any cost-savings are the acquisitions of ALS data and field training 

data. Flying an airplane or a helicopter is always expensive, so one option for savings is to 

decrease the flight time. For example, the higher that a plane flies, the wider is the strip 

covered and scanned at ground-level. Thus, when the flying altitude is increased, less 

adjacent flight lines (i.e. less flight time) are needed to cover the whole inventory area. There 

is a tradeoff between the flight altitude and the point density in the resulting ALS point cloud, 

although a slight decrease in point density might not be crucial (Gobakken and Næsset 2008; 

Jakubowski et al. 2013). On the other hand, the maximum flying altitude of an ALS sensor 

is determined by parameters, such as the pulse repetition frequency (PRF), and greater PRF 

values may produce more noise in the dataset (Næsset 2014). Indeed, the effects of flying 

altitude have been evaluated in numerous studies (e.g. Næsset 2004b; Yu et al. 2004; 

Goodwin et al. 2006; Næsset 2009; Keränen et al. 2016). In addition, the angle of view of the 

ALS sensor can also be amplified to increase strip width, although this will possibly affect 

the resulting 3-D point cloud in a negative way (Holmgren et al. 2003; Keränen et al. 2016). 

Nevertheless, as approaches to increase the cost-effectiveness of ALS data acquisition have 

been studied comprehensively elsewhere, the topic will not be addressed further in this thesis. 

In general, the total costs associated with labor are high. Therefore, measuring field 

sample plots comprehensively around the inventory area is expensive. However, if the 
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predictions are to be based on statistical modelling of the relationship between the 

biophysical properties of the trees and the ALS data (e.g. operational ABA inventories), then 

field data is essential. In each operational ALS inventory, hundreds of field-plots need to be 

measured (Maltamo and Packalen 2014). Therefore, numerous approaches to decrease the 

amount of essential field work have been suggested, such as the use of existing NFI field data 

(Maltamo et al. 2009b; Tuominen et al. 2014; Hollaus et al. 2007; Hollaus et al. 2009; Nilsson 

et al. 2017). The number, size, positioning accuracy, and the sampling of the field plots can 

also be optimized (Gobakken and Næsset 2008; Gobakken and Næsset 2009; Maltamo et al. 

2011; McRoberts et al. 2014). In this thesis, two approaches were included that aim to 

increase the cost-quality ratio of field work of ALS inventories: (1) the transferability of 

ALS-based tree-level models between inventory areas, and (2) field calibrations of existing 

predictions. These approaches will be introduced in the following sections.  

 

1.5.1 Transferring ALS-based tree-level models between inventory areas 

 

The amount of field work can be reduced by transferring ALS-based models between 

inventory areas. This means that the models fitted with ALS and field data from one inventory 

area are applied to a new area where only ALS data is available. Thus, in an ideal case, none 

or only a small amount of field data needs to be collected from the new validation area. This 

would result in considerable savings. However, the primary problem of transferring models 

between inventory areas is that the scanning parameters (point density, flying altitude, PRF, 

scanning angle etc.) used in the ALS data acquisition are selected in a case-by-case basis to 

be as suitable as possible for the area in question. As seen in the previous section, the effects 

of changing these parameters have been studied to determine the optimal balance between 

costs and accuracy. In addition to scanning parameters, the ALS sensor that is used also 

affects the resulting 3-D point clouds (Næsset 2005; Næsset 2009; Korpela et al. 2010), as 

specifications, such as pulse width and pulse energy are unique (Næsset 2014). Differences 

in any of the details related to ALS data acquisition between inventory areas may result in 

systematic differences after the models are transferred (Næsset 2014).    

In addition to differences in the acquisition of ALS data, the forest structure (e.g. species 

proportions) or the structure of crowns of individual trees may also vary notably and 

systematically between different geographical locations, restricting the distance that the 

training area and new inventory area can be located from each other. Ideally, the training area 

should cover all the variation in the new inventory area. In Finland, for example, movement 

of only a few hundred kilometers in a south-north direction may result in a notable change in 

mean volume due to variations in climate and topography (Korhonen et al. 2017).  

The transferability of ALS-based models has been studied previously, but only at the plot- 

or stand-level using ABA. For example, Uuttera et al. (2006) used plot-level models fitted in 

one area in central Finland (Suvanto et al. 2005) and transferred them to two other inventory 

areas located 300 km south and 150 km west from the training area. The same ALS sensor, 

with essentially the same scanning parameters, was used in all three areas during the 

acquisition of ALS data. Nevertheless, the RMSE% values for the predicted attributes clearly 

increased due to the transfers: for example, the RMSE% value associated with stand volume 

changed from 9.8 % to 17.8 % and 18.8 %. Uuttera et al. (2006) also reported that regression 

models, originally fitted in Norway by Næsset (2002), resulted in corresponding RMSE% 

values of 24–28 %.   

Different ALS and field datasets have also been used simultaneously for prediction 

purposes. For example,  Næsset et al. (2005) combined ALS and field plot data from two 
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inventory areas, located about 100 km apart, for the prediction of several typical forest 

attributes, and noted that the use of models fitted with data from both areas did not provide a 

clear advantage compared to using models fitted with regional data only. Næsset et al. (2005) 

concluded that data from different inventories should not be pooled together before careful 

examination of the similarities in forest conditions and the details related to acquisition of 

ALS data. They also suggested that at least a small sample of local data should be collected 

for model training.  

Similarly, Suvanto and Maltamo (2010) used data from two separate inventory areas. The 

areas were located 120 km apart in eastern Finland, and the ALS data were acquired using 

different sensors and scanning parameters. Suvanto and Maltamo (2010) used mixed 

estimation, with one of the areas used for auxiliary data, and the other (with a varying number 

of plots) as a sample from the target area. Plots from the target area were also tested 

independently. Their results showed that, in the case of volume, a local model fitted from 

approximately 50 plots that were measured only from the target area, provided predictions 

that were as accurate as the alternative mixed estimation model that was fitted with the same 

local plots plus the auxiliary data from the other area. Thus, the usefulness of having auxiliary 

data from a previous inventory proved to be rather limited in this instance.  

The simultaneous use of multiple ALS datasets in different areas has been examined in 

many studies, even at the national scale. Næsset and Gobakken (2008) successfully used 10 

different ALS datasets to predict above- and below-ground biomass in southern Norway, 

while Kotivuori et al. (2016) constructed nationwide regression models for volume, biomass 

and dominant height using data from nine different ALS inventories from around Finland. 

For volume and biomass, their nationwide models produced less accurate predictions than 

the regional models, presumably due to differences in forest structure and ALS data 

characteristics. However, a clear improvement was obtained with local calibrations that were 

based on 20 measured plots. Furthermore, Kotivuori et al. (2018) employed various 

additional calibration variables, such as location, degree days and temperature information, 

and were able to improve the performance of a nationwide stem volume model. In Sweden, 

Nilsson et al. (2017) used data from hundreds of separate ALS inventories that covered 

almost the whole country, with a single inventory area (i.e. “block”) covering approximately 

20 km  50 km. In total, 13 scanning sensors were used for the collection of ALS data. A 

pool of 11,500 NFI plots was available in the model construction process, but rather than 

using all the available plots for all blocks, Nilsson et al. (2017) always selected the 350 

nearest plots (of which approximately 70 were further discarded) to fit the block-wise models. 

At the plot-level, the resulting RMSE% values for predicted stem volume were 22.2 %, 25.1 

%, and 19.2 % in northern, mid, and southern Sweden, respectively. Gopalakrishnan et al. 

(2015) used 1800 field sample plots and data from 76 different ALS inventories in 

southeastern USA and built regression model for dominant height for 120 m  120 m cells. 

The resulting RMSE value was 3 m, thereby indicating the suitability of their method to 

produce wall-to-wall maps over large areas.  

However, the transferability of tree-level ALS-based models between different inventory 

areas has not been comprehensively studied. The practical advantage of good transferability 

of tree-level models would be most evident in such cases where the aim is to obtain 

information from mature stands to ease the planning of harvesting operations. As timber 

assortment specific ABA predictions have so far resulted in somewhat unreliable accuracies 

(Holopainen et al. 2010), more detailed, tree-level information derived in an ITD inventory 

could be a viable solution (Vastaranta et al. 2014). Ideally, local tree data banks, including 

careful field measurements and tree-level ALS metrics for each tree, could be constructed, 
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and whenever a new area is then scanned, the tree-level predictions could be produced 

without field visits by using only the nearby tree data banks. Primary targets would be remote, 

mature stands with preferably some silvicultural thinnings carried out in their recent history: 

the detection of individual sawlog-sized trees without omission and commission errors on 

such stands (for definitions, see e.g. Breidenbach and Astrup 2014) would be realistic, as the 

crowns of the remaining trees most likely do not overlap each other (Vauhkonen et al. 2012). 

Also, prior knowledge of species would exclude at least most of the problems related to tree 

species recognition. In ITD, correct species recognition is crucial because the relationship 

between the crown characteristics and the main stem form are very species-specific 

(Kalliovirta and Tokola 2005). 

 

1.5.2 Field calibrations of existing predictions 

 

Another avenue to increase the cost-quality ratio of ALS-based forest inventories is to 

increase the quality of existing predictions by carrying out some sort of local calibration. The 

potential, and even necessity, of using calibrations to increase the accuracy of transferred 

ALS-based models was introduced in a previous section. Additional field work always 

increases the total costs, but even a small number of local measurements are likely to improve 

the accuracies. Mixed-effects modeling offers a framework for calibrations, as local field-

measurements can be used to predict the random effects for the group (area) of interest. The 

fixed part of the model is first fitted to provide predictions for an average group, and the 

calibrated predictions can then be obtained by summing the random effects to the fixed part 

of the model. Mixed-effects models can be used even if the new area of interest is not located 

within the inventory area that was used for model training. For example, Korhonen et al. 

(2019) transferred tree-level linear mixed-effects models from one (training) inventory area 

to two (validation) inventory areas. The accuracy of predictions decreased due to transfers, 

but a notable improvement was obtained with calibrations based on local measurements.  

In general, calibrations that utilize the correlation between different attributes are 

particularly useful, if the time taken with field measurements differs. Such calibrations can 

be carried out with seemingly unrelated multivariate models. For example, diameter and 

height measurements have traditionally been used to calibrate volume models (Lappi 1991). 

Maltamo et al. (2012) calibrated ALS-based tree-level models, and they constructed 

seemingly unrelated mixed-effects models for DBH, H, CBH, volume and dead branch height 

of Scots pine, and tested the effects of using 1–10 sample trees from a stand in the calibration. 

Only some of the attributes of interest were measured from the sample trees to provide 

calibrated predictions for all the attributes of interest. In most cases, accuracy increased in 

combination with the number of sample trees used. The greatest improvement was obtained 

for volume and dead branch height predictions. Maltamo et al. (2012) stated that the 

practicality of the method is evident when the stands are field visited before clear-cutting 

decisions are made, for example.  

The original ALS-based predictions for attributes related to commercial quality, at least 

in Finnish forests, are not considered sufficiently accurate for the needs of planning of 

harvesting operations. Therefore, forestry practitioners have adjusted their actions so that the 

stands are most often visited in the field before any decisions with respect to, for example, 

bidding are made. Consequently, if mature stands are already visited, then it is not expensive 

to carry out some simple measurements in the stand during that visit. By utilizing cross-model 

correlations, these measurements can be used to calibrate the predictions of other attributes 

of interest as well.  
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1.6 Aims and motivation 

 

The overall aim of the current thesis was to develop methods for the prediction of commercial 

tree quality by using ALS data and field measurements. New approaches that aim to make 

ALS-based forest inventories more cost-efficient were also studied. The specific aims for 

studies I–III were as follows: 

 

Study I. To study the effects of transferring ALS-based tree-level models between 

inventory areas on the accuracy of predicted tree-level quality attributes. 

 

Study II. To test different alternatives to predict sawlog volumes for Scots pine 

dominated 30 m  30 m plots by means of ALS data. The performance of an existing tree-

level sawlog reduction model was also evaluated.    

 

Study III. To study the effects of calibrations based on basal area measurements on the 

accuracy of stand-level predictions for merchantable and sawlog volume.  

 

As seen in section 1.3, it is clear that more accurate predictions for sawlog volume would be 

beneficial for all the participants in the roundwood trade. From the forest practitioner’s point 

of view, more accurate sawlog volume predictions would assist in the planning and 

scheduling of harvesting operations. More accurate knowledge of the volumes of different 

timber assortments would be a step towards precision forestry, in which cuttings can be cost-

efficiently allocated to optimal stands. Furthermore, forest owners would also obtain better 

information on the economic value of their forest estate, which again would enhance forest 

management and timing of silvicultural operations. 

 

 

2 MATERIALS AND METHODS 
 

 

Studies I-III were implemented using different methods, approaches, and datasets. A 

summary of the main differences between studies are provided in the Table 1. More detailed 

information will be provided in the following sections. In study I, the commercial tree quality 

was considered indirectly through the theoretical sawlog volume and CBH, whereas in 

studies II and III, the sawlog volume was the main attribute of interest. Note that sawlog 

volume in II was denoted as “factual sawlog volume” to emphasize the distinction with 

“theoretical sawlog volume”.  

 

 

2.1 Research areas and field data 

 

Field data from four different study areas were used in studies I–III. Three of the areas were 

located in eastern Finland and one was located in south-eastern Norway (Fig. 2). In all study 

areas, the forests were boreal and were dominated by Scots pine or Norway spruce. Some 

deciduous trees, such as birch, were also common. In all areas, the used field data were 

collected from mature stands with basal areas of approximately 20–30 m2ha-1 and with 500–

1000 stems ha-1. The four areas are briefly introduced next.   
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Liperi (62 28ʹ N, 29 02ʹ E; Eastern Finland). The Liperi dataset was used in studies 

I (referred to as A1) and II. In Liperi, the forests are mostly privately owned, and the level 

of management depends on the owner. The Liperi field data were collected in summer 2017 

from 30 m  30 m plots. In each plot, DBH, CBH, and H of every tree with DBH ≥ 5 cm 

were measured. All the trees were also accurately positioned (Korpela et al. 2007; I). In 

addition, all the sawlog-sized (DBH ≥ 16 cm) Scots pine trees were visually bucked to 

estimate the sawlog volume for each tree. The following requirements for sawlogs were 

applied during the field work: maximum curving of 1 cm within 1 m distance (no curves on 

multiple directions), and maximum diameter of 4 cm for dead and 6 cm for living branches. 

Any decay, blue stain -fungi infection, insect holes, cracks, or internal items were not allowed 

either. The sawlog volumes were calculated afterwards (see section 1.4.1) using minimum 

log length of 3.7 m and minimum small end diameter of 15 cm for the applicable stem parts. 

The bucking was implemented so that the sawlog volume was maximized. The accuracy of 

visual bucking was not validated against real harvester measurements in this inventory. 

However, it can be assumed that the used sawlog volume estimates were at least fairly 

accurate, and therefore adequate for the purpose. In study I, we used 47 plots that included 

at least five sawlog-sized Scots pine trees, and in study II, we used 41 Scots pine dominated 

plots. 

Kiihtelysvaara (62 31ʹ N, 30 11ʹ E; Eastern Finland). The Kiihtelysvaara dataset was 

used only in study I (referred to as A2). The forests in Kiihtelysvaara are privately owned. 

