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ABSTRACT 

 

 
Information on timber assortment recovery and wood quality is crucial for wood procurement 

planning, as the various tree species and wood dimensions and qualities may be utilized and 

refined in separate mills. The aim of this thesis is to improve our understanding of the timber 

trade in digital environments in order to support the planning of harvesting operations. 

The work for the thesis was carried out in three areas, two of which (discussed in Papers 

I and II) were located in Eastern Finland and one (Paper III) in Southern Finland. The field 

data comprised tree characteristics obtained from 79, 99 and 665 sample plots (Papers I, II 

and III, respectively), 249 harvested stands (Paper III) and a stem quality database (Papers I 

and III), whereas the remote sensing material consisted of aerial imagery (Papers I and III) 

and airborne laser scanning (ALS) data (Papers I, II and III) covering all the sites. 

With the stated overarching aim, we set out in Papers I and III to estimate timber 

assortment volumes, economic values and wood paying capabilities (WPC) for plots (Paper 

I) or stands (Paper III) with different bucking scenarios, and used the resulting timber 

assortment estimates to assess logging recoveries. The alternative bucking scenarios 

investigated were (1) bucking-to-value using maximum sawlog and pulpwood volumes but 

excluding quality (theoretical maximum), and (2) bucking-to-value using sawlog lengths at 

30 cm intervals for Scots pine (Pinus sylvestris L., Papers I and III) and Norway spruce (Picea 

abies (L.) H.Karst, Paper III) and veneer logs of lengths 4.7 m, 5.0 m, 6.0 m and 6.7 m for 

birch (Betula spp., Paper III), either excluding or including wood quality indicators. The first 

approach resembled the state-of-the-art in Nordic forestry business circles and the second 

approach went beyond that. The commercial value of timber stands is substantially affected 

by the quantity of understorey trees, and pre-harvest clearing is typically needed when forest 

stands have an understorey vegetation that hinders harvesting operations. We therefore 

proposed a method in Paper II for estimating this need for the pre-harvest clearing of small 

trees (diameters at breast height < 7 cm). 

The results showed that use of the methods developed in this thesis could support wood 

procurement practices by (1) locating valuable stands with the desired timber assortment 

distributions (Papers I and III), (2) identifying understorey vegetation that needs to be 

removed before harvesting (Paper II), and (3) reducing costs, as the number of field visits 

needed before harvesting will diminish (Papers I, II and III). 

In conclusion, the present findings may make timber markets more competent, since the 

methods developed here provide detailed pre-harvest information that can be used as a 

decision support tool by either buyers or sellers of timber in traditional and digital 

marketplaces. 

 

Keywords: timber assortment recovery; cut-to-length (CTL) harvester; pre-harvest clearing 

operations; wood procurement; airborne laser scanning (ALS); remote sensing.  
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1 INTRODUCTION 

 

 
1.1 Wood procurement in the Nordic countries 

 
Wood procurement is a complex process that comprises not only purchasing, harvesting and 

transportation but also the planning and management of these activities. Different timber 

assortments are transported to different mills depending on the species, wood quality and 

timber dimensions. Especially for sawmills, procurement represents a strategic business 

process, since the properties of sawlogs are the main factors for the output of sawn products 

and the raw materials contribute around 60% of the final cost of the products. Although it is 

the task of the managers to optimize the incoming flow of timber assortments at a given 

market price, Nordic sawmills employ a customer-oriented production strategy, which means 

that customer orders determine the length, small-end diameter and quality distributions of the 

logs entering a sawmill (Helstad 2006). Thus, assessments of harvesting output must be based 

not only on single volumetric figures, but also on comparisons between the demand and the 

actual output length-diameter distributions of the logs (Kivinen et al. 2005). 

Timber buyers have to make pricing choices when purchasing roundwood at a given 

stumpage price, so that those who can buy stands that best fit their industrial process will 

benefit, since in competitive markets by-products have to be sold at or below cost price. 

Approximately 86% of Finland’s commercial roundwood is removed in stumpage sale 

fellings (Finnish Forest Research Institute 2014). The stumpage price (i.e. price per m3 of 

standing trees), determined separately for each sale, is somewhere between the buyer’s 

maximum willingness to pay and the seller’s minimum willingness to accept (Omwami 

1986). Kolis et al. (2014), examining the effects that sale and site-specific characteristics 

have on the stumpage prices paid to non-industrial private forest owners in Finland, 

concluded that (1) buyers take differences in harvesting costs into account when making 

purchase offers, and (2) buyers are more interested in stands with a high percentage of 

sawlogs. 

Current digital marketplaces (e.g., www.kuutio.fi) facilitate trading in timber by 

providing a place where supply and demand can meet. The challenge for such a digital 

marketplace is the facilitation of “standing sales”, where the buyer is responsible for 

harvesting and its costs. This is the type of sales contract that is predominantly used in 

Finland. One requirement for such transactions is accurate and comprehensive information 

on the forest area concerned, including timber assortments and harvesting conditions. These 

matters were previously assessed in the course of purchasing the timber, but now that this 

can be done in a digital environment, there is increasing pressure to reduce the number of 

forest visits before harvesting operations. For this purpose, it would be feasible to resort to 

remote sensing and geographic information system (GIS)-based methods. 

The decision support system needed in the Nordic cut-to-length (CTL) method requires 

detailed pre-harvest information, which is used to allot raw materials to specific timber 

assortments and to plan harvesting operations to satisfy production needs. The most 

important attributes of such a system are the availability of a stem diameter distribution for 

each tree species present in a stand and the availability of quality information. 

The productivity of CTL harvesting is affected by the type of machine used, the 

capabilities of the operator, and the stand and site conditions (see Kärhä et al. 2004; 

Nurminen et al. 2006; Jiroušek et al. 2007; Eriksson and Lindroos 2014). CTL machinery is 
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constantly being developed (Nordfjell et al. 2010) and the operators’ capabilities can be 

improved through training (Ovaskainen 2009) and experience (Malinen et al. 2018b). Since 

operator, machine type and stand conditions have critical impacts on harvesting performance, 

studies aimed at giving overall productivity values have to be based on large samples. In this 

sense only the large surveys carried out in Sweden and Finland in the 1980s and 1990s 

(Brunberg et al. 1989; Kuitto et al. 1994; Brunberg 1997; Nurminen et al. 2006) can be 

assumed to be valid representations of Nordic conditions. On the other hand, it is generally 

difficult to alter the stand and site conditions in order to improve productivity. One option 

for achieving this, of course, is to remove any understorey vegetation that may hinder 

visibility during harvesting, which is standard practice in the Nordic countries before 

harvesting (Kärhä 2006; Bergström et al. 2016). Pre-harvest clearing has been found to ease 

the work of harvester operators in these countries, increase their safety and productivity and 

improve the quality of harvesting operations (Kärhä 2006). It has also been stated (Metsäteho 

Ltd. 2001) that pre-harvest clearing of small trees reduces stem damage, facilitates selection 

of the trees to be harvested and increases bearing capacity, thereby reducing root damage. 

Weak visibility due to understorey vegetation also increases the risk of chain, guide bar and 

hydraulic tube breakages (Metsäteho Ltd. 2001). In Finland, dense understorey vegetation is 

the most serious problem affecting industrial roundwood harvesting in young stands (Oikari 

et al. 2010). It is possible to obtain data on understorey trees from the National Forest 

Inventory, but these are quantitative estimates and are imprecise for practical purposes 

(Korpela et al. 2012). 

 

 

1.2 Timber assortment recovery 

 

The value of a timber stand can be derived from the value of the roundwood in the wood 

processing yard, with its procurement costs deducted. These procurement costs will include 

harvesting and transportation costs plus the fixed overhead costs of the procurement 

organization, and will consequently greatly depend on the productivity and cost-efficiency 

of the wood procurement operations, as also will the value of any timber stand (Paper II). 

Forest stand conditions, timber assortment information and simulated future developments 

should all be taken into account when planning harvesting operations (Holopainen et al. 2014; 

Kankare et al. 2014; Siipilehto et al. 2016), as forest owners can use this knowledge to decide 

when to offer their timber for sale and from which stands it should be taken. The forest 

industries, in turn, optimize their production by obtaining timber assortments from the 

harvesting sites that best fit their feedstock needs (Kankare et al. 2014). Furthermore, 

industrial timber buyers acquiring roundwood for refinement can make better pricing 

decisions if they have detailed pre-harvest information (Paper I). 

Logging recoveries comprise everything that is obtained by felling trees, including small 

branches, twigs, leaves and all sorts of wood. Depending on the requirements in terms of 

wood dimensions and quality, tree stems can be bucked into timber assortments such as grade 

A (i.e. branchless) butt logs, sawlogs, small-diameter logs and pulpwood, in descending order 

of quality and monetary value. These assortments may be utilized and refined by processing 

mills such as sawmills, plywood mills, pulp mills, heating plants or combined heat and power 

plants. Some such plants can process various tree species with particular specifications in 

terms of dimensions and quality, while others may process only one tree species, mixed 

softwood or hardwood species or both softwood and hardwood (see Malinen et al. 2007; 

Hyvönen et al. 2019). To optimize wood procurement planning and various end user-driven 
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refinement processes, it is essential to know the timber assortments prior to trading and 

harvesting. This is especially important in countries where intensive small-scale family 

forestry takes place, as in the Nordic countries (see Holopainen et al. 2014). 

 

 

1.3 Airborne laser scanning (ALS)-based forest inventory methods 

 

Detailed tree data, including tree lists, have traditionally been collected by means of field 

measurements, but this approach has been found to be too laborious and expensive (Uusitalo 

1995). Digitalization of forest information services has opened new opportunities during the 

last decade, and wood procurement planning and the purchasing of timber can be expected 

to be conducted more and more in a digitalized environment in the future, without necessarily 

visiting all the potential stands. Thus there is an emerging need to develop methods that 

provide information on the characteristics and value of a stand and the products obtainable 

from it. Such methods would help to reduce or remove the need for stand visits. 

