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Kotivuori E (2022) Prediction of forest attributes using airborne laser scanning-based 
models without new in-situ field measurements. Dissertationes Forestales 328. 54 p. 
https://doi.org/10.14214/df.328. 
 
 
ABSTRACT 
 
 
The era of airborne laser scanning (ALS) and the development of new forest inventory 
methods has reduced the need for field visits and overall inventory costs over the last two 
decades. Although the development of inventory methods has been considerable, some 
systematic field visits are usually always required. For example, the most common ALS 
inventory method, the area-based approach (ABA), leans on field sample plot measurements. 
Likewise in the ALS inventory, the ABA method can also be used in drone-based inventories 
with image point cloud (IPC) data. Due to the small areal coverage of the drones, local sample 
plot measurements in drone image point cloud (DIPC) inventories are not usually profitable. 
The objective of this thesis was to examine the performance of ALS-based forest attribute 
models in ALS- and DIPC-based ABA inventories without new in-situ field measurements. 

In this study, nationwide ALS models for three forest attributes (stem volume, above 
ground biomass and dominant height) were fitted for the whole of Finland, and regional-level 
error rates of the nationwide model predictions were assessed. As the nationwide models 
tended to exhibit systematic region-wise under- and over-predictions, different calibration 
methods were examined. First, calibration of nationwide models with a small number of new 
field measurements from the target area was simulated. Second, the nationwide stem volume 
model or its regional predictions was calibrated without new in-situ field measurements by 
three test scenarios: a) using additional calibration variables in the models to account for 
geographical and environmental conditions throughout the country, b) refitting of the models 
by using existing sample plots from nearby regions, and c) matching the regional-level 
predictions with national forest inventory data. The DICP-based forest inventory without new 
in-situ field measurements was evaluated by replacing the ALS metrics from the ALS-based 
models with DIPC metrics when the models were applied. In the DIPC inventory, the metrics 
used in the ALS models were selected carefully so that they would be similar to the 
corresponding DIPC metrics. 

The results showed that forest attributes can be predicted without new in-situ field 
measurements using nationwide ALS-based models with moderate error rates. The 
systematic errors associated with the nationwide models decreased when the models were 
fitted with additional calibration variables, such as degree days, precipitation, and tree species 
proportions. However, the measurement of a carefully selected set of sample plots (e.g., 20 
plots) from the target area for the calibration of the nationwide model is recommended, in 
instances where it is economically feasible. Prediction of forest attributes using ALS-based 
models with DIPC metrics is possible provided the predictor variables describe the upper 
canopy layer. The lowest error rates in DIPC-based inventories were obtained when the ALS-
based model was fitted in a nearby region and the inventory units were disaggregated to 
coniferous and deciduous dominated areas before the prediction. 
 
 
Keywords: remote sensing, airborne laser scanning, area-based approach, nationwide model, 
regional model, drone, image point cloud 
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Kotivuori E (2022) Puustotunnusten ennustaminen laserkeilauspohjaisten mallien avulla 
ilman uusia paikallisia maastomittauksia. Dissertationes Forestales 328. 54 s. 
https://doi.org/10.14214/df.328. 
 
 
TIIVISTELMÄ 
 
 
Laserkeilauksen aikakausi ja uusien inventointimenetelmien kehitys on vähentänyt maasto-
mittausten tarvetta ja inventointien kokonaiskustannuksia viimeisen kahden vuosikymmenen 
aikana. Vaikka menetelmäkehitys onkin ollut merkittävää, systemaattisia maastomittauksia 
tarvitaan käytännössä yhä edelleen. Esimerkiksi yleisesti käytössä oleva aluepohjainen in-
ventointimenetelmä tukeutuu maastossa tehtäviin koealamittauksiin. Laserkeilausperusteis-
ten inventointien lisäksi aluepohjaista menetelmää voidaan käyttää myös lennokeilla tehtä-
vissä inventoinneissa ilmakuvapistepilviä hyödyntäen. Maastossa tehtävät koealamittaukset 
eivät ole yleensä lennokki-ilmakuvapistepilviä käytettäessä kannattavia lennokkien pienen 
toiminta-alueen takia. Tämän väitöskirjan tavoitteena oli tutkia laserkeilauspohjaisten mal-
lien toimivuutta laserkeilaukseen ja lennokki-ilmakuvapistepilviin perustuvissa inventoin-
neissa ilman uusia paikallisia maastomittauksia. 