The field data were collected in 2010 and included 66 plots with plot sizes of 20 m  20 m, 

25 m  25 m, or 30 m  30 m. Aside from the variable plot sizes, the plot measurements 

mostly followed the same procedure as in the Liperi dataset, and the position of each tree was 

also determined.   

Koli (63 03ʹ N, 29 53ʹ E; Eastern Finland). The Koli dataset was used only in study I 

(referred to as A3). Here, the field data were collected in 2006 from a conservation area in 

the Koli National Park extension. The park was established in 1991, so no silvicultural 

operations were implemented in the 15 years prior to field measurements. The positioning of 

plots and trees within plots were implemented differently to Liperi and Kiihtelysvaara, but 

the same attributes were measured for each tree.  

 

 
Table 1. An overview of the three studies. A = Liperi, B = Kiihtelysvaara, C = Koli, D = 
Romerike, ITD = individual tree detection, ABA = area-based approach, k-NN = k-nearest 
neighbor, LME = linear mixed-effects model, CBH = crown base height, DBH = diameter at 
breast height, H = height.  

 

 Study I Study II Study III 

Study areas used A, B, C A D 

Field data Inventory Inventory Harvester 

Level of ALS analysis ITD ABA ABA 

Statistical methods k-NN LME, k-NN LME 
Response variables CBH, theoretical 

sawlog volume, 
(DBH, H, volume) 

Sawlog volume, 
theoretical 
sawlog volume, 
sawlog reduction 

Sawlog volume 
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Figure 2. The locations of the four study areas. A = Liperi, B = Kiihtelysvaara, C = Koli, D = 
Romerike. The map was created in the R software. 
 
 

Romerike (60 25ʹ N, 11 4ʹ E; South-Eastern Norway). The Romerike dataset was 

used only in study III. The field data were collected from Norway spruce dominated clear-

cut stands between January and October 2017 with a John Deere 1270E CTL harvester. The 

harvester was equipped with a positioning system that provided sub-meter accuracy for the 

position of each harvested tree. For more details of this positioning system, see Hauglin et al. 

(2017) and Hauglin et al. (2018). For each harvested tree, the merchantable and sawlog 

volumes were obtained from the production file that was created by the harvester during 

harvesting. The sawlog volumes were summed from the possible more specific sawlog 

assortments.  

 

 

2.2 ALS data 

 

2.2.1 Collection of ALS datasets  

 

The most essential details in regard to the ALS datasets from the different study areas are 

shown in Table 2. An Optech Titan sensor (used in Liperi) provided multispectral ALS data, 

but only the channel with a wavelength of 1064 nm (near-infrared) was used in studies I and 

II. The 1064 nm wavelength is commonly used in ALS sensors (Pfennigbauer and Ullrich 

2011), and it has also been found to be effective in the prediction of many forest attributes 

(Dalponte et al. 2018). The same wavelength was also used in all the other study areas.  
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Table 2. Scanning details of the study areas. PRF = Pulse repetition frequency, Inst.1 = 
Optech Titan, Inst. 2 = Optech ALTM Gemini, Inst. 3 = Optech ALTM 3100, Inst. 4 = Leica 
ALS70. 

 

 Liperi Kiihtelysvaara Koli Romerike 

Scanning time 7/2016 6/2009 7/2005 7/2013 
Instrument type Inst. 1 Inst. 2 Inst. 3 Inst. 4 

Flying altitude (m) 850 600 900 3000 

PRF (kHz) 250 100 100 105 

Mean pulse density (m-2) 13.2 14.7 5.2 0.7 

Used in studies I, II I I III 

 

 

2.2.2 Processing of ALS data  

 

Raw ALS data must be processed to obtain the aboveground height for the echoes. A common 

procedure that was also followed in this thesis is to initially classify the ALS echoes to ground 

hits and vegetation hits (Axelsson 1999), and then to interpolate a Digital Terrain Model 

(DTM) with Delaunay triangulation from the ground hits. The aboveground height of each 

non-ground echo is then calculated as the vertical distance from the DTM. First (first of many 

+ only), last (last of many + only), and intermediate echo groups were used in this thesis. 

Study-specific details related to the use of ALS data are provided in the following section.  

 

2.2.3 Study I 

 

In study I, the ITD approach was used, as we were particularly interested in the transferability 

of ALS-based tree-level models. The field measured plots were 30 m  30 m. To ensure the 

complete segmentation of trees that were also located close to the plot borders, we extracted 

the ALS echoes for plots using 5 m buffers. For each of these 40 m  40 m areas, the CHM 

with a 0.333 m resolution was computed by stacking multiple partial CHM bottom-up. These 

partial CHM were interpolated from triangulated irregular networks computed from the 

ground echoes and from the echoes above 2, 5, 10, 15, 20 and 25 m height thresholds. This 

procedure, described in a step-by-step manner by Isenburg (2014), effectively prevented the 

appearance of pits and empty pixels in the CHM, and thus, improved the segmentation 

process (Khosravipour et al. 2014).  

These plot-level CHM were the basis for the actual ITD processes that were implemented 

with the rLiDAR package (Silva et al. 2017a) in the R statistical computing environment (R 

Core Team 2017). First, the pit-free CHM were low-pass Gaussian filtered to improve the 

subsequent tree detections. Local maxima (i.e. treetops) were searched from the filtered CHM 

with a fixed window size of 5 × 5 raster cells and a height threshold of 8 m using the rLiDAR 

function FindTreesCHM. The tree crowns were then delineated into segments using the local 

maxima with expected maximum crown radius of 3.6 m (rLiDAR function ForestCAS). 

These segments and field-measured trees were then linked together using the known positions 

of the trees. Next, only those segments that were known to include only one sawlog-sized 

Scots pine tree (and possibly one or more small understory trees that have only a minor effect 

on the ALS echo distribution of the segment) were included in the study. Finally, the ALS 

echoes within each segment were extracted, and the tree-level ALS metrics were calculated 
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with respect to these echoes. First and last echo groups were again used separately. In 

addition, the plot-level ALS metrics were calculated using only first echoes and linked to 

each tree in the plot. This was carried out because the plot-level ALS metrics provide 

information related to the neighborhood of an individual tree (Maltamo et al. 2012). In 

addition to heights of ALS echoes, we calculated different metrics using the intensity of the 

ALS echoes. However, as three different ALS datasets were used in the study, and it is known 

that the magnitude of intensities can vary remarkably between datasets (Hopkinson 2007; 

Korpela et al. 2010), the regional intensity distributions were examined first. There appeared 

to be clear differences between areas, so ultimately only a few relative metrics, which 

describe the intensity distribution, were accepted in the study.  

 

2.2.4 Study II 

 

We used ABA in study II. First, 30 m  30 m sample plots were divided into four 15 m  15 

m subplots to better correspond to the commonly used plot/cell sizes and to quadruple the 

number of plots in the training data. We were able to do this as the position of each tree was 

recorded during the field measurements. For each 15 m  15 m plot, ALS metrics were 

calculated in three different ways by using only first, last, and intermediate echo groups. The 

subplot-level forest attributes of interest were summed from individual trees within the 

subplot in question.   

 

2.2.5 Study III 

 

We used ABA in study III, and the size of the grid cells was 15 m  15 m. However, instead 

of measured sample plots, the field data was point-wise and included all the trees that were 

harvested from the clear-cut stands. As we did not possess geometries for stand borders, we 

had to process the data before ABA could be applied. First, we built polygons of tree positions 

by the creation of two-dimensional alpha shapes (Edelsbrunner 1983) using the alphahull R 

package (Pateiro–Lopez and Rogriguez–Casal 2016). An alpha value of 10 was used to 

produce useful borders for the stands. The same value for alpha was also used for the same 

purpose with the same data by Hauglin et al. (2018) and Maltamo et al. (2019). Then, we laid 

a separate grid over each stand. On each stand, we systematically iterated multiple positions 

for the grid, and finally chose the position where the number of accepted 15 m  15 m cells 

was maximized. A cell was accepted if at least 215 (of 225) 1 m  1 m sub-cells intersected 

the clear-cut stand (polygon) that was created with the alpha shape. When the position of the 

grid was determined, the ALS metrics were calculated for each 15 m  15 m cell by separately 

using first and last echoes. The cell-level forest attributes of interest were summed from 

individual trees within the 15 m  15 m cell.   

 

 

2.3 Prediction of the attributes 

 

2.3.1 k-Nearest Neighbor imputation 

 

The nonparametric k-NN imputation was used in studies I and II. The approach has been 

used in numerous previous studies (e.g. Hudak et al. 2008; Latifi et al. 2010). In the k-NN 

imputation, the values for the response variables of validation units are predicted from the k 
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nearest training units. The k nearest neighbors are chosen by minimizing the distance 

calculated from the values of the predictor variables between the training and validation units. 

For k, a fixed value of 5 was used in studies I and II. In studies I and II, the MSN (most 

similar neighbor) was used as the distance metric in the imputations to select the most similar 

neighbors (Moeur and Stage 1995).  

In study I, individual Scots pine trees were used as units, which means that for each pine 

tree from the validation area (Kiihtelysvaara and Koli), five most similar pines with respect 

to the predictor variables were searched from the training area (Liperi). The response 

variables for the target pines were then calculated as weighted averages from the response 

variables of the five most similar trees from the training data. The prediction of all attributes 

of interest were implemented simultaneously to ensure logical predictions (Eskelson et al. 

2009). The predictor variables for the imputation were selected by manually testing the 

candidate ALS metrics as predictor variables and minimizing the observed RMSE% value. 

To avoid overfitting, the aim was to employ less than 10 different predictor variables 

(Packalen et al. 2012). The k-NN imputations were carried out in the R environment (R Core 

Team 2017) with the yaImpute package (Crookston and Finley 2008).  

In study II, k-NN imputation was used to retrieve the five most similar plots for each plot 

using leave-one-out cross-validation (LOOCV) (see section 2.4). The procedure results in 

tree lists (Temesgen et al. 2003) from which the response variables can be calculated for the 

target plots. The selection of response variables was carried out with the algorithm proposed 

by Packalen et al. (2012). This algorithm is based on a heuristic optimization algorithm 

known as Simulated Annealing (Kirkpatrick et al. 1983) and it aims to minimize the cost 

function (weighted mean RMSE% value over all response variables) by solving the NN 

model repeatedly over a fixed number of times. The resulting five most similar plots were 

weighted with respect to their similarity to the target plot. The weights and the response 

variables of these five plots were then used to calculate the response variables for the target 

plot as weighted averages.   

 

2.3.2 Linear mixed-effects models 

 

Linear models with ALS metrics as predictors have been commonly used in the prediction of 

many forest attributes (Næsset 1997b). However, in a forestry context, the field data often 

have a grouped structure, as many trees are measured within one plot, or many plots are 

measured within one stand. For example, due to properties of the site, two Scots pine trees 

from the same stand are generally more alike than two Scots pine trees from different stands. 

The variance-covariance structure between observations affects the standard errors of the 

estimated regression coefficients, so ignoring within group correlations in the model 

construction phase may lead to severe problems in parameter estimates and model inference 

(Mehtätalo and Lappi 2020). Therefore, instead of regular linear models that are fitted with 

the ordinary least squares method and the assumption that the residuals are uncorrelated, 

linear-mixed effects (LME) models should be used to take the correlation structure into 

account. Therefore, LME models were used in studies II and III, and the models were fitted 

with the lme function in the nlme package (Pinheiro et al. 2019) in R software (R Core Team 

2017). The Restricted Maximum Likelihood approach was used in the model fitting 

(Fahrmeir et al. 2013). 

In LME models, the group effects are modelled as random variables, i.e. the group effects 

are the same for all members within the group and are different between members of different 

groups. There can be one or more random effects in a mixed-effect model. In this thesis, a 
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total of six LME models were constructed (excluding the three models in study II that were 

simply expanded by the addition of a site type dummy as an additional predictor). Five of 

these models included only a random intercept, whereas one of the models also included 

random slope as a predictor, in addition to random intercept. The general form of each of 

these models is shown in Eq. 1.  

 

 𝑦𝑖𝑗 = 𝒙𝑖𝑗
′ 𝜷 + 𝒛𝑖𝑗

′ 𝒃𝑖 + 𝜖𝑖𝑗                    (1) 

 

where i indicates the group, j indicates member j of group i, y is the value of the response 

for the jth observation of group i, x is the vector that includes the values of the predictors for 

the jth observation of group i, β is the vector of regression coefficients, z is the vector of 

predictors in the random part for the jth observation of group i, b is the vector of random 

effects, and ϵ is the residual for observation j of group i. If the model only includes a random 

intercept, then z = 1 and the length of b is 1. Each additional random effect increases the 

length of b by one. The predictor in question is also added to vector z. Furthermore, the model 

for group i with n observations, p predictors and s random effects is shown in Eq. 2. 

 

𝒚𝑖 = 𝑿𝑖  𝜷 + 𝒁𝑖  𝒃𝑖 + 𝝐𝑖                                                                                                       (2) 

 

where vector yi includes the values of the n observations in group i, Xi is a n  p matrix 

that includes the predictors for the n observations, β is a vector that includes the p regression 

coefficients, Zi is a n  s matrix that includes the s random predictors for the n observations, 

bi is a vector that includes the s random effects and ϵi is a vector that includes the residuals 

for the n observations in group i. These matrices and vectors are illustrated in Mehtätalo and 

Lappi (2020). 

Local information is required to predict and utilize the random parts of the model. 

However, these random effects can also be predicted for new groups that were not used in 

the training data. In general, LME models are especially useful in cases where the aim is to 

improve the accuracy of existing predictions by calibrations (Maltamo et al. 2012). Such a 

case was also considered in study III. LME models are also excellent in cases where a model 

must be calibrated for a new area with just a few field measurements (Korhonen et al. 2019). 

In the LME models in study II, the group effects were considered by adding a random 

intercept in the model. However, the predictions were based only on the fixed effects because 

local information would not be realistically available in the practical application. The three 

LME models, with (factual) sawlog volume, theoretical sawlog volume and sawlog reduction 

as the response variables, were constructed by manually testing different sets of the most 

potential ALS metrics as predictors. The groups with the greatest number of potential 

predictors were found by initially employing all candidate ALS metrics as predictors and 

then dropping the least significant predictors in steps, until the p-value of each remaining 

predictor was < 0.001. RMSE%, mean difference (MD%), and homoscedasticity of residuals 

were evaluated in the selection of the final predictors.  

In study III, cross-model correlations of residual errors and random effects needed to be 

estimated at the start and then utilized in the calibrations. Therefore, a multivariate seemingly 

unrelated mixed-effect model was constructed. Initially, the models for the three attributes of 

interest, i.e. basal area, merchantable volume (volume of all logs that passed the harvester 

head) and sawlog volume, were constructed separately. Again, the eventual predictors were 

chosen by manual testing, where both numerical and visual criteria were applied. The 

structure of the random part of the model was also evaluated using Akaike Information 
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Criteria values (Fahrmeir et al. 2013). Even though overparameterization of the random part 

of the model is less of a concern than if the random part is too simple (Mehtätalo and Lappi 

2020), we attempted to constrain the number of random parameters to one or two in a single 

model, to avoid later problems with the convergence of the multivariate model. In addition 

to the fixed and random parts of the models, adequate variance function and correlation 

structure were examined for each response in order to model heteroscedasticity and the 

dependence among the within-group errors, respectively. Finally, the three models were 

merged into one multivariate seemingly unrelated mixed-effects model (Mehtätalo and Lappi 

2020). Stand-level random effects were predicted by employing the Estimated Best Linear 

Unbiased Predictor (EBLUP) (Mehtätalo and Lappi 2020). In study III, the utilization of 

EBLUP was based on the measured sample plots and on the ALS metrics that were calculated 

for these plots. If the realized value of the plot measurement/measurements was/were 

different with respect to the original model predicted by the ALS metrics of the plots, then 

the random stand effects were adjusted with respect to the residuals of the calibration plots. 