As regular field visits entail a comparatively high workload, active remote sensing 

techniques such as airborne laser scanning (ALS) represent an excellent alternative for 

analysing forest characteristics. ALS collects information on tree size structures in three-

dimension (3D) and has been widely used to provide estimates of tree and stand-level forest 

inventory characteristics such as tree height (Nelson et al. 1984; Næsset 1997). Large-scale 

forest stand inventories based on ALS have been in use in the Nordic countries since 2002 

(Næsset et al. 2004). Forest characteristics can be obtained through the area-based approach 

(ABA; see Paper I) or by individual tree detection (ITD; see Sun et al. 2019), but ITD requires 

a relatively high ALS point density, whereas ABA has been shown to work quite reliably at 

a comparatively low point density (roughly one pulse∙m−2, Maltamo et al. 2006). While 

overstorey trees (dominant and co-dominant trees) often have a detection rate of 90% or more 

in ALS data, the detection rate for understorey trees (intermediate and suppressed trees) is 

usually below 50% (Hamraz et al. 2017). One important source of omission errors (missed 

trees) is the obstruction of understorey trees by overstorey ones (Wang et al. 2016), although 

full-waveform ALS data detect these strata in more detail than do discrete ALS data. 

Nevertheless, full-waveform ALS data are less common due to the large amount of data 

involved and the limited processing tools available (Anderson et al. 2016; Crespo-Peremarch 

et al. 2018). On the other hand, branches, non-crop trees and dead trees are potential causes 

of commission errors (wrongly detected trees) (McCombs et al. 2003). While ALS data can 

be used to estimate the canopy cover quite accurately (Peuhkurinen et al. 2011), the isolation 

of understorey trees from overstorey ones remains a challenging task (Korpela et al. 2012). 

However, for the pre-harvest pruning application discussed in Paper II it is not crucial to 

distinguish individual plants, as the average height and density of the forest understorey form 

a good proxy for the necessity of pre-harvest clearing (Alam et al. 2012) and it may be quite 

possible to estimate these rather coarse parameters of the understorey from ALS data. 

Since a certain proportion of the laser pulses will penetrate through the dominant tree 

canopy layer, multi-layered stands can be identified using ALS (see Zimble et al. 2003; 

Maltamo et al. 2005). When Maltamo et al. (2005) examined the height distributions of 

reflected laser pulses using the histogram thresholding method to segregate distinct tree 

storeys, the results indicated that multi-layered stand structures could very well be identified 

and quantified using ALS height data distribution statistics. Later, an object-oriented 

segmentation approach to multistorey stands was adopted by Hamraz et al. (2017) and Ferraz 

et al. (2012). The first-mentioned authors stratified the point cloud by canopy layers and 
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segmented the trees of all sizes for each canopy layer using a digital surface model-based tree 

crown segmentation method. Ferraz et al. (2012) used a mean shift algorithm to segment the 

point cloud and allocate each segment to an appropriate vegetation layer. 

ALS data can characterize canopy height, height variation and canopy density in a fairly 

direct manner (Bouvier et al. 2015; Vastaranta et al. 2018) and these characteristics can be 

linked to some of the essential indicators of wood quality (Pyörälä et al. 2019). This means 

that ALS data can be used to decide which stands are more liable to have a particular log 

quality distribution. While some quality variables are easy to model, many others can be hard 

to predict accurately, since aspects such as local variation and historical stand development 

(including silvicultural treatments of the stands) are not captured by the laser data. Moreover, 

timber quality depends on internal and external stem properties, and some of the internal 

factors are not disclosed until the logs are processed at the mill (Bollandsås et al. 2011). 

Species-specific forest inventory characteristics such as stem number, basal area, volume 

and mean diameter and height can be predicted from ALS data and aerial images together 

with field-measured sample plots (White et al. 2013; White et al. 2016; White et al. 2017), 

after which species-specific diameter distributions can be estimated at the stand level through 

statistical relationships (Gobakken and Næsset 2004; Peuhkurinen et al. 2008; Siipilehto et 

al. 2016). The predicted data can then be used in taper curves and timber assortment reduction 

models to estimate timber assortment volumes (TAVs) at the stand or tree level (Laasasenaho 

1982; Mehtätalo 2002; Kangas and Maltamo 2002). Thus tree size distribution models can 

convert information obtained at the stand level into tree-level data (Maltamo et al. 2018). It 

should be noted, however, that all the predictions involved in the previous steps introduce 

some measure of uncertainty (Holopainen et al. 2010; Karjalainen 2020). 

 

 

1.4 Objectives and hypotheses 

 

The main aim of the timber trade from the buyer’s perspective is typically to deliver the 

required raw materials to the different mill locations and at certain specific times. To do that, 

stands that are available for harvesting are considered within a predefined wood sourcing 

area and harvesting procedures are allocated to secure a continuous flow of feedstock for 

further processing. In order to perform this complex spatiotemporal optimization task, it is 

important to know about the timber assortments to be found in each stand within the given 

wood sourcing area, and especially the quality of the stems in each possible stand, before 

trading and harvesting (Papers I and III). This knowledge can support timber trade as well as 

the planning and preparation of harvesting operations. It should also be borne in mind in this 

context that the planning and preparation of harvesting operations will affect the costs and 

will be further reflected in the commercial value of each stand (Papers I, II and III). This 

commercial value will be referred to here as the wood paying capability (WPC). To 

understand this phenomenon and to provide methods for supporting digital timber trade, the 

following hypotheses were formulated: 

(1) Useful WPC estimates for Scots pine (Pinus sylvestris L.) can be obtained if ALS data 

and aerial images are used together with sample plots and a stem quality database, since these 

data can predict species-specific stem volumes and qualities, and WPC depends on the 

volume and value of the stems (Paper I). 

(2) The need for pre-harvest clearing can be estimated using ALS data because these data 

can characterize the density of the vegetation below the overstorey, which includes the small 
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trees that cause a need for pre-harvest clearing when they hamper harvesting operations 

(Paper II). 

(3) Detailed timber assortments for Scots pine, Norway spruce (Picea abies (L.) H.Karst.) 

and birch (Betula spp.) can be estimated by means of ALS data, aerial images, sample plots 

and a stem quality database, because these data can predict species-specific stems, and 

different timber assortments in terms of their dimensions and qualities can be obtained by 

means of bucking simulations based on these stems (Paper III). 

 

 

2 MATERIALS 

 

 

2.1 Inventory areas and field data 

 

Three forest areas were studied in this thesis, two of them (Site I, Paper I, and Site II, Paper 

II) located in Eastern Finland and the third (Site III, Paper III) in Southern Finland (see Figure 

1). The main tree species in these areas were Scots pine, Norway spruce and birches. Scots 

pine was the dominant tree species at Site I, whereas Norway spruce was the prevailing 

species at Site III. 
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Figure 1. (a) Location of the forest areas studied in Finland; (b) sample plots at Site I (Paper 

I); (c) sample plots at Site II (Paper II); (d) sample plots (black circles) and harvested stands 

(grey circles) at Site III (Paper III). 

 

 

The field data for Site I consisted of a stratified sample of 79 square plots, locations of 

which were determined subjectively in order to guarantee that the sample covered the full 

range of variability in forest conditions. The measurements were made in May and June 2010. 

The sample plots varied in size, being either 20 × 20 m, 25 × 25 m or 30 × 30 m according 

to their stand development class. Height, diameter at breast height (DBH) and species (Scots 

pine, Norway spruce or birch) were recorded for all of the trees inside the plots with a DBH 

> 4 cm or height > 4 m. Statistics concerning the sample plots are presented in Table 1. 
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Table 1. Forest characteristics on the 79, 99 and 665 sample plots at Sites I, II and III, 

respectively, the 249 harvested stands considered at Site III, and in the stem quality 

databases employed at Sites I and III. 

 

  
Va-

ria-

ble 

DBH Height 
Den-

sity 

Vol-

ume 

Ba-

sal 

area 

Nor-

way 

spruce 

basal 

area 

Scots 

pine 

basal 

area 

Birch 

basal 

area 

   cm m 
stems

·ha−1 

m3· 

ha−1 

m2· 

ha−1 

m2· 

ha−1 

m2· 

ha−1 

m2· 

ha−1 

Site I 

Sam-

ple 

plots 

Min. 8.1 8.7 467 79.5 13.8 0.0 0.0 0.0 

Mean 15.0 14.4 1259 197.6 24.6 8.2 18.3 3.3 

Max. 28.4 24.1 2875 502.2 40.1 40.0 33.5 22.7 

SD 4.0 3.3 566 73.6 6.2 12.2 8.8 5.4 

Site 

II 

Sam-

ple 

plots 

Min.    0  6.0 0.0 0.0 0.0 

Mean    3455  17.5 6.9 6.7 3.9 

Max.    11926  34.0 31.0 28.0 20.5 

SD    2817  5.3 7.7 6.9 5.0 

Site 

III 

Sam-

ple 

plots 

Min. 5.0 4.7 60 7.0 2.3 0.0 0.0 0.0 

Mean 19.8 16.8 1398 193.9 22.1 9.9 7.4 4.7 

Max. 47.3 32.7 8205 693.3 52.2 52.2 40.9 38.2 

SD 8.7 5.9 1091 127.9 10.2 11.9 9.7 6.2 

Har-

ves-

ted 

stands 

Min. 7.4 7.5 33 8.8 1.2 0.0 0.0 0.0 

Mean 22.4 19.3 520 235.0 21.5 14.8 2.4 3.5 

Max. 41.0 25.1 1093 565.2 50.6 38.0 20.4 28.0 

SD 3.9 2.3 218 110.5 9.0 8.6 3.8 3.7 

  

Va-

ria-

ble 

     OMT MT 
VT & 

CT 

Sites 

I and 

III 

Stem 

quality 

data-

base 

Number of sample trees 903 6589 5076 

 Norway spruce   630 3588 254 

 Scots pine   273 3001 4822 

Stems including an external defect (%) 57.6 55.0 80.0 

 Norway spruce   43.7 39.2 39.4 

 Scots pine   89.7 73.9 81.5 

Note: Min.: Minimum; Max: Maximum; SD: standard deviation; DBH: basal area-weighted mean 

diameter at breast height (cm); Height: basal area-weighted mean height (m); Density, stems·ha−1, 

considering stems with a DBH > 4 cm or height > 4 m in Paper I, with a DBH > 1 cm and DBH < 7 cm 

in Paper II, and with a DBH > 5 cm in Paper III; OMT: Oxalis-Myrtillus site type; MT: Myrtillus site type; 

VT & CT: combined Vaccinium (VT) and Calluna (CT) site types, or corresponding peatland site types. 