Tässä tutkimuksessa valtakunnalliset laserkeilauspohjaiset mallit sovitettiin koko Suo-
men alueelle kolmelle puustotunnukselle (runkotilavuus, maan yläpuolinen biomassa ja val-
tapituus) ja niiden virheitä tarkasteltiin aluetasolla. Valtakunnallisten mallien aluetason en-
nusteet olivat usein systemaattisia yli- tai aliarvioita, minkä takia tutkittiin erilaisia kalibroin-
timenetelmiä. Ensimmäisenä testattiin valtakunnallisten mallien kalibrointia pienellä mää-
rällä uusia maastomittauksia. Tämän jälkeen valtakunnallinen tilavuusmalli tai sen ennusteet 
kalibroitiin ilman uusia paikallisia maastomittauksia kolmen skenaarion avulla: a) käyttä-
mällä malleissa ympäristöä ja maantieteellisiä olosuhteita kuvaavia lisäselittäjiä, b) uudelleen 
sovittamalla mallit käyttäen opetuskoealoja lähimmiltä inventointialueilta ja c) sovittamalla 
ennusteet alueittain valtakunnan metsien inventoinnin tietoihin. Lennokki-inventointia ilman 
uusia paikallisia maastomittauksia tutkittiin korvaamalla laserkeilauspohjaisten mallien se-
littäjät ilmakuvapistepilvistä johdetuilla tunnuksilla malleja käytettäessä. Laserkeilauspoh-
jaisten mallien selittäjinä käytettiin niitä tunnuksia, jotka olivat mahdollisimman samankal-
taisia laserkeilaus- ja lennokkiaineistojen välillä. 

Tulokset osoittivat, että puustotunnusten ennustaminen ilman uusia paikallisia maasto-
mittauksia on mahdollista kohtalaisella tarkkuudella laserkeilauspohjaisten mallien avulla. 
Systemaattiset virheet minimoituivat, kun yleiset mallit kalibroitiin lisäselittäjien, kuten läm-
pösumma-, sadanta- ja puulajisuhdetietojen avulla. Huolellisesti valittujen lisäkoealojen 
käyttö valtakunnallisten mallien kalibrointiin on kuitenkin suositeltavaa, jos uusien koealojen 
hankinta on taloudellisesti mahdollista. Laserkeilauspohjaisia malleja on mahdollista käyttää 
puustotunnusten ennustamiseen lennokki-ilmakuvapistepilvistä johdettujen selittäjien avulla 
erityisesti silloin, kun mallien selittäjät kuvaavat ylintä latvuskerrosta. Pienimmät virheet len-
nokki-inventoinnissa saavutettiin käyttämällä laserkeilausperusteista mallia lähimmältä sa-
mankaltaiselta alueelta luokittelemalla ennustusyksiköt havu- ja lehtipuuvaltaisuuden mu-
kaan ennen ennustamista. 
 
