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ABSTRACT 
 

To better understand the underlying processes of many natural phenomena, accurate 

observations and measurements must be carried out in space and time. Considering forest 

ecosystems, monitoring the development and dynamics of tree characteristics is essential in 

this regard. An era of three-dimensional (3D) sensing techniques and point clouds has 

revolutionized individual tree observations, enabling measurements at an unprecedented 

level of detail. The feasibility of using point clouds to characterize trees and tree communities 

in space and their development in time was investigated in this thesis. The objective was to 

develop point cloud–based methods for distinguishing and characterizing trees and downed 

dead wood and to test the feasibility of the developed methods in boreal forest conditions.  

Point cloud–based methods for detecting and characterizing forest structure were 

developed in studies I–III. Downed dead wood trunks could be distinguished from the 

undergrowth vegetation and near-ground objects by means of their regular, cylindrical 

geometry. Smooth, cylindrical surfaces and vertical continuity, on the other hand, were the 

key characteristics of point cloud structures to separate woody structures of standing trees 

from foliage and a tree stem from branches. The methods were tested in diverse boreal forest 

structures to validate these methodological principles. 

The feasibility of the developed methods for characterizing trees and tree communities in 

space and time was tested in studies II–V. The structural complexity of a tree community 

was noted as the most important factor affecting tree-detection accuracy. High performance 

of the point cloud–based method was achieved on managed forest stands with a low degree 

of variation in tree size distribution. In controlled thinning experiments, thinning intensity 

was found to be a more significant factor affecting the performance than thinning type (i.e. 

thinning from below, thinning from above, and systematic thinning). The hemispherical 

measurement geometry of terrestrial point clouds was successfully complemented with aerial 

point clouds acquired from above the canopy to improve the vertical characterization of trees 

and tree communities. Finally, the capacity of bitemporal terrestrial point clouds to 

characterize changes in the structure of trees and tree communities was demonstrated. If there 

was an increase or decrease in the attributes of trees within a tree community detected with 

conventional forest mensuration techniques, a similar outcome was achieved with the point 

clouds. 

The findings of this thesis improve the current knowledge of the feasibility of using point 

cloud–based methods in observing tree characteristics. Detailed 3D reconstruction of forests 

expands the spectrum of tree observations, as the dynamics of trees and tree communities can 

be monitored in more detail. This increases the understanding of processes shaping 

ecosystems and provides new approaches to improve ecological knowledge.  

 

Keywords: close-range sensing, terrestrial laser scanning, LiDAR, point cloud processing, 

forest monitoring  
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1 INTRODUCTION 

1.1 Observing phenomena shaping trees 

 

Forests are an important part of the biosphere, as they provide a variety of ecosystem services, 

such as biodiversity and carbon sequestration, that are essential for maintaining human well-

being on Earth. Forests harbor the majority of terrestrial biodiversity (FAO and UNEP 2020), 

encompassing a diversity of vegetation structures on a global scale, providing habitats for 

more than 80% of all terrestrial animal and plant species (Aerts and Honnay 2011; Barrett et 

al. 2018). Forests’ role in the global carbon cycle is undisputed: Atmospheric carbon is bound 

into biomass and soil, making forests a large and persistent carbon sink (Pan et al. 2011). 

Forests are, like other ecosystems, hierarchically organized, consisting of coupled 

subsystems (O’Neill et al. 1986) and, most importantly, tree communities. Trees are the 

defining component of forests (FAO and UNEP 2020), and the functional traits of trees more 

or less determine the functioning of tree communities and forest ecosystems (Tilman, Isbell, 

and Cowles 2014). Therefore, the underlying mechanisms driving forest ecosystem processes 

can only be understood by knowing the characteristics of its individuals, trees. Being an 

essential part of forest ecosystems, trees are a natural monitoring unit in forest resource and 

biomass assessments (Crowther et al. 2015). To gain new scientific knowledge and improve 

understanding of phenomena shaping forest ecosystems, it is essential to develop new 

approaches to observe and measure trees and tree communities in space and time. 

Scientific knowledge is, by definition, information gathered in an organized and 

systematic enterprise and condensed into testable laws and principles describing the universe 

(Wilson 1999; Heilbron 2003). In natural sciences, generating new scientific knowledge 

builds on observations and repeatable experiments for testing hypotheses that are formulated 

according to the observations and current knowledge to propose explanations for the 

investigated phenomena (Avissar et al. 2013). Besides repeatability and connectivity to past 

research, scientific knowledge is concisely formulated and expressed by mensuration 

(Wilson 1999). Mensuration refers to numerical quantitation of attributes of an object or 

event, which enables objective comparison between the attributes of other objects or events 

(Pedhazur and Schmelkin 2013). For scientific knowledge, mensuration provides 

unambiguous generalizations of laws and theories when a natural phenomenon can be 

quantified with measures using universally accepted scales and units. 

A natural phenomenon is defined as a process or event in nature that can be observed to 

happen or exist (Oxford University Press 2020). Biological processes are an example of 

natural phenomena of high interest for understanding and explaining the functioning of 

organisms. A biological process, in turn, refers to a series of actions driven by biochemical 

reactions that occur in living organisms and involve alteration, consumption or production of 

entities (Mossio, Montévil, and Longo 2016). In forestry, which is a field of natural science, 

tree growth is a commonly investigated biological process (Binkley et al. 2010). It consists 

of a hierarchy of physiological processes at the level of cells, tissues and leaves, defining 

structural biomass allocation at an individual tree level and, eventually, through the hierarchy 

of organisms, the growth of tree communities and dynamics of forest ecosystems (Landsberg 

and Sands 2011a). 

Processes that shape tree structure and alter its functioning can be observed through the 

functional traits of trees that reflect the tree’s interaction with biotic and abiotic environments 
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(Reich et al. 2003; Brym et al. 2011; Hérault et al. 2011). Functional traits, in general, refer 

to plant morphological, anatomical and phenological characteristics that influence its 

ecological performance by affecting the growth, reproduction or survival of a plant (Violle 

et al. 2007). In forest sciences, these characteristics are usually described using various 

structural attributes of trees and tree communities, and observations of these attributes 

provide quantitative means to study the underlying processes. The attributes can be observed 

using either direct or indirect measurements or allometric models (Kershaw et al. 2016). 

Direct measurements refer to measures of length and mass with a standard unit of measure 

such as a measuring tape and a weighing scale. However, for convenience and practicality, 

the measurements may employ geometry, trigonometry or knowledge of the speed of light or 

sound to base the observations on (van Laar and Akça 2007; Kershaw et al. 2016). 

Dendrometers, instruments that provide accurate measurements of tree dimensions, are often 

built on these principles (Clark et al. 2000). Nevertheless, sometimes, observing the tree 

attributes involves destructive measurements that are not practical to be conducted in the 

field. On such occasions, statistical models can be used to estimate the unknown attribute by 

making use of allometric relationships between the attributes already known (Landsberg and 

Sands 2011b; Kershaw et al. 2016).  

To put this into context, detailed characterization of tree attributes is the key to uncovering 

the underlying ecological processes driving the functioning of trees, tree communities and 

forest ecosystems in space and time. Improved understanding of a natural phenomenon 

requires even more detailed observations, which justifies the need for new methods to 

observe and measure trees through their characteristics. This methodological knowledge gap 

is also listed among the most important ecological research topics (Sutherland et al. 2013). 

In forest sciences and forestry, an era of point clouds has revolutionized individual tree 

observations, enabling measurements at an unprecedented level of detail and providing new 

approaches to improve ecological knowledge (Disney et al. 2018; Calders et al. 2020). 

 

 

1.2 Characterizing trees with point clouds 

 

1.2.1 Techniques to acquire a point cloud 

 

A point cloud is a set of points in space representing the three-dimensional (3D) structure of 

an object or environment. Each point in a point cloud has assigned 3D coordinates (x,y,z) to 

define its position in space and is accompanied by attributes to characterize the object 

attributes, such as spectral information or point classification. Generating a point cloud 

involves 3D measurements from the object of interest to characterize its 3D structure, and 

the two prevalent techniques for this task are laser scanning and photogrammetry (Baltsavias 

1999; Wehr and Lohr 1999; Leberl et al. 2010). Laser scanning is an active remote sensing 

method that emits and receives laser beams to measure distance between the scanner and the 

reflecting object surface to define its position in space with 3D coordinates (Wehr and Lohr 

1999; Lefsky et al. 1999; Lefsky et al. 2002). The distance measurements employ the velocity 

of light waves in a given medium and the time delay that occurs between the emitted and 

received laser signal (Bachman 1979). The time delay can be observed by using time-of-

flight or phase measurement techniques (Wehr and Lohr 1999). As the name implies, the 

time-of-flight approach is based on recording the time it takes for a laser pulse to travel the 

round trip from the scanner to the reflecting object and back to the scanner. Phase 
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measurement techniques, in turn, use a continuous wave of light with modulated amplitude 

or frequency, and the phase difference between the emitted and received waveform is used 

to compute the respective time delay. Once the time delay (τ) is recorded using either of these 

techniques, the distance (p) between the scanner and the reflecting object can be computed 

according to Equation 1:  

𝑝 =  (𝑐 / 𝑛) ∗ (𝜏 / 2). (1) 

, where c is the velocity of light in vacuum (299.792.458 m/s) and n is the refractive index of 

air that depends on air temperature, pressure and humidity. Once the location and the 

orientation of the scanner, as well as the direction to which the laser beam was emitted, are 

known, the distance measurement can be converted to a 3D coordinate. Usually, the 

backscattered laser signal intensity is also recorded to provide spectral information of the 

target surface (Wehr and Lohr 1999; Höfle and Pfeifer 2007). 

Instead of direct distance measurements for point cloud generation, as in laser scanning, 

the photogrammetric approaches rely on indirect reconstruction of the 3D structure of the 

target object from overlapping images (Baltsavias et al. 2008; Leberl et al. 2010). The key 

principle of image-based 3D reconstruction is to identify the target object from a set of 

images acquired from different viewpoints by using triangulation of the corresponding points 

of the object in the images (Hartley and Zisserman 2004). Searching for the matching points 

within images is carried out using computer vision algorithms such as structure from motion 

(SfM; Westoby et al. 2012) and dense matching (Leberl et al. 2010; Remondino et al. 2014). 

In a forest environment, most often, close-range sensing methods are used for detailed 

characterization of trees and tree communities through point clouds (Morsdorf et al. 2018; 

Iglhaut et al. 2019). Close-range sensing refers to an approach to acquire information from 

trees and tree communities remotely within a distance ranging approximately from 1 meter 

to 100 meters. Sensors employing either laser scanning technology or photogrammetric 

approaches are attached on static or kinematic, terrestrial or aerial platforms to enable the 

sensor-platform system to acquire point clouds to characterize trees and tree communities 

from different viewpoints. Close-range laser scanning technologies can be divided into 

terrestrial and aerial systems according to the data acquisition geometry (Vosselman and 

Maas 2010). Terrestrial close-range laser scanning technologies are further considered either 

terrestrial laser scanning (TLS) or mobile laser scanning (MLS) depending on whether the 

scanner platform is static or kinematic, respectively (Liang et al. 2016; Morsdorf et al. 2018). 

Aerial close-range laser scanning to suit for detailed characterization of trees refers to 

unmanned aerial vehicle (UAV)–based systems that enable a relatively low altitude for 

detailed point cloud acquisition (Jaakkola et al. 2010, 2017; Kellner et al. 2019). Close-range 

photogrammetry, on the other hand, offers an affordable alternative to laser scanning for 

producing aerial or terrestrial point clouds to characterize trees (Iglhaut et al. 2019). In forest 

applications, image-based point clouds are typically obtained by terrestrial or aerial means 

either using a regular hand-held digital camera or an UAV-borne system as a platform. 