16 
 

The field data for Site II were collected in July and August 2017. Altogether, 99 circular 

sample plots were photographed in order to estimate the need for pre-harvest clearing. The 

centre of each plot was identified using global positioning system (GPS) devices with an 

accuracy of < 0.5 m. The plots were selected subjectively with the aim of having 

approximately one third of each of the plots dominated by Scots pine, one third by Norway 

spruce, and one third by birches. In dense forests with small trees, sample trees were typically 

selected from plots of different sizes, depending on the DBH (Fridman et al. 2014). Here 

trees with a DBH under seven centimetres were defined as understorey trees, and for the 

purpose of determining the understorey tree density, each plot contained two concentric 

circular sample plots with fixed radiuses of three and five metres. In the three-metre plots the 

DBH and the species of all the trees with a DBH between one and seven centimetres (DBH1–

7) were recorded, while in the five-metre plots the same measurements were carried out for 

all the trees with a DBH between four and seven centimetres (DBH4–7). The understorey tree 

density of all the trees with a DBH1–7 (NDBH1–7) varied from 0 to 11 926 stems·ha−1, with an 

average of 3455 stems·ha−1 (see Table 1). 

An online e-questionnaire survey among subscribers to the Finnish Facebook group 

“Forest machine operators”, which included over 8000 members at the time of the survey, 

was organized to compile our reference dataset. The questionnaire contained images taken 

within the plots, and respondents were asked to classify each plot into one of five classes: (1) 

no need for pre-harvest clearing; (2) pre-harvest clearing would help harvesting; (3) pre-

harvest clearing recommended; (4) a great need for pre-harvest clearing; and (5) compulsory 

pre-harvest clearing (see Figure 2). Replies were received from 66 respondents, representing 

56 harvester operators, 10 forwarder operators, four forest experts, five students, six forest 

owners, and one other person. In some cases, the same respondent fell into more than one 

category (e.g. a forwarder operator and forest owner) (Site II). 
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Figure 2. Photographs representative of each pre-harvest clearing class used in the e-

questionnaire survey (Site II). (a) Class 1, no need for pre-harvest clearing; (b) class 2, pre-

harvest clearing would help harvesting; (c) class 3, pre-harvest clearing recommended; (d) 

class 4, a great need for pre-harvest clearing; and (e) class 5, compulsory pre-harvest 

clearing. 

 

 

The field data for Site III were collected between May and September 2015 by the Finnish 

Forest Centre (FFC). A total of 831 circular sample plots were designated in forests of 

varying structure based on the existing stand register information. In view of possible further 

analyses, those plots that were located in seedling stands were removed from the data. The 

remainder then comprised 665 plots (Figure 1) with a radius of 5.64 m, 9.00 m or 12.62 m 

depending on the tree density and development class, following the general FFC guidelines 
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(Suomen Metsäkeskus 2018). The locations of the sample plots were defined with a global 

navigation satellite system (GNSS) device capable of achieving sub-metre accuracy after 

post-processing. Species and DBH were defined for all of the trees with a DBH larger than 5 

cm, and the height of every fifth tree was measured. Callipers and clinometers were used for 

these measurements. The heights of all the trees were also estimated using DBH as a predictor 

in locally calibrated species-specific allometric models, and volumes were calculated using 

species-specific allometric models based on DBH and height (Laasasenaho 1982). Forest 

inventory characteristics for the sample plots were computed from the measured or predicted 

tree characteristics. Descriptive statistics for the sample plots are presented in Table 1. 

Site III also yielded harvester data covering altogether 202 428 stems and collected from 

249 clear-cut stands (Figure 1) between June 2015 and September 2016. Each stem was 

located by reference to the harvester’s GNSS, i.e. using the geographical coordinates 

recorded for each tree, which represent the location of the harvester at the time of cutting, not 

the original location of the stem. In addition to the geographical coordinates, the data 

recorded for each stem included tree species, diameters at 10 cm intervals along the stem, 

length, volume and timber assortment information. Although the data were collected using 

different harvesters, all of them recorded the same body of data according to the harvester 

production (HPR) standards and the standard for forest data and communication (StanForD) 

(Skogforsk 2018). Statistics based on the harvester data are shown in Table 1. Among the 

clear-cut stands there were 170, 12 and 10 stands dominated by Norway spruce, Scots pine 

and birch, respectively, where domination was taken to imply that a single tree species 

accounted for more than 60% of the total basal area. The collection, pre-processing and fitting 

of the harvester data were performed by Metsäteho Ltd. (Vantaa, Finland) in cooperation 

with the forest companies and harvester manufacturers (for a more detailed description, see 

Saukkola et al. 2019). 

 

 

2.2 Remote sensing materials 

 

The aerial images for Site I were acquired on 31 May 2009 using a Vexcel camera at a flight 

elevation of 7500 m above ground level (AGL). The ground sample distance (GSD, i.e. 

spatial resolution) was 45 cm. The ALS data were then collected on 26 June 2009 using an 

Optech ALTM Gemini laser scanning system from 600 m AGL with a field of view of 26° 

and a swath width of 320 m. The sensor was pointed in the nadir direction. A side overlap of 

55% was used, and the pulse repetition frequency of 125 kHz resulted in an average point 

density of 11.9 pulses·m−2. The original ALS point cloud was normalized using a digital 

terrain model (DTM) with 1 m resolution that was generated by classifying points as ground 

or non-ground points, as described by Axelsson (2000). The ALS files were preprocessed to 

alter the Z value to represent elevation AGL (dZ files). Echoes with AGL heights < 1 m and 

> 40 m were masked out, because the low echoes were considered to be mainly reflected 

from the ground and the high ones were considered to be too elevated to represent the 

vegetation of that area. ALS features as defined by Næsset (2002) were calculated at the plot 

and grid cell levels using the remaining echoes, the features at the grid cell level being 

computed over a regular grid of 25 m × 25 m cells covering the entire scanning area (Site I). 

A summary of the remote sensing material used for Sites I, II and III can be found in Table 

2. 
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Table 2. Remote sensing material for Sites I, II and III. 

 
  Site I Site II Site III 

Aerial 

images 

Collection date 
31 May 

2009 
  

June and August 

2015  

Camera 
Vexcel 

camera 
 

Vexcel (Denver, CO, 

USA), Ultra Cam 

UCXp and S/N UC-

SXp 

Flight elevation 

(m AGL) 
7500   5000 

GSD (m) 0.45   0.3 

ALS 

data 

Collection date 
26 June 

2009 

2, 3 and 10 July 

2016  

June and August 

2015  

Sensor 

Optech 

ALTM 

Gemini 

laser 

scanning 

system 

Optech Titan 

sensor on a fixed-

wing aircraft 

Leica ALS60 SN6114 

system (Leica 

Geosystems AG, 

Heerbrugg, 

Switzerland) 

Flight elevation 

(m AGL) 
600 1000 2050 

Pulse repetition 

frequency (kHz) 
125 250 114.6 

Average point 

density 

(pulses·m−2) 

11.9 

6.6 (1550 nm 

channel) 

8.0 (1064 nm 

channel) 

3.1 (532 nm 

channel) 

1.8 

DTM resolution 

(m) 
1 0.5 2 

Ground speed 

(m·s−1) 
  77 160 

Scan angle (°) 26 40 20 

Note: AGL: above ground level; GSD: ground sample distance; ALS: airborne laser 

scanning; DTM: digital terrain model. 

 

 

The multispectral ALS data for Site II were collected on 2, 3 and 10 July 2016 using an 

Optech Titan sensor on a fixed-wing aircraft travelling at 1000 m AGL, recording with a strip 

width of 655 m. The ground speed was 77 m·s−1, the scan angle 40° and the pulse repetition 

frequency 250 kHz. This Optech Titan sensor has three independent active imaging channels 

working at wavelengths of 1550, 1064, and 532 nm. The average pulse densities per flight 

line were 6.6 pulses·m−2, 8.0 pulses·m−2 and 3.1 pulses·m−2 for these three channels, 

respectively. The original ALS point cloud was normalized using a DTM with 0.5 m 

resolution that was built up by classifying points as ground or non-ground points, as 
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explained by Axelsson (2000). After that, the ALS point altitudes (Z) were normalized to 

altitudes AGL (dZ) using the DTM. We then filtered the point cloud using a height threshold 

and considered only those points with heights from zero to three metres for the remainder of 

the analysis. 

The ALS data for Site III were collected between June and August 2015 using a Leica 

ALS60 SN6114 system (Leica Geosystems AG, Heerbrugg, Switzerland) at 2050 m AGL. 