The locally calibrated predictions were obtained when the predicted random effects were 

added to the prediction that was based only on fixed effects. The principle of EBLUP is 

described in detail in Appendix A in study III and will not be discussed in more depth in this 

thesis.  

 

2.3.3 Alternatives to predict the attributes related to commercial tree quality 

 

In this thesis, commercial tree quality was determined through sawlog volume, theoretical 

sawlog volume and CBH. Sawlog volume was predicted in studies II and III with 10 

alternatives, whereas theoretical sawlog volume (denoted as “Vlog” in study I) and CBH 

were predicted only in study I, using k-NN imputation at the tree-level (see section 2.3.1). In 

addition, theoretical sawlog volume was predicted in study II as an auxiliary attribute to 

allow various chained predictions for sawlog volume. The definitions for the 10 alternatives 

to predict sawlog volume are provided below to aid in the inference of the results and 

discussion sections of this thesis. More detailed information can be found from the 

corresponding studies II and III. The alternatives that were introduced in study II will be 

referred to here with the same codes (e.g. 2a), and the alternative presented in study III will 

be, instead, referred to here as 7. Sawlog volume was predicted at the 15 m  15 m level in 

all approaches. 

 

(1) Theoretical sawlog volume was calculated by taper curves that employ H, DBH and 

D6 (if available) of a tree. For pine, a tree-level sawlog reduction model (SRM) for pines 

in southern Finland (Mehtätalo 2002) was also applied. The prediction of tree-level Scots 

pine sawlog volumes was obtained by subtracting the modelled sawlog reduction from 

the theoretical sawlog volume. For other species, the theoretical sawlog volume was also 

used as the sawlog volume because they were not visually bucked during field work. 

These tree-level predictions were then summed to the plot-level. ALS data was not 

included in this alternative; thus, this alternative provided the theoretical level of accuracy 

that can be obtained when information of actual tree quality is not available.  

 

(2a) LME model with sawlog volume as the response variable and ALS metrics as 

predictors. 
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(2b) Alternative 2a + site type dummy variable as an additional predictor in the LME 

model. 

 

(3a) LME model with theoretical sawlog volume as the response variable and ALS 

metrics as predictors. The prediction for sawlog volume was obtained by subtracting 

SRM from the modelled theoretical sawlog volume.  

 

(3b) Alternative 3a + site type dummy variable as an additional predictor in the LME 

model. 

 

(4a) LME models for both theoretical sawlog volume and sawlog reduction. The 

prediction for sawlog volume was obtained by subtracting the latter from the former. 

 

(4b) Alternative 4a + site type dummy variables as additional predictors in the LME 

models.  

 

(5) k-Nearest Neighbor imputation (tree lists) of plot-level sawlog volume. 

 

(6) k-Nearest Neighbor imputation (tree lists) of plot-level theoretical sawlog volume. 

The prediction for sawlog volume was obtained by subtracting SRM from the imputed 

theoretical sawlog volume.   

 

(7) A multivariate seemingly unrelated LME model for basal area and merchantable and 

sawlog volumes. The prediction for sawlog volume was obtained directly from the model. 

The tree-level sawlog volumes needed in the model training were obtained from spatially 

accurate harvester data. 

 

 

2.4 Leave-one-out cross-validation 

 

To avoid overly optimistic results, LOOCV was used in studies I and II. In study III, the 

data was divided into separate training and validation stands, so cross-validation was not 

needed. In LOOCV, the predictions are always produced by excluding the observation in 

question from the training data and, possibly the observations from the same group as well 

(e.g. from the same stand). In study I, LOOCV was applied only when the results were 

calculated for the training data (Liperi). In study II, the neighboring 15 m  15 m subplots 

were always excluded from the training data, the models were fitted, and predictions were 

made in turn for each subplot.  

 

 

2.5 Accuracy assessment 

 

The accuracies of the various predictions were assessed using RMSE% (Eq. 3) and MD% 

(Eq. 4). In studies I and II, the MD% was denoted as BIAS%. 

  

RMSE% =  √∑
(𝑦𝑖− �̂�𝑖)2

𝑛
𝑛
𝑖=1   

100

�̅�
                                                            (3)  
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MD% = ∑
(𝑦𝑖− �̂�𝑖)

𝑛

𝑛
𝑖=1   

100

�̅�
                                                           (4) 

where n is the number of observations, yi is the observed value for observation i, 𝑦�̂� is the 

predicted value for observation i, and �̅� is the mean of the observed values. In study I, the 

difference within the RMSE% and MD% equations was calculated as “predicted - observed”: 

in the case of RMSE% this does not make any difference, however it results in a sign change 

in the case of MD%. Therefore, to avoid confusion in the interpretation of the results, MD% 

values that were obtained in study I were also transformed in this thesis to “observed - 

predicted”.  

In studies I, II and III, accuracy was assessed at the tree-level, the 30 m  30 m plot-

level, and the stand-level, respectively. In study II, the predictions for adjacent 15 m  15 m 

subplots were aggregated to 30 m  30 m plots. In study III, the initial predictions were made 

for 15 m  15 m cells, but the predictions were then aggregated to the stand-level (enabled 

by the comprehensive harvester data). In addition, the results of calibrations in study III were 

calculated as the average of 500 repeats to minimize the effects of randomness in the 

calibration plot sampling. In general, aggregations from the 15 m  15 m level to a larger 

scale were well justified, as there is also a strong interest in stand-level results in practical 

forestry.  

 

 

3 RESULTS 
 

 

The results obtained in studies I–III are summarized in this section. The studies had 

considerably different and specific objectives, so the results were generally incomparable, 

with the exception of the prediction of sawlog volume in studies II and III. Detailed 

information related to the constructed LME models (II and III) is not provided in this thesis 

summary. 

 

 
Table 3. Relative root mean squared error (RMSE%) and mean difference (MD%) values 
associated with predicted sawlog volumes across the 10 alternatives. Results are provided at 

the 15 m  15 m level and after aggregation. See section 2.3.3 for detailed definitions of the 

10 alternatives. Alt. = alternative, 15 = 15 m  15 m level, A = Aggregated.  
 

Alt. Study 15: RMSE% 15: MD% Aggregation to: A: RMSE% A: MD% 

1 II 33.02 -10.26 30 m  30 m 29.08 -10.26 

2a II 30.85 -0.44 30 m  30 m 22.69 -0.44 

2b II 29.46 -0.91 30 m  30 m 20.92 -0.91 

3a II 35.94 -10.19 30 m  30 m 27.16 -10.19 

3b II 34.44 -10.50 30 m  30 m 25.27 -10.50 

4a II 33.94 -1.77 30 m  30 m 25.11 -1.77 

4b II 32.89 -1.98 30 m  30 m 23.78 -1.98 

5 II 36.47 3.20 30 m  30 m 27.31 3.20 

6 II 40.73 -7.98 30 m  30 m 30.03 -7.98 

7 III 53.98 4.96 stand-level 22.17 9.33 
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3.1 Prediction of sawlog volume 

 

Sawlog volume was predicted in studies II and III in 10 different ways. These results are 

shown in Table 3. For better comparability, accuracy at the 15 m  15 m level is also provided 

(Note: these details were not included in the original papers. See Fig. 1 in II for scatterplots 

at the 30 m × 30 m level). 

The RMSE% values associated with the different sawlog volume predictions were, in 

general, between 21–30 % after aggregation to the 15 m  15 m level or to the stand-level. 

Prior to aggregation, the RMSE% values were between 29–41 % in alternatives 1–6 from 

study II, and 54 % in alternative 7 from study III. Therefore, aggregation to the 30 m  30 

m level in study II decreased the RMSE% value by approximately 4–10 %, and by almost 

32 % (to the stand-level) in study III.  

The smallest RMSE% value (20. 9 %) was obtained with alternative 2b that employed an 

LME model for sawlog volume and included the site type dummy variable as an additional 

predictor. Alternative 7 (study III) was also based on an LME model, with sawlog volume 

as the response variable, but site type information was not included in the model. Alternative 

7 resulted in a slightly smaller RMSE% value (22.2 %) compared to alternative 2a (22.7 %). 

The alternatives that were based on k-NN imputations (i.e. 5 and 6) had clearly weaker 

accuracy than the alternatives that were based on the LME models (2, 3, 4, 7).  

Some trends were also evident with the MD% values associated with predictions. In 

particular, the predictions in study II, which included the sawlog reduction model of 

Mehtätalo (2002) (i.e. alternatives 1, 3 and 6), resulted in clear overestimates, with MD% 

values between -8 and -10 %. The MD% values for alternatives 1–6 were similar at both the 

15 m  15 m and the 30 m  30 m levels due to the balanced structure of the data, i.e. each 

30 m  30 m plot consisted of exactly four 15 m  15 m subplots. On the other hand, the 

rather large MD% values associated with alternative 7, i.e. approximately 5 % at the 15 m  

15 m level and 9.3 % at the stand-level, denoted differences in the ALS and field data between 

the training and validation datasets that were used in study III.  

In study II, the prediction of sawlog volume was also tested at the tree-level by employing 

the sawlog reduction model formulated in Mehtätalo (2002) for 1235 sawlog-sized Scots pine 

trees. The tree-level performance of the model appeared to be quite poor: the RMSE% value 

was 73.6 and the MD% value was -18.0 %. The smallest and largest obtained sawlog 

reductions were 15.4 % and 63.1 %, respectively, with an average sawlog reduction of 32.4 

%. The residual errors associated with the predicted sawlog volumes are plotted against the 

observed relative sawlog reduction in Fig. 3. It can be seen that if the observed relative sawlog 

reduction was < 20 %, the sawlog reduction was too strong, and thus, the sawlog volume 

predictions, produced with the sawlog reduction model, resulted in underestimates. On the 

other hand, if the observed relative sawlog reduction was > 60 %, then the sawlog reduction 

was not sufficiently strong, and the predicted sawlog volume yielded clear overestimates. 

Between those two thresholds, the performance of the model was clearly better. In addition, 

we tested the performance of the sawlog reduction model with different subsets of pine: the 

smallest RMSE% value (30.4 %) was obtained with flawless pine trees, and the MD% value 

was 27.8 %. See Table 7 in study II for a detailed description of the different subsets.  
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Figure 3. Residual errors (i.e. the observed tree-level sawlog volume - sawlog volume 
estimated with the sawlog reduction model described in Mehtätalo 2002) plotted with respect 
to the observed relative sawlog reduction. n1 = number of flawless pine trees, n2 = number of 
fully defective pine trees. The observed sawlog volumes were obtained by visual bucking. 

 

 

3.2 Prediction of tree-level theoretical sawlog volume and crown base height 

 

Tree-level theoretical sawlog volume and CBH were predicted in study I with k-NN 

imputation with two different sets of predictor variables. The first set (denoted as “H-model” 

in study I) included five height-based ALS metrics: (1) the maximum height of first echoes, 

(2) the 55th percentile of height of last echoes, (3) the 90th percentile of height of first echoes, 

(4) the standard deviation of heights at the plot-level, and (5) the 15th percentile of heights at 

the plot-level. The second set of predictor variables (denoted as “I model” in study I, “HI-

model” in this thesis) also included two intensity-based ALS metrics, in addition to the five 

aforementioned height-based ALS metrics that were included in the H-model. Thus, there 

were a total of seven different predictor variables in the HI-model. The two intensity-based 

predictor variables were the coefficient of variation of intensity and the skewness of 

intensities.   
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Figure 4. Observed vs. predicted theoretical sawlog volumes for individual sawlog-sized 
Scots pine trees in the Liperi dataset. Only height-based ALS metrics were used as predictors 
(H-model). 

 

 

In the case of theoretical sawlog volume, the RMSE% values with LOOCV in the training 

data (Liperi) were 39.76 % and 38.16 % for the H-model and HI-model, respectively. The 

corresponding MD% values were 0.19 % and 0.57 %. Thus, the inclusion of intensity-based 

ALS metrics to the set of predictors had a small effect on the accuracies. The observed vs. 

predicted (only H-model) values for the theoretical sawlog volume are shown in Fig. 4.  

The RMSE% and MD% values associated with CBH in the training data were 13.39 % 

and -0.10 % for the H-model, and 13.26 % and -0.13 %, for the HI-model, respectively. Thus, 

the difference between the final accuracy in the predictions between the H-model and the HI-

model in this case was only marginal. The observed vs. predicted (only the H-model) values 

for CBH are shown in Fig. 5.  
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Figure 5. Observed vs. predicted crown base heights for individual sawlog-sized Scots pine 
trees in the Liperi dataset. Only height-based ALS metrics were used as predictors (H-model). 

 

 

3.3 Transferability of tree-level models 

 

The transferability of the tree-level models between inventory areas was only studied in study 

I. The changes in RMSE% and MD% values caused by the transference of the models from 

the training area (Liperi) to the validation areas (Kiihtelysvaara and Koli) are illustrated in 

Fig. 6. As expected, the accuracies decreased in every case due to the transfer. In the case of 

DBH, especially, the difference in the RMSE% values between the Liperi and Kiihtelysvaara 

areas was quite small: 13.8 % vs. 15.0 % for the H-model, and 13.5 % vs. 14.8 % for the HI-

model. The addition of two intensity-based ALS metrics to the set of predictor variables 

changed the sign of the MD% in all three areas.  

The RMSE% values associated with height predictions increased by approximately 3 % 

for both areas. However, the MD% values in Kiihtelysvaara were positive (approximately 3 

%), whereas in Koli they were negative (about -2 %). Therefore, in comparison to Liperi, the 

laser pulses in Kiihtelysvaara appeared to penetrate the tree crown more deeply before the 

first return, whereas in Koli the laser pulses backscattered closer to the actual treetop.  
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Figure 6. Tree-level relative root mean squared error (RMSE%) and mean difference (MD%) 
values in the training area (Liperi), and after transfer to two validation areas (Kiihtelysvaara 
and Koli). Two different sets of predictors (H and HI) were used in the k-NN imputations. DBH 
= diameter at breast height, CBH = crown base height, V = volume, Vlog = theoretical sawlog 
volume. 
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Also, in the case of CBH predicted with the H model, the difference in RMSE% values 

between Liperi and Kiihtelysvaara was relatively small (13.4 % vs. 15.3 %), and the post-

transfer MD% value was only -0.1 %. In Koli, the corresponding post-transfer RMSE% and 

MD% values were much larger, 22.4 % and -10.5 %, respectively. This indicates notable 

systematic differences in the crowns of sawlog-sized Scots pine trees, or in the functioning 

of ALS sensors between the Liperi and Koli areas. 

From the viewpoint of harvest planning and the roundwood trade, volume related 

attributes are the most important. For example, the RMSE% value associated with volume 

for the H-model in the Liperi area was approximately 30.7 %. Transferring the model to other 

areas decreased the accuracy further, and the corresponding RMSE% values were 36.7 % 

and 39.1 % in Kiihtelysvaara and Koli, respectively. As expected, the accuracies were even 

worse for theoretical sawlog volume: the RMSE% value associated with the H-model was 

approximately 39.8 % in Liperi, and the post-transfer RMSE% values were 56.2 % and 51.8 

% in Kiihtelysvaara and Koli, respectively. Thus, theoretical sawlog volume was the only 

attribute that resulted in smaller RMSE% values in Koli than in Kiihtelysvaara. This applied 

for the HI-model as well.  