 
Avainsanat: kaukokartoitus, laserkeilaus, aluepohjainen inventointi, yleinen malli, aluetason 
malli, lennokki, ilmakuvapistepilvi  
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1 INTRODUCTION 
 
 
1.1 Modern stand-level forest management inventories in Finland 
 
Traditionally, stand-level forest management inventories in Finland were conducted using 
time-consuming fieldwork and manual stand delineation by visual interpretation of aerial 
images. The field measurements were based on angle count sampling plots and basal area 
median tree assessments (Haara and Korhonen 2004; Koivuniemi and Korhonen 2006; 
Maltamo et al. 2021). Each stand was measured separately. However, since the beginning of 
21st century, the use of Light Detection and Ranging (LiDAR) technology has been widely 
studied and applied in forestry (Maltamo et al. 2014; Maltamo et al. 2021). One the most 
important LiDAR applications in forest inventories has been the introduction of airborne laser 
scanning (ALS). When combined with an area-based approach (ABA), ALS has attained an 
important role in modern stand-level inventories (e.g., Næsset 2002; Næsset 2004b; 
Holmgren 2004; Maltamo et al. 2006). The ABA inventory has reduced the need for field 
visits; from stand-specific field measurements to inventory area-wise field sample plot 
collections. Aside from ABA, individual tree detection-based (ITD) forest inventories have 
gained considerable research interest (e.g., Pitkänen et al. 2004, Vauhkonen 2010, Dalponte 
et al. 2018b, Kotivuori et al. 2021). Although the research efforts have described various 
ITD-based inventory procedures, the traditional ABA has remained as the primary inventory 
method in operational use. The main reasons to favor ABA are its more straightforward 
implementation and typically lower error rates (Kotivuori et al. 2021). However, it should be 
noted that ABA and ITD can be used to meet different forest inventory needs and can also 
support each other (Peuhkurinen et al. 2011; Kotivuori et al. 2021). 

In ALS-based ABA inventories, ALS data are used to describe the three-dimensional (3D) 
structure of the forest area. In other words, the metrics derived from the ALS point cloud are 
used for the prediction of different growing stock characteristics, such as stem volume, 
above-ground biomass and dominant tree height (Vauhkonen et al. 2014). Models are fitted 
at the sample plot-level and applied to larger areas using grid cells that are of similar size to 
the sample plots (Maltamo and Packalen 2014). Grid cell-level predictions are then 
aggregated to predict forest attributes at the forest stand-level and over larger areas (e.g., 
estates, municipalities, region, country). Compared to the traditional field work-based 
approach, ALS-based ABA has decreased the error rates associated with forest attribute 
predictions (e.g., root mean square error of stem volume has decreased from 20% to 10%) 
(Haara and Korhonen 2004; Packalén and Maltamo 2007). 

Currently, ALS datasets cover entire countries (Chapter 8 in Melin et al. 2017). In 
Finland, low-density ALS data are available for the entire country and the second round of 
data collection has already started. Until the 2020s, low-density ALS datasets (< 1 points 
m−2) were mostly used in practical applications (Maltamo et al. 2021). Since then, however, 
dense ALS datasets have become increasingly common (> 5 points m−2). An ALS-based 
ABA inventory is a cost-efficient inventory routine for relatively large areas (> 100,000 ha). 
Operational applications usually require species-specific predictions of forest attributes for 
forest management and planning (Maltamo and Packalen 2014). However, tree species was 
not considered in this thesis. 
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1.2 Prediction of forest attributes without new in-situ field measurements 
 
As outlined above, field work for sample plot measurements is still needed for ALS-based 
ABA inventories. A number of strategies to minimize the number of sample plots have been 
studied to date (e.g., Junttila et al. 2013). One approach is to use ALS data to improve the 
efficiency of plot selection (Maltamo et al. 2011; Gobakken et al. 2013; Grafström and 
Ringvall 2013). Also, other a-priori information, such as the geographical location and site 
type can be used for sample plot selection (Maltamo et al. 2011). However, it has also been 
shown that if the number of sample plots is too small, the prediction accuracy is reduced, 
which will lead to suboptimal decisions in forest planning (Ruotsalainen et al. 2019). The 
most cost-efficient method in an ALS-based inventory is to use ALS and field training data 
from former inventory projects for model fitting. The fitted ALS models would then be used 
in the new inventory area and applied with the new ALS data. In addition to regional stand 
management inventory projects, cost-efficient forest attribute maps for the whole country 
would also be useful in many applications (Nilsson et al. 2017; Mäkisara et al. 2019; Hollaus 
et al. 2021). Options for predictions without local field training data are 1) to build models 
that cover large areas (i.e., nationwide models), 2) to use the existing training data from a 
nearby inventory area (transfer the models), or 3) combine options 1 and 2. 