 

1.2.2 Terrestrial close-range sensing methods to characterize trees 

 

Terrestrial point clouds for detailed characterization of trees can be acquired by the means of 

TLS, MLS or terrestrial close-range photogrammetry. TLS was initially developed for 
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precision surveying applications in which the laser scanner is placed on a tripod 

approximately 1 to 2 m above the ground level to acquire a detailed, hemispherical point 

cloud of the scanner surroundings with a millimeter-level of detail (Dassot, Constant, and 

Fournier 2011; Wilkes et al. 2017). In a forest environment, TLS point cloud can be used to 

automatically derive tree attributes (Lovell et al. 2003; Simonse et al. 2003; Aschoff and 

Spiecker 2004; Thies and Spiecker 2004; Thies et al. 2004; Henning and Radtke 2006; Maas 

et al. 2008). However, TLS is capable of characterizing only trees that are visible to the 

scanner, or, more specifically, only the sides of the trees that are facing towards the scanner. 

Occlusion, the incapability to provide a complete characterization of the target object or 

environment, is a major factor affecting the performance of TLS-based tree observations 

(Béland et al. 2014; Abegg et al. 2017; Liang, Hyyppä, et al. 2018). Thus, it is usual in forest 

applications to combine multiple TLS scans acquired from different locations or view angles 

to characterize the complete structures of trees (Côté, Fournier, and Egli 2011; Liang et al. 

2016). In this multi-scan approach, the point clouds from individual scans are registered 

together using artificial reference targets that are visible from each scan location and feature 

a retro-reflective surface (Wilkes et al. 2017). Of all the terrestrial close-range sensing 

techniques, multi-scan TLS is considered the standard of accuracy in the characterization of 

trees and tree communities (Liang et al. 2018) at the cost of being a relatively time-consuming 

approach to covering entire forest stands (Dassot, Constant, and Fournier 2011; Newnham et 

al. 2015). 

Attached to a kinematic platform, MLS aims to reach the accuracy of TLS point clouds 

with improved cost-efficiency in data acquisition (Holopainen et al. 2013; Liang, Hyyppä, et 

al. 2014). MLS combines a laser scanner with inertial measurement unit (IMU) and global 

navigation satellite system (GNSS) to provide information about the orientation and position 

of the system to enable on-the-move recording of the surrounding 3D structure (Bauwens et 

al. 2016; Cabo, Del Pozo, et al. 2018). Compared to TLS, a more rapid point cloud data 

acquisition can be achieved with the MLS system when the laser scanner is attached to a 

mobile platform such as a car (Holopainen et al. 2013; Forsman, Holmgren, and Olofsson 

2016), an all-terrain-vehicle (Tang et al. 2015; Kukko et al. 2017; Liang, Kukko, et al. 2018) 

or an unmanned ground vehicle (Pierzchała, Giguère, and Astrup 2018). Mobility in more 

diverse terrain and forest conditions can be further improved with a human-operated MLS by 

means of a hand-held (Ryding et al. 2015; Bauwens et al. 2016; Marselis et al. 2016; Bienert 

et al. 2018; Cabo, Del Pozo, et al. 2018; Chen et al. 2019; Stal et al. 2020; Hunčaga et al. 

2020) or backpack laser scanner (Liang, Wang, et al. 2015; Hyyppä, Kukko, et al. 2020; 

Liang, Kukko, et al. 2018), also called personal laser scanning (PLS). However, the greatest 

challenge related to the applicability of MLS technology in detailed tree measurements is the 

insufficient positional accuracy caused by a limited GNSS signal inside the forest canopy, 

which leads to geometric inaccuracy and additional noise in the resulting point cloud due to 

georeferencing errors (Kaartinen et al. 2015; Kukko et al. 2017). This challenge has been 

addressed with a simultaneous localization and mapping (SLAM) method (Öhman et al. 

2008; Tang et al. 2015; Forsman, Holmgren, and Olofsson 2016; Kukko et al. 2017; 

Pierzchała, Giguère, and Astrup 2018), in which a map of the unfamiliar forest environment 

is generated to improve the IMU-GNSS-based solution for localizing the MLS system. 

Recent findings demonstrate that the geometric accuracy and point density of an MLS 

point cloud generally fall short of the respective characteristics of a multi-scan TLS point 

cloud (Balenović et al. 2021). Tree density and the presence of undergrowth vegetation 
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complicate the forest structure and make it challenging for any terrestrial close-range sensing 

technique to provide unoccluded point cloud representation of trees, but with MLS, this effect 

is even more prominent (Ryding et al. 2015; Bauwens et al. 2016; Liang, Kukko, et al. 2018). 

However, in favorable conditions, the performance of MLS point clouds to characterize trees 

is comparable to that of TLS (Chen et al. 2019; Cabo, Del Pozo, et al. 2018; Gollob, Ritter, 

and Nothdurft 2020; Hyyppä, Yu, et al. 2020). 

Besides laser scanning, a terrestrial point cloud for tree characterization can be obtained 

by means of terrestrial close-range photogrammetry (Hunčaga et al. 2020). This technique 

involves acquisition of digital images from several locations, depicting the forest scene from 

different viewpoints to achieve a sufficient multi-view image coverage for detailed 3D 

reconstruction of trees (Mokroš, Výbošťok, et al. 2018; Iglhaut et al. 2019; Piermattei et al. 

2019). The image-based terrestrial point clouds can be acquired using consumer-grade 

equipment and software, making it a low-cost and user-friendly alternative to TLS and MLS 

systems (Liang, Jaakkola, et al. 2014; Iglhaut et al. 2019). Terrestrial close-range 

photogrammetry has proven to be feasible in characterizing tree stem attributes (Mikita, 

Janata, and Surový 2016; Surový, Yoshimoto, and Panagiotidis 2016; Mokroš, Liang, et al. 

2018; Mulverhill et al. 2020), but comparisons shows that its performance still falls short of 

that of TLS (Liang, Wang, et al. 2015; Hunčaga et al. 2020). 

 

1.2.3 Aerial close-range sensing methods to characterize trees 

 

In contrast to terrestrial close-range sensing, point clouds obtained using aerial close-range 

sensing techniques provide a different viewpoint for observations, which benefits the tree 

crown characterization (Aicardi et al. 2017; Morsdorf et al. 2018). Due to different 

measurement geometry, aerial close-range sensing techniques allow cost-efficiency in 3D 

data acquisition, with more detailed characterization of upper parts of the tree crowns, 

enabling accuracy, especially in estimates of attributes related to tree height and crown 

dimensions (Wallace et al. 2012; Wallace, Musk, and Lucieer 2014; Guerra-Hernández et al. 

2017). Most often, an aerial close-range point cloud is acquired with a UAV equipped with 

IMU and GNSS sensors to provide information from the exact position and orientation of the 

aerial platform, as well as with an imaging sensor that is either a laser scanner (Jaakkola et 

al. 2010; Wallace et al. 2012) or a digital camera (Westoby et al. 2012; Puliti et al. 2015). 

Characteristics of an aerial point cloud and its feasibility of characterizing trees depends on 

whether the technology used in the 3D reconstruction is laser scanning or close-range 

photogrammetry. UAV-borne laser scanning (ULS) provides detailed characterization of 

upper parts of the tree crowns but, in favorable conditions, also enables the reconstruction of 

the tree stem and measurements related to its dimensions (Chisholm et al. 2013; Brede et al. 

2017; Jaakkola et al. 2017; Puliti, Breidenbach, and Astrup 2020), although the performance 

of terrestrial point clouds is not matched in this regard (Liang et al. 2019; Hyyppä, Yu, et al. 

2020). 

A more affordable alternative to ULS is UAV photogrammetry; it requires less expertise 

to be operated, and high-quality point clouds can be acquired even with consumer-grade 

equipment and processing software (Westoby et al. 2012; Dandois and Ellis 2013; Iglhaut et 

al. 2019). The point clouds based on UAV photogrammetry can be used for 3D reconstruction 

of tree crowns (Lisein et al. 2013; Gatziolis et al. 2015; Bonnet, Lisein, and Lejeune 2017; 

Guerra-Hernández et al. 2017; Mohan et al. 2017) and tree species classification when 
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coupled with hyperspectral imaging (Nevalainen et al. 2017) but fall short of characterizing 

terrain information through dense canopies (Puliti et al. 2015; Tomaštík et al. 2017). 

Occlusion limiting the visibility to the ground and lower parts of trees can be reduced by 

combining UAV photogrammetry with terrestrial point clouds to obtain a comprehensive 

characterization of a forest stand (Mikita, Janata, and Surový 2016; Aicardi et al. 2017).  

 

1.2.4 Expanding the spectrum of tree observations using point clouds 

 

The use of terrestrial point clouds can complement or even replace the conventional tree 

mensuration techniques employing calipers, clinometers and measurement tapes (Liang et al. 

2016). While the conventional non-destructive tree mensuration techniques only provide 

information on a few tree attributes, typically those related to tree height and stem diameter 

(Kershaw et al. 2016), the point cloud–based methods expand the spectrum of tree 

observations through detailed 3D modelling of a tree structure (Newnham et al. 2015). A 

terrestrial point cloud obtained by means of close-range sensing methods can reach up to a 

millimeter-level of accuracy (Wilkes et al. 2017), enabling geometrically accurate tree model 

reconstruction (Hackenberg et al. 2014). However, the presence of different-sized trees and 

undergrowth vegetation, as well as both woody and leafy components, makes a point cloud 

extremely complex from the modelling perspective (Côté, Fournier, and Egli 2011; Disney 

et al. 2018). Thus, point cloud classification approaches to distinguish different forest 

components are needed before the tree structures can be reconstructed. 

Most of the point cloud classification approaches that are aiming at distinguishing woody 

material from foliage and tree stems from other forest vegetation rely on differences in the 

geometry of different forest components. A tree stem often features rather smooth vertical 

and cylindrical structures, which are utilized in separating woody structures from foliage 

(Liang, Litkey, et al. 2012; Raumonen et al. 2013; Olofsson and Holmgren 2016; Cabo, 

Ordóñez, et al. 2018; Wang et al. 2018; Vicari et al. 2019; Zhang et al. 2019). Point cloud 

classification methods may benefit even more from approaches also employing spectral 

information revealing differences in the spectral features between woody and leafy 

components (Zhu et al. 2018). Once the structures of interest have been distinguished, the 3D 

structure of a tree can be reconstructed by using a series of geometrical primitives, preferably 

circular cylinders (Åkerblom et al. 2015), which reduces the amount of data to be processed 

and enables a detailed characterization of tree attributes. 

Automated point cloud processing techniques have been developed for detailed, non-

destructive characterization of attributes related to tree stem dimensions, such as diameter at 

breast height (dbh) and tree height (Simonse et al. 2003; Aschoff and Spiecker 2004; Pfeifer 

et al. 2004; Thies et al. 2004; Watt and Donoghue 2005; Maas et al. 2008), as well as stem 

profile and volume (Liang, Kankare, et al. 2014; Olofsson and Holmgren 2016; Sun et al. 

2016; Saarinen et al. 2017; Pitkänen, Raumonen, and Kangas 2019). Coupled with 

information obtained from the branching structure (Kankare et al. 2013; Pyörälä et al. 2018), 

the biomass estimates can be improved with observations derived directly from the point 

clouds (Yu et al. 2013; Calders et al. 2015; Stovall et al. 2017). Detailed 3D reconstruction 

of trees and tree communities also enables the modelling of tree crown structure (Henning 

and Radtke 2006; Barbeito et al. 2017; Trochta et al. 2017; Ritter and Nothdurft 2018) to 

better understand phenomena such as the competition between trees (Metz et al. 2013). 

Combining spectral information with geometric features expands the spectrum of observable 
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phenomena, including such things as tree decline (Junttila 2019). Besides versatile 

observations in space, these point clouds provide a digital archive of the reconstructed trees 

and tree communities, enabling virtual revisits to forest for retrospective measurements and 

time series analyses. 