 

 

3.4 Effects of field calibrations on the accuracy of predicted merchantable and sawlog 

volumes 

 

Calibrations were evaluated in study III. For details of the multivariate model and the 

correlation between responses, see paper III. The effects of using 1–10 angle gauge 

measurements to calibrate a seemingly unrelated multivariate mixed-effects model to the 

stand in question are illustrated in Fig. 7. Note that the results were calculated over 15 

validation stands and as averages of 500 repeats, to smooth out the effects of randomness in 

the calibration plot sampling.  

For merchantable volume, the advantage of the calibration was clear: the RMSE% value 

with fixed effects only was 15.8 % and was 11.9 % with 10 plots. Correspondingly, the MD% 

value also changed from -9.1 % to -6.8 %. The slope of the curve started to approach zero 

slowly, i.e. the benefit of each additional measured plot was smaller with addition of more 

measured plots. On the other hand, it appeared that the correlation between basal area and 

sawlog volume was not sufficiently strong to notably improve the accuracy of predictions. In 

fact, the MD% values even increased from 9.3 % to 12.3 % with 1–10 plots, respectively.  

Moreover, as only one set of measurements would be carried out on each stand in practice, 

the distribution of the effects of individual calibration procedures was further analyzed for 

angle gauge calibrations of merchantable volume (see Fig. 7 in study III). When one plot 

was used for the calibration, approximately 67 % of the calibrations resulted in increased 

accuracy. The mean improvement in the predicted stand-level merchantable volume was 0.5 

percent points (pp), while the corresponding values for 10 plots were 75.8 % and 3 pp. With 

2–9 plots, the results were found between the extremes described above. However, the 

variation in the effects of the calibrations also clearly increased as more plots were used, i.e. 

the most increased and decreased accuracies of calibrated predictions were obtained with 10 

plots. This is logical; the more plots that are measured, the more the residuals of measured 

plots can adjust the predicted random effects to wrong direction with respect to majority of 

the cells in the stand. Nevertheless, the results showed that it is unlikely that the calibrations 

cause decreased accuracy in the merchantable volume predictions.   
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Figure 7. Relative root mean squared error (RMSE%) and mean difference (MD%) values 
associated with merchantable and sawlog volume predictions when 0–10 angle gauge plots 
were used in the calibration. 

 

 

An example of when sawlog volume was calibrated with angle gauge measurements is 

provided in the boxplot in Fig. 8. The accuracy of the calibrated predictions decreased on 

average, and the variance of the effects of calibrations clearly increased as more plots were 

used. With one plot, 53.5 % of the calibrations resulted in decreased accuracy with a mean 

of -0.2 %, while the corresponding values with 10 plots were 55.2 % and -0.8 %. Thus, 

regardless of the number of calibration plots, it was more likely that the accuracy of 

predictions just decreased and, therefore, such calibrations are not meaningful in practice.  

 

 

4 DISCUSSION 
 

 

The primary aim of this thesis was to test a range of alternatives to predict the commercial 

quality of trees by means of ALS data. In Finland, for example, the accuracy of stand-level 

volume predictions has been found to be notably better in ALS–based inventories than for 
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Figure 8. Change in relative error (i.e. [observed-predicted]/observed × 100) of predicted 
sawlog volume of a stand when 1–10 angle gauge plots are used instead of the fixed effects 
of the model only (7,500 observations for each box). Above the y = 0 line, the calibrated 
prediction is more accurate than the prediction based only on the fixed part of the model. 
Variances are provided numerically above each box.  
 
 

the previous method known as “inventory by compartments” (Haara and Korhonen 2004). 

Nevertheless, field visits are still needed for reliable estimates of tree quality and the expected 

accruals of different timber assortments in the upcoming cuttings. Therefore, more accurate 

remote sensing–based tree quality information would assist in the efficient planning and 

scheduling of harvesting operations. Consequently, less storage of felled trees would be 

needed, at least in theory, as the stands could be cut more precisely when such wood material 

that is on a specific stand is needed. More accurate tree quality information would also 

provide forest owners with a better estimate of the value of their forest resource. 

Sawlog volume was predicted at the 15 m  15 m level, and the results were validated at 

the 30 m  30 m and the stand-level in studies II and III, respectively. The results indicate 

that some degree of correlation between ALS data and sawlog volume exists when the 

assessment is made at the plot- (30 m × 30 m) or stand-level. However, overall prediction 

accuracy was heavily dependent on the aggregations where over- and under-estimations of 

the individual cells cancelled each other out.  

In fact, sawlog volume could have also been predicted at the tree-level in study I. 

However, the obtained accuracy for theoretical sawlog volume, which does not take into 

account tree defects, was already very weak: tree-level RMSE% values were 39.8 % and 38.2 

% in the training data. Of course, predictions for individual trees are rarely interesting in 

forestry, so the results should have been aggregated to the plot-level to help in the 

interpretation of their practical usefulness, and aggregations would probably have increased 

the accuracy of the predictions. However, such aggregations were not plausible and 
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meaningful, as we accounted for only the sawlog-sized Scots pine trees, rather than all the 

trees in the plots. Nevertheless, it is most likely that the accuracy of the predictions would 

have decreased even more if the defects were considered, in addition to the stem dimensions. 

A similar finding was also observed by Kankare et al. (2014b) where removal of 11 

qualitative outliers (from a total of 144 trees) from the dataset notably increased the 

accuracies of predicted sawlog volumes. The RMSE% value of 34.7 % associated with ALS-

based sawlog prediction without qualitative outliers (Kankare et al. 2014b) is somewhat 

comparable to the RMSE% values of 39.8 % and 38.2 % that were obtained for theoretical 

sawlog volume in the training data in study I.  

Barth et al. (2015) used ALS data to first predict the DBH and H for individual trees. 

Then they predicted the tree-level volumes by using species-specific volume functions. 

While bucking the stems into different timber assortments, they took the defects into account 

by generating realistic levels of simulated stem defects based on existing harvester production 

files from the study area. However, the results were provided in graphical form only, which 

disables the further comparison between the results of this thesis. In general, the possibilities 

of accurately predicting tree-level sawlog volume by means of ALS seem very restricted. 

This is because most of the laser pulses in ALS hit the tree crown or the surrounding ground 

instead of the main stem of the tree. It can be hypothesized that most of the defects that affect 

the sawlog volume of a tree do not clearly correlate with the properties of the tree crown. 

Thus, crooks in the stem or thick branches, for example, are difficult to observe from above, 

even if ALS data with a high point density (e.g. dozens of pulses m-2) were available. In some 

cases, the defects are completely internal (e.g. butt rot, blue stain fungi), which might not be 

detectable even in the field before the tree is felled. In such cases, it is evident that vertical 

airborne laser pulses cannot observe the defects. Of course, internal defects in some cases 

may be so severe that the vigor of the tree is also weaker and so, therefore, the tree crown is 

sparser and might exhibit a different color. In such cases, utilization of the intensity of ALS 

pulses and different wavelengths could help identify the symptoms (Kantola et al. 2013) and 

indicate non-suitable sawlogs.  

 

 

4.1 Prediction of sawlog volume with ABA 

 

With ABA, the ALS metrics are calculated from the above ground heights of the ALS echoes 

within the modelling units (15 m × 15 m cells in this thesis). Therefore, direct observation 

and classification of any defects that could cause sawlog reduction on an individual tree is 

basically impossible. Thus, the prediction of sawlog volume with ABA is based on the 

phenomenon that sawlog volume is more or less correlated to total volume, which in turn can 

be predicted quite accurately by means of ALS and ABA. Consequently, the accuracies 

associated with final sawlog volume predictions are heavily affected by the homogeneity of 

the data used with respect to tree quality. The effect of coincidence is the greater the more 

variation in quality there is in the field data. If the predictions are made with k-NN, it can be 

assumed that somewhat similar neighbors with respect to 3-D structure will be chosen, but 

the accuracy of predictions are highly prone to coincidence. However, extreme values caused 

by coincidence can be avoided by increasing the value of k. On the other hand, with the linear 

model the poor correlation between sawlog volume and ALS metrics leads to a poor model 

fit and inaccurate predictions. 

Based on the findings of this thesis and previous studies, it would seem that in boreal 

Scots pine or Norway spruce dominated forests RMSE% values of approximately 20–30 % 
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can be obtained at both the plot- and stand-level when sawlog volume is predicted using ALS 

data and ABA. This is more accurate than what have been observed in studies where the 

sawlog volume predictions have been derived by applying sawlog reduction models to stems 

predicted with ALS (Holopainen et al. 2010; Vähä-Konka et al. 2020; see section 1.3). 

However, here the focus was on the total sawlog volume, not on the species-specific sawlog 

volumes as in Holopainen et al. (2010) and Vähä-Konka et al. (2020). Even though studies 

II and III were carried out in Scots pine and Norway spruce dominated stands, respectively, 

focusing on the total sawlog volume instead of the species-specific ones probably enhanced 

the resulting accuracies.  

Comparison to traditional field work without the utilization of any ALS data (see e.g. 

Maltamo and Packalen 2014) is a challenge due to lack of adequate reports and studies where 

the accuracy of sawlog volume predictions based on subjective field work has been evaluated. 

In Sweden, Barth et al. (2015) did compare the accuracy of traditional field work to 

predictions based on ALS data and ITD approach. The results were validated against 

harvester data. In the case of spruce and pine sawlog volumes, the ALS-based predictions 

were more accurate than those based on traditional field work. In Finland, on the other hand, 

Haara and Korhonen (2004) used data that included predictions for various stand-level 

attributes assessed by dozens of forest planning experts. In the case of theoretical sawlog 

volume predictions, the mean error was 28.2 % in mature stands. It was also reported that the 

variation in predictions between experts was notable. Thus, also when compared to subjective 

and laborious field work, the methods based on straightforward modelling of sawlog volume 

by means of ALS data appear to provide more accurate predictions.  

When evaluating the applicability and goodness of the results of the presented methods 

outside the Nordic countries, it should be kept in mind that boreal forests are generally very 

homogeneous with respect to e.g. species-proportions. In Nordic countries, the most common 

and also the most important commercial species are the Scots pine and Norway spruce, and 

the number of different deciduous trees is small. In central Europe, for example, the number 

of different commercially important deciduous trees is already notably greater which 

complicates the prediction of sawlog volume at large-scale. In addition, the practices 

considering e.g. the applied logging methods and the number and pricing systems of different 

timber assortments vary notably between countries around the world. To the best of this 

author’s knowledge, there are no studies from other parts of the world to which the results of 

this thesis could be reasonably compared to.  

 

4.1.1 Reasons for the differences in obtained results 

 

The post aggregation RMSE% values associated with predicted sawlog volumes in studies I 

and II were of similar magnitude and are in line with the findings of earlier studies (e.g. 

Bollandsås et al. 2011). However, there were clear differences in the original 15 m × 15 m 

accuracies between studies II and III. In study II, the best RMSE% value of 30.9 % 

(alternative 2a) was obtained without auxiliary site type information, whereas the 

corresponding RMSE% value in study III was 54 % (alternative 7). Both alternatives were 

based on mixed-effects models and, thus, were the most logical for further comparison. The 

difference in the pre-aggregation accuracies could probably be explained by the many 

differences in the datasets and methods. These differences are elaborated below. 

First, the sawlog volume information was collected with different methods: in study II, 

visual bucking was used, whereas sawlog volume information was acquired with a CTL 

harvester in study III. Moreover, in study II, only sawlog-sized Scots pines were visually 
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bucked. In Finland, sawlogs are generally bucked from spruce and birch trees as well, so trees 

other than pine cannot be completely ignored. Therefore, theoretical sawlog volume was also 

used as the sawlog volume for spruce and deciduous trees. This means that spruce and 

deciduous trees were assumed to be flawless, which obviously would not be the case in 

practice. This assumption affected some of the results. For example, the results of alternative 

1 were too optimistic, as the sawlog volume for spruce and birch was predicted without 

errors, i.e. the relative weighting of the performance of the SRM was smaller. For alternative 

2, on the other hand, any conclusions as to the eventual effect of ignoring the quality of spruce 

and birch are difficult to be drawn. On mixed species plots, the observed sawlog volumes 

would have been smaller if the quality of spruce and birch were also considered. However, it 

is not known how it would have affected the regression coefficients and, furthermore, the 

accuracies of predictions. Potentially, the increased variability of the plots would have 

resulted in poorer model fits in LOOCV, and thus, less accurate predictions. Nonetheless, the 

proportion of spruce and deciduous trees was small, so it can be hypothesized that the total 

effect of assuming that spruce and birch were flawless was only minor.  

In study III, on the other hand, the sawlog volume was obtained only for spruce and pine: 

in Norway, birch or other deciduous trees are not generally bucked to sawlogs. Therefore, 

the presence of deciduous trees complicated the prediction of sawlog volume as they could 

not be identified and separated from coniferous species. In study III, the proportion of 

deciduous trees was 5.7 % of the total merchantable volume, so the effect of deciduous trees 

on the results should not be completely ignored. Overall, it seems that the differences in the 

methodology used in the acquisition of sawlog volume data were favorable for study II, thus, 

partly explaining the better performance. 

The second major difference occurred between the study areas. From the outset, species 

dominance differed between areas; the forests in Liperi were dominated by Scots pine (about 

85 % of total theoretical sawlog volume), whereas in study III, Norway spruce was clearly 

the most common tree species (about 87 % of total merchantable volume). The quality 

requirements for sawlogs are quite similar between pine and spruce excluding the properties 

of acceptable branches: for spruce sawlogs the branch-related requirements are usually less 

restricted than for pine sawlogs (SDC 2014). Consequently, it can be assumed that CBH is 

more correlated to quality in pines than in spruce. In Liperi, the 30 m × 30 m plots were 

mature and mostly dominated by Scots pine. Based on previous studies that predicted CBH 

by means of ALS (e.g. Maltamo et al. 2018), it can be assumed that the mean plot-level CBH 

could have been predicted with an accuracy of 1–2 m in Liperi as well. Thus, as such 

relatively accurate quality related information (for Scots pine stands) can be extracted from 

ALS data, it is plausible that Scots pine dominated stands are generally more suitable for the 

prediction of sawlog volume than Norway spruce dominated stands. This hypothesis is also 

supported by Korhonen et al. (2008), where separate sawlog volume models for pine and 

spruce were fitted. The RMSE values of the models were 18.9 and 40.1 m3 ha-1, respectively. 

However, it should be noted that there were only three pine dominated stands in the validation 

data. 

Moreover, the two study areas were also located geographically far from each other, one 

in eastern Finland (Liperi) and the other in south-eastern Norway (Romerike). It is clear that 

weather and general growth conditions differ between these areas. Location and weather 

conditions affect, for example, the probability and severity of the occurrence of biotic and 

abiotic disturbances, which further affect the quality of the trees. For example, the probability 

of insect caused damage (that completely prevents the bucking of sawlogs) is presumably 

greater in south eastern Norway than in eastern Finland. However, the datasets used here did 
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not include detailed information about the defects, so the effects of different locations on the 

accuracies of sawlog volume predictions is not known.  