The ground speed was 160 m·s−1, the scan angle 20°, the beam divergence 0.22 mrad (1/e) 

and the pulse repetition frequency 114.6 kHz. The density of the first-echo pulses was 1.8 

hits per m2. The original ALS point cloud was normalized using a DTM with 2 m resolution 

and generated by classifying points as ground or non-ground points, as described by Axelsson 

(2000). The aerial images were obtained within the same time window, using Vexcel 

(Denver, CO, USA), Ultra Cam UCXp and S/N UC-SXp imaging sensors. The area was 

covered by 194 images in total. The flying height was 5 km and the GSD approximately 0.3 

m. The images were delivered as 16-bit visible light (red, green and blue, RGB) and colour 

infrared (CIR) composites. In addition, 8-bit orthorectified images were provided by the data 

vendor (Blom Kartta Oy, Helsinki, Finland). 

 
 

3 METHODS 

 

 

3.1 Tree list predictions (Papers I and III) 

 

Tree characteristics were predicted from the stem quality database and ALS data using ABA 

(Figure 3). The ALS-based estimates provided a full coverage over the target area and a 

detailed stem quality database was then used to impute stem quality characteristics with 

additional details (e.g. the presence of surface flaws such as scars or checks and defects such 

as decay or a broken main crown). The stem quality database contained information which 

is difficult to measure automatically in an ALS survey or even during standard field sample 

plot measurement campaigns. 
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Figure 3 (facing page). Flowchart of the methods followed to obtain the timber assortments 

and error statistics (Papers I and III). 

 

 

The ALS data were fused with the aerial image data by the back-projecting ALS method, 

i.e. every ALS point was combined with the information from unrectified aerial image scenes 

to avoid geometric errors (see Valbuena et al. 2011). The point cloud data including spectral 

information from aerial images were then used to derive numerous features for each grid cell 

describing the height, density and spectral data distributions. The grid size used was 25 m by 

25 m cells in Paper I and 16 m by 16 m cells in Paper III. The features were based on those 

described by Junttila et al. (2010), and included percentiles from the height distribution of 

both the first and last echo data, the density at given absolute and relative heights, and the 

mean and SD of the height observations. Linearizing transformations of the features were 

calculated as well. The spectral distribution features included mean and SD calculated from 

the spectral distributions of the absolute and relative height thresholds. Spectral distributions 

were estimated for the red, green and near infrared bands and for the band ratios. 

These studies made use of the ABA at grid level through the medium of the ALS data and 

aerial image data, using the field data as a reference, to estimate tree lists for Scots pine 

(Papers I and III), Norway spruce and birch (Paper III) (for more details of the ABA, see 

White et al. 2013; White et al. 2017). The field data used here were derived from 79 sample 

plots in Paper I and 665 sample plots in Paper III. 

The tree lists generated were lists of trees in the area of interest with details of the species, 

DBH, height and stem volume of each tree. This information was then compressed in the 

form of tree size distributions presenting the frequencies of trees of a similar size.  

The statistical approach used to produce the estimates contained in the tree lists for both 

of these studies was the k-MSN method (Moeur and Stage 1995; Packalén and Maltamo 

2007), based on the sample plot data and the ALS data fused with the aerial image data. 

First, an initial set of predictor variables explaining the species distribution (percentages 

of Scots pine, Norway spruce and birch by volume), total volume, total basal area and mean 

tree size was selected using correlations (of importance for the species) and regression 

analysis (of importance for the total values). Then a canonical correlation analysis was 

employed that involved an exhaustive search for the selected initial set of predictor variables, 

carried out by testing different feature combinations and minimizing the root mean square 

errors (RMSEs) of the species volumes, basal area and mean tree size. The number of most 

similar neighbours was set at six in Paper III, which means that every grid cell was allotted 

to the six most similar sample plots and their MSN weights. Tree lists (also known as stem 

lists) were predicted for each grid cell and weighted by the average of the trees measured 

from the six most similar sample plots. In Paper I, the two MSNs were used to estimate the 

stand density and the single MSN for estimating the DBH and height frequency distributions, 

in order to avoid averaging between the trees. The information from the predicted tree lists 

at the grid level was aggregated at the plot level in Paper I and at the stand level in Paper III. 

K-MSN imputation produces a tree list with a weight for every tree in the reference data 

occurring in the plot or stand. For further analyses, each imputed tree list was transformed to 

a list that contained only complete trees. This was done by means of a sample from the tree 

lists estimated by the ABA, the stems then being divided into 2 cm diameter classes in Paper 

I and 1 cm diameter classes in Paper III, weighted by their probability of occurrence and 

assigned the corresponding number of trees for each diameter class. The stems selected in 

the sample were identified in terms of species, DBH, height and volume as obtained from the 
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ABA data (see Figure 3). Two more sets of tree lists were generated in Paper I in order to 

examine the effect of design bias at the plot level by using under- and over-predictions of one 

standard deviation (SD) from the estimated DBH (see Figure 3). 

 

 

3.2 Bucking methods and wood paying capabilities (WPC, Papers I and III) 

 

Two alternative tree lists were available for each stand: one obtained directly from the 

harvester data and the other based on the ABA (see Figure 3, Paper III). Since tree lists and 

timber assortments obtained from the harvester data were always used for reference purposes, 

we set out to compare these two approaches. First, we calculated the differences in the volume 

estimates between the ABA and harvester data in order to reveal the errors caused by the tree 

list prediction, and second, we assessed the differences in timber assortments between the 

ABA and harvester data that were attributable to the tree list prediction and the simulated 

bucking. In this second case we further evaluated three bucking options for the tree lists: (1) 

bucking without any reductions due to length requirements or quality (Scenario 1), (2) 

bucking with reductions due to length requirements (Scenario 2), and (3) bucking with 

reductions due to length requirements and quality (Scenarios 3 and 4) (see Figure 3 and Table 

3). Timber assortments were also calculated in Paper I for these four scenarios, each produced 

using one of the following data sets: (1) the measured field data, (2) the estimated data, and, 

when testing for design bias, the tree list generated with either underprediction (3) or 

overprediction (4) of the estimated DBH by 1 SD.  
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Table 3. Distinctions between the calculation scenarios for Scots pine (Papers I and III), 

Norway spruce and birch (Paper III). 

 

 Bucking method 
Timber 

assortments 

Quality 

in-

cluded 

Sce-

nario 1 
Maximum sawlog and pulpwood volumes 

Sawlogs 
No 

Pulpwood 

Sce-

nario 2 

Scots pine and Norway spruce: sawlog lengths 

at 30 cm intervals 

Birch: veneer logs of lengths 4.7 m, 5.0 m, 6.0 m 

and 6.7 m 

Sawlogs 

No 
Pulpwood 

Sce-

nario 3 

Scots pine and Norway spruce: sawlog lengths 

at 30 cm intervals 

Birch: veneer logs of lengths 4.7 m, 5.0 m, 6.0 m 

and 6.7 m 

Sawlogs 

Yes 
Pulpwood 

Sce-

nario 4 
Sawlog lengths at 30 cm intervals 

Grade A butt logs 

(only for Scots 

pine) 

Yes 
Sawlogs 

Small-diameter 

logs 

Pulpwood 

 

 

Species-specific taper curve models including DBH and height as the other inputs were 

used to taper the stems in the tree lists from the harvester data, the field data and the ABA 

(Laasasenaho 1982). When quality was not considered, the bucking-to-value simulator used 

the tapering of the stems, the tree species and the species-wise bucking objectives, whereas 

when quality was taken into account, the same simulator employed external quality expressed 

in terms of vertical stem sections fulfilling different timber assortment quality requirements 

as specified by the Finnish forest companies (Malinen et al. 2018a). The external quality that 

affected bucking was estimated in Scenarios 3 and 4, in which a stem quality database was 

used with the MSN method (Malinen et al. 2014; Malinen et al. 2018a) (see Figure 3). For 

these two scenarios, technical defects in the target stems were estimated by selecting the most 

similar stem from the quality database in terms of the stand variables, DBH and height of the 

stem. The stem quality database contained over 13 000 trees measured for dimensions and 

evaluated for stem quality (Malinen et al. 2014). The quality assessment was based on visual 

estimation of the occurrence of technical defects (forks, knots, crooks, scars, sweeps, 

branchiness, etc.). The database was compiled for various research projects at the Finnish 
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Forest Research Institute between 1998 and 2010 (for a more detailed description and the 

geographical coverage of the database, see Table 1 and Malinen et al. 2018a). 

The minimum top-end diameters and minimum and maximum lengths used in the bucking 

were as presented in Table 4, and the taper curve models of Laasasenaho (1982) were used 

to determine the theoretical sawlog volume, which is the stem volume exceeding the 

minimum diameter, considering minimum diameters of 15, 16 and 18 cm for Scots pine, 

Norway spruce and birch, respectively, and minimum lengths of 3.7 m for Scots pine and 

Norway spruce and 4.7 m for birch. 

The unit prices for the TAVs for Scots pine in Paper I were EUR 58·m−3 for grade A butt 

logs, EUR 55·m−3 for other sawlogs, EUR 25·m−3 for small-diameter logs, and EUR 17·m−3 

for pulpwood. The corresponding unit prices for the TAVs in Paper III were EUR 67∙m−3 for 

Scots pine grade A butt logs, EUR 67∙m−3 for Norway spruce sawlogs, EUR 64∙m−3 for Scots 

pine sawlogs, EUR 45∙m−3 for birch sawlogs, EUR 33∙m−3 for Norway spruce small-diameter 

logs, EUR 29∙m−3 for Scots pine small-diameter logs, EUR 22∙m−3 for Norway spruce 

pulpwood, EUR 20∙m−3 for Scots pine pulpwood, and EUR 19∙m−3 for birch pulpwood. These 

were typical stumpage prices paid in Finland in week 4 of 2017 (Paper I) and in week 16 of 

2021 (Paper III) (Metsäkustannus Oy 2021). The total volumes were solid volumes over bark 

calculated from the stump to the top of the stem.  
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Table 4. Minimum and maximum parameters used in bucking for Scots pine (Papers I and 

III), Norway spruce and birch (Paper III). 