Despite the benefits related to the detailed characterization of trees and tree communities, 

the terrestrial point cloud–based characterizations often fall short of maintaining the same 

performance across different forest conditions. Variation in forest structure and tree density 

and the occurrence of undergrowth vegetation affect the performance of point cloud–based 

methods by influencing the visibility of the structures of interest in the terrestrial point clouds 

(Abegg et al. 2017; Liang et al. 2018; Olofsson and Olsson 2018; Gollob et al. 2019). 

However, controlled experiments to investigate the influence of these performance-affecting 

factors in diverse forest conditions have been lacking. Due to the hemispherical point cloud 

acquisition geometry, the terrestrial point clouds often fail to characterize the vertical 

structure of trees and tree communities (Wang et al. 2019). In this regard, aerial point clouds 

acquired from above the canopy provide a detailed description of the upper parts of the tree 

crowns but, on the other hand, may have limited visibility to the tree stem (Jaakkola et al. 

2010; Wallace et al. 2012; Brede et al. 2017; Liang et al. 2019; Puliti, Breidenbach, and 

Astrup 2020). A solution for a complete characterization could be to integrate terrestrial and 

aerial point clouds to make the most of both techniques (Mikita, Janata, and Surový 2016; 

Aicardi et al. 2017). However, the benefits of using this multisensorial approach in 

characterizing trees and tree communities have not yet been investigated in varying forest 

conditions. 

Despite the fact that during recent years, tremendous effort has been put into developing 

point cloud processing methods to characterize trees, validation of the methods has been 

based mainly on a limited number of sample plots capturing one small structural variation at 

a time. In this regard, (Liang, Hyyppä, et al. 2018) made a significant contribution by 

investigating the performance of 18 TLS point cloud processing methods to characterize trees 

in varying boreal forest conditions using 24 sample plots. Nonetheless, there still exists a 

knowledge gap regarding the performance of point cloud–based methods to characterize 

larger tree communities and forest stands. To characterize the phenomenon of interest, e.g. 

forest growth, the point cloud–based methods need to provide comprehensive 

characterization of trees and tree communities in space but also in time. Repeated 

observations enable monitoring of the dynamics of trees and tree communities, which is 

important in understanding the processes shaping them. For example, Luoma et al. (2019) 

demonstrated the feasibility of TLS in detecting changes in tree stem shape, but more 

evidence is needed to understand the capabilities of TLS in forest monitoring, especially in 

diverse forest conditions. 

Besides living trees, dead wood is an important forest structural characteristic, as it 

preserves biodiversity by providing habitat for many threatened species while storing carbon 

decades after the tree death has occurred (Harmon et al. 1986; Franklin, Shugart, and Harmon 

1987). Therefore, the abundance of dead wood can be used as an indicator of biodiversity. 

However, past studies regarding the use of terrestrial point clouds to characterize forest 

structure have focused on detecting and measuring the standing trees, while less attention has 

been paid to downed dead wood monitoring. The first attempt to detect fallen trees from TLS 

point clouds was presented by Polewski et al. (2017). Although their method revealed the 
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existence of downed dead wood within an area of interest, no information on the dead wood 

quality attributes was provided. 

 

 

1.3 Objectives and hypothesis 

 

This thesis investigates the feasibility of point cloud–based methods in characterizing trees 

and tree communities to better understand their development over time and builds around 

two main objectives and related hypotheses. The first objective is to develop automatic point 

cloud processing methods for characterizing trees and downed dead wood from terrestrial 

point clouds. This can be formulated into two hypotheses (H1–H2), whose validity is tested 

in studies I–III: 

 

H1. Fallen trees can be distinguished from the undergrowth vegetation and other near-

ground objects such as stones and stumps by means of their regular, cylindrical 

geometry (study I). 

 

H2. A tree stem can be distinguished from other forest structural characteristics based on 

its pole-like structure that features smooth and vertical surfaces with cylindrical 

geometry (studies II–III). 

 

The second objective is to test the feasibility of the developed methods for characterization 

of trees and tree communities in space and time. The related three hypotheses (H3–H5) are 

formulated as follows, and their validity is tested in studies II–V: 

 

H3. Increased density and structural complexity of tree communities, as well as the use 

of a scan setup with incomplete point cloud coverage, are expected to decrease the 

performance of the developed methods to characterize trees and tree communities 

(studies II–III). 

 

H4. Combining terrestrial and aerial point clouds will improve tree community 

characterization (study IV). 

 

H5. Growth of trees and the dynamics of tree communities during a five-year monitoring 

period can be detected and quantified using bitemporal TLS point clouds (study V). 

 

 

 

2 EXPERIMENTAL SETUP AND STUDY MATERIALS 

2.1 Study sites and field inventory data 

 

The four study sites used in this thesis are located in southern Finland in Evo (61°19.6′ N 

25°10.8′ E), Palomäki (62°3.6'N 24°19.9'E), Pollari (62°4.4'N 24°30.1'E) and Vesijako 

(61°21.8'N 25°6.3'E; see Figure 1). Studies I, II and V were conducted in the Evo study site, 

which represents varying southern boreal forest conditions covering both managed and 
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unmanaged, young and mature, single-species and mixed-species, and single-layered and 

multi-layered forest stands where Scots pine (Pinus sylvestris L.), Norway spruce (Picea 

abies (L.) H. Karst.) and birches (Betula sp.) were the dominant tree species. In 2014, 91 

rectangular sample plots with an area of 1024 m2 (32 m × 32 m) were established to cover 

the structural variation of forests within the vicinity (see e.g. Liang, Hyyppä, et al. 2018). A 

basic suite of tree attributes were measured in the field for all the 8785 trees on the sample 

plots with dbh exceeding 5 cm. Tree species and health status (alive/dead) were defined using 

visual inspection and dbh was measured with calipers as a mean of two diameter 

measurements perpendicular to each other at the height of 1.3 m above the ground. Tree 

height and height of the crown base were measured using an electronic clinometer. Stem 

volume was then estimated using species-specific volume equations and dbh and tree height 

as explanatory variables (Laasasenaho 1982). 

All the 91 sample plots were used in study II, while a subset of 20 sample plots were 

selected for study I according to the existence of downed dead wood. Field reference for the 

locations, dimensions and quality attributes of the 304 individual downed dead wood trunks 

with diameter exceeding 5 cm was acquired in 2017. For each trunk, tree species was visually 

defined, while the length and diameters were measured using tape measure and calipers, 

respectively. 

Of the total number of 91 sample plots, a subset of 37 sample plots were re-measured in 

2019 to cover a five-year monitoring period for study V. The tree maps were updated in the 

field with missing trees (i.e. fallen or harvested during the monitoring period) and new trees 

(i.e. trees with dbh exceeded the 5 cm threshold since the last measurement). Dbh, tree height 

and height of the crown base were re-measured for 1280 trees following the same 

measurement protocol as in 2014. 

Studies III and IV were conducted in the study sites of Palomäki, Pollari and Vesijako, 

which were initially established in 2005 by Natural Resources Institute Finland (Luke) to 

investigate the effect of different thinning types and thinning intensities on the growth and 

development of Scots pine trees and the dynamics of Scots pine stands. Each study site is 

characterized as managed Scots pine stands consisting of nine rectangular sample plots (27 

sample plots in total) with an area varying between 900 m2 (30 m × 30 m) and 1200 m2 (30 

m × 40 m), where the experimental design includes three different thinning types (thinning 

from below, thinning from above, systematic thinning from above) with two levels of 

thinning intensity (intensive, moderate) (Saarinen et al. 2020). Reference measurements for 

the 2204 trees on the sample plots were obtained during leaf-off season 2018–2019. Tree 

species, crown layer (dominant, co-dominant, suppressed) and health status (alive, dead) 

were recorded from each tree within a plot (i.e. tally trees) using visual inspection. Dbh was 

measured for all the tally trees with calipers as an average of two diameter measurements 

perpendicular to each other at the height of 1.3 m above the ground. About half of the trees 

(928) were selected as sample trees, for which tree height and the height of the crown base 

were also measured using an electronic clinometer. Heights of the tally trees were estimated 

with allometric models that were calibrated for each sample plot using the sample trees. Stem 

volume was estimated for all the trees using the volume equations by (Laasasenaho 1982). 
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Figure 1. Description of the study site locations and the experimental design of each 
substudy of this thesis. TLS data refers to point clouds acquired using terrestrial laser 
scanning, while UAV data refers to aerial point clouds acquired from an unmanned aerial 
vehicle. 
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2.2 Point cloud data 

 

2.2.1 Terrestrial point cloud data 

 

TLS was used to acquire the terrestrial point clouds since it sets the baseline for the accuracy 

that is expected to be reached with the other terrestrial close-range sensing methods (Liang, 

Hyyppä, et al. 2018). TLS data acquisition campaigns were conducted by collecting the TLS 

data from several locations systematically placed around the sample plot or a stand (i.e. the 

multi-scan approach). There were minor differences in the applied scan setups between the 

study sites. One center scan with four auxiliary scans (five scans in total, referred to as scan 

setup A) were used in the Evo study site (studies I, II and V) whilst two center scans with 

six auxiliary scans (eight scans in total, referred to as scan setup B) were used in the Palomäki, 

Pollari and Vesijako study sites (studies III and IV; see Figure 1). In the scan setup A, the 

center scan was located at the plot center, and the auxiliary scans were placed evenly around 

it at the quadrant directions (i.e. north-east, south-east, south-west, and north-west). In the 

scan setup B, the two center scans were placed near the plot center approximately a few 

meters apart from each other, and the six auxiliary scans were evenly distributed around the 

plot center, with preference given to locations near the plot borders. Locations of the auxiliary 

scans were adjusted in the field to ensure maximum visibility, in other words, to avoid placing 

the scanner next to a large tree that would block the laser from digitizing other trees behind 

it. 

Four different terrestrial laser scanners were used in the TLS data acquisition campaigns: 

A Leica HDS6100 (Leica Geosystems, St. Gallen, Switzerland) phase shift scanner was used 

in studies I, II, and V; a Faro Focus 3D X330 (Faro Technologies Inc., Lake Mary, FL, USA) 

phase shift scanner was used in study II; a Trimble TX5 3D (Trimble Inc., Sunnyvale, 

California, United States) phase shift scanner was used in studies III and IV; and a Leica 

RTC360 3D time-of-flight scanner was used in study V. All the scanners were operating at 

1550 nm wavelength and delivered a hemispherical point cloud with a 300° to 310° vertical 

and 360° horizontal field of view. Angular resolution in the laser measurements varied from 

0.009° (Trimble TX5 3D, Leica RTC360 3D) to 0.018° (Leica HDS6100, Faro Focus 3D 

X330). 

Individual scans from each sample plot were registered together to obtain a merged point 

cloud. The registration was completed using spherical reference targets that were evenly 

distributed on each sample plot considering that all the targets were visible from the center 

scan locations and at least three of them from the auxiliary scan locations. The number of 

reference targets used in the registration was five or six, depending on the stand density. In 

the Evo study site, the reference targets were attached to trees at the height of approximately 

2 m. In 2014 (study II), the exact locations of the reference targets were measured using a 

total station and ground control points. Magnets and steel plates were used for mounting the 

reference targets to the trees, which made it easier to repeat the TLS campaign in 2017 (study 

I) and 2019 (study V) using the exact same locations. In the Palomäki, Pollari and Vesijako 

study sites (studies III and IV), the reference targets were mounted on tripods at the height 

of approximately 1 m above the ground. The point cloud registration was conducted by fitting 

spherical objects (of equal size as the real ones) to the points that represented the reference 

targets in the individual point clouds. Then, a 3D transformation between the point clouds 

was computed to rotate and translate the auxiliary scan point clouds with respect to the center 
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scan point cloud. As a result, the point clouds could be merged with a millimeter-level of 

accuracy. 