Thirdly, the ALS datasets were also very different. In study II, point density, for example, 

was 13.2 pulses m-2, whereas it was approximately 0.7 pulses m-2 in study III. However, a 

greater point density with ABA does not automatically mean better performance, as shown 

by e.g. Gobakken and Næsset (2008). It is possible that the differences in the ALS datasets 

did not have any clear effect on the prediction of sawlog volume as individual defects cannot 

be detected in any case. More studies that evaluate the prediction of sawlog volumes with 

diverse datasets and methods (e.g. k-NN vs. LME-models) are needed to determine the most 

optimal methods for different conditions. More accurate sawlog volume predictions are 

needed for mixed species stands as well, and aerial images could potentially be used as 

auxiliary data to produce species-specific sawlog volume estimates (Maltamo and Packalen 

2014). 

 

4.1.2 Acquisition of training data 

 

From the perspective of operational inventories, the collection of training data is the greatest 

bottleneck that prevents the prediction of sawlog volume by means of ALS. Visual bucking 

is too laborious and expensive to be carried out at an operational scale. Harvester-based data, 

on the other hand, offer a straightforward and cost-effective way to record the sawlog 

volumes of trees. In general, harvesters could provide a huge amount of data for many 

purposes, especially if the spatial accuracy of the data was good (Lindroos et al. 2015). One 

approach is the use of local tree data banks consisting of ALS data and accurate 

measurements for each tree (as described in section 1.5.1). However, the time-window for 

the utilization of local harvester data is rather short as the data needs to be collected, 

preferably, within 12-months following the acquisition of the ALS data. Indeed, systems that 

provide submeter accuracy for the position of harvested trees have recently been developed 

for study purposes (Hauglin et al. 2017), but more product development is needed to upgrade 

all the required systems for operational use. Solutions with an accuracy of approximately 5 

m have also been introduced (Melkas and Riekki 2017; Saukkola et al. 2019), and as interest 

in precise positioning of harvested trees is substantial, it can be assumed that accurately 

positioned harvester data will become more readily available and utilized in the future. Such 

data will provide a really cost-effective mean to predict also the sawlog volume in ALS-based 

inventories. 

Alternatively, different laser scanning procedures carried out at ground level (TLS, 

mobile laser scanning, personal laser scanning) or with an UAV below the canopy, could 

potentially be used to estimate sawlog volumes. With these approaches, external defects and 

the tree diameters at different heights should be observable (Kankare et al. 2014a, Kankare 

et al. 2014b, Liang et al. 2014; Bauwens et al. 2016). However, these approaches do not 

provide spatially comprehensive data, so they could be used mainly to replace visual bucking 

and other manual measurements during the field sample plot measurements of ABA 

inventories (Lindberg et al. 2012). Another potential approach, at least for intensively 

managed plantations, is to collect the ALS data above the canopy but from a low flying 

altitude (e.g. < 100 m above ground). Depending on the ALS instrument and the aircraft the 

instrument is attached to, the resulting point density can be several hundred points m-2 and 

also the individual tree stems may be well visible in the point cloud allowing the evaluation 

of taper (Windrim and Bryson 2020). However, the areal coverage of this approach is not 

suitable for large-scale inventories either. All of the aforementioned approaches also need 
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more research and development before they can be effectively utilized in practice. Therefore, 

the problem of the collection of sawlog volume training data still exists in late 2020.  

 

4.1.3 The limited potential of ABA in the prediction of sawlog volume 

 

It would seem that if predictions with RMSE% values notably smaller than 20 % are required, 

then stand-specific auxiliary quality information must be collected in the field. This is 

because tree quality does not correlate strongly with the canopy layer. Such ground-level or 

otherwise highly detailed information can be acquired by visual evaluation/bucking and, 

potentially in the future, by laser scanners mounted on backpacks or UAV. Other information, 

such as site type (study II) or CBH, may be useful, particularly in Scots pine dominated 

stands. Bollandsås et al. (2011) and Peuhkurinen et al. (2007) have suggested that more 

auxiliary data is needed to improve ALS-based sawlog volume predictions. 

In the Romerike dataset, the within-stand correlation between the sawlog and 

merchantable volumes (= indirect description of how much the tree quality varies within a 

stand) was 0.83 (on average), which indicates that tree quality evaluation should be 

effectively generalizable to the stand-level. The same finding was also supported where 

sawlog volume predictions were derived as the mean of 10 field sample plots (Appendix B 

in study III), as the overall RMSE% value was only 4.2 %. Of course, the stands must always 

be meticulously delineated for good generalizability.  

 

 

4.2 Transferability of tree-level ALS-based models 

 

The total costs of an ALS inventory would decrease if existing field measurements from 

previous inventories could be effectively utilized in the new area of interest. Even though 

ITD is not (at least yet) operationally used, tree-level models have the potential to produce 

accurate quality-related predictions on mature stands. Thus, good transferability of ALS-

based tree-level models between inventory areas would allow for the establishment of local 

tree data banks (see section 1.5.1) from which new predictions could be derived 

automatically. This topic was assessed in study I, where the effects of transferring tree-level 

models from one inventory area (Liperi) to two other areas (Kiihtelysvaara and Koli) were 

tested. The focus was only in correctly detected sawlog-sized Scots pine trees, i.e. the 

traditional problems of ITD, related to tree detection and species recognition, were ignored. 

Therefore, the tree-level results obtained in study I are generalizable only to mature pine 

dominated stands with no overlapping tree crowns.  

As shown in previous ABA studies (Uuttera et al. 2006), the accuracy of each prediction 

decreased due to transfer. For some attributes, such as DBH and CBH, the decrease was only 

minor, whereas for volume-related attributes the decrease was more severe. In most cases, 

the resulting accuracy was better in Kiihtelysvaara than in Koli, thereby indicating 

differences in the ALS data acquisitions and/or structural properties of the forests. For 

example, it appeared that the laser pulses in Kiihtelysvaara penetrated the tree crowns deeper 

before backscattering, than in Liperi. In contrast, the first echo backscattered closer to the 

treetop in Koli than in Liperi. Consequently, height (H) was systematically underestimated 

in Kiihtelysvaara and was overestimated in Koli. It is probable that these results were mostly 

caused by differences in the acquisition of ALS data, although the structural differences in 

tree crowns cannot be excluded either (Gaveau and Hill 2003). Nevertheless, the ALS sensor 



45 

and the scanning parameters are selected on a case-by-case basis in practice, so the 

arrangement in study I was considered realistic. 

The effects of varying forest structures, on the other hand, should be minimized by 

transferring models only to nearby areas, and by a comprehensive training dataset that covers 

the variation in the validation areas. Obviously, this can be a challenge, as the local forest 

structure is always affected by local growth conditions and silvicultural activities carried out 

in the past, for example. Nevertheless, the training data in study I were comprehensive, and 

the distances between the training and validation areas were less than 100 km. In fact, the 

Koli study area is located in a protection area where no silvicultural activities had been carried 

out in the 15 years prior to the inventory. The Liperi and Kiihtelysvaara areas, on the other 

hand, were mostly privately owned, and thus, more intensively managed in general. This 

aspect could account for the larger systematic differences in tree crowns observed between 

the Liperi and Koli areas, and thus, partly explain the less accurate post-transfer results in 

Koli (compared to Kiihtelysvaara). Of course, the tree crowns may be different for other 

reasons as well.  

The remaining reasons for the poor transferability to Koli can be explained by the 

differences in the acquisition of ALS data. All the areas were scanned with a different ALS 

sensor, so it is likely that the sensor used in Koli behaved differently and produced different 

ALS point clouds compared to the sensor used in Liperi. Differences in the penetration of 

laser pulses before the first return have already been pointed out here, so other differences 

are also likely (e.g. Næsset 2009). For instance, the pulse density (5.2 pulses m-2) was clearly 

smaller in Koli than in Liperi (13.2 m-2) and Kiihtelysvaara (14.7 m-2) (Table 2). 

Consequently, the average number of first echoes backscattered from each tree crown was 

147 in Koli, but was 243 and 276 in Liperi and Kiihtelysvaara, respectively. The notably 

sparser pulse density in Koli is another plausible explanation for the less accurate results. 

Nevertheless, it appeared that the Liperi and Kiihtelysvaara datasets corresponded with each 

other better than the Liperi and Koli datasets, and therefore, a set of more similar neighbors 

in k-NN was found for the pine trees in Kiihtelysvaara than in Koli.  

It should be noted that study I was only a case study, i.e. with different inventory areas 

the results could have been notably different. In addition, problems with tree detection and 

tree species recognition also accumulate uncertainty in practical applications. Moreover, 

stem attributes are, in general, a challenge to predict from the properties of tree crowns, so 

some degree of decrease in accuracy can always be expected when tree-level models are 

transferred from the training area to new inventory areas. In particular, the accuracies of 

volume-related predictions seem to be prone to larger decreases. It is probably too optimistic 

to transfer models without any field measurements to the new area. Instead, to obtain more 

accurate predictions, even a small number of measurements should be carried out to calibrate 

the models in the new areas (Korhonen et al. 2019). 

 

 

4.3 Field calibrations of merchantable and sawlog volumes 

 

In practical forestry, mature stands are usually field visited before clear-cutting. If the stands 

are physically visited, carrying out some simple manual measurements during the visit should 

not increase the total costs dramatically. Thus, only a little extra effort would be required to 

obtain more accurate predictions, especially if the correlation between the different attributes 

can be utilized so that an easily measurable attribute can be used to calibrate another attribute 

that is laborious to be measured. In the future, automatic measurements, such as personal 
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laser scanning, could potentially be utilized as well. In study III, the potential of using 1–10 

manual angle gauge measurements to calibrate merchantable and sawlog volumes was tested. 

The initial predictions were made with LME models, and the calibrations were based on the 

prediction of stand-level random effects using basal area measurements and cross-model 

correlations of residuals and random effects.  

The results showed that the accuracy of stand-level merchantable volume predictions can 

be increased with basal area information. In the absence of calibrations, the RMSE% value 

was 15.8 %, and decreased to 11.9 %. with 10 angle gauge measurements. However, the 

correlation between basal area and sawlog volume was not sufficiently strong, in general, to 

successfully calibrate the sawlog volume predictions. On some stands, the accuracy of the 

sawlog volume prediction was slightly increased, but no common factor with respect to forest 

conditions on those stands could be extracted.  

Merchantable volume consists of the volume of all logs that pass the harvester head, 

regardless of the timber assortment. Therefore, compared to the total volume of a stem, only 

the volumes of the tree top and the above-ground stump are excluded from the merchantable 

volume. It can be assumed that the variation in the relative volumes of the tree top and the 

above-ground stump are rather constant between harvested trees, i.e. the merchantable 

volume is highly correlated to total volume. In traditional field work, mean height and basal 

area measurements have been used to approximate the total volume (m3 ha-1) (Nyyssönen 

1954). Thus, as mean height was generally provided by the ALS data, and basal area was 

manually measured, it was not surprising that the accuracies of merchantable volume 

predictions were improved by the implemented calibrations.  

Sawlog volume, on the other hand, includes a lot of uncertainty that is caused by the 

various requirements for species, dimensions, and the qualitative properties of the stem, in 

particular. A grid cell with only mature birch trees would result in no sawlog volume, whereas 

the sawlog volume for mature spruce or pine dominated cell could be dozens of cubic meters. 

Therefore, deciduous trees reduce the correlation between the ALS point cloud and the 

sawlog volume. In addition, same basal areas may consist of numerous small trees, or of a 

few large trees. Of course, it can be assumed that on mature stands, large clusters of small 

diameter trees are unlikely, but as minimum diameters are applied for sawlogs, a substantial 

basal area that constitutes smaller trees would result in a small (or even zero) sawlog volume.  

The correlation between basal area and sawlog volume is further reduced by the possible 

defects in the tree stems. The effects of basal area on tree quality are anything but 

unambiguous, especially for Norway spruce. For Scots pine, large stem numbers in young 

stands usually improve the quality with respect to branches (Lämsä et al. 1990). However, 

due to tending of the seedling stand, self-thinning and possible silvicultural thinnings during 

the rotation time, the basal area of a mature stand is not dependent on the average growing 

space in the young phase. On the other hand, poor quality trees are usually removed in 

thinnings, so in that sense, a smaller basal area could indicate better quality on average if 

compared to a stand without intensive thinning. However, thinnings decrease the competition 

between the remaining trees, allowing them to grow faster than without thinning. Therefore, 

the timing of thinning affects the sawlog volume as well, as does possible fertilization 

applications. Overall, as tree quality is affected by many factors (e.g. genetics, site type, 

competition, past silvicultural activities that include possible logging scars, abiotic and biotic 

disturbances) it can be assumed that the correlation between basal area and tree quality is 

weak. Furthermore, the more defects in a tree, the weaker the correlation between basal area 

and sawlog volume.  
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Even though the accuracy of sawlog volume predictions was not generally increased by 

calibrations, it is obvious that if the stands are visited, the external tree quality could also be 

visually assessed during the visit. This method would be subjective but by applying it as “a 

sawlog reduction model” to the merchantable volume, it could result in improved accuracy 

of estimates. Consequently, no initial predictions for sawlog volume would be needed, i.e. 

the collection of (expensive) training data for sawlog volume models would not be needed 

either.  

In study III, angle gauge plots were also compared to fixed radius plots. Using an angle 

gauge is fast, but some inaccuracy is introduced when the estimates are merged to the fixed-

sized calibration plots. Moreover, as accurate in-situ positioning of the plots may take several 

minutes (Valbuena 2014), the fixed radius plot could be delineated, while the plot is being 

positioned, and the DBH of all included trees could also be measured in that time. However, 

the results from study III showed that fixed radius plots yielded only slightly more accurate 

calibrations. Therefore, angle gauge plots appear to be the more practical alternative to 

measure the basal area for the calibration.  

 

 

5 CONCLUSIONS 
 

 

Predicting commercial tree quality, especially sawlog volume, by means of ALS remains a 

challenge. However, the results from this dissertation seem to verify that in boreal forests 

sawlog volume predictions with an RMSE% value of approximately 20–30 % should be 

obtainable for both plot- and stand-levels by means of ALS data. Whether predictions of this 

accuracy are adequate for its adaptation in practice remains unclear. Consequently, more 

studies with a wider range of datasets and methods are needed to demonstrate the 

applicability of predicting sawlog volume by means of ALS on a larger scale and in different 

types of forests. The problems related to the acquisition of training data for sawlog volume 

models also needs to be solved. Harvester collected data has considerable potential for this 

purpose, provided that each harvested tree can be automatically positioned with a sub-meter 

accuracy. To obtain sawlog volume predictions with a RMSE% value notably less than 20 

%, the collection or measurement of some auxiliary stand-specific quality information from 

below the canopy is also required. In mature boreal forests, tree quality often is somewhat 

constant within a stand, thus, effectively allowing the generalization of a few field 

measurements to the entire stand-level.  

The study-specific results in this thesis have also shown that it is unlikely that basal area 

information can be utilized to improve the accuracy of sawlog volume predictions in boreal, 

Norway spruce dominated forests. For the calibration of merchantable volume, on the other 

hand, basal area information is likely to be sufficient. In addition, a notable decrease in 

accuracy can be expected when tree-level ALS-based models are transferred from the training 

area to new inventory areas.  