Næsset et al. (2005) were the first to utilize datasets from two separate ALS-based 
inventory projects for the prediction of forest attributes. They fitted so called “common 
models” for various forest attributes using ordinary least squares (OLS), seemingly unrelated 
(SUR) and partial least squares (PLS) regression methods. Næsset et al. (2005) highlighted 
the possibility to combine data from separate inventory areas. They also underlined the 
importance of careful comparison of the forests and the properties of the applied ALS 
sensors. They proposed the OLS method as a straightforward prediction method for practical 
ALS inventories. Uuttera et al. (2006) used the ALS-based ABA models presented by 
Suvanto et al. (2005) in two geographically separate inventory areas in Finland. The first 
target area was located about 300 km to the north and the second area about 150 km to the 
east from the fitting area (Suvanto et al. 2005). They also tested the use of the ABA models 
constructed by Næsset (2002) from Norway in these target areas. The results were compared 
to the traditional approach where forest stands were first pre-delineated with aerial images 
and then inventoried with stand-level sample plots. Overall, the results reported by Uuttera 
et al. (2006) indicate that transferred ABA models exhibit better performance than the 
traditional field inventory approach. However, systematic prediction errors were reported 
with both methods. 

Following these pioneers, Breidenbach et al. (2008) illustrated the usability of mixed 
effect models by combining datasets from USA and Germany. They pointed out that mixed-
effect models can be calibrated with a smaller number of sample plots than would be needed 
to construct completely new models. In the same year, Næsset and Gobakken (2008) tested 
nationwide models for the first time in Norway. They successfully predicted above-ground 
and below-ground biomass across ten inventory areas. The best model performance in their 
study was obtained by including the variables that represent the inventory area, age classes 
and tree species proportions in the ALS-based models. They observed strong local 
relationships between ALS-derived metrics and biomass, and suggested collection of 
continuous nationwide field samples for better nationwide biomass monitoring. Two years 
later, Suvanto and Maltamo (2010) compared basic and weighted OLS estimations for the 
prediction of forest attributes by combining sample plots from the target area and the former 
inventory area (120 km apart). They tested different sample sizes from the target area (10–
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212 plots), including sample plots from the former inventory area as auxiliary data (472 
plots). Predictions were compared with locally fitted regression models. According to their 
results, 40–50 sample plots for the local basal area and stem volume models was sufficient 
to obtain similar error rates than using former inventory plots as auxiliary data. 

Fekety et al. (2018) examined the transferability of ABA-based forest attribute models in 
USA. They used the data from six ALS acquisitions from separate areas. The ALS-based 
models were fitted for basal area and stem number using the random forest method. Their 
results indicated that basal area models were more transferable between the inventory areas 
than stem number models. Similar research was conducted by Tompalski et al. (2019) and 
van Ewijk et al. (2020) in Canada. Tompalski et al. (2019) studied how the existing random 
forest method, k most similar neighbor and OLS models for Lorey's height, quadratic mean 
diameter and (gross) volume were transferable to other areas in British Columbia. 
Transferability of the models was more dependent on the modelled forest attribute and the 
modelling technique than the point cloud characteristics (Tompalski et al. 2019). For 
example, Lorey's height models fitted by OLS were the most transferable between the areas. 
In turn, van Ewijk et al. (2020) studied the transferability of Lorey's height, quadratic mean 
diameter, (gross) volume and basal area models using the random forest method and OLS. 
Their study areas were located about 2,200 km apart on an east-west axis. They reported that 
model transfer to the target area performed best when the models were calibrated with a small 
number of sample plots from the target area. Use of calibration plots in the context of model 
transferability was also studied by de Lera Garrido et al. (2022) in Norway. They calibrated 
temporally and spatially transferred models for volume, stem number and dominant height 
with a different number of local sample plots and concluded that calibration reduces the 
systematic errors. 