 
 

 

Minimum 

diameter 

(cm) 

Mini-

mum 

length 

(m) 

Maxi-

mum 

length 

(m) 

Mini-

mum 

WPC 

(EUR· 

m−3) 

Maxi-

mum 

WPC 

(EUR· 

m−3) 

Scots pine 

Grade A butt 

logs 
21.0 2.8 6.1 68 129 

Sawlogs 15.0 3.7 5.8 57 98 

Small-

diameter logs 
12.0 3.1 4.0 28 65 

Pulpwood 7.0 2.8 5.2 17 17 

Norway 

spruce 

Sawlogs 16.0 3.7 6.1 62 98 

Small-

diameter logs 
12.0 2.8 4.9 31 65 

Pulpwood 7.0 2.8 5.2 26 26 

Birch 
Sawlogs 18.0 4.7 6.7 55 65 

Pulpwood 7.0 2.8 6.1 17 17 

Note: The wood paying capability (WPC) values shown here are the ones used in Paper 

III. 

 

 

The WPC figures used in bucking can be defined as the residual values that a purchaser 

can pay for wood when all the other costs are deducted from the sales price (Paavilainen 

2002). We calculated the WPC for each plot (Paper I) and stand (Paper III) as the value 

divided by the volume obtained with the bucking-to-value simulator. It should be noted that 

WPC is size-dependent (given that larger logs are generally more valuable) and depicts the 

range in which values may vary (see Table 4). 

The RMSE, relative RMSE (RMSE%), bias, relative bias (bias%) and SD of the 

difference between the measured and estimated values were calculated for the timber 

assortments to compare the volumes, WPC results and values obtained for the estimated data 

with those for the reference data. The RMSE and RMSE% were used to assess the accuracy 

of the various methods relative to the reference: 

 

RMSE = √
∑ (𝑦𝑖𝑗 − �̂�𝑖𝑗)2 𝑛

𝑗=1

n
 (1) 

RMSE% = 
𝑅𝑀𝑆𝐸

�̅�𝑖
 × 100 (2) 
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where 𝑦𝑖𝑗 is the reference value of variable i in stand j, �̂�𝑖𝑗 is the estimated value of 

variable i in stand j, �̅�𝑖 is the average of the reference values for variable i and n is the number 

of observations. 

The bias and bias% of the estimates were calculated as follows: 

 

Bias = 
∑ (𝑦𝑖𝑗 − �̂�𝑖𝑗) n

j=1

n
 (3) 

Bias% = 
Bias

�̅�𝑖
 × 100 (4) 

 

 

3.3 Evaluation of the need for pre-harvest clearing (Paper II) 

 

The procedure for estimating the need for pre-harvest clearing using the ALS data required 

the following steps: (1) pre-processing of the point cloud, (2) calculation of height statistics 

for the voxels and prediction of the need for pre-harvest clearing, and (3) definition of the 

operational needs for pre-harvest clearing using the results obtained from the model. We used 

two alternative concepts to determine the need for pre-harvest clearing, the first relying on 

the operators’ opinions (five and three classes) and the second on predicting the number of 

stems in the understorey vegetation and applying the rules developed in the forest industry. 

In the first approach, the classes of need for pre-harvest clearing were based on the e-

questionnaire survey. The average value for each plot was calculated as the nearest integer 

to the average for all the answers (from one to five) within the plot. After that, the 99 plots 

were divided into the five classes based on the average value per plot. To calculate the 

variation in the forest professionals’ perceptions within the class represented by each average 

value, the numbers of observations with an answer equal to one, two, three, four, or five were 

divided separately by the total number of observations with an answer equal to the average 

value for the class. The e-questionnaire was used to classify each plot into one of five classes, 

but if we assume that three classes are enough for operational decision-making, we can 

combine some of the classes. The original classes one and two, for example, both indicate a 

low need and can just as well be combined, class three is evidently an uncertain class, but the 

original classes four and five represent a distinct need for pre-harvest clearing. Thus we have 

three new classes, where class one indicates little need for pre-harvest clearing, class two an 

uncertain need and class three an evident need. 

For an in-depth description of the vegetation structure, as illustrated in Figure 4, we 

constructed voxels with a base of 1.5 m by 1.5 m and a height of 1.5 m or 3 m around the 

centre of each sample plot. This left us with 72 voxels that were fully contained within the 5 

m radius data for the plots (i.e. 24 in the XY direction by 3 in the Z direction) for each plot 

for which the ALS features were calculated. For this purpose the ALS points were split 

geometrically by voxels, and the ALS data from the three channels were used together to 

estimate the need for pre-harvest clearing. The density (i.e. the number of ALS points) and 

the maximum, minimum, mean, SD, skewness and kurtosis of the density per plot and per 

voxel were calculated from the ALS data. 
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Figure 4. (a) 2-dimensional distribution of the voxels (dark grey) in a circular plot of radius 

five metres (black circle). The size of each voxel was 1.5 m × 1.5 m. (b) 3-dimensional 

distribution of the same voxels. The size of each voxel was 1.5 m × 1.5 m × 1.5 m or 1.5 m × 

1.5 m × 3 m. 

 

 

A linear discriminant analysis (LDA) with cross-validation was carried out using the ALS 

density distribution statistics of the voxels as predictor variables and the mean values of all 

the answers per plot regarding the need for pre-harvest clearing (five classes) according to 

the e-questionnaire survey data as response variables (professionals’ opinions). When five 

classes were employed, the LDA used the mean values from the survey data per plot as 

response variables and the following ALS density distribution statistics for the voxels as 

predictor variables: NP0–1.5, MaxV0–1.5, MaxV1.5–3, MaxV0–3, MeanV0–3, SDV0–1.5, SDV1.5–3, SDV0–

3, SkewV1.5–3, SkewV0–3, KurtV0–1.5, KurtV1.5–3 and KurtV0–3. Where P, plot; V, voxel; 0–1.5, 

heights from zero to 1.5 metres; 1.5–3, heights from 1.5 to three metres; 0–3, heights from 

zero to three metres; N, point density; Max, maximum; Mean, mean; SD, standard deviation; 

Skew, skewness; Kurt, kurtosis. The predicted classes were evaluated in terms of the overall 

accuracy and the kappa index. 

For the second approach, the needs for pre-harvest clearing were estimated based on the 

understorey tree density, the features measured in the field being separately related to the e-

questionnaire survey results and to the ALS-derived features. On the other hand, the 

understorey densities of the trees with NDBH1–7 were compared with the mean of the answers 

given in the e-questionnaire and a linear model was formulated to predict the density of the 

corresponding trees. The density distribution statistics from the ALS data presented earlier 

were used as predictor variables in this model and the densities of trees with NDBH1–7 were 

used as response variables. Stepwise variable selection criteria were used to define 
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independent variables. The continuous variables were evaluated using the coefficient of 

determination and the RMSE. 

We concluded the study with a determination of the need for pre-harvest clearing based 

on the number of understorey trees by comparing the predicted understorey tree densities 

with the need for pre-harvest clearing as stated by the forest professionals. First, we divided 

the plots into the three classes presented above from the e-questionnaire survey results. 

Second, we performed a LDA using the understorey densities of the stems as measured in 

the field, with NDBH1–7 as predictor variables and the three classes from the e-questionnaire 

survey data as response variables. Third, we predicted the three classes from this LDA and 

the number of stems with NDBH1–7 estimated from regression model 1. 

 
 

4 RESULTS 

 

 

4.1 Volume, value and wood paying capability (WPC) estimates by timber assortments 

(Papers I and III) 

 

The RMSE% of the bucking estimates for sawlog volume when quality estimation was 

included (Scenario 3) was 11.2 percentage points (pp) higher than when quality was not 

considered (Scenario 2) and 12.2 pp higher for sawlog value. In the case of the estimates for 

both pulpwood volume and value, the RMSE% when considering quality (Scenario 3) was 

6.0 pp higher than when the bucking estimates were based only on dimensions (Scenario 2). 

Use of the bucking objectives reduced the sawlog volume by 1.0%. The bucking estimates 

based on dimensions and external quality (Scenario 3) produced 30.0% less sawlog volume 

and 30.9% less sawlog value than those based only on dimensions (Scenario 2). Due to the 

lower small-end diameter requirements of small-diameter logs, the total volume of all sawlog 

assortments combined (i.e. the sum of the volumes of grade A butt logs, sawlogs and small-

diameter logs in Scenario 4) was 25.4% higher than the sawlog volume based on external 

quality without grade A butt logs and small-diameter logs (i.e. the sawlog volume in Scenario 

3). In the same way as for volume, the total value of the combined sawlog assortments 

(Scenario 4) was 22.5% higher than the sawlog value based on external quality without grade 

A butt logs and small-diameter logs (Scenario 3). Prediction error statistics for WPC with 

respect to the various timber assortments are shown in Table 5 (Paper I). 
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Table 5. Wood paying capability estimates for the timber assortments and their error 

statistics at the plot level (79 plots, Paper I) and at the stand level (249 stands, Paper III). 