48 

REFERENCES 
 

 

Andersen H.E., McGaughey R.J., Reutebuch S.E. (2005). Estimating forest canopy fuel 

parameters using lidar data. Remote Sensing of Environment 94: 441–449. 

https://doi.org/10.1016/j.rse.2004.10.013 

 

Axelsson P. (1999). Processing of laser scanner data — algorithms and applications. ISPRS 

Journal of Photogrammetry and Remote Sensing 54: 138–147. 

https://doi.org/10.1016/S0924-2716(99)00008-8 

 

Barth A., Möller J.J., Wilhelmsson L., Arlinger J., Hedberg R., Söderman U. (2015). A 

Swedish case study on the prediction of detailed product recovery from individual stem 

profiles based on airborne laser scanning. Annals of Forest Science 72(1): 47–56. 

https://doi.org/10.1007/ s13595-014-0400-6 

 

Bauwens S., Bartholomeus H., Calders K., Lejeune P. (2016). Forest Inventory with 

Terrestrial LiDAR: A Comparison of Static and Hand-Held Mobile Laser Scanning. Forests 

7(127): 1–17. https://doi.org/10.3390/f7060127 
 

Bollandsås O.M., Maltamo M., Gobakken T., Lien V., Næsset E. (2011). Prediction of 

Timber Quality Parameters of Forest Stands by Means of Small Footprint Airborne Laser 

Scanner data. International Journal of Forest Engineering 22(1): 14–23. 

https://doi.org/10.1080/14942119.2011.10702600 

 

Breidenbach J., Astrup R. (2014). The Semi-Individual Tree Crown Approach. In: Maltamo 

M., Næsset E. & Vauhkonen J. (Eds.). Forestry Applications of Airborne Laser Scanning – 

concepts and case studies. Springer. Managing Forest Ecosystems 27: 113–133. 

https://doi.org/10.1007/978-94-017-8663-8 

 

Cajander A.K. (1949). Forest types and their significance. Acta Forestalia Fennica 56(5): 

1–71. https://doi.org/10.14214/aff.7396 

 

Crookston N.L., Finley A.O. (2008). yaImpute: an R package for kNN imputation. Journal 

of Statistical Software. 23(10): 1–16. https://doi.org/10.18637/jss.v023.i10 

 

Dalponte M., Ene L.T., Gobakken T., Næsset E., Gianelle D. (2018). Predicting selected 

forest stand characteristics with multispectral ALS data. Remote Sensing 10(4): 586. 

https:// doi.org/10.3390/rs10040586 

 

Dean T.J., Cao Q.V., Roberts S.D., Evans, D.L. (2009). Measuring heights to crown base 

and crown median with LiDAR in a mature, even-aged loblolly pine stand. Forest Ecology 

and Management. 257(1): 126-133. https://doi.org/10.1016/j.foreco.2008.08.024 

 

Edelsbrunner H., Kirkpatrick D.G., Seidel R. (1983). On the shape of a set of points in the 

plane. IEEE Transactions on Information Theory. 29(4): 551-559. 

https://doi.org/10.1109/TIT.1983.1056714 

 

https://doi.org/10.1016/j.rse.2004.10.013
https://doi.org/10.1016/S0924-2716(99)00008-8
https://doi.org/10.3390/f7060127
https://doi.org/10.1109/TIT.1983.1056714


49 

Erdody T.L, Moskal L.M. (2010). Fusion of LiDAR and imagery for estimating forest 

canopy fuels. Remote Sensing of Environment 114: 725–737. 

https://doi.org/10.1016/j.rse.2009.11.002 

 

Eskelson B.N.I., Temesgen H., Lemay V., Barrett T.M., Crookston N.L., Hudak A.T. 

(2009). The roles of nearest neighbor methods in imputing missing data in forest inventory 

and monitoring databases. Scandinavian Journal of Forest Research 24(3): 235–246. 

https://doi.org/10.1080/02827580902870490 

 

Fahrmeir L., Kneib T., Lang S., Marx B. (2013). Regression Models, Methods and 

Applications. 1st edition. Springer-Verlag, Berlin Heidelberg. 698 p. 

https://doi.org/10.1007/978-3-642-34333-9 

 

Gajardo J., García M., Riaño D. (2014). Applications of Airborne Laser Scanning in Forest 

Fuel Assessment and Fire Prevention. In: Maltamo M., Næsset E. & Vauhkonen J. (Eds.). 

Forestry Applications of Airborne Laser Scanning – concepts and case studies. Springer. 

Managing Forest Ecosystems 27: 439–462. https://doi.org/10.1007/978-94-017-8663-8 

 

Gaveau D., Hill R. (2003). Quantifying canopy height underestimation by laser pulse 

penetration in small-footprint airborne laser scanning data. Canadian Journal of Remote 

Sensing 29(5): 650–657. https://doi.org/10.5589/m03-023 

 

Gobakken T., Næsset E. (2008). Assessing effects of laser point density, ground sampling 

intensity, and field sample plot size on biophysical stand properties derived from airborne 

laser scanner data. Canadian Journal of Forest Research 38: 1095–1109. 

https://doi.org/10.1139/X07-219 

 

Gobakken T., Næsset E. (2009) Assessing effects of positioning errors and sample plot size 

in biophysical stand properties derived from airborne laser scanner data. Canadian Journal 

Forest Research 39: 1036–1052. https://doi.org/10.1139/X09-025 

 

González-Ferreiro E., Arellano-Pérez S., Castedo-Dorado F., Hevia A., Vega J.A., Vega-

Nieva D., Álvarez-González J.G., Ruiz-González A.D. (2017) Modelling the vertical 

distribution of canopy fuel load using national forest inventory and low-density airbone 

laser scanning data. PLoS ONE 12(4): e0176114. 

https://doi.org/10.1371/journal.pone.0176114 

 

Goodwin N.R., Coops N.C., Culvenor D.S. (2006). Assessment of forest structure with 

airborne LiDAR and the effects of platform altitude. Remote Sensing of Environment. 

103(2): 140–152. https://doi.org/10.1016/j.rse.2006.03.003 

 

Gopalakrishnan R., Thomas V., Coulston J.W., Wynne R. (2015). Prediction of canopy 

heights over a large region using heterogeneous lidar datasets: efficacy and challenges. 

Remote Sensing 7: 11036–11060. https://doi.org/10.3390/rs70911036 

 

Haapanen M., Hynynen J., Ruotsalainen S., Siipilehto J., Kilpeläinen M-L. (2016). Realised 

and projected gains in growth, quality and simulated yield of genetically improved Scots 

https://doi.org/10.1139/X07-219
https://www.researchgate.net/deref/http%3A%2F%2Fdx.doi.org%2F10.1139%2FX09-025


50 

pine in southern Finland. European Journal of Forest Research 135: 997–1009. 

https://doi.org/10.1007/s10342-016-0989-0 

 

Haara A., Korhonen K.T. (2004) Kuvioittaisen arvioinnin luotettavuus. Metsätieteen 

aikakauskirja 4: 489–508. https://doi.org/10.14214/ma.5667 (In Finnish) 

 

Haglöf Sweden. (2016). The Vertex IV. http://www.haglofcg.com/index.php/en/support-

news/download/software/en/leaflets/45-vertex-iv-product-sheet/file [Cited 13 Oct 2020]. 

 

Hauglin M., Hansen E., Næsset E., Busterud B., Gjevestad J., Gobakken T. (2017). 

Accurate single-tree positions from a harvester: a test of two global satellite-based 

positioning systems. Scandinavian Journal of Forest Research 32(8): 774–781. 

https://doi.org/10.1080/02827581.2017.1296967 

 

Hauglin M., Hansen E., Næsset E., Gobakken T. (2018). Utilizing accurately positioned 

harvester data: modelling forest volume with airborne laser scanning. Canadian Journal of 

Forest Research 48: 913–922. https://doi.org/10.1139/cjfr-2017-0467 

 

Hautamäki S., Kilpeläinen H., Kannisto K., Wall T., Verkasalo E. (2010). Factors Affecting 

the Appearance Quality and Visual Strength Grade Distributions of Scots Pine and Norway 

Spruce Sawn Timber in Finland and North-Western Russia. Baltic Forestry 16(2): 217–234. 

 

Hawbaker T.J., Gobakken T., Lesak A., Trømborg E., Contrucci K., Radeloff V. (2010). 

Light detection and ranging-based measures of mixed hardwood forest structure. Forest 

Science 56(3): 313–326. https://doi.org/10.1093/forestscience/56.3.313  

 

Hollaus M., Wagner W., Maier B., Schadauer, K. (2007). Airborne laser scanning of forest 

stem volume in a mountainous environment. Sensors. 7: 1559–1577. 

https://doi.org/10.3390/s7081559 

 

Hollaus M., Dorigo W., Wagner W., Schadauer K., Höfle B., Maier B. (2009). Operational 

wide-area stem volume estimation based on airborne laser scanning and national forest 

inventory data. International Journal of Remote Sensing 30(19): 5159-5175. 

https://doi.org/10.1080/01431160903022894 

 

Hollaus M., Mücke W., Roncat A., Pfeifer N., Briese C. (2014). Full-Waveform Airborne 

Laser Scanning Systems and Their Possibilities in Forest Applications. In: Maltamo M., 

Næsset E. & Vauhkonen J. (Eds.). Forestry Applications of Airborne Laser Scanning – 

concepts and case studies. Springer. Managing Forest Ecosystems 27: 113–133. 

https://doi.org/10.1007/978-94-017-8663-8 

 

Holmgren J., Nilsson M., Olsson H. (2003). Simulating the effects of lidar scanning angle 

for estimation of mean tree height and canopy closure. Canadian Journal of Remote 

Sensing. 29(5): 623–632. https://doi.org/10.5589/m03-030 

 

Holmgren J., Persson, Å. (2004). Identifying species of individual trees using airborne laser 

scanner. Remote Sensing of Environment 90: 415–423.             

https://doi.org/10.1016/S0034-4257(03)00140-8 

https://doi.org/10.14214/ma.5667
http://www.haglofcg.com/index.php/en/support-news/download/software/en/leaflets/45-vertex-iv-product-sheet/file
http://www.haglofcg.com/index.php/en/support-news/download/software/en/leaflets/45-vertex-iv-product-sheet/file
https://doi.org/10.1093/forestscience/56.3.313
https://doi.org/10.3390/s7081559
https://doi.org/10.1016/S0034-4257(03)00140-8


51 

Holmgren J., Barth A., Larsson H., Olsson H. (2012). Prediction of stem attributes by 

combining airborne laser scanning and measurements from harvesters. Silva Fennica 46(2): 

227–239. https://doi.org/10.14214/sf.56 

 

Holopainen M., Vastaranta M., Rasinmäki J., Kalliovirta J., Mäkinen A., Haapanen R., 

Melkas T., Yu X., Hyyppä J. (2010). Uncertainty in timber assortment estimates predicted 

from forest inventory data. European Journal of Forest Research 129: 1131–1142. 

https://doi.org/10.1007/s10342-010-0401-4 

 

Hopkinson C. (2007). The influence of flying altitude, beam divergence, and pulse 

repetition frequency on laser pulse return intensity and canopy frequency distribution. 

Canadian Journal of Remote Sensing 33(4): 312–324. https://doi.org/10.5589/m07-029 

 

Hudak A.T., Crookston N.L, Evans J.S., Hall D.E., Falkowski M.J. (2008). Nearest 

neighbor imputation of species-level, plot-scale forest structure attributes from LiDAR 

data. Remote Sensing of Environment 112(5): 2232–2245. 

https://doi.org/10.1016/j.rse.2007.10.009 

 

Hyyppä E., Hyyppä J., Hakala T., Kukko A., Wulder M.A, White J.C., Pyörälä J., Yu X., 

Wang Y., Virtanen J-P., Pohjavirta O., Liang X., Holopainen M., Kaartinen H. (2020). 

Under-canopy UAV laser scanning for accurate forest field measurements. ISPRS Journal 

of Photogrammetry and Remote Sensing 164: 41–60. 

https://doi.org/10.1016/j.isprsjprs.2020.03.021 

 

Hyyppä J., Hyyppä H., Inkinen M., Engdahl M., Linko S., Zhu Y-H. (2000). Accuracy 

comparison of various remote sensing data sources in the retrieval of forest stand attributes. 

Forest Ecology and Management 128: 109–120.                     

https://doi.org/10.1016/S0378-1127(99)00278-9 

 

Hyyppä J., Kelle O., Lehikoinen M., Inkinen M. (2001). A segmentation based method to 

retrieve stem volume estimates from 3-D tree height models produced by laser scanners. 

IEEE Transactions on Geoscience and Remote Sensing 39(5): 969–975. 

https://doi.org/10.1109/36.921414 

 

Isenburg M. (2014). Rasterizing perfect canopy height models from LiDAR [online]. 

Available from https://rapidlasso.com/2014/11/04/rasterizing-perfectcanopy-height-models-

from-lidar/ [Cited 8 Jan 2020]. 

 

Jakubowski M.K., Guo Q., Kelly M. (2013). Tradeoffs between lidar pulse density and 

forest measurement accuracy. Remote Sensing of Environment 130: 245–253. 

https://doi.org/10.1016/j.rse.2012.11.024 

 

Kaartinen H., Hyyppä J., Yu X., Vastaranta M., Hyyppä H., Kukko A., Holopainen M., 

Heipke C., Hirschmugl M., Morsdorf F., Næsset E., Pitkänen J., Popescu S., Solberg S., 

Wolf B.M., Wu J-C. (2012). An international comparison of individual tree detection and 

extraction using airborne laser scanning. Remote Sensing 4: 950–974. 

https://doi.org/10.3390/rs4040950 

 

https://doi.org/10.1016/S0378-1127(99)00278-9


52 

Kaartinen H., Hyyppä J., Vastaranta M., Kukko A., Jaakkola A., Yu X., Pyörälä J., Liang 

X., Liu J., Wang Y., Kaijaluoto R., Melkas T., Holopainen M., Hyyppä H. (2015). 

Accuracy of Kinematic Positioning Using Global Satellite Navigation Systems under Forest 

Canopies. Forests 6: 3218–3236. https://doi.org/10.3390/f6093218 

 

Kalliovirta J., Tokola T. (2005). Functions for estimating stem diameter and tree age using 

tree height, crown width and existing stand data bank information. Silva Fennica 39: 227–

248. https://doi.org/10.14214/sf.386 

 

Kangas A., Mäkinen H., Lyhykäinen H.T., (2010). Value of quality information in timber 

bidding. Canadian Journal of Forest Research 40: 1781–1790.   

https://doi.org/10.1139/X10-093 

 

Kangas A., Hurttala H., Mäkinen H., Lappi J. (2012). Estimating the value of wood quality 

information in constrained optimization. Canadian Journal of Forest Research 42: 1347–

1358. https://doi.org/10.1139/X2012-072 

 

Kankare V., Joensuu M., Vauhkonen J., Holopainen M., Tanhuanpää T., Vastaranta M., 

Hyyppä J., Hyyppä H., Alho P., Rikala J., Sipi M. (2014a). Estimation of the Timber 

Quality of Scots Pine with Terrestrial Laser Scanning. Forests 5: 1879–1895. 

https://doi.org/10.3390/f5081879 

 

Kankare V., Vauhkonen J., Tanhuanpää T., Holopainen M., Vastaranta M., Joensuu M., 

Krooks A., Hyyppä J., Hyyppä H., Alho P., Viitala R. (2014b). Accuracy in estimation of 

timber assortments and stem distribution – A comparison of airborne and terrestrial laser 

scanning techniques. ISPRS Journal of Photogrammetry and Remote Sensing 97: 89–97. 

http://doi.org/10.1016/j.isprsjprs.2014.08.008 

 

Kantola T., Vastaranta M., Lyytikäinen-Saarenmaa P., Holopainen M., Kankare V., Talvitie 

M., Hyyppä, J. (2013). Classification of Needle Loss of Individual Scots Pine Trees by 

Means of Airborne Laser Scanning. Forests 4: 386–403. https://doi.org/10.3390/f4020386 

 

Keränen J., Maltamo M., Packalen P. (2016). Effect of flying altitude, scanning angle and 

scanning mode on the accuracy of ALS based forest inventory. International Journal of 

Applied Earth Observation and Geoinformation 52: 349–360. 

https://doi.org/10.1016/j.jag.2016.07.005 

 

Keski-Suomen Metsäkeskus. (1999). Puutavaralajien mitta- ja laatuvaatimukset. 

http://www.virtuaali.info/opetusmaatilat/13/file/puutavaranLaatuvaatimukset_1999_www.p

df [Cited 19 March 2020]. (In Finnish) 

 

Khosravipour A., Skidmore A.K., Isenburg M., Wang T., Hussin Y.A. (2014). Generating 

pit-free canopy height models from airborne LiDAR. Photogrammetric Engineering and 

Remote Sensing 80: 863–872. https://doi.org/10.14358/PERS.80.9.863 

 

Kirkpatrick S., Gelatt C.D., Vecchi M.P. (1983). Optimization by simulated annealing. 