 

2.2.2 Aerial point cloud data 

 

UAV photogrammetry was applied in study IV to provide a cost-efficient approach to acquire 

aerial point cloud data for augmenting terrestrial point clouds in vertical forest 

characterization. The aerial point cloud data was acquired from the Palomäki, Pollari and 

Vesijako study sites using a Gryphon Dynamics quadcopter equipped with an Applanix APX-

15-EI UAV positioning system consisting of a multiband GNSS, an IMU and a Harxon HX-

CHX600A antenna and two Sony A7R II digital cameras that had complementary metal-

oxide-semiconductor (CMOS) sensors of 42.4 megapixels with Sony FE 35 mm f/2.8 ZA 

Carl Zeiss Sonnar T* lenses. The two cameras were mounted on +15° and −15° oblique 

zenith angles to enhance the 3D reconstruction of trees. With a flying altitude of 140 m and 

a flying speed of 5 m/s, a total of 1916 images were captured, resulting in 1.42 cm to 1.87 

cm ground sampling distance, 87% to 90% forward and 78% to 83% side overlaps at the 

ground level, depending on the study site. Eight ground control points were precisely 

measured for each study site using a Topcon Hiper HR real-time kinematic GNSS receiver 

(Topcon, Tokyo, Japan). The photogrammetric processing was carried out using Agisoft 

Metashape Professional software (Agisoft 2019) by following a similar processing workflow 

as that presented in Viljanen et al. (2018). Dense UAV point clouds were obtained with a 

reprojection error of 0.65–0.70 pixels, a point cloud resolution of 3.11–3.53 cm/pixel and a 

point density of 804–1030 points/m2, depending on the study site. 

 

 

3 POINT CLOUD PROCESSING METHODS 

3.1 Pre-processing 

 

The merged point clouds were first normalized, in other words, the z-coordinates were 

converted from heights above sea level to heights above the ground using a digital terrain 

model (DTM) as a reference. In study I, the DTM was generated by searching for the lowest 

z-coordinates among the points in 0.5 m × 0.5 m grid cells. Linear interpolation and a 3 × 3 

-pixel moving average filtering were used to smooth out cross errors below or above the 

ground surface. In studies II–V, the TLS point cloud normalization was conducted using 

LAStools software (Isenburg 2017) and a workflow presented by Ritter et al. (2017). First, 

points representing ground surface were extracted to generate the DTM based on a 

triangulated irregular network. The generated DTMs were then used to normalize the multi-

scan TLS point clouds. 

In study I, the analyses were based on a subset of points with z-coordinates ranging 

between 0 m and 1 m above the ground, which was the expected range for downed dead wood 

occurrence in the forests of the study area. In studies II–V, the analyses were focused on 

standing trees, and thus, the ground points were removed to reduce the amount of data to be 

processed. A mixed-pixels filtering protocol was carried out to remove noisy points 

originating from inaccurate range measurements that occur when the laser beam intersects 

with objects smaller than itself. 



21 

 

 

 

It is generally known that a photogrammetric point cloud acquired from above the forest 

cannot be used for characterizing topography under the forest canopy (e.g. White et al. 

(2013)). Thus, the photogrammetric UAV point cloud data used in study IV was not capable 

of providing a sufficient characterization of the ground surface to enable accurate DTM 

generation, and thus, a publicly available 2 m × 2 m DTM (National Land Survey of Finland) 

was used to normalize the UAV point clouds. 

 

 

3.2 Detecting and characterizing downed dead wood (study I) 

 

A point cloud–based method for detecting and characterizing downed dead wood was 

developed in study I. The aim in dead wood detection was to identify the locations of the 

butt-end and the top-end of a dead wood trunk, to then be able to delineate the respective 

point cloud structure representing the trunk for measuring its dimensions. The detection 

method was based on the assumption that a dead wood trunk lying on the ground could be 

distinguished from the undergrowth vegetation and other near-ground objects such as stones 

and stumps by means of its regular, continuous, cylindrical geometry (see Figure 2). These 

structures were identified by first removing a set of points that obviously originate from the 

ground surface (i.e. z-value smaller than a set threshold value, zmin). Thus, the remaining 

point cloud represented structures clearly rising from the ground surface. The next step 

involved filtering the point cloud to keep only the structures with cylindrical geometry. From 

the methodological point of view, at this point, the point cloud consisted of inliers and 

outliers, inliers being the cylindrical structures representing dead wood trunks, and outliers 

being other near-ground objects and vegetation. Random sample consensus (RANSAC; see 

Bolles and Fischler (1981)) was utilized when fitting cylinders to this noisy point cloud data, 

aiming to keep the inliers and filter out the outliers. RANSAC-cylinder filtering was 

iteratively applied for one 0.5 m × 0.5 m point cloud tile at a time to cover the whole sample 

plot. 

Continuity and regularity were the distinguishing characteristics separating downed dead 

wood trunks from other cylindrical near-ground structures that remained in the filtered point 

cloud. These characteristics were investigated by converting the point cloud into a binary 

raster image (2 cm × 2 cm) and applying image processing and segmentation techniques. 

Morphological opening and closing were applied to strengthen the distinction of regular-

shaped image segments. An image segment was classified as a dead wood segment if its 

ellipticity, measured as eccentricity (ε), reached a set threshold value (εmin). It was assumed 

that a dead wood trunk was represented by a single image segment or by a set of subsequent 

parallel image segments. Thus, the orientation and location of each image segment with 

respect to another were investigated to merge the segments possibly representing the same 

trunk. The image segments were then used to delineate and extract point clouds representing 

each dead wood trunk. 

Dead wood quality attributes such as length, diameter and volume were estimated from 

the extracted point clouds. Length of the dead wood trunk was obtained as a length of the 

image segment representing the trunk. Diameters were measured along the dead wood trunk 

by applying point cloud filtering and cylinder fitting. Surface normals were computed for 

each point according to its neighborhood to distinguish smooth and planar surfaces 

representing the surface of dead wood trunk. Then, RANSAC-cylinder fitting was used to 



22 

 

 

 

obtain diameter measurements at 10 cm intervals along the trunk. The consecutive diameter 

observations tended to vary due to point cloud occlusion and epiphytes growing on the trunk 

surface, and thus the diameter observations were filtered with a cubic spline curve. The trunk 

volume was eventually estimated by considering the trunk as a sequence of horizontal 

cylinders. 

 

 

3.3 Point cloud classification to detect standing trees (studies II–III) 

 

An automatic method for detecting individual standing trees from TLS point clouds was first 

implemented in study II and further developed in study III. The methodology combines 

elements from several earlier studies on principles to distinguish tree stems from foliage and 

other non-woody structures based on their geometric properties, such as smooth and 

cylindrical surfaces (e.g. Liang, Litkey, et al. 2012; Raumonen et al. 2013; Hackenberg et al. 

2014) and vertical continuity of point cloud structures (e.g. Cabo, Ordóñez, et al. 2018; Zhang 

et al. 2019). A series of point cloud processing techniques including grid average 

downsampling, surface normal filtering, point cloud clustering and RANSAC-cylinder 

filtering were implemented and applied to identify these characteristics from the point clouds 

(see Figure 2). The point cloud was downsampled into a regular grid to even the point spacing 

because, in TLS data, the point cloud density tends to vary with distance to the scanner. 

Surface normals were computed for each point according to its neighborhood to filter out 

non-vertical surfaces. The filtered points were clustered, and the cluster dimensions were 

examined to filter out small, non-vertical point cloud structures obviously not representing a 

tree stem. RANSAC-cylinder filtering was applied to validate the cylindrical geometry of a 

point cloud structure. 

Considering that a sample plot point cloud consisted of more than 100 million points and 

represented tens of trees, it had to be processed in smaller units to achieve reasonable 

computing performance. First, canopy segments (including none, one, or more trees) were 

extracted from a detailed canopy height model (CHM), and the sample plot point cloud was 

partitioned according to the canopy segments. The canopy-segmented point clouds were then 

split into horizontal point cloud bins, and a point cloud classification procedure was applied 

for each point cloud bin to separate points representing the tree stem (i.e. stem points) from 

points representing branches and foliage (i.e. non-stem points). The point cloud classification 

procedure first aimed to find the base of the tree stem from the lowest point cloud bin, as the 

lower part of a tree stem is often well characterized due to a low number of occluding 

branches and favorable point cloud acquisition geometry. Once the stem points representing 

the base of the tree were extracted, the realized stem location and dimensions were used to 

guide the classification procedure in the following point cloud bins. The classification 

procedure proceeded upwards along the stem, bin by bin, until the treetop was reached. As a 

result, the entire sample plot point cloud was classified into stem points and non-stem points 

by individual trees, which enabled detailed point cloud–based measurements to retrieve tree 

attributes such as dbh and tree height and the estimation of forest structural attributes such as 

the number of trees per hectare (TPH) and mean basal area (G). 
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Figure 2. Outline of the point cloud processing methods implemented in this thesis. Study I: 
Downed dead wood trunks were detected from point clouds based on their cylindrical, 
regular geometry. Studies II–III: Individual trees were detected from multi-scan terrestrial 
laser scanning (TLS) point clouds (a-b); point cloud structures representing stem were 
distinguished from non-stem points based on point neighborhood characteristics (c-d). Tree 
attributes such as diameter at breast height, tree height and stem volume were extracted 
from the classified point clouds (e). Study IV: Aerial point clouds acquired from an 
unmanned aerial vehicle (UAV) were merged with TLS point clouds. Study V: TLS point 
cloud–derived estimates for tree and forest structural attributes obtained at the beginning 
(2014) and at the end of the monitoring period (2019) were compared to examine changes. 
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3.4 Characterizing trees and tree communities (study II) 

 

Once the stem points and non-stem points were classified as explained in Section 3.3, 

attributes characterizing the structure of trees and tree communities were estimated using a 

point cloud–based method implemented in study II. Tree attributes such as dbh, basal area 

(g), tree height (h) and stem volume (v) were estimated for each tree by modelling the point 

cloud structures with geometric primitives such as circles and cylinders. The aim was to 

obtain a taper curve characterizing the stem profile, in other words, the stem diameter as a 

function of tree height. This involved measuring the diameters along the stem by fitting 

circles or cylinders at certain height intervals and using a cubic spline curve to level 

unevenness in the diameter measurements by following the procedure presented in Saarinen 

et al. (2017). The diameter was forced to be zero at the height that equaled the height of the 

highest point of the tree (i.e. tree height). Stem volume was computed as a piecewise integral 

of the taper curve by considering the stem as a sequence of vertical cylinders. 

Forest structural attributes such as basal area-weighted mean diameter (Dg), basal area-

weighted mean height (Lorey’s height, Hg), G, TPH and mean volume (Vmean) were estimated 

by aggregating the tree attributes at the sample plot level according to Equations 2–6. 
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(6) 

where n is the number of trees in a sample plot, di is the dbh of the ith tree, gi is the basal area 

of the ith tree,  hi is the height for the ith tree and vi is the stem volume of the ith  tree in a 

sample plot, while A is the area of the sample plot in hectares. 