 
 Paper I Paper III 

 
Scots pine (Pinus 

sylvestris) 

Norway spruce (Picea 

abies) 
Scots pine (Pinus sylvestris) 

 Sce-
nario 2 

Sce-
nario 3 

Scenario 4 
Sce-

nario 2 

Sce-

nario 3 

Sce-

nario 4 

Sce-

nario 2 

Sce-

nario 3 
Scenario 4 

Total            

Average WPC 

based on ABA 

data (EUR·m−3) 

47.9 36.1 42.3  63.3 61.5 62.9 61.1 51.3 59.6  

RMSE% 48.2 47.9 44.4  25.7 24.8 24.1 62.7 64.4 66.1  

Bias (EUR·m−3) −6.5 −3.2 −2.8  4.6 4.0 3.7 −9.0 −8.5 −11.1  

SD (EUR·m−3) 12.1 9.0 10.2  16.9 15.8 15.7 31.5 26.3 30.1  

Sawlogs            

Average WPC 

based on ABA 

data (EUR·m−3) 

74.7 73.5 75.2  79.5 79.2 79.4 72.3 70.2 69.0  

RMSE% 38.5 44.2 52.1  28.7 29.0 29.0 66.0 65.5 68.7  

Bias (EUR·m−3) −6.2 −6.8 −5.3  3.4 3.3 3.3 −13.5 −13.1 −13.8  

SD (EUR·m−3) 3.2 3.5 3.2  23.6 23.7 23.9 36.5 35.1 35.4  

Pulpwood            

Average WPC 

based on ABA 

data (EUR·m−3) 

17.0 17.0 17.0  25.2 25.2 25.2 15.6 15.6 15.6  

RMSE% 32.7 32.7 32.7  19.3 19.3 19.3 63.7 63.7 63.7  

Bias (EUR·m−3) −1.1 −1.1 −1.1  0.5 0.5 0.5 −2.8 −2.8 −2.8  

SD (EUR·m−3) 0.0 0.0 0.0  4.9 4.9 4.9 7.7 7.7 7.7  

Grade A butt 
logs (1) or 
small-
diameter logs 
(2) 

  (1) (2)   (2)   (1) (2) 

Average WPC 
based on ABA 
data (EUR·m−3) 

  103.1 53.8   35.9   93.6 46.9 

RMSE%   137.5 41.7   22.3   75.5 75.8 
Bias (EUR·m−3)   15.3 −4.8   0.6   −21.1 −10.9 
SD (EUR·m−3)   7.3 3.1   8.1   50.6 25.1 

Note: WPC: wood paying capability; ABA: area-based approach; RMSE%: relative root mean 

square error; SD: standard deviation. 

 

 

Regarding the effect of design bias at the plot level on volumes, values and WPC in Paper 

I, when quality estimation was excluded, the bias for volumes and values was negative for 

sawlogs but positive for pulpwood, whereas when quality estimation was included it was 

negative for both sawlogs and pulpwood. When quality estimation was included the RMSE% 

of the bucking estimates for the differences between the field data and the combined data for 

the underestimated (tree lists with the estimated DBH minus SD), overestimated (tree lists 

with the estimated DBH plus SD) and estimated results (combined data) was 2.5 pp lower 

than the RMSE% of the bucking estimates for the differences between the field data and the 

estimated data (uncombined data) for sawlog volume, and 3.4 pp lower for sawlog value. 

When only dimensions were considered, the RMSE% was 5.9 pp higher for the combined 



32 
 

data than for the uncombined data where sawlog volume was concerned and 7.6 pp higher 

for sawlog value. Inclusion of the quality estimate for pulpwood did not change the RMSE% 

for volume and value with respect to the bucking estimate obtained only with dimensions, 

the RMSE% of the combined data being 11.8 pp higher than that of the uncombined data for 

the bucking estimate including quality and 6.2 pp higher for the bucking estimate obtained 

using only dimensions. 

The RMSE% values of the bucking estimates for sawlog volume for Norway spruce, 

Scots pine and birch were 0.2 pp lower, 0.7 pp lower and 12.9 pp higher, respectively, when 

considering quality (Scenario 3) than when quality was not considered (Scenario 2). In the 

case of pulpwood volume, the RMSE% values of the bucking estimates were 1.3 pp lower, 

49.7 pp lower and 1.0 pp higher, respectively, for the same species when quality was also 

estimated (Scenario 3) than when it was not considered (Scenario 2). The bucking predictions 

reduced the total volume most in the case of Scots pine (28.6% in the harvester data and 

11.8% in the ABA data) and least in the case of Norway spruce (6.9% in the harvester data 

and 5.7% in the ABA data). Use of the bucking objectives reduced the sawlog volume for 

Norway spruce, Scots pine and birch by 4.1%, 0.9% and 22.9%, respectively, in the harvester 

data, and 5.0%, 1.1% and 26.7%, respectively, in the ABA data. The differences in WPC 

estimates are shown in Table 5 (Paper III). 

The residual errors in the TAVs obtained for Scots pine (Papers I and III), Norway spruce 

and birch (Paper III) and in the values for the various scenarios are shown in Figures 5 (Paper 

I) and 6 (Paper III). Figures 5a and 5b show that the residual errors for Scots pine decreased 

as the sawlog volume and value increased. They also show that pulpwood follows a similar 

trend to that seen in sawlogs, but the residual errors were larger, especially for pulpwood 

value. In the same way, Figures 6c and 6d show that the residual errors for Scots pine 

decreased as the sawlog volume and its value increased. Norway spruce followed a similar 

trend, although in this case there were few stands with high residual errors for large volumes 

and values (Figures 6a and 6b). The most scatter residuals for both volume and its value 

occurred in the case of birch (Figures 6e and 6f). 
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Figure 5. Residual errors for the timber assortment volumes (TAVs) (a) and values (b) for 

Scots pine (Paper I).  
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Figure 6 (facing page). Residual errors for the timber assortment volumes (TAVs) for 

Norway spruce (a), Scots pine (c) and birch (e), and values for Norway spruce (b), Scots 

pine (d) and birch (f) (Paper III). 

 

 

4.2 Estimated need for pre-harvest clearing (Paper II) 

 

It was noticeable that the perceived need for pre-harvest clearing varied between the 

professionals. Classes one and five showed a high level of agreement among them (87.9% 

and 76.8%, respectively), but in the case of classes two, three and four about 30% of the 

professionals were in agreement with the average value. On the other hand, 91.2% of the 

respondents’ perceptions were within one class of the average value. The understorey tree 

density was shown to correlate with the forest professionals’ opinions given in the e-

questionnaire (Figure 7a) and with the ALS data (Figure 7b). 
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Figure 7. (a) Box plots of the measured understorey tree densities (trees with diameters at 

breast height from one to seven centimetres, NDBH1–7) versus the need for pre-harvest 

clearing, based on the answers given in the e-questionnaire: 1, no need for pre-harvest 

clearing; 2, pre-harvest clearing would help harvesting; 3, pre-harvest clearing 

recommended; 4, a great need for pre-harvest clearing; 5, compulsory pre-harvest clearing. 

(b) Measured densities of trees with NDBH1–7 versus densities of trees with NDBH1–7 as 

predicted by model 1. The solid line is a regression line. 
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To evaluate the need for pre-harvest clearing, the first approach used a LDA with cross-

validation to predict this need (in five or three classes) within the plots from the ALS density 

distribution statistics for the voxels. When three classes were considered (Table 6), the LDA 

predicted them with 63.6% accuracy. This LDA used the mean values from the e-

questionnaire survey data per plot as a response variable and the next ALS density 

distribution statistics of the voxels as predictor variables: NP0–1.5, MaxV0–1.5, MaxV1.5–3, 

MaxV0–3, MinV0–3, SDV0–1.5, SDV1.5–3, SDV0–3, SkewV1.5–3, SkewV0–3, KurtV0–1.5, KurtV1.5–3 and 

KurtV0–3, where Min = minimum. Little need for pre-harvest clearing (class one) was the best-

predicted class, with an accuracy of 81.6%, whereas the accuracy was 40.0% when the need 

was uncertain (class two) and 52.0% when it was evident (class three). 

 

 

Table 6. Need for pre-harvest clearing of understorey trees in three classes based on the e-

questionnaire survey mean field data values versus values estimated from (1) the airborne 

laser scanning (ALS) linear discriminant analysis (LDA) or from (2) the ALS model 1 and 

field data-based LDA classes. 

 

(1) ALS LDA 
(2) ALS model 1 and field data-based LDA 

classes 

 Field data values    Field data values   

 1 2 3 
To-

tal 

Accu-

racy 

(%) 

 1 2 3 
To-

tal 

Accu-

racy 

(%) 

Esti-

mated 

values 

from 

(1)  

     

Esti-

mated 

values 

from 

(2) 

     

1 40 14 8 62 64.5 1 46 16 13 75 61.3 

2 6 10 4 20 50.0 2 2 8 2 12 66.7 

3 3 1 13 17 76.5 3 1 1 10 12 83.3 

Total 49 25 25 99  Total 49 25 25 99  

Accu- 

racy 

(%) 

81.6 40.0 52.0   

Accu-

racy 

(%) 

93.9 32.0 40.0   

The classes are: 1, little need for pre-harvest clearing; 2, uncertain need for pre-harvest clearing; 3, 

evident need for pre-harvest clearing. Overall accuracy (1): 63.6%. Cohen kappa (1): 0.39. Weighted 

kappa (1): 0.47. Overall accuracy (2): 64.6%. Cohen kappa (2): 0.37. Weighted kappa (2): 0.41. 