Science 220(4598): 671–680. https://doi.org/10.1126/science.220.4598.671 

 



53 

Koch B., Kattenborn T., Straub C., Vauhkonen J. (2014). Segmentation of Forest to Tree 

Objects. In: Maltamo M., Næsset E. & Vauhkonen J. (Eds.). Forestry Applications of 

Airborne Laser Scanning – concepts and case studies. Springer. Managing Forest 

Ecosystems 27: 89–112. https://doi.org/10.1007/978-94-017-8663-8 

 

Korhonen K.T., Ihalainen A., Ahola A., Heikkinen J., Henttonen H.M., Hotanen J.-P., 

Nevalainen S., Pitkänen J., Strandström M., Viiri H. (2017). Suomen metsät 2009–2013 ja 

niiden kehitys 1921–2013. Luonnonvara- ja biotalouden tutkimus 59: 1–86. 

http://urn.fi/URN:ISBN:978-952-326-467-0 [Cited 28 October 2020] (In Finnish) 

 

Korhonen L., Peuhkurinen J., Malinen J., Suvanto A., Maltamo M., Packalen P., Kangas J. 

(2008). The use of airborne laser scanning to estimate sawlog volumes. Forestry 81(4): 

499–510. https://doi.org/10.1093/forestry/cpn018 

 

Korhonen L., Repola J., Karjalainen T., Packalen P., Maltamo M. (2019). Transferability 

and calibration of airborne laser scanning based mixed-effects models to estimate the 

attributes of sawlog-sized Scots pines. Silva Fennica 53(3): 1–18. 

https://doi.org/10.14214/sf.10179 

 

Korpela I., Tuomola T., Välimäki, E. (2007). Mapping forest plots: an efficient method 

combining photogrammetry and field triangulation. Silva Fennica 41: 457–469. 

https://doi.org/10.14214/sf.283 

 

Korpela I., Ørka H.O., Maltamo M., Tokola T., Hyyppä J. (2010). Tree species 

classification using airborne LiDAR — effects of stand and tree parameters, downsizing of 

training set, intensity normalization and sensor type. Silva Fennica 44: 319–339. 

https://doi.org/10.14214/sf.156 

 

Kotivuori E., Korhonen L., Packalen P. (2016). Nationwide airborne laser scanning based 

models for volume, biomass and dominant height in Finland. Silva Fennica 50(4): 1–28. 

https://doi.org/10.14214/sf.1567 

 

Kotivuori E., Maltamo M., Korhonen L., Packalen P. (2018). Calibration of nationwide 

airborne laser scanning based stem volume models. Remote Sensing of Environment 210: 

179-192. https://doi.org/10.1016/j.rse.2018.02.069 

 

Kuusisto L., Kangas A. (2008). Harhakomponentit kuvioittaisen arvioinnin puuston 

tilavuuden laskentaketjussa. Metsätieteen aikakauskirja 3: 177–190. 

https://doi.org/10.14214/ma.6389 (In Finnish) 

 

Lappi, J. (1991). Calibration of height and volume equations with random parameters. 

Forest Science 37: 781–801. https://doi.org/10.1093/forestscience/37.3.781 

 

Latifi H., Nothdurft A., Koch B. (2010). Non-parametric prediction and mapping of 

standing timber volume and biomass in a temperate forest: applications of multiple 

optical/LiDAR-derived predictors. Forestry 83(4): 395–407. 

https://doi.org/10.1093/forestry/cpq022 

 

http://urn.fi/URN:ISBN:978-952-326-467-0
https://doi.org/10.14214/sf.10179
https://doi.org/10.1093/forestscience/37.3.781
https://doi.org/10.1093/forestry/cpq022


54 

Liang X., Kukko A., Kaartinen H., Hyyppä J., Yu X., Jaakkola A., Wang Y. (2014). 

Possibilities of a Personal Laser Scanning System For Forest Mapping And Ecosystem 

Services. Sensors 14(1): 1228–1248. https://doi.org/10.3390/s140101228 
 

Lindberg E., Holmgren J., Olofsson K., Olsson H. (2012). Estimation of stem attributes 

using a combination of terrestrial and airborne laser scanning. European Journal of Forest 

Research 131: 1917–1931. https://doi.org/10.1007/s10342-012-0642-5 

 

Lindroos O., Ringdahl O., Hera PL., Hohnloser P., Hellström T. (2015). Estimating the 

position of the harvester head – a key step towards the precision forestry in the future? 

Croatian Journal of Forest Engineering 36: 147–164.  

 

Lämsä P., Kellomäki S., Väisänen H. (1990). Nuorten mäntyjen oksikkuuden riippuvuus 

puuston rakenteesta ja kasvupaikan viljavuudesta. [Branchiness of young Scots pines as 

related to stand structure and site fertility]. Folia Forestalia 746: 1–22. 

http://urn.fi/URN:ISBN:951-40-1092-2 [Cited 28 October 2020] (In Finnish) 

 

Magnusson M. (2006). Evaluation of remote sensing techniques for estimation of forest 

variables at stand level. Acta universitatis agriculturae Sueciae 85. Doctoral thesis, Swedish 

University of Agricultural Sciences, Faculty of Forest Sciences. 38 p. 

 

Malinen J., Kilpeläinen H., Piira T., Redsven V., Wall T., Nuutinen T. (2007). Comparing 

model-based approaches with bucking simulation-based approach in the prediction of 

timber assortment recovery. Forestry 80(3): 309–321. 

https://doi.org/10.1093/forestry/cpm012 

 

Maltamo M., Hyyppä J., Malinen J. (2006). A comparative study of the use of laser scanner 

data and field measurements in the prediction of crown height in boreal forests. 

Scandinavian Journal of Forest Research 21(3): 231–238. 

https://doi.org/10.1080/02827580600700353 

 

Maltamo M., Peuhkurinen J., Malinen J., Vauhkonen J., Packalen P., Tokola T. (2009a). 

Predicting tree attributes and quality characteristics of Scots pine using airborne laser 

scanning data. Silva Fennica 43(3): 507–521. https://doi.org/10.14214/sf.203 

 

Maltamo M, Packalen P, Suvanto A, Korhonen KT, Mehtätalo L, Hyvönen P. (2009b). 

Combining ALS and NFI training data for forest management planning – a case study in 

Kuortane, Western Finland. European Journal of Forest Research 128: 305–317. 

https://doi.org/10.1007/s10342-009-0266-6 

Maltamo M., Bollandsås O.M., Vauhkonen J., Breidenbach J., Gobakken T., Næsset E. 

(2010). Comparing different methods for prediction of mean crown height in Norway 

spruce stands using airborne laser scanner data. Forestry 83(3): 257–268. 

https://doi.org/10.1093/forestry/cpq008 

 

Maltamo M., Bollandsås O.M., Næsset E., Gobakken T., Packalen P. (2011). Different plot 

selection strategies for field training data in ALS-assisted forest inventory. Forestry 84(1): 

23–31. https://doi.org/10.1093/forestry/cpq039 

 

http://urn.fi/URN:ISBN:951-40-1092-2
https://doi.org/10.1007/s10342-009-0266-6
https://doi.org/10.1093/forestry/cpq008


55 

Maltamo M., Mehtätalo L., Vauhkonen J., Packalen P. (2012). Predicting and calibrating 

tree size and quality attributes by means of airborne laser scanning and field measurements. 

Canadian Journal of Forest Research 42(11): 1896–1907.       

https://doi.org/10.1139/x2012-134 

 

Maltamo M., Gobakken T. (2014). Predicting Tree Diameter Distributions. In: Maltamo 

M., Næsset E. & Vauhkonen J. (Eds.). Forestry Applications of Airborne Laser Scanning – 

concepts and case studies. Springer. Managing Forest Ecosystems 27: 177–191. 

https://doi.org/10.1007/978-94-017-8663-8 

 

Maltamo M., Packalen P. (2014). Species-Specific Management Inventory in Finland. In: 

Maltamo M., Næsset E. & Vauhkonen J. (Eds.). Forestry Applications of Airborne Laser 

Scanning – concepts and case studies. Springer. Managing Forest Ecosystems 27: 241–252. 

https://doi.org/10.1007/978-94-017-8663-8 

 

Maltamo M., Karjalainen T., Repola J., Vauhkonen J. (2018). Incorporating tree- and stand-

level information on crown base height into multivariate forest management inventories 

based on airborne laser scanning. Silva Fennica 52(3): 1–18. 

https://doi.org/10.14214/sf.10006 

 

Maltamo M., Hauglin M., Næsset E., Gobakken T. (2019). Estimating stand level stem 

diameter distribution utilizing harvester data and airborne laser scanning. Silva Fennica 

53(3): 1–19. https://doi.org/10.14214/sf.10075  

 

McRoberts R.E., Andersen H-E., Næsset E. (2014). Using Airborne Laser Scanning Data to 

Support Forest Sample Surveys. In: Maltamo M., Næsset E. & Vauhkonen J. (Eds.). 

Forestry Applications of Airborne Laser Scanning – concepts and case studies. Springer. 

Managing Forest Ecosystems 27: 269–292. https://doi.org/10.1007/978-94-017-8663-8 

 

Mehtätalo L. (2002). Valtakunnalliset puukohtaiset tukkivähennysmallit männylle, 

kuuselle, koivuille ja haavalle. [Nationwide species-specific sawlog reduction models for 

Scots pine, Norway spruce, birches and aspen.] Metsätieteen aikakauskirja 4: 575–591. 

https://doi.org/10.14214/ma.6196 (In Finnish) 

 

Mehtätalo L., Lappi J. (2020). Biometry for Forestry and Environmental Data: With 

Examples in R. New York: Chapman and Hall/CRC. 

https://doi.org/10.1201/9780429173462 

 

Melkas T., Riekki K. (2017). The Positioning Accuracy of Trees Based on Harvester 

Location and Harvester Head Position Measurements—A Computational Algorithm for 

Improving the Estimate for Harvester Head Position. Metsätehon Tuloskalvosarja 9b/2017. 

Metsäteho Oy: Vantaa, Finland. http://www.metsateho.fi/the-positioning-accuracy-of-trees-

based-on-harvester-location/ [Cited 5 June 2020]. 

 

Metsäkeskus [Finnish Forest Centre]. (2016). Suomen Metsäkeskuksen metsävaratiedon 

laatuseloste. [Quality description for the Forest Resource Information of Finnish Forest 

Centre.] https://www.metsakeskus.fi/sites/default/files/metsavaratiedon_laatuseloste.pdf 

[Cited 12 October 2020] (In Finnish). 

https://doi.org/10.14214/sf.10075
https://doi.org/10.14214/ma.6196
https://doi.org/10.1201/9780429173462


56 

 

Metsäkeskus [Finnish Forest Centre]. (2017). Metsään.fi – Your online forest. 

https://www.metsakeskus.fi/sites/default/files/metsaanfi-eservices-for-forest-owners-

broschyr.pdf [Cited 12 October 2020]. 

 

Metsäkeskus [Finnish Forest Centre]. (2018). Puustotulkintakoealojen maastotyöohje. 

[Instructions for fieldwork of sample plot measurements]. 

https://www.metsaan.fi/sites/default/files/avoin-metsatieto-kaukokartoituskoealat-

maastotyo-ohje.pdf [Cited 12 October 2020]. (In Finnish). 

 

Moeur M., Stage A.R. (1995). Most similar neighbor: an improved sampling inference 

procedure for natural resource planning. Forest Science 41: 337–359. 

https://doi.org/10.1093/forestscience/41.2.337 

 

Natural Resources Institute Finland. (2019). Statistics Database: Stumpage prices of 

roundwood by Year, Region, Felling method and Roundwood assortment. 

http://statdb.luke.fi/PXWeb/pxweb/en/LUKE/LUKE__04%20Metsa__04%20Talous__02%

20Teollisuuspuun%20kauppa__04%20Vuositilastot/02_Kantohinnat_v_maakunnittain.px/t

able/tableViewLayout1/?rxid=876f7fa7-4bdf-4f29-b6ff-57490962066c [Cited 28 October 

2020] 

 

Næsset E. (1997a). Determination of mean tree height of forest stands using airborne laser 

scanner data. ISPRS Journal of Photogrammetry and Remote Sensing 52:49–56. 

https://doi.org/10.1016/S0924-2716(97)83000-6 

 

Næsset E. (1997b). Estimating timber volume of forest stands using airborne laser scanner 

data. Remote Sensing of Environment 61(2): 246–253.           

https://doi.org/10.1016/S0034-4257(97)00041-2  

 

Næsset E. (2002). Predicting forest stand characteristics with airborne scanning laser using 

a practical two-stage procedure and field data. Remote Sensing of Environment 80: 88–99. 

https://doi.org/10.1016/S0034-4257(01)00290-5 

 

Næsset E. (2004a). Practical large-scale forest stand inventory using a small airborne 

scanning laser. Scandinavian Journal of Forest Research 19: 164–179. 

https://doi.org/10.1080/02827580310019257 

 

Næsset E. (2004b). Effects of different flying altitudes on biophysical stand properties 

estimated from canopy height and density measured with a small-footprint airborne 

scanning laser. Remote Sensing of Environment 91: 243–255. 

https://doi.org/10.1016/j.rse.2004.03.009 

 

Næsset E. (2005). Assessing sensor effects and effects of leaf-off and leaf-on canopy 

conditions on biophysical stand properties derived from small-footprint airborne laser data. 