 

 

3.5 Merging terrestrial and aerial point clouds (study IV) 

 

Aerial and terrestrial point clouds were combined in study IV to enhance the vertical 

characterization of trees and tree communities. The point clouds were registered and merged 

by manually searching for common tie points for each sample plot and computing a 3D 

transformation matrix based on the tie point coordinates to align the data sets. This resulted 

in multisensorial point cloud data that was then used to detect and characterize trees and tree 

communities using the point cloud–based methods developed in studies II–III. 
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3.6 Quantifying changes in trees and tree communities (study V) 

 

Changes in tree and forest structural attributes were quantified in study V by subtracting the 

attributes derived from the point clouds at the beginning of the monitoring period (2014, T1) 

from the respective attributes derived from the point clouds at the end of the monitoring 

period (2019, T2). At tree level, changes in dbh (Δdbh), g (Δg) and h (Δh), as well as 

diameter-height ratio (Δd-h-ratio), height of the crown base (Δhc) and crown ratio (Δcr), were 

analyzed. To complete this task, additional tree attributes were computed at T1 and T2. The 

d-h-ratio was computed as the ratio between dbh and height. The hc was determined by 

searching for a height threshold for each tree for which an increase in crown horizontal 

dimensions was recorded. This was done by first binning the non-stem points into horizontal 

slices with a height of 20 cm, then computing a convex hull around the bin points projected 

to XY-plane, with hc being determined at the height where the convex hull area exceeded a 

1.5 m2 threshold and the perimeter-to-area ratio for the convex hull was smaller than two. 

The threshold values of these parameters were chosen by pre-investigating the characteristics 

of the crown features with respect to the field-measured hc. The cr was computed as the 

proportion of the height of a living crown from the tree height (cr = (h − hc)/h). At plot level, 

changes in TPH (ΔTPH), G (ΔG), Dg (ΔDg) and Hg (ΔHg) were analyzed based on aggregated 

tree level attributes (See Equations 2–6). 

 

 

3.7 Performance analyses 

 

Performance of the implemented point cloud–based methods to characterize forest structure 

were assessed by using a set of accuracy measures assessing how well the point cloud-derived 

characterization of the forest structure corresponded to the characterization that was based 

on the reference measurements and field observations. This required searching for a 

corresponding field-measured tree or dead wood trunk for each point cloud–derived tree or 

dead wood trunk. Bias and root mean square error (RMSE; Equations 7–8) were used as 

accuracy measures for assessing the deviation between the point cloud–derived and field-

measured tree and forest structural characteristics: 

𝑏𝑖𝑎𝑠 =
∑ (𝑋�̂�  −  𝑋𝑖)

𝑛
𝑖 = 1

𝑛
 (7) 

𝑅𝑀𝑆𝐸 = √∑ (𝑋�̂�  −  𝑋𝑖)
2𝑛

𝑖 = 1

𝑛
 (8) 

where n is the number of trees or sample plots, 𝑋�̂� is the point cloud-derived tree attribute or 

forest structural attribute for tree i or plot i, and Xi is the corresponding attribute based on 

field measurements. 

It should be noted that there is variation in the precision of caliper and clinometer 

measurements (Luoma et al. 2017) and errors in the stem volume estimates from allometric 

models. Nevertheless, these are generally considered as the reference values for point cloud-

derived estimates for tree and forest structural attributes within the scientific community and, 

thus, also in this thesis.   



26 

 

 

 

Accuracy of the point cloud–based method to detect downed dead wood trunks and 

standing trees were assessed using correctness and completeness as accuracy measures. 

Correctness measures how large a part of the point cloud-derived trees was successfully 

matched with field-measured trees. Completeness measures how large a part of the field-

measured trees was able to be detected from the point clouds. At the sample-plot level, the 

completeness indicates how large a part of the field-measured TPH was characterized with 

the point cloud–based method. Similarly, the completeness was computed with respect to G 

and Vmean to provide more insight into assessing how well the tree population was 

characterized by the point cloud–based method. 

Performance of the point cloud–based method to detect and characterize downed dead 

wood was investigated in study I. Besides field-measured reference, performance of the 

automatic method was also compared to the performance of visual interpretation of the point 

clouds, which was assumed to represent the highest level of accuracy that could be achieved 

by using the point clouds with the given scan setup. 

In study II, the effects of scan setup and forest structural heterogeneity on the 

performance of the point cloud–based method were investigated. With a fixed scan setup 

(scan setup A), different-sized circular sample plots were used to demonstrate the effect of 

having the auxiliary scans located either inside the plot (16 m radius), on the plot border (11 

m radius) or outside the plot (6 m radius). It was assumed that it would be more favorable to 

have the auxiliary scans at the plot borders to ensure point cloud completeness, that is, that 

the trees become scanned from multiple directions. Forest structural heterogeneity was 

measured with Gini coefficient (GC) describing the size diversity based on variation in dbh 

distribution: 

𝐺𝐶 =
∑ (2𝑗 − 𝑛 − 1)𝑔𝑗

𝑛
𝑗=1

∑ 𝑔𝑗(𝑛 − 1)𝑛
𝑗=1

 (9) 

where n is the number of trees in a sample plot and gj is the basal area of the jth tree, j being 

the rank of a tree in ascending order from 1, …, n based on the basal area. The GC is a scalar 

value between 0 and 1, with a higher value indicating a more complex forest stand. The effect 

of stand structural heterogeneity on the accuracy of the point cloud–based method was 

evaluated by analyzing the errors of the point cloud–based estimates for the plot-level forest 

inventory attributes with respect to the GC. 

The effects of thinning treatments on the performance of the point cloud–based forest 

characterization were investigated in study III. The accuracy of detecting trees and 

estimating tree and forest structural attributes was assessed by thinning type and intensity. A 

one-sample t-test was used in pairwise investigations to examine whether the estimation error 

of tree and forest structural attributes in one thinning treatment significantly differed from 

the errors of the respective estimates of other thinning treatments. The ability of the point 

cloud–based method to provide consistent performance in similar forest conditions was 

investigated by analyzing the variation in the accuracy measures among sample plots with 

the same thinning type and intensity and comparing the range of variation in accuracy 

measures between different thinning treatments. 

The benefits of using multisensorial point clouds in characterizing forest structure, 

especially its vertical component, were investigated in study IV. The performance of 

detecting trees and measuring tree and forest structural attributes using the multisensorial 

data (TLS and UAV point clouds combined) was compared with the respective performance 
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when using only TLS data. Coefficient of determination (R2) was used to measure how large 

a part of the variation in the field-measured tree and forest attributes could be characterized 

by the point cloud–based methods. 

In study V, paired sample t-tests were used to determine whether the point cloud–based 

estimates for tree and forest structural attributes at the beginning of the monitoring period 

(time point one, T1) significantly differed from the respective estimates at the end of the 

monitoring period (time point two, T2). The accuracy of quantifying changes in the tree 

attributes was assessed by tree species (Scots pine, Norway spruce, and broadleaved trees). 

The accuracy of quantifying changes in the forest structural attributes was assessed by main 

tree species of the sample plot (Scots pine–dominated, Norway spruce–dominated, and 

mixed-species sample plots). 

 

 

4 RESULTS 

4.1 Method development for characterizing forest structure 

 

4.1.1 Performance of detecting and characterizing downed dead wood (study I) 

 

It was possible to detect and measure the dimensions of downed dead wood trunks using the 

automatic point cloud–based method implemented in study I. The dead wood trunk locations 

were distinguished based on their cylindrical and regular geometry, and the respective point 

cloud structures were delineated to measure the trunk dimensions. In this regard, the validity 

of H1 was confirmed. The key methodological finding was that the downed dead wood trunks 

appeared as regular-shaped image segments that were strongly elliptical, in fact, more 

elliptical than most of the other near-ground objects. This is because the length of a dead 

wood trunk is often several times larger than its diameter, and such an object appears more 

regular and lineal than stones, stumps or hummocks. The point cloud–based method was 

found to be sensitive to two parameters, namely zmin defining the lower limit of point cloud 

delineation and εmin defining the minimum ellipticity of an image segment to be classified as 

downed dead wood trunk. Sensitivity analyses resulted in the parameter values of 15 cm for 

zmin, and 0.98 for εmin providing robust performance across different boreal forest conditions. 

Decreasing the parameter values resulted in slightly more dead wood trunks being detected 

at the cost of commission errors (i.e. falsely detected trunks). Increasing the parameter values, 

on the other hand, improved the correctness of the method at the cost of decreased 

completeness. 

The dead wood trunks that were detected from the point clouds accounted for 68% of the 

total volume of dead wood. Correctness of dead wood detection was 76% and varied between 

50% and 100% across the sample plots. Dead wood dimensions (i.e. diameter and length) 

were noticed to be the most important factors affecting the detection accuracy, with large 

trunks being detected more accurately than small trunks. The larger the dead wood 

dimensions were, the more distinguishable and regular structures they formed. Of the total 

volume of dead wood with mid-diameter larger than 30 cm, 86% was automatically detected. 

Considering that large-diameter dead wood is more valuable for biodiversity than small-

diameter dead wood (Andersson and Hytteborn 1991; Bader, Jansson, and Jonsson 1995), 

the quantity of ecologically important dead wood could be characterized. However, 28% of 
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the field-measured dead wood trunks remained undetected even if the point clouds were 

visually inspected. Completeness in dead wood detection could be improved with visual 

interpretation of point clouds, which resulted in detecting 83% of the total dead wood volume. 

It should be noted that here the TLS data was acquired using a scan setup initially designed 

to characterize standing trees. In other words, the scan locations were not selected to 

specifically prefer dead wood mapping. 

Mid-diameter, length and volume of the downed dead wood trunks were computed after 

detecting and delineating the respective point cloud structures from the sample plot point 

cloud. The mid-diameter was overestimated by 3.2 cm and 4.1 cm, and the length was 

underestimated by 5.5 m and 2.6 m depending on whether the dead wood trunks were 

detected using the automatic method or visual interpretation of point clouds, respectively. 

 

4.1.2 Performance of detecting and characterizing standing trees (studies II–III) 

 

Individual trees were delineated from the TLS point clouds from the total number of 118 

sample plots. The point clouds representing the individual trees were further classified into 

stem points and non-stem points using the point cloud classification procedure implemented 

in study III. This allowed measuring the tree attributes and estimating forest structural 

attributes using the automatic point cloud–based method implemented in study II. The 

performance of the point cloud–based method was assessed in varying forest conditions in 

study II. There, the overall correctness and completeness of tree detection were 93.6% and 

66.2%, respectively. The group of trees that were detected from the point clouds represented 

88.3% of the total basal area and 91.3% of the total stem volume of all the field-measured 

trees. This indicated that trees that were detected from the point clouds were larger in dbh 

and height than trees that remained undetected (Figure 3). In study III, the performance 

assessments were conducted on single-layered, managed Scots pine stands. There, the overall 

correctness and completeness of tree detection were 100% and 98.8%, respectively. The total 

volume of the trees that were detected from the point clouds accounted for 99.5% of the total 

volume of all the field-measured trees in study III. These figures reflect high accuracy of the 

point cloud–based method in detecting point cloud structures representing tree stems, which 

confirms the validity of H2. 

 

 

Figure 3. Completeness in tree detection by diameter at breast height (dbh) and tree height 
classes. The colored bars represent the proportion of field-measured reference trees (Ref.) 
that were detected from the terrestrial laser scanning (TLS) point clouds. The lines represent 
the respective tree detection rate by tree size classes (adapted from study II). The mean 
values (μ) and their variation (σ) are presented for reference and for TLS-detected trees as 
well. 
 



29 

 

 

 

4.2 Feasibility of point cloud–based methods to characterize forest structure 

 

4.2.1 Effect of scan setup and forest structure (studies II–III) 

 

The effects of scan setup and forest structural complexity on the performance of the point 

cloud–based method to characterize forest structure were investigated in study II. By default, 

the auxiliary scans were located approximately at the circumference of the circular 11 m 

radius sample plots, resulting in point clouds where the trees became scanned from multiple 

directions. This scan setup resulted in RMSEs of 3.1 cm (12.3%) for Dg, 1.3 m (5.9%) for 

Hg, 5.1 m2/ha (18.4%) for G, 498 n/ha (51.7%) for TPH and 43.1 m3/ha (15.3%) for Vmean. 