  



38 
 

The second approach used a linear model to predict the number of trees within the 

diameter range from one to seven centimetres (NDBH1–7, model 1). This was: 

 

NDBH1–7 = 2102.343 − 451.017 × NP1.5–3 − 230.582 × MaxV0–1.5 + 625.300 × 

MaxV1.5–3 + 207.317 × MaxV0–3 − 210.453 × MeanV0–1.5 + 12992.500 × MeanV1.5–3 

+ 1425.248 × SDV0–1.5 − 3099.624 × SDV1.5–3 − 1131.531 × SDV0–3 − 2283.163 × 

SkewV0–1.5 + 1953.650 × SkewV1.5–3 + 1753.099 × KurtV0–1.5 − 450.967 × KurtV1.5–

3 − 971.578 × KurtV0–3 

(5) 

 

The 5-fold cross-validation-based relative RMSE of model 1 was 75.8%, the residual 

standard error 2620 stems∙ha−1, and the adjusted coefficient of determination 0.270. In order 

to determine the need for pre-harvest clearing based on the understorey tree density, the trees 

used for prediction with regression model 1, NDBH1–7, were assigned to three classes using 

field data-based LDA classes. Model 1 determined the need for pre-harvest clearing with an 

accuracy of 64.6% (Table 6). 

 
 

5 DISCUSSION 

 

 

5.1. General 

 

This thesis was aimed at understanding and supporting wood procurement practices, with the 

expectation of making timber markets more efficient by supplying each user with more 

suitable timber for processing. The focus of Papers I and III was on introducing a method for 

measuring timber volume, its value and the WPC by timber assortments for Scots pine 

(Papers I and III) and also Norway spruce and birch (Paper III). On the other hand, the idea 

of Paper II was to facilitate assessment of the need for pre-harvest clearing, which is required 

when forest stands have an understorey vegetation that hampers harvesting operations. 

Many forest companies have distinct guidelines for the pre-harvest clearing of 

understorey vegetation, but the need for this and its assessment are considered controversial 

for a number of reasons. Studies differ in the size of the understorey, the proportions of the 

various tree species in it, the working methods of the harvester operator, the harvesting 

machinery used, the time interval between pre-clearance and harvesting and the seasons when 

the various operations are carried out (Kärhä 2006). In any case, it is important to note that 

the understorey trees that are located between the machine and the stem to be harvested will 

more probably hinder the operator’s visibility and the movement of the harvester head than 

any other understorey trees (Kärhä 2006). 

There are many reasons why different species are used for particular products and this 

affects how they are traded. Grade A butt logs represent a branchless grade, but Norway 

spruces have branches all the way down. Veneers can be fabricated from high quality spruce 

butt logs, but these are often traded at the same price as sawlogs. Norway spruces are not 

used for poles, since poles are impregnated and Norway spruce is unsuitable for this. There 

are only a few small sawmills in Finland that deal in birch, so birch sawlogs are almost 

entirely veneer logs, but for simplicity these are referred to here as sawlogs. It is for this 

reason that the lengths of veneer logs differ from the actual sawlog lengths (multiple veneer 
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logs are obtained according to the width of the lathe). Residual wood is woody biomass which 

can be collected for energy use or left in the forest to decay and fertilize the next generation 

of trees, thereby increasing biodiversity. 

 

 

5.2. Estimates by tree species (Papers I and III) 

 

In Paper I, some of the bucking results for maximum theoretical sawlog volumes excluding 

quality estimation (Scenario 1) and for sawlog and pulpwood volumes excluding quality 

estimation (Scenario 2) are alike, and the RMSE% results for volumes and values are quite 

similar. This is partially caused by the fact that the value estimate is a weighted version of 

the volume estimate (calculated by multiplying the volume by the unit prices for the TAV). 

The RMSE% becomes slightly higher if quality estimation is considered. In the approach that 

considers four timber assortments (Scenario 4), the bucking objectives included grade A butt 

logs and small-diameter sawlogs in addition to conventional sawlogs and pulpwood, and the 

more complicated bucking objectives certainly introduce some error into the estimates. On 

the other hand, raising the number of timber assortments increased the weighting on external 

quality. The RMSE% values show that the variables used are quite efficient in predicting 

dimensions but slightly less so in predicting log quality. On the other hand, the estimates that 

take account of quality include additional usable information for the decision-maker, even 

though their predictive ability is poorer. The estimates are more robust for pulpwood than for 

sawlogs (the errors are smaller), but RMSE% increases progressively as we introduce (1) 

bucking, (2) quality and (3) assortments. The method presented here allows the recognition 

of grade A butt logs, the value of which is high, thus increasing the value and WPC of this 

timber assortment, but it underestimates sawlogs and overestimates pulpwood when quality 

is not an issue and underestimates both when quality is considered. It thus provides a 

conservative estimate for the total value of the stand. The stem quality database had been 

collected from a large geographical area, of which the test site was a rather small part. Thus 

a small-area approach of this kind is evidently more sensitive to local differences. 

In Paper III the bucking of maximum sawlog and pulpwood volumes excluding quality 

estimation (Scenario 1) and of all sawlog and pulpwood volumes excluding quality 

estimation (Scenario 2) also had similar outcomes. Overall, it can be deduced from the 

RMSE% values that the combination of a k-MSN search (in the existing stem quality 

database) and the ALS data presented here can be used to predict both dimensions and log 

quality. It is also the case that the RMSE% values for both Norway spruce and Scots pine are 

smaller for sawlogs than for pulpwood volumes, whereas the RMSE% values for birch are 

slightly larger for sawlogs than for pulpwood volumes. When three or four timber 

assortments were considered (Scenario 4), the bucking of grade A butt log volumes (for Scots 

pine) and small-diameter log volumes (for Scots pine and Norway spruce) produced larger 

RMSE% values than the bucking of sawlog volumes. In this context it seems that our 

approach can help to locate the stands that are likely to be more valuable and have the desired 

timber assortment distributions. 

For all the timber assortments (i.e. grade A butt logs, sawlogs, small-diameter logs and 

pulpwood) and all three tree species (Norway spruce, Scots pine and birch) the RMSE% 

values for the WPC were smaller than those for the volume. The probable reason for this is 

that while the volume of each timber assortment is only influenced by the proportion of that 

timber assortment per unit volume, the WPC is affected by the size of the logs as well (i.e. 

large logs from overstorey trees are usually more valuable than small logs from understorey 
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ones). However, even though understorey trees are less valuable, the commercial value of 

timber stands is substantially affected by the amount of these understorey trees (Paper II). 

Hou et al. (2016) estimated the ABA-derived diameter distribution in the same forest area 

that was used for Paper I but without applying any species identification procedure in k-MSN, 

and obtained the following RMSE% results for total, sawlog and pulpwood volumes, 

respectively: ~35%, ~40% and ~65% for Scots pine, ~90%, ~85% and ~190% for Norway 

spruce, and ~180%, ~230% and ~215% for deciduous species. When predicting DBH 

distributions in this way, they set k = 3 and used 1 cm DBH classes. In our case k was set to 

1 to avoid averaging between trees and 2 cm DBH classes were used to ensure continuous 

DBH distributions with a relatively small number of trees per plot. More accurate estimates 

of DBH distributions could be achieved by examining more sample plots. The standard 

operational ALS data processing method was used in this study, and the approach presented 

by Hou et al. (2016) could slightly improve the results. The forest concerned (Site I) is 

predominantly Scots pine and is a good area for studying the effect of using diameter 

distributions and product yield simulations, as the role of tree species is minimized, even 

though it is still present to some extent. 

Other studies have similarly estimated TAVs. Holopainen et al. (2010); Siipilehto et al. 

(2016); Vähä-Konka et al. (2020), and the present authors (in Papers I and III), for example, 

used an ABA based on ALS data to assess the amount of harvestable timber and its value, 

whereas Malinen et al. (2014) used non-parametric estimation and a decision support tool 

employing empirical data from sample plots. Holopainen et al. (2010) reported RMSE% 

results of 79.2% for sawlog volume and 167.6% for pulpwood volume in the case of Scots 

pine, 33.6% for sawlog volume and 46.7% for pulpwood volume where Norway spruce was 

concerned, and 78.6% for sawlog volume and 218.5% for pulpwood volume in birch, while 

Siipilehto et al. (2016) obtained RMSE% values of 41.1% for total volume, 40.1% for sawlog 

volume, and 52.8% for pulpwood volume when studying Scots pine. Likewise Vähä-Konka 

et al. (2020) reported RMSE% values of 67.1% for sawlogs and 107.1% for pulpwood in 

Scots pine, 48.6% for sawlogs and 54.8% for pulpwood in Norway spruce, and 169.8% for 

sawlogs and 97.7% for pulpwood in the case of deciduous trees (mainly birch). In Paper I we 

reported RMSE% results of 52.0% for total volume, 209.5% for grade A butt logs, 89.9% for 

sawlogs, 42.8% for small-diameter logs and 49.4% for pulpwood in Scots pine, whereas in 

Paper III we obtained 162.0% for grade A butt logs, 152.1% for sawlogs, 206.8% for small-

diameter logs and 163.1% for pulpwood in Scots pine, 42.5% for sawlogs, 66.4% for small-

diameter logs and 64.4% for pulpwood in Norway spruce, and 157.1% for sawlogs, and 

89.5% for pulpwood in birch. By contrast, Malinen et al. (2014) reported RMSE% values of 

6.7% for grade A butt logs, 7.1% for sawlogs, 2.5% for small-diameter logs and 7.1% for 

pulpwood when considering both Scots pine and Norway spruce. 
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5.3. Need for pre-harvest clearing (Paper II) 

 

When predicting the number of understorey trees with NDBH1–7 with regression model 1 using 

the ABA, we recorded a relative error of 75.8%, which is not directly sufficient for decision 

making. However, when the estimates were converted to the three classes used in that 

decision making the accuracy of the classification was reasonable (64.6%). Other researchers 

who have estimated the understorey vegetation by means of ALS data have reported that the 

species, height and crown shape of the neighbouring tall trees had a great influence on the 

rate of detection of the suppressed trees (Wang et al. 2016). Point density also decreased in 

the lower canopy layers, depending significantly on the number of layers (Hamraz et al. 