The above-mentioned studies (Næsset et al. 2005; Uuttera et al. 2006; Næsset and 
Gobakken 2008; etc.) relied on plots measured in operational, regional-level forest 
management inventories. One possible option is to also create nationwide or regional ABA 
models by using sample plots from the national forest inventory (NFI) in conjunction with 
ALS data. For example, Hollaus et al. (2009) used ALS and NFI data to predict stem volume 
in Austria by using an existing volume model built for a smaller area (Hollaus 2006), which 
was calibrated for the whole target area. Hollaus et al. (2009) posited that the stratification 
of the data based on coniferous and deciduous domination would improve the predictive 
models. Gopalakrishnan et al. (2015), in turn, predicted dominant tree heights for large areas 
in USA using NFI sample plots. They fitted the OLS model for dominant height using ALS 
data from 76 separate areas; with such an extensive dataset, the r-squared (R2) value of the 
nationwide height model was 0.74. They emphasized the effects of vegetation heterogeneity 
on the prediction errors. Similarly, Monnet et al. (2016) combined NFI sample plots and 
nationwide ALS data to predict various forest attributes (e.g., mean height and diameter, stem 
volume, basal area) wall-to-wall in one of the 26 cantons of Switzerland (Valais). Their 
models were calibrated for six strata using flight year, flight altitude and geographical 
location and observed that the low positioning accuracy of NFI plots increased the error rates. 

Maltamo et al. (2016), Nilsson et al. (2017) and Rahlf et al. (2021) examined the use of 
NFI data in large area ALS-based predictions in Sweden and Norway. Maltamo et al. (2016) 
utilized NFI sample plots to predict above-ground biomass across a long (1500 km) transect 
in Norway. In particular, they noted the importance of species information in large area 
predictions. Nilsson et al. (2017) refitted the pre-selected regression model forms for ALS 
blocks with 350 geographically close NFI sample plots, and predicted stem volume, mean 
height, mean diameter, basal area and biomass for the whole of Sweden. Nilsson et al. (2017) 
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validated the prediction at the stand-level and noted that the predictions were suitable for 
forest management planning in Sweden. Rahlf et al. (2021) refitted the NFI-based mixed-
effect model used in Norwegian forest resource mapping (Astrup et al. 2019) using NFI 
sample plots and ALS data from the study area located in southern Norway. The study area 
consisted of three ALS-based forest management inventory projects. The aim was to predict 
the volume of mature spruce stands. They compared performance to traditional ALS-based 
forest management inventories and to scenarios where NFI sample plots and plots from forest 
management inventory were combined. Rahlf et al. (2021) noted that NFI-based models 
using ALS data and NFI sample plots resulted in good or even better performance than 
traditional ALS-based inventories. However, the combination of NFI and forest management 
inventory sample plots did not clearly improve the stem volume predictions. 
 