The results showed that the point cloud–based method could capture 83% of the plot-level 

variation in Dg, 95% in Hg, 86% in G, 67% in TPH and 94% in Vmean. Decreasing the sample 

plot radius from 11 m to 6 m resulted in a scan setup in which the auxiliary scans located 

outside of the sample plot enhanced the point cloud completeness. This reduced the 

magnitude of bias in the estimates of forest structural attributes but did not significantly (p > 

0.05) affect the tree detection accuracy (Figure 4), or the RMSEs in the estimates of G and 

TPH. RMSE in the Dg estimates slightly decreased, whereas the RMSEs in the estimates for 

Hg and Vmean increased. Increasing the sample plot radius from 11 m to 16 m, on the other 

hand, decreased the point cloud completeness, as the auxiliary scans were located inside the 

sample plot. This affected unequal point cloud quality in terms of point cloud completeness: 

Trees near the plot center were scanned from multiple directions, whereas trees near the plot 

borders were scanned from only the side facing towards the plot center. Increase in the plot 

radius decreased the accuracy of estimating density-related forest structural attributes, 

namely G, TPH and Vmean, while no significant (p > 0.05) effect was noticed in tree detection 

accuracy or in estimating Dg and Hg (Figure 4). Performance of the point cloud–based method 

decreased even further when the sample plot size was enlarged into a rectangular 32 m × 32 

m sample plot, in which the point cloud completeness was less favorable for trees located 

near the plot corners. 

 

Figure 4. Correctness in tree detection as well as completeness in detecting the number of 
trees per hectare (TPH), mean basal area (G) and mean volume (Vmean) with respect to 
sample plot size (a), and forest structural heterogeneity (b-e) measured as the Gini 
coefficient (GC). Coefficient of determination (R2) indicates the relationship between the 
accuracy measures and GC (adapted from study II).  
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Forest structural complexity was noticed to affect the performance of the point cloud–

based method. The GC accounted for 51% of the variation in completeness of tree detection 

(Figure 4). When the sample plots were organized according to the performance of tree 

detection, over 96% correctness of tree detection and 80%, 94% and 96% completeness of 

detecting TPH, G and Vmean, respectively, were achieved for the top 50% of the sample plots. 

This demonstrates that high performance can be achieved in favorable forest conditions with 

the point cloud–based method. Variation in the accuracy measures increased with increasing 

variation in GC (Figure 4), which indicates that high performance in tree detection can be 

expected on sample plots with a low degree of tree size variation. 

In study III, different thinning treatments (including control plots with no thinnings) were 

applied on managed Scots pine stands to investigate in more detail how forest structure 

affects the performance of the point cloud–based method of characterizing trees and tree 

communities. The thinning treatments had been applied under similar forest conditions, thus 

representing controlled variation in horizontal and vertical forest structure. On average, dbh 

and tree height were underestimated by 0.10 cm (0.5%) and 0.30 (1.6%) m, respectively. 

RMSE in dbh estimates was 0.70 cm (3.4%), while in the tree height estimates, the RMSE 

was 1.64 m (8.4%). Accurate estimates for tree-level attributes aggregated to accurate 

estimates at the plot-level as well, as a relative RMSE of less than 5.5% was recorded for all 

the structural forest attributes. Correctness and completeness in tree detection remained at 

the same level regardless of the applied thinning type or intensity. However, in general, 

higher accuracy in the estimates for tree and forest structural attributes was achieved for 

sample plots in which thinnings were carried out (Figure 5). Furthermore, thinning intensity 

was considered to affect the performance more than thinning type. Accuracy in estimating 

dbh (RMSE 3.0–4.1%), Dg (RMSE 1.1–1.7%) and Vmean (RMSE 4.8–5.9%) was consistent 

across the sample plots with different treatments, including control plots without any thinning 

treatments. In the case of all the other attributes, the performance of the point cloud–based 

method was significantly lower for control plots compared to thinned plots. Tree height was 

estimated most accurately (RMSE 4.5%) in sample plots in which thinning from above was 

carried out, while the lowest accuracy was obtained for control plots (RMSE 11.0%). In the 

case of Hg and G, the estimation accuracy remained at the same level for thinned plots (RMSE 

2.2–2.3% and 2.5–2.9%, respectively) while being lower for control plots (RMSE 5.0% and 

4.5%, respectively). TPH was estimated most accurately for sample plots where thinning 

from below was carried out (RMSE 0.7%), followed by thinning from above (RMSE 1.2%), 

systematic thinning (RMSE 1.9%) and control plots (RMSE 7.5%).  

The experimental design of study III also enabled investigating how consistent 

performance can be expected when the point cloud–based method is applied under similar 

forest conditions. In general, more variation in the accuracy measures was recorded for 

control plots than for thinned sample plots (Figure 5). Range of variation in completeness in 

tree detection varied from 0.0% to 2.3% between the thinning treatments, while for control 

plots, the respective range of variation was 8.2%. Variation in the errors of Hg, G, TPH and 

Vmean estimates was significantly (p < 0.05) smaller for thinned plots than for control plots. 

Intensive thinning led to more consistent accuracy of the estimates of tree height, G and Vmean. 

The same applied with Hg, except for sample plots with thinning from above, in which 

moderate thinning intensity resulted in smaller variation in the estimation errors.  In the case 

of dbh and Dg, the variation in the estimation errors was similar regardless of the applied 

treatments. 
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Figure 5. Variation in the errors of the point cloud-derived estimates for tree attributes such 
as a) diameter at breast height (dbh) and b) tree height; plot-level forest structural attributes 
such as c) basal area-weighted mean diameter (Dg), d) basal area-weighted mean height 
(Hg), e) mean basal area (G), f) mean volume (Vmean) and g) the number of trees per hectare 
(TPH) as well as h) tree detection rate between different thinning treatments (adapted from 
study III). 
 

Altogether, the findings obtained from studies II–III confirmed the validity of H3 by 

demonstrating the effect of scan setup and stand structure on the performance of the point 

cloud–based method in characterizing trees and tree communities. Increased complexity in 

the horizontal and vertical forest structure led to decreased and inconsistent performance. On 

the other hand, the performance could be improved by using a scan setup that enhances point 

cloud completeness. 

 

4.2.2 Benefits of using the multisensorial approach to characterize trees (study IV) 

 

Feasibility of complementing terrestrial point clouds with aerial point clouds (i.e. the 

multisensorial approach) to enhance forest characterization was investigated in study IV. 

Bias in tree height estimates was decreased from -0.65 m (-3.3%) to -0.33 (-1.7%) when the 

multisensorial approach was used instead of just TLS point clouds. Respectively, at the 

sample plot level, the bias decreased from −0.75 m (−3.6%) to −0.45 m (0.58%) and the 

RMSE from 0.88 m (4.3%) to 0.58 m (2.8%). The photogrammetric UAV point cloud 

contributed to enhancing the characterization of the upper parts of the canopy, and thus, no 
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improvement in horizontal forest characterization (i.e. dbh, Dg, G, and TPH) was recorded. 

However, as the accuracy of estimating Vmean is influenced by the accuracy of both vertical 

and horizontal forest characterization, the use of the multisensorial approach slightly 

improved the accuracy of Vmean, as the RMSE decreased from 14.55 m3/ha (6.2%) to 12.81 

m3/ha (5.4%). These results showed that the use of the multisensorial approach improved 

vertical forest characterization (Figure 6), confirming the validity of H4. 

 

 

 
 
Figure 6. Coefficient of determination (R2) indicating the relationship between the field-
measured (Reference) and point cloud–derived (Estimated) estimates for tree height, 
number of trees per hectare (TPH), mean basal area (G), basal area-weighted mean 
diameter (Dg) and mean height (Hg) as well as mean volume (Vmean) when using terrestrial 
laser scanning (TLS) and the combination of TLS and photogrammetric airborne point 
clouds acquired from an unmanned aerial vehicle (UAV). The estimated values are based 
on TLS and the multisensorial approach (TLS+UAV). The solid black line represents the 1:1 
relationship between the reference and the estimated values (adapted from study IV). 
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4.2.3 Capacity of TLS to characterize changes in forest structure (study V) 

 

Bitemporal TLS data was used in study V to detect and quantify changes in tree and forest 

structural attributes. A total of 795 trees with basal area representing 84.5% of the total basal 

area of all the field-measured trees were detected at both time points, 2014 (T1) and 2019 

(T2). The results showed that forest structure could be characterized in space and time using 

the point cloud–based methods developed in studies II and III. In dbh and tree height, there 

was an average increase of 1.16 cm and 1.40 m recorded in the field, whereas the use of the 

point cloud–based method resulted in an average increase of 1.26 cm and 1.99 m, 

respectively. Paired sample t-tests indicated that the arithmetic mean of the point cloud–based 

dbh and tree height estimates at T1 significantly (p < 0.01) differed from the arithmetic mean 

of dbh and tree height estimates at T2, which was true in the case of all the other tree attributes 

as well. This can be interpreted to mean that, if there was an increase or decrease in the 

attributes of trees within a tree community recorded in the field using calipers and a 

clinometer, a similar outcome (i.e. statistically significant increase or decrease in the 

respective attributes) was achieved with automatic processing of bitemporal point clouds. In 

general, the tree attributes of Scots pines and Norway spruces were estimated more accurately 

in space and time than the tree attributes of broadleaved trees, while changes in the horizontal 

structure of trees were estimated more accurately than changes in the vertical structure of 

trees. The point cloud–based method could explain 44–53% of Δdbh and 34–56% of Δg 

(Figure 7a-b). Changes in the vertical structure of trees were detected most accurately for 

Scots pine trees, for which 34–35% of Δh, Δhc and Δcr, as well as 20% of Δd-h-ratio, could  

 
Figure 7. Coefficient of determination (R2) indicating the relationships between the field-
measured (Reference) and point cloud–derived estimates (Estimated) of changes in tree 
attributes such as diameter at breast height (Δdbh), basal area (Δg), tree height (Δh), 
diameter-height ratio (Δd-h-ratio), height of the crown base (Δhc), and crown ratio (Δcr) by 
tree species. The solid black line represents the 1:1 relationship between the reference and 
the estimated values (adapted from study V). 
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be explained with the point cloud–based method (Figure 7c-f). RMSE in estimates of Δdbh 

and Δh were 1.13 cm (97.4%) and 3.53 cm (251.6%), respectively. Considering these figures, 

it should be noted that the observed five-year change in dbh (1.16 cm) was within the 

accuracy of point cloud–derived estimates for dbh (RMSE 0.90–1.18 cm). In the case of tree 

height, the observed change (1.40 m) was below the accuracy of point cloud–derived 

estimates for h (RMSE 4.10–4.37 m). 

Similarly to changes in the tree attributes, changes in the forest structural attributes could 

be detected with the point cloud–based method. In Dg, Hg and G, there was an average 

increase of 1.28 cm, 1.29 m and 2.86 m2/ha recorded in the field, respectively, while the use 

of the point cloud–based method resulted in an average increase of 1.44 cm in Dg, 2.52 m in 

Hg and 2.75 m2/ha in G. Paired sample t-tests indicated that the arithmetic mean of the point 

cloud–based estimates at T1 significantly (p < 0.01) differed from the arithmetic mean of the 

respective estimates at T2. In the case of TPH, there was an average decrease of 14 n/ha 

recorded in the field, whereas the point cloud–based method signified an average increase of 

66 n/ha across the sample plots. However, the differences in both the field-observed and point 

cloud–derived estimates between T1 and T2 were not considered statistically significant (p 

> 0.05). In general, the changes in forest structural attributes of Scots pine–dominated and 

Norway spruce–dominated sample plots were characterized more accurately than the 

respective attributes of mixed-species sample plots. 

Altogether, the findings of study V confirmed the validity of H5. Nevertheless, it should 

be noted that the five-year monitoring period is a relatively short time frame in the lifespan 

of trees in boreal forests, meaning that the observable changes in the structure of trees are 

small and, thus, prone to measurement errors. 