2017), the results being typically affected by variation in the tree size structure. Su and Bork 

(2007) used an average density of 0.54 pulses‧m−2 and were not able to estimate the 

understorey vegetation cover and height precisely. When pulse densities between one and 10 

per m−2 were used the variation in the identification rate was 38–70% for intermediate trees 

and 14–30% for suppressed trees (Solberg et al. 2006; Ferraz et al. 2012; Wang et al. 2016). 

Several authors have also used average densities between 10 and 20 pulses‧m−2. Maltamo et 

al. (2004) detected less than 40% of the understorey trees, and Maltamo et al. (2005) 

succeeded in predicting the density and height of understorey trees with regression models 

that had coefficients of determination of 0.87 for density and 0.76 for height. Vega et al. 

(2014) detected 41%, 42% and 50% of the non-dominant trees in three forest types, while 

Paris et al. (2016) detected 71.8% of the understorey trees. When a very high density of 50 

pulses‧m−2 was employed it was possible to detect 68% of the understorey trees (Hamraz et 

al. 2017). In addition, Duncanson et al. (2014) used a very high pulse density with detection 

rates of 35% for intermediate trees and 21% for suppressed trees. 

The results show that the stem number-based approach differs slightly from direct 

estimates of the need for pre-harvest clearing. Both can be used to support forest operations, 

but direct need-based estimation (LDA) should cover all the aspects that are of importance 

for operators, while the stem number-based approach requires clear criteria and should be 

tested further. Here the understorey density was estimated with the latter approach for trees 

with NDBH1–7 (model 1). The regression model might have been overfitted, but the forest 

structure in Finland is very heterogeneous and visibility below the main canopy layer requires 

detailed information from various height zones. Further studies are needed to assess the 

usefulness of optimized and stable biometric models for this purpose. Both approaches 

estimated the need for pre-harvest clearing with an accuracy of 64% when three classes were 

considered and 5-fold cross-validation was used without an independent dataset. The method 

will need to be tested with different forest structures and datasets in the future. 

LDA can be used directly when taking forest management decisions, and likewise, 

regression model 1 could be employed directly for decision making if we had clear criteria 

for determining the amount of interference from the understorey vegetation. In this case, 

however, our material did not include many dense stands. Kärhä (2015) states that in 

operational forestry the cutting work is hindered when the understorey of more than 1.5 m in 

height exceeds 1100–2000 stems‧ha−1, so that pre-clearance should be carried out in such 

cases. On the other hand, Bergström et al. (2016), evaluating the effects of the density of the 

understorey on the operational efficiency of a bundle harvester in early fuelwood thinnings 

in northern Sweden, showed that pre-clearance had no significant effect on the time taken up 

by harvesting and bundling work. Their understorey trees were of diameters below 2.5 cm at 

breast height, however, and the biomass removed was collected into bioenergy bundles. 
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Furthermore, it should be noted that a bundle harvester can be used for energy wood thinning, 

but not for CTL harvesting. 

The reference material concerning the needs for pre-harvest clearing was collected from 

an e-questionnaire answered by forest professionals. The survey had a scale of five answers 

instead of three to avoid losing resolution, so that class four, for instance, means that 

harvesting is very difficult but possible, whereas class five implies that it is not possible 

without pre-clearing. For operational decision making, however, three classes are enough to 

separate two reliable alternatives and one uncertain class for further inspection. If the forest 

professionals had had the chance to decide between three classes rather than five, their 

answers may have been different. Nevertheless, we believe that most of the outcomes would 

have been similar to the classification we created when we reduced the number of classes 

from five to three. The perceptions of the need for pre-harvest clearing expressed by forest 

professionals and the variations in these are dependent on personal preferences (i.e. some 

professionals are willing to adapt to different circumstances whereas others require more 

stable conditions). The method could point reliably to plots that have little need for pre-

harvest clearing and those that do have a need for it, although there were several plots here 

where the need existed but was fairly low, and then it was rather difficult to determine the 

necessity for clearing. For that reason, some flexibility based on current resources should be 

retained in decisions as to whether pre-harvest clearing in a given stand should be carried out 

or not. 

 

 

5.4. Limitations and potential research directions 

 

Although we used ALS data for prediction purposes, our field data in Paper III were collected 

from a large area, allowing inferences to be made with regard to subpopulation parameters 

and indirect estimators or predictors to be used that borrow information from other 

geographical areas. This partly affected the bias introduced into the design by the use of 

different vegetation zones, stem shapes and other geographically related factors. Special 

attention needs to be focused on the covariance structure of the training area data as compared 

with the target area when non-parametric estimation is used (Tokola and Heikkilä 1997). The 

attribute value distribution of the reference database is important in the k-MSN method, and 

if the target population has a different covariance structure in its major variables this can lead 

to design bias. For example, the reason why the RMSE% and bias% values quoted in Paper 

III are larger for Scots pine and birch than for Norway spruce is that Norway spruce is the 

main tree species in our material (see Table 1) and our estimation method was focused on 

getting better results for the main tree species than for the minor ones. 

The methods presented here can be further improved (1) with denser ALS data (which 

should enable better tree list predictions), (2) by having a more representative database for 

the k-MSN search (such as more plots from near the target area), (3) by using more precise 

harvester data (in the case of Paper III), and (4) by collecting more extensive stem quality 

data with terrestrial laser scanning (which should improve stem quality estimation). The taper 

curve models of Laasasenaho (1982) used in Papers I and III are old, but they were compiled 

using extensive data and they are still used in operational forestry in Finland. The two main 

novelties in Paper III are (1) that the investigation was implemented using a real-life forest 

inventory area and its related data sources, and (2) that this choice of material was 

supplemented with enhanced methodological developments such as the use of a bucking-to-
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value simulator, the use of harvester data as a reference source and the imputation of tree lists 

from sample plots in the ABA. 

Laser scanning data from unmanned aerial vehicles (UAV) open up new possibilities for 

estimating forest growing stock volumes based exclusively on such UAV laser scanning data 

(Puliti et al. 2020). The use of UAV in the civilian market has increased enormously over the 

last five years or so (Puliti et al. 2019), and this rapid growth is expected to continue (Watts 

et al. 2012), as UAVs offer greater operational flexibility than other platforms (such as 

manned airborne vehicles) and can be used for data collection under a wider variety of 

atmospheric conditions (Whitehead and Hugenholtz 2014). UAVs can provide excellent 

resolution (e.g. a few centimetres for the imagery collected) and data density (between 60-

1500 points·m−2 for the laser scanning data) (Puliti et al. 2015). Nevertheless, civilian UAVs 

are restricted to use over areas of up to 10 km2 when complete coverage is required 

(Whitehead et al. 2014) and light-weight sensors are used and significantly smaller areas 

when relying on heavier and more energy-consuming laser scanning systems (Puliti et al. 

2019). For larger areas there are alternative remote sensing platforms that become more cost-

effective for achieving complete coverage (Heaphy et al. 2017). Data collected by UAVs 

from multispectral, hyperspectral or laser scanning sensors, for example, can be employed 

for several purposes, such as forest inventories (Puliti et al. 2015; Puliti et al. 2018) or 

monitoring forest health by detecting physiological stress in mature plantations (Dash et al. 

2017). UAV-based data collection has a potential in the long term, and high density point 

clouds from unmanned ALS systems offer great possibilities for small area forest inventories 

(Kukkonen et al. 2021). Where wood procurement is concerned, however, we need to cover 

landscapes, regions, administrative areas and even beyond, and it is difficult to cover 

sufficiently large geographical areas with the current UAV technology and cost structure. 

There is a substantial need to develop concepts and data fusion techniques to improve the 

quality of information services in this field of expertise. 

Purchasing, harvesting, transportation, storage and handling, and manufacturing are the 

five major functions in the wood procurement supply chain (Lang and Mendell 2012). As 

these supply chains are dynamic networks of complex information and material flows 

between forestry, transport, and industry stakeholders (Kogler et al. 2021), this thesis is 

intended to contribute to wood procurement by improving our understanding of timber stand 

valuation, since it provides the information needed to define appropriate value and timber 

assortment distributions for harvestable timber stands. 

 

 

5.5. Conclusions 

 

In order to understand the complex wood procurement process and support the planning of 

harvesting operations, this thesis presents approaches designed to obtain detailed pre-harvest 

information from ALS data, aerial images, sample plots and a stem quality database. 

Information gathered with the methods developed here could reduce the need for field visits 

and therefore cut costs, as well as assisting in the performing of digital timber sales and 

improving the operational environment for digital timber marketplaces (Papers I, II and III). 

Moreover, the LDA and linear model-based approaches proposed in Paper II could offer 

a means of enhancing the guidelines for the pre-harvest clearing of understorey vegetation. 

Both of these approaches were based on the information that ALS can provide regarding the 

lower vegetation layers in forests and proved capable of generating new information to 

support the planning of forest harvesting operations. 
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The ABA was used to estimate tree lists for Scots pine (Papers I and III), Norway spruce 

and birch (Paper III) per plot (Paper I) and per stand (Paper III). These tree lists were later 

bucked into different timber assortments, and the timber volumes, values and WPC of these 

assortments were reckoned. Thus the methods developed in Papers I and III can be used for 

assessing forest stand conditions, and especially the amounts of the various timber 

assortments, when planning harvesting operations. Nevertheless, more studies will be needed 

in order to improve the parameters and establish the restrictions that might be implemented 

in this non-parametric approach. This thesis provided an understanding of the locations, 

conditions and appraisal of harvestable timber stands, and may thus have contributed towards 

solving the current bottlenecks in the digital timber trade. 
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