Remote Sensing of Environment 98: 356–370. https://doi.org/10.1016/j.rse.2005.07.012 

 

https://www.metsaan.fi/sites/default/files/avoin-metsatieto-kaukokartoituskoealat-maastotyo-ohje.pdf
https://www.metsaan.fi/sites/default/files/avoin-metsatieto-kaukokartoituskoealat-maastotyo-ohje.pdf
https://doi.org/10.1093/forestscience/41.2.337
http://statdb.luke.fi/PXWeb/pxweb/en/LUKE/LUKE__04%20Metsa__04%20Talous__02%20Teollisuuspuun%20kauppa__04%20Vuositilastot/02_Kantohinnat_v_maakunnittain.px/table/tableViewLayout1/?rxid=876f7fa7-4bdf-4f29-b6ff-57490962066c
http://statdb.luke.fi/PXWeb/pxweb/en/LUKE/LUKE__04%20Metsa__04%20Talous__02%20Teollisuuspuun%20kauppa__04%20Vuositilastot/02_Kantohinnat_v_maakunnittain.px/table/tableViewLayout1/?rxid=876f7fa7-4bdf-4f29-b6ff-57490962066c
http://statdb.luke.fi/PXWeb/pxweb/en/LUKE/LUKE__04%20Metsa__04%20Talous__02%20Teollisuuspuun%20kauppa__04%20Vuositilastot/02_Kantohinnat_v_maakunnittain.px/table/tableViewLayout1/?rxid=876f7fa7-4bdf-4f29-b6ff-57490962066c
https://doi.org/10.1016/S0924-2716(97)83000-6
https://doi.org/10.1016/S0034-4257(97)00041-2
https://doi.org/10.1016/S0034-4257(01)00290-5
https://doi.org/10.1016/j.rse.2004.03.009


57 

Næsset E. (2007). Airborne laser scanning as a method in operational forest inventory. 

Status of accuracy assessments accomplished in Scandinavia. Scandinavian Journal of 

Forest Research 22(5): 433–422. https://doi.org/10.1080/02827580701672147 

 

Næsset E. (2009). Effects of different sensors, flying altitudes, and pulse repetition 

frequencies on forest canopy metrics and biophysical stand properties derived from small-

footprint airborne laser data. Remote Sensing of Environment 113: 148–159. 

https://doi.org/10.1016/j.rse.2008.09.001 

 

Næsset E. (2014). Area-Based Inventory in Norway – From Innovation to an Operational 

Reality. In: Maltamo M., Næsset E. & Vauhkonen J. (Eds.). Forestry Applications of 

Airborne Laser Scanning – concepts and case studies. Springer. Managing Forest 

Ecosystems 27: 215–240. https://doi.org/10.1007/978-94-017-8663-8 

 

Næsset E., Gobakken T. (2008). Estimation of above- and below-ground biomass across 

regions of the boreal forest zone using airborne laser. Remote Sensing of Environment 

112(6): 3079–3090. https://doi.org/10.1016/j.rse.2008.03.004 

 

Næsset E., Økland T. (2002). Estimating tree height and tree crown properties using 

airborne scanning laser in a boreal nature reserve. Remote Sensing of Environment 79: 105-

115. https://doi.org/10.1016/S0034-4257(01)00243-7 

 

Næsset E., Bollandsås O.M., Gobakken T. (2005). Comparing regression methods in 

estimation of biophysical properties of forest stands from two different inventories using 

laser scanner data. Remote Sensing of Environment 94(4): 541–553. 

http://doi.org/10.1016/j.rse.2004.11.010 

 

Nilsson M., Nordkvist K., Jonzén J., Lindgren N., Axensten P., Wallerman J., Egberth M., 

Larsson S., Nilsson L., Eriksson J., Olsson H. (2017). A nationwide forest attribute map of 

Sweden predicted using airborne laser scanning data and field data from the National Forest 

Inventory. Remote Sensing of Environment. 194: 447–454. 

https://doi.org/10.1016/j.rse.2016.10.022 

 

Nyyssönen A. (1954). Metsikön kuutiomäärän arvioiminen relaskoopin avulla. Summary in 

English: Estimation of stand volume by means of the relascope. Communicationes Instituti 

Forestalis Fenniae. 44(6). http://urn.fi/URN:NBN:fi-metla-201207171076 [Cited 28 

October 2020] (In Finnish) 

 

Ørka H. O., Næsset E., Bollandsås O. M. (2009). Classifying Species of Individual Trees 

by Intensity and Structure Features Derived from Airborne Laser Scanner Data. Remote 

Sensing of Environment 113: 1163–1174. https://doi.org/10.1016/j.rse.2009.02.002 

 

Packalen P., Temesgen H., Maltamo M. (2012). Variable selection strategies for nearest 

neighbor imputation methods used in remote sensing based forest inventory. Canadian 

Journal of Remote Sensing 38(5): 557–569. https://doi.org/10.5589/m12-046 

 

https://doi.org/10.1016/j.rse.2008.09.001
https://doi.org/10.1016/S0034-4257(01)00243-7
http://doi.org/10.1016/j.rse.2004.11.010
http://urn.fi/URN:NBN:fi-metla-201207171076


58 

Pateiro-Lopez B., Rogriguez-Casal A. (2015). R package alphahull: Generalization of the 

Convex Hull of a Sample of Points in the Plane. R package version 2.1. https://CRAN.R-

project.org/package=alphahull 

 

Persson Å., Holmgren J., Söderman U. (2002). Detecting and measuring individual trees 

using an airborne laser scanner. Photogrammetric Engineering & Remote Sensing 68: 925–

932.  

 

Peuhkurinen J., Maltamo M., Malinen J., Pitkänen J., Packalén P. (2007). Preharvest 

measurement of marked stands using airborne laser scanning. Forest Science 53(6): 653–

661. https://doi.org/10.1093/forestscience/53.6.653 

 

Peuhkurinen J., Maltamo M., Malinen J. (2008). Estimating species-specific diameter 

distributions and saw log recoveries of boreal forests from airborne laser scanning data and 

aerial photographs: A distribution-based approach. Silva Fennica 42(4): 625-641. 

https://doi.org/10.14214/sf.237  
 

Peuhkurinen J, Mehtätalo L, Maltamo M. (2011). Comparing individual tree detection and 

the area-based statistical approach for the retrieval of forest stand characteristics using 

airborne laser scanning in Scots pine stands. Canadian Journal of Forest Research 41: 583–

598. https://doi.org/10.1139/X10-223 

 

Pfennigbauer M., Ullrich A. (2011). Multi-wavelength airborne laser scanning. ILMF 2011, 

New Orleans. 10 p. 

http://www.riegl.com/uploads/tx_pxpriegldownloads/Paper_ILMF_2011_RIEGL_Multiwa

velength_ALS.pdf 

 

Pihlajamaa T., Jantunen J. (1995). Järeän sahatavaran mekaaniset ominaisuudet. [Structural 

properties of large-sized timber]. Vakolan Tutkimusselostus 70. Maatalouden 

tutkimuskeskus. Vihti. http://urn.fi/URN:NBN:fi-fe2014082233096 [Cited 28 October 

2020] (In Finnish with English summary). 

 

Pinheiro J., Bates D., DebRoy S, Sarkar D., R Core Team. (2019). nlme: Linear and 

Nonlinear Mixed Effects Models. R package version 3.1-140. https://CRAN.R-

project.org/package=nlme 

 

Popescu S.C., Zhao K. (2008). A voxel-based lidar method for estimating crown base 

height for deciduous and pine trees. Remote Sensing of Environment 112: 767–781. 

https://doi.org/10.1016/j.rse.2007.06.011 

 

Pyysalo U., Hyyppä H. (2002). Reconstructing tree crowns from laser scanner data for 

feature extraction. In ISPRS Commission III Symposium, Graz. International Archives of 

Photogrammetry, Remote Sensing and Spatial Information Science, XXXI (Part 3B), 218–

221. 

 

R Core Team. (2017). R: a language and environment for statistical computing. R 

Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/ 

 

https://cran.r-project.org/package=alphahull
https://cran.r-project.org/package=alphahull
https://doi.org/10.1093/forestscience/53.6.653
https://doi.org/10.14214/sf.237
https://doi.org/10.1139/X10-223
http://urn.fi/URN:NBN:fi-fe2014082233096
https://cran.r-project.org/package=nlme
https://cran.r-project.org/package=nlme
https://doi.org/10.1016/j.rse.2007.06.011
https://www.r-project.org/


59 

Riaño D., Chuvieco E., Condés S., González-Matesanz J., Ustin S.L. (2004). Generation of 

crown bulk density for Pinus sylvestris L. from lidar. Remote Sensing of Environment 92: 

345–352. https://doi.org/10.1016/j.rse.2003.12.014 

 

Saukkola A., Melkas T., Riekki K., Sirparanta S., Peuhkurinen J., Holopainen M., Hyyppä 

J., Vastaranta M. (2019). Predicting Forest Inventory Attributes Using Airborne Laser 

Scanning, Aerial Imagery, and Harvester data. Remote Sensing 11, 797. 

https://doi.org/10.3390/rs11070797 

 

SDC. (2014). Grading of sawlogs of pine and spruce. 

https://www.sdc.se/admin/PDF/pdffiler_VMUVMK/M%C3%A4tningsinstruktioner/Gradin

g%20of%20sawlogs%20of%20pine%20and%20spruce%2015-04-02.pdf [Cited 28th 

October 2020]. 

 

Silva C., Crookston N., Hudak A., Vierling L., Klauberg C., Cardil A. (2017a). rLiDAR: 

LiDAR data processing and visualization [online]. R package version 0.1.1. Available from 

https://CRAN.R-project.org/package=rLiDAR 

 

Silva C., Klauberg C., Hudak A., Vierling L., Jaafar W.S.W.M., Mohan M., Garcia M., 

Ferraz A., Cardil A., Saatchi, S. (2017b). Predicting Stem Total and Assortment Volumes 

in an Industrial Pinus taeda L. Forest Plantation Using Airborne Laser Scanning Data and 

Random Forest. Forests 8(254): 1–17. https://doi.org/10.3390/f8070254 

 

Suvanto A., Maltamo M. (2010). Using mixed estimation for combining airborne laser 

scanning data in two different forest areas. Silva Fennica 44(1): 91–107. 

https://doi.org/10.14214/sf.164 

 

Suvanto A., Maltamo M., Packalen P., Kangas J. (2005). Kuviokohtaisten puustotunnusten 

ennustaminen laserkeilauksella. Metsätieteen aikakauskirja 4/2005: 413–428. 

https://doi.org/10.14214/ma.6138 

 

Temesgen H., LeMay V.M., Froese K.L., Marshall P.L. (2003). Imputing tree-lists from 

aerial attributes for complex stands of south-eastern British Columbia. Forest Ecology and 

Management 177(1–3): 277–285. https://doi.org/10.1016/S0378-1127(02)00321-3 

 

Tuominen S., Pitkänen J., Balazs A., Korhonen K.T., Hyvönen P., Muinonen E. (2014). 

NFI plots as complementary reference data in forest inventory based on airborne laser 

scanning and aerial photography in Finland. Silva Fennica 48(2) article id 983. 20 p. 

https://doi.org/10.14214/sf.983 

 

Turkia K., Kellomäki S. (1987). Kasvupaikan viljavuuden ja puuston tiheyden vaikutus 

nuorten mäntyjen oksien läpimittaan. Abstract: Influence of the site fertility and stand 

density on the diameter of branches in young Scots pine stands. Folia Forestalia 705. 16 p. 

http://urn.fi/URN:ISBN:951-40-0800-6 [Cited 28 October 2020] (In Finnish with English 

summary) 

 

Uusitalo J. (1997). Pre-harvest measurement of pine stands for sawing production planning. 

Acta Forestalia Fennica 259: 1–56. https://doi.org/10.14214/aff.7519 

https://doi.org/10.1016/j.rse.2003.12.014
https://www.sdc.se/admin/PDF/pdffiler_VMUVMK/M%C3%A4tningsinstruktioner/Grading%20of%20sawlogs%20of%20pine%20and%20spruce%2015-04-02.pdf
https://www.sdc.se/admin/PDF/pdffiler_VMUVMK/M%C3%A4tningsinstruktioner/Grading%20of%20sawlogs%20of%20pine%20and%20spruce%2015-04-02.pdf
https://cran.r-project.org/package=rLiDAR
https://doi.org/10.14214/ma.6138
https://doi.org/10.1016/S0378-1127(02)00321-3
https://www.researchgate.net/deref/http%3A%2F%2Fdx.doi.org%2F10.14214%2Fsf.983
http://urn.fi/URN:ISBN:951-40-0800-6
https://www.researchgate.net/deref/http%3A%2F%2Fdx.doi.org%2F10.14214%2Faff.7519


60 

 

Uuttera J., Anttila P., Suvanto A., Maltamo M. (2006). Yksityismetsien metsävaratiedon 

keruuseen soveltuvilla kaukokartoitusmenetelmillä estimoitujen puustotunnusten 

luotettavuus. Metsätieteen Aikakauskirja 4: 507– 519. https://doi.org/10.14214/ma.6317 (In 

Finnish) 

 

Valbuena R. (2014). Integrating Airborne Laser Scanning with Data from Global 

Navigation Satellite Systems and Optical Sensors. In: Maltamo M., Næsset E. & 

Vauhkonen J. (Eds.). Forestry Applications of Airborne Laser Scanning – concepts and 

case studies. Springer. Managing Forest Ecosystems 27: 63–88. 

https://doi.org/10.1007/978-94-017-8663-8 

 

Vastaranta M., Saarinen N., Kankare V., Holopainen M., Kaartinen H., Hyyppä J., Hyyppä 

H. (2014). Multisource single-tree inventory in the prediction of tree quality variables and 

logging recoveries. Remote Sensing 6(4): 3475–3491. https://doi.org/10.3390/rs6043475 

 

Vauhkonen J. (2010a). Estimating crown base height for Scots pine by means of the 3D 

geometry of airborne laser scanning data. International Journal of Remote Sensing 31(5): 

1213–1226. http://doi.org/10.1080/01431160903380615 

 

Vauhkonen J. (2010b). Estimating single-tree attributes by airborne laser scanning: 

methods based on computational geometry of the 3-D point data. Dissertations Forestales 

104. https://doi.org/10.14214/df.104 

 

Vauhkonen J., Ene L., Gupta S., Heinzel J., Holmgren J., Pitkänen J., Solberg S., Wang Y., 

Weinacker H., Hauglin K.M., Lien V., Packalen P., Gobakken T., Koch B., Næsset E., 

Tokola T., Maltamo M. (2012). Comparative testing of single-tree detection algorithms 

under different types of forest. Forestry 85: 27–40. https://doi.org/10.1093/forestry/cpr051 

 

Vauhkonen J., Packalen P., Malinen J., Pitkänen J., Maltamo M. (2014). Airborne laser 

scanning-based decision support for wood procurement planning. Scandinavian Journal of 

Forest Research 29(1): 132–143. http://doi.org/10.1080/02827581.2013.813063 

 

Vincent L., Soille P. (1991) Watersheds in digital spaces: an efficient algorithm based on 

immersion simulations. IEEE PAMI 13:583–598. https://doi.org/10.1109/34.87344 

 

Vähä-Konka V., Maltamo M., Pukkala T., Kärhä K. (2020). Evaluating the accuracy of 

ALS-based removal estimates against actual logging data. Annals of Forest Science 77:84. 

https://doi.org/10.1007/s13595-020-00985-7 

 

Windrim L., Bryson M. (2020). Detection, Segmentation, and Model Fitting of Individual 

Tree Stems from Airborne Laser Scanning of Forests Using Deep Learning. Remote 

Sensing 12:1469. https://doi.org/10.3390/rs12091469  

 

Yu X., Hyyppä J., Hyyppä H., Maltamo M. (2004). Effects of flight altitude on tree height 

estimation using airborne laser scanning. International Archives of the Photogrammetry, 

Remote Sensing and Spatial Information Sciences 36(8/W2): 96–101. 

https://doi.org/10.14214/ma.6317
https://doi.org/10.14214/df.104
https://doi.org/10.1109/34.87344