 

Figure 8. Coefficient of determination (R2) indicating the relationships between the field-
measured (Reference) and point cloud–derived estimates (Estimated) of changes in forest 
structural attributes such as basal area-weighted mean diameter (ΔDg) and -height (ΔHg), 
mean basal area (ΔG), and the number of trees per hectare (ΔTPH) by dominant tree 
species of a sample plot. The solid black line represents the 1:1 relationship between the 
reference and the estimated values (adapted from study V). 
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5 DISCUSSION 

5.1 Major findings of the thesis 

 

5.1.1 Trees can be detected from point clouds based on their regular and cylindrical 

geometry 

 

The objective of this thesis was to develop point cloud–based methods for detecting and 

characterizing trees and downed dead wood, and to test the feasibility of the developed 

methods for characterizing trees and tree communities in space and time. The objective was 

formulated into five hypotheses (H1–H5), which were tested in the substudies of this thesis. 

According to H1, the fallen trees were expected to be detected from the undergrowth 

vegetation and other near-ground objects by means of their regular, cylindrical geometry. 

The validity of H1 was confirmed in study I, which was among the first attempts to use TLS 

point clouds in detecting and characterizing downed dead wood. The results showed that 

especially large-diameter downed dead wood trunks were accurately detected from the point 

clouds using an automatic point cloud processing approach that only relied on the geometric 

features of the trunks. It should be noted that these large-diameter downed dead wood trunks 

are very important for biodiversity in boreal forests (Andersson and Hytteborn 1991; Bader, 

Jansson, and Jonsson 1995).  

The experimental design of study I consisted of 20 sample plots with a wide range of 

variation in forest structures, thus supporting the applicability of the method and the validity 

of the results. Earlier work by Polewski et al. (2017) presented a TLS-based method for 

detecting downed dead wood with comparable detection accuracy to study I, although the 

analyses were carried out in less complex forest conditions. However, the significant 

contribution of study I was that it demonstrated the feasibility of the point cloud–based 

method to also provide information about the quality attributes of dead wood trunks. 

Accuracy in estimating the diameter of a dead wood trunk (RMSE ~6 cm) did not reach the 

level of the expected accuracy when estimating the diameters of standing trees (RMSE ~1–2 

cm; Liang, Hyyppä, et al. (2018)), which is explained by different conditions near the forest 

floor, where dead wood trunks are lying on the ground among undergrowth vegetation, 

shrubs and stones. Altogether, the results of study I confirmed the feasibility of using TLS in 

detecting and characterizing essential biodiversity indicators, such as large-diameter downed 

dead wood trunks in diverse boreal forest conditions. 

H2 proposed that a tree stem can be detected from other forest structural characteristics 

based on its pole-like structure, which is characterized by smooth and vertical surfaces with 

cylindrical geometry. H2 was based on earlier findings on the differences in the geometric 

features of different forest structural characteristics. It was already known that the smooth 

and cylindrical surfaces (Liang, Litkey, et al. 2012; Raumonen et al. 2013; Hackenberg et al. 

2014) as well as the vertical continuity of point cloud structures (Cabo, Ordóñez, et al. 2018; 

Zhang et al. 2019) were the key features to enable the automatic detection of tree stems from 

terrestrial point clouds. These principles were combined in studies II–III for developing a 

robust point cloud–based method to detect the point cloud structures representing individual 

trees and classify the woody structures from foliage. The performance of the method was 

tested on two study sites to confirm the validity of H2 in diverse boreal forest conditions. The 

current trend in the past studies regarding the use of terrestrial point clouds to characterize 
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trees and tree communities has been that the study sites for validating the performance of the 

point cloud–based methods have covered only a small variation in forest structures at a time. 

In this regard, studies II–III contributed by introducing a rather unique experimental design 

with which to validate the H2. The experimental design of study II consisted of 91 sample 

plots including young and mature, managed and unmanaged, and dense and sparse tree 

communities. In study III, the 27 sample plots represented managed Scots pine stands with 

controlled variation in forest density and tree size distributions due to different thinning 

treatments applied on otherwise similar stands. The reported correctness and completeness 

in tree detection were comparable to the expected accuracy of a TLS-based method in boreal 

forest conditions (Liang, Hyyppä, et al. 2018), highlighting the feasibility of the use of 

terrestrial point clouds to reconstruct trees and tree communities in varying boreal forest 

conditions. 

Accurate tree detection and point cloud classification enabled the retrieval of the tree 

attributes using point cloud–based measurements employing the fitting of geometric 

primitives such as circles or cylinders into the classified point cloud structures. Comparison 

of the state-of-the-art point cloud–based methods to characterize trees revealed that an RMSE 

of 1–2 cm in dbh estimates was generally obtained in boreal forests (Liang, Hyyppä, et al. 

2018). It should be noted that there is variation also in the conventional tree measurements. 

For example, Luoma et al. (2017) reported a 0.3 cm precision in dbh measurements in boreal 

forest conditions. In this regard, the results of study III proved the capability of terrestrial 

point cloud–based methods to reach the accuracy level of conventional caliper measurements 

in observing dbh in managed Scots pine stands, as a sub-centimeter level of accuracy (RMSE 

0.7 cm) in dbh estimates was obtained. In addition, studies II–III showed that accurate tree 

detection combined with detailed individual tree characterization resulted in accurate 

estimates of forest structural attributes. This was a significant contribution to the current 

understanding of the capabilities of TLS-based forest characterization, as the previous studies 

were focused mainly on investigating only the accuracy of individual tree characterization. 

The experimental design supported the validity of analyses by providing a large number of 

observations with variation at the tree and tree community levels. The total number of 10.989 

trees on 118 sample plots was used in the studies. 

 

5.1.2 Forest structure affects the performance of a point cloud–based method to 

characterize trees and tree communities 

 

H3 of this thesis proposed that increased density and structural complexity of tree 

communities and use of a scan setup with incomplete point cloud coverage are expected to 

decrease the performance of the developed point cloud–based methods to characterize trees 

and tree communities. It was generally known that these are the main factors causing point 

cloud occlusion and, thus, limiting the capability of a point cloud–based method to provide 

a comprehensive reconstruction of trees and tree communities (Watt and Donoghue 2005; 

Abegg et al. 2017; Olofsson and Olsson 2018; Gollob et al. 2019). However, controlled 

experiments aiming to investigate the influence of these factors in diverse forest conditions 

were lacking. The experimental design of studies II–III provided unprecedented conditions 

for investigating the factors affecting the performance of a point cloud–based method in 

characterizing trees and tree communities. The results of studies II–III supported the earlier 

findings by (Liang, Hyyppä, et al. 2018) that trees considered small in terms of dbh and height 
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were more likely to remain undetected by the terrestrial point clouds than larger trees. The 

proportion of small trees tended to increase as the variation in tree size distribution within a 

tree community increased, making the forest structure also more complex. Study II showed 

that this resulted in the decrease of the performance of a point cloud–based method as a 

function of increased structural complexity. In addition, the results of study III demonstrated 

an improved performance on managed forest stands where thinning treatments were carried 

out, with more intensive thinning leading to higher accuracy. Considering the effect of scan 

setup, the results of study II showed that when applying the multi-scan approach, it is 

beneficial to place the auxiliary scans approximately at the circumference of the sample plot 

to ensure the acquisition of a high-quality point cloud in terms of point cloud completeness. 

 

5.1.3 Forest characterization benefits from the combined use of terrestrial and aerial point 

clouds 

 

A generally recognized challenge in using TLS technology to characterize trees and tree 

communities has been its limited capacity of providing comprehensive characterization of 

vertical forest structure (Liang et al. 2016; Wang et al. 2019). Due to the hemispherical 

measurement geometry, the upper parts of tree crowns often remain occluded by neighboring 

trees even if the multi-scan approach is used in TLS data acquisition. Proposing a solution 

for this challenge, H4 suggested that tree community characterization could be improved by 

using the multisensorial approach of combining terrestrial and aerial point clouds. The 

validity of H4 was tested in study IV, in which photogrammetric UAV-borne point clouds 

were combined with TLS point clouds to enhance the characterization of vertical forest 

structure, a concept which Aicardi et al. (2017) demonstrated feasible for forestry 

applications. The results of study IV showed that, compared to the use of TLS point clouds 

only, improvement in the accuracy of tree height estimates as well as in the estimates of Hg 

and Vmean was obtained when the photogrammetric UAV and the TLS point clouds were 

combined. The experimental design consisted of 2204 trees on 27 sample plots established 

on managed Scots pine stands where rather high performance in the characterization of trees 

and tree communities had already been reached when using the TLS point clouds only. 

However, the difference between the multisensorial and TLS-based approaches in the forest 

characterization performance theoretically should be greater in forests including more 

variation in the horizontal and vertical structure. 

Similar outcomes have been reported in earlier studies comparing terrestrial and aerial 

close-range sensing techniques in vertical forest characterization. Mikita, Janata and Surový 

(2016) combined terrestrial and aerial close-range photogrammetry to obtain a 

comprehensive characterization of an old-growth forest stand and reported an RMSE of 1.02 

m (3.0%) for tree height of 118 Norway spruces. Wang et al. (2019) used low-altitude 

helicopter-borne laser scanning data for measuring the height of 1174 individual trees in 18 

sample plots and concluded that the underestimation of tree height was decreased from 1.21 

m to 0.12 m when the aerial point cloud was applied instead of TLS point clouds. Liang et 

al. (2019) compared the performance of tree height estimation using TLS, MLS and ULS 

point clouds in 22 sample plots and showed that the use of aerial point cloud data provided 

the highest accuracy in tree-height estimates, especially on sample plots with complex forest 

structure. Brede et al. (2017) compared the performance of TLS and ULS in characterizing 

height of trees and tree communities through CHMs and concluded that ULS provided more 
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accurate characterization of the top of tree crowns in varying forest conditions. However, 

compared to these studies, study IV contributed by demonstrating high performance of the 

multisensorial approach also in estimating forest structural attributes characterizing tree 

communities. RMSE in Hg estimates was decreased from 0.88 m (4.3%) to 0.58 m (2.8%) 

when the TLS point cloud was augmented with UAV photogrammetry. 

 

5.1.4 Growth of trees and tree communities can be detected using bitemporal point clouds 

 

Building upon the recognized high performance of the point cloud–based methods to 

accurately characterize trees and tree communities in space, H5 proposed that the growth of 

trees and tree communities during a 5-year monitoring period can be detected and quantified 

using bitemporal TLS point clouds. The validity of H5 was investigated in study V, in which 

the experimental design consisted of 1280 trees in 37 sample plots representing diverse boreal 

forest conditions. The size and the shape of the sample plots were adjusted according to the 

findings of study II to match the scan setup. The results of study V showed that if there was 

an increase or decrease in the attributes of trees within a tree community recorded in the field 

using calipers and a clinometer, a similar outcome (i.e. a statistically significant increase or 

decrease in the respective attributes) was achieved by using bitemporal point clouds and the 

point cloud processing methods developed in studies II–III, confirming the validity of H5. 

In this regard, study V made a significant contribution to the current understanding of the 

capacity of terrestrial point clouds to detect changes in tree attributes under diverse forest 

structures.  

Thus far, past studies have demonstrated the feasibility of using TLS in characterizing 

changes in individual trees and tree communities, but comprehensive investigations on the 

accuracy of the point cloud–based methods in diverse forest conditions have been lacking. 