 
1.3 Effects of ALS data acquisition parameters and environmental conditions 
 
The use of multiple ALS sensors in data acquisition cannot be avoided if the objective is to 
utilize ALS data from large areas and former inventories. The time frame for data collection 
depends on the size of the scanned areas and the available resources. For example, in Finland, 
low-density country-level ALS data were collected within 10 years (between 2010 and 2020). 
From the beginning of the 2020s, the time interval between ALS acquisitions in the same 
area will be about six years. In this kind of time frame, multiple sensor models and individual 
sensor units are inevitably used. The data acquisition settings, e.g., flight altitude, scan angle 
and pulse repetition frequency (PRF), also vary between projects. In addition, sensor software 
and hardware updates may change the properties of the ALS datasets, even if the same unit 
is used. Technology is constantly developing, which makes harmonization of ALS data 
difficult. Nowadays, ALS systems offer point clouds even from multiple wavelengths, which 
could produce differing sets of ALS metrics in the prediction process (Dalponte et al. 2018a; 
Kukkonen et al. 2019b). However, it should also be noted that mixing data from spring and 
summer acquisitions is not recommended because the height distribution of ALS echoes in 
deciduous dominated forests is dissimilar between leaf-off and leaf-on data (Næsset 2005; 
Villikka et al. 2012). 
 The differences between ALS sensors and acquisition settings can be observed from ALS-
derived height and density metrics (Næsset 2005; Næsset 2009). For example, increasing 
pulse penetration into the canopy may be caused by larger pulse energy and peak power 
(Næsset 2005; Hopkinson 2007). Increasing flight altitude, in turn, leads to reduced pulse 
penetration and a reduced proportion of pulses with multiple echoes (Hopkinson 2007; 
Næsset 2009). However, it has been noted that the different error rates associated with the 
prediction of forest attributes are more related to differences in height distributions than 
proportions of echo categories (Keränen et al. 2016). The first return data is considered more 
stable for different flying altitudes and canopy conditions than the last return data (Næsset 
2004a; Næsset 2005). The large scan angles (up to 30°) seem to have only minimal effects 
on ALS metrics and on ALS-based forest attribute predictions (van Lier et al. 2022) but 
conversely has clear effects on foliage profile estimation (Qin et al. 2017). 
 Likewise, growing conditions may also vary within large geographical areas. Given the 
size of Finland, growing conditions differ in both north-south and east-west directions. The 
thermal growing season in northern Finland may start up to one month later and end one 
month earlier than in southern Finland (Ilmatieteen laitos 2020). In addition, the influence of 
Baltic Sea in the west and increasing elevation along a southwest-northeast axis affect the 
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growing conditions between the regions. There are also two large watershed areas in southern 
Finland, Maanselkä and Suomenselkä, where elevations are higher than in the surrounding 
areas (Tapana and WSOY 1999). Regional variations in annual precipitation and wetland 
proportions similarly affect the vegetation (Chapter III in Kalliola 1973). These changes in 
vegetation can be addressed geographically in many ways. For example, vegetation in 
Finland can be divided into hemi-, south-, mid-, and north-boreal zones on the basis of similar 
soil, topographic and climatic conditions (Chapter V in Kalliola 1973). These vegetation 
zones are further divided into sub-zones by the vegetation changes in microclimates. There 
are also herb-rich centers (e.g., Triangle of Lapland and Sortavala's herb-rich center in 
Tohmajärvi) around Finland, where the vegetation clearly differs from the surroundings 
(Figure 2 in Hotanen et al. 2018). 

The use of land and forest resources has also modified regional species distributions and 
age class proportions throughout history. In Finland, forests were partly used in slash-and-
burn silviculture and for tar burning activities between the 16th and 20th centuries, especially 
in eastern Finland, which has impacted the soil and the forest structure in these areas 
(Heikinheimo 1915). Nowadays, official recommendations offer guidelines for regional 
forest management (Äijälä et al. 2019). For example, thinning intensities greatly depend on 
degree-days and local site fertility, together with dominant height and basal area (Appendix 
5 in Äijälä et al. 2019). As described above (Section 1.2), these environmental and 
geographical properties can be taken into account in ALS inventories. Information that 
includes main tree species, geographical location, elevation, climate, age class and vegetation 
heterogeneity as predictor variables can improve the model performance (e.g. Næsset and 
Gobakken 2008; Gopalakrishnan et al. 2015; Maltamo et al. 2016). Næsset and Gobakken 
(2008) suggested that environmental properties may influence the predictions more than the 
observed differences between ALS sensors. 
 