Liang, Hyyppä, et al. (2012) reported that TLS-derived bitemporal changes accounted for 

92% of the changed basal area due to harvesting on five sample plots. Changes in individual 

tree biomass have been analyzed with multi-temporal TLS data by detecting changes in the 

branching structure of a Norway maple (Acer platanoides L.) tree (Kaasalainen et al. 2014) 

or by modelling with TLS point cloud–derived parameters characterizing the structure of 

loblolly pines (Pinus taeda L.) over time (Srinivasan et al. 2014). Changes in the structure 

and form of 21 wild cherry (Prunus avium L.) trees were analyzed in Sheppard et al. (2017) 

to estimate changes in tree biomass. Hess et al. (2018) analyzed the spatiotemporal dynamics 

in canopy occupancy in four sample plots using a voxelized TLS data covering one growing 

season, while Kunz et al. (2019) analyzed the temporal dynamics of tree morphology on 30 

sample plots when investigating the neighborhood interactions of trees. Altogether, these 

studies have aimed to demonstrate the potential of point cloud–based methods for 

characterizing forest dynamics in 3D space or detecting changes in the structure of individual 

trees with controlled experiments. In this regard, Luoma et al. (2019) contributed by 

investigating the feasibility of using bitemporal TLS data covering a nine-year monitoring 

period to detect changes in the shape of 35 tree stems in four sample plots in boreal forest 

conditions. They came to a similar conclusion as that of study V in regard to the capacity of 

TLS in detecting changes in tree attributes, although a five-year monitoring period was used 

in study V, which is a generally accepted time frame for investigating the growth of trees in 

boreal forests. In this respect, study V represents the first attempt to use TLS for investigating 

changes in tree and forest structural attributes in varying forest conditions with a large 
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number of samples. The outcomes of study V contribute to the current knowledge by 

highlighting the feasibility of TLS-based characterization of trees and tree communities in 

space and time. 

 

 

5.2 Constraints and future perspectives 

 

5.2.1 Applicability of the developed methods and obtained findings 

 

Feasibility of the point cloud–based methods developed in this thesis to characterize downed 

dead wood and standing trees was validated in southern boreal forest conditions. Although 

the experimental design included diverse forest conditions, from single-layered, single-

species and managed forests to multi-layered, mixed-species and unmanaged forests, the 

boreal forests have some key structural characteristics that need to be taken into account 

when considering the applicability of the results of this thesis. The study sites were dominated 

by three main tree species: Scots pine, Norway spruce and birches, which are typically 

characterized by a regular stem form. From the methodological perspective, this makes it 

rather straightforward to detect point cloud structures representing a tree stem, either standing 

or lying on the ground, based on its pole-like, regular structure. However, the validity of this 

methodological assumption could not be tested with heavily bifurcated trees, which were 

lacking from the experimental design of this thesis. Another consideration regarding the 

forest conditions within the study sites involves the dimensions of the observed trees. Despite 

the fact that there was a large variation in dbh and height of the trees included in the 

experimental design of this thesis (see, for example, Figure 3), on average, the trees were 

17.2 cm in dbh (ranging from 5.0 cm to 71.9 cm) and 16.4 m (1.5–37.5 m) in height. While 

these figures are representative of the forest conditions within the study sites, it should be 

noted that in temperate, subtropical, and tropical forests, the trees tend to grow faster and 

larger, forming more complex forest structures (Pan et al. 2013). Thus, it is evident that 

conclusions regarding the validity of the hypothesis within forest conditions completely 

different to boreal forests cannot be drawn based on the experiments of this thesis only. 

Therefore, comparable experiments carried out in different forest biomes are needed to 

validate the applicability of the findings of this thesis beyond the southern boreal forest zone. 

Obviously, some practical considerations affected the point cloud data acquisition 

protocols, which were not always specifically optimized for investigating the validity of each 

hypothesis of this thesis. Firstly, for detecting and characterizing downed dead wood in study 

I, the TLS data were collected using a scan setup initially designed for digitizing the standing 

trees. The auxiliary scans were placed somewhat evenly around the sample plots without 

taking the spatial distribution of dead wood into account. Furthermore, the data acquisition 

geometry was not considered favorable for downed dead wood mapping, as the laser scanners 

were mounted on tripods approximately 1.5–2.0 m above the ground. In this regard, the 

results of study I rather demonstrated the feasibility of simultaneously mapping both downed 

and standing trees with terrestrial point clouds. On the other hand, considering that the sides 

of dead wood trunks that are facing towards the ground cannot be characterized anyway, a 

laser-based aerial point cloud collected from above the canopy or from inside the canopy 

could provide an improved measurement geometry for more comprehensive characterization 

of downed dead wood. Secondly, all the point cloud data for this thesis were acquired outside 
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the growing season, in leaf-off conditions, to enable flexibility of the timing of measurement 

campaigns. During the growing season, point cloud data acquisition and field inventory must 

be carried out almost simultaneously to ensure that both datasets represent the same structural 

states. The use of point clouds collected during leaf-off conditions specifically supports the 

characterization of deciduous trees and reduces the occlusion effect of undergrowth 

vegetation. The influence of using point clouds collected during the growing season instead 

of leaf-off point clouds to the performance of the point cloud–based method cannot be 

addressed based on the experiments of this thesis. 

 

5.2.2 Technological and methodological constraints 

 

In this thesis, point cloud processing methods were developed to characterize downed dead 

wood and standing trees. The methods rely solely on the geometric features of the objects of 

interest; in other words, no information other than the 3D-coordinates of the generated point 

clouds was used. On one hand, ignoring the spectral information limits the analyses to the 

geometric features only. Previous studies demonstrate that the use of backscattered laser 

intensity, even at multiple wavelengths, enables the utilization of spectral features that, 

accompanied with the geometric features, could expand the spectrum of point cloud–based 

tree measurements, such as analyzing the health status of a tree (Junttila 2019). On the other 

hand, however, the use of geometric features only simplifies both the implementation and 

applicability of the methods, as there is no need to calibrate the intensity values before 

making use of the spectral information of the target. When it comes to point cloud–based 

dead wood characterization, the dead wood quality attributes extracted from the point clouds 

in study I were related to the dimensions of the dead wood trunks. However, many threatened 

species are dependent from dead wood in terms of certain dimensionless features such as tree 

species, water content and the stage of wood decay (Jonsell and Weslien 2003; Similä, Kouki, 

and Martikainen 2003). In this regard, the use of a combination of both geometric and spectral 

features could be beneficial in extracting these characteristics with the point cloud–based 

methods. Similarly, point cloud classification methods to separate woody and non-woody 

components may benefit from approaches employing spectral information, as presented by 

(Zhu et al. 2018). This could presumably improve the performance of the point cloud–based 

methods in characterizing trees and tree communities, especially in complex forest structures 

in which point cloud occlusion causes incomplete characterization of trees. However, the 

feasibility of making use of spectral features alongside the geometric features in 

characterizing trees and tree communities could not be answered based on the experiments 

carried out in this thesis. 

 Another methodological constraint is related to the general capability of the point cloud 

technology to fully reconstruct the 3D structure of all the forest structural characteristics of 

interest. It is generally known that point cloud occlusion causes incomplete reconstruction of 

trees and tree communities with terrestrial point clouds, especially in complex forest 

structures (Béland et al. 2014; Abegg et al. 2017; X. Liang et al. 2018). To a large extent, 

horizontal occlusion caused by trees and undergrowth vegetation can be coped with by using 

merged point clouds, by which multiple individual point clouds acquired from different 

locations are registered together. The results of this thesis demonstrated that this approach 

enabled the characterization of trees and tree communities with high accuracy, especially in 

managed forests. However, in forests with dense canopies, the capacity of terrestrial point 
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clouds to characterize the top of tree crowns becomes limited due to the hemispherical 

measurement geometry. To overcome this challenge, study IV proposed a multisensorial 

approach whereby aerial point clouds were used in combination with terrestrial point clouds. 

Although the enhancement of the multisensorial approach was incremental in characterizing 

the vertical structure of the single-species and single-layered Scots pine stands, the 

reconstruction of more complex forest structures may benefit even more from point clouds 

that have been collected using sensors providing different measurement geometries. 

However, recent studies have demonstrated that the acquisition of terrestrial point clouds 

from mobile platforms could improve the vertical characterization of trees and tree 

communities as well. According to Hyyppä, Yu, et al. (2020), the use of point clouds acquired 

with a handheld laser scanner to estimate tree heights was observed to reach the accuracy of 

the ULS-based approach. Advances in sensor technology and solutions for accurate 

positioning inside the forest canopy will enable the mobile close-range sensing methods to 

collect data with improved geometric accuracy and point densities close to TLS. This will 

facilitate the shift from static to mobile point cloud generation approaches in the future. 

 

 

6 CONCLUSIONS 

To better understand the underlying processes of natural phenomena, accurate observations 

and measurements are needed. Considering forest ecosystems, monitoring the dynamics of 

tree characteristics is essential in this regard. Thus, the feasibility of using point clouds to 

characterize trees and tree communities in space and their development in time was 

investigated in this thesis. The first objective of this thesis was to develop point cloud–based 

methods for detecting and characterizing trees and downed dead wood. Study I demonstrated 

that large-diameter downed dead wood trunks that are ecologically most valuable were able 

to be detected from the undergrowth vegetation and other near-ground objects with high 

accuracy by means of their regular, cylindrical geometry. The results proved that a TLS-

based mapping method is a noteworthy option for providing information regarding the spatial 

distribution and quantity of the ecologically most valuable dead wood and the quality 

attributes that are based on dead wood trunk dimensions. Studies II–III, on the other hand, 

strengthened the current knowledge of the methodology to detect and characterize individual 

standing trees. Smooth, cylindrical surfaces and vertical continuity were the key 

characteristics of point cloud structures to separate woody structures from foliage and a tree 

stem from branches. An automatic point cloud processing method was developed for this 

task, and its performance was validated in diverse forest structures to confirm its robustness 

in southern boreal forest conditions. 

The second objective of this thesis was to test the feasibility of the developed point cloud–

based methods for characterization of trees and tree communities in space and time. Studies 

I–III revealed that the performance of point cloud–based methods was strongly influenced 

by the accuracy of the method used to detect different forest structural characteristics such as 

individual trees or downed dead wood trunks. The greater the size of a tree or a dead wood 

trunk, the more accurately it was detected from the point clouds. In study II, the structural 

complexity of a tree community was observed to be the most important factor affecting tree-

detection accuracy. High performance of the point cloud–based method was achieved on 

managed forest stands with low degree of variation in tree size distribution. Controlled 
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experiments in study III revealed that intensive thinnings led to more spacious canopy 

structures favoring the point cloud–based characterization of trees and tree communities, with 

thinning type (i.e. thinning from below, thinning from above, and systematic thinning) being 

less relevant in this regard. In turn, investigations in study IV resulted in the conclusion that 

combining aerial and terrestrial point clouds enhances the performance of a point cloud–

based method in vertical characterization of managed forests. Photogrammetric UAV point 

clouds were considered feasible in augmenting TLS point clouds to characterize the top of 

tree crowns. Finally, the performance of point cloud–based methods to characterize changes 

in the structure of trees and tree communities was investigated in study V, with bitemporal 

TLS data covering a monitoring period of five years. The results showed that if there was an 

increase or decrease in the attributes of trees within a tree community recorded in the field, a 

similar outcome was achieved with the point cloud–based method. 

In general, the findings of this thesis improve the current knowledge of the feasibility of 

using point cloud–based methods in characterizing tree and forest structural attributes in 

space and time. The major contribution of this thesis is based on comprehensive experiments 

that advance the state of the art in how point cloud technology expands the spectrum of tree 

observations by enabling non-destructive approaches to characterize trees and tree 

communities. With the ability of point cloud–based methods to directly and repeatedly 

observe the characteristics of a living organism, its dynamics and responses to a changing 

environment can be monitored without modelling or destructive sampling. This implies that 

the underlying physio-ecological processes driving natural phenomena such as tree growth 

can be characterized and understood more comprehensively. Thus, it is expected that the use 

of point cloud technologies will improve our ecological understanding regarding the 

functioning of trees, trees communities and forested ecosystems. 
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