 
1.4 Drone-based forest inventory 

 
In contrast to the ALS-based ABA inventories, drone-based (i.e., UAV, unmanned aerial 
system) inventory applications have shown promise over small areas (< 100 ha). Due to the 
high costs of drone-sized LiDAR sensors, most of drone applications currently rely on image 
point clouds (IPC). These are created using automated photogrammetric processes where a 
3D structure is derived using overlapping images (Lisein et al. 2013). Drone-based IPC 
(DIPC) can then be used in the same manner as ALS data in ABA inventories (Puliti et al. 
2015, Tuominen et al. 2015, Ota et al. 2017). However, sample plot measurements for DIPC-
based ABA inventories are not usually economically feasible as the inventory cost per hectare 
is very high for small areas. Moreover, if real-time kinematic (RTK) or other accurate 
positioning for the drone is not available, ground control points (GCP) for the georeferencing 
of DIPC are required. The use of the GCP will further increase the costs of small area 
inventories. 

One option to decrease the costs of the DIPC inventory is to use existing ALS-based 
nationwide or regional ABA models in conjunction with DIPC data. In other words, ALS 
metrics from ALS-based forest attribute models are replaced with DIPC metrics when the 
models are applied in the target area. Before the prediction, it should be confirmed that the 
DIPC metrics are comparable to the corresponding ALS metrics. Analogous point cloud 
metrics describe forest attributes similarly and ensure logical predictions (Navarro et al. 
2020). Another option to decrease the costs is to use existing ALS data for the georeferencing 
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of DIPC. It should also be noted that in some applications, such as the monitoring of forest 
wind and snow damage (Manninen 2019), separate field data may not be needed at all. 
Likewise, some drone-based ITD applications do not require any local field measurements 
(e.g., Panagiotidis et al. 2017, Mohan et al. 2017).  In particular, when drone-sized LiDAR 
sensors become more common and affordable, ITD with the crown and trunk detection from 
the point clouds will offer new possibilities for small area inventories (Puliti et al. 2020, 
Kukkonen et al. 2021b). 
 
 
1.5 Objectives 
 
The main objective of this thesis was to examine the performance and transferability of ALS-
based forest attribute models without new in-situ field measurements in ALS- and DIPC-
based forest management inventories. The objectives of the three original articles were: 
 
I To examine the error rates of nationwide ALS-based stem volume, above-ground 

biomass and dominant height models in Finland. An additional objective was to study 
the calibration of nationwide models using a small number of sample plots from the 
target region. 

 
II To compare options for calibration of a nationwide ALS-based stem volume model 

without new field measurements by using the geographical and environmental 
predictor variables, calibration plots from nearby inventory areas, or multi-source NFI 
data. 

 
III To identify the metrics that are analogous between ALS and DIPC datasets and assess 

the usability of nationwide and regional ALS-based models in cost-efficient DIPC-
based small area forest inventories.  
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2 MATERIALS 
 
 
2.1 Nationwide data for ALS-based forest attribute models (I, II, III) 
 
2.1.1 Field data 
 
The main field data in this thesis consisted of field sample plot measurements from 22 ALS-
based stand-level forest management inventory projects. The inventory areas were selected 
subjectively so that the areas represented the full variation in environmental and geographical 
conditions throughout Finland (Figures 1 and 2). Field datasets were collected between 2011 
and 2015 by three contractors: Finnish Forest Centre, TerraTec Oy and Blom Kartta Oy. Each 
contractor used slightly different field measurement protocols. In study I, sample plots from 
nine areas were used (Table 1), while in studies II and III, sample plots from all 22 areas 
were used. 

Field measurements were conducted by measuring diameter at breast height (DBH) and 
recording the tree species for all trees that were counted inside the circular sample plots 
within a certain DBH limit. Sample plot radii were either 5.64, 9, 12.62 or 12.65 m depending 
on the inventory project, maturity of the forest, and stem number of the forest stand. Sample 
plots were distributed using either systematic sampling with L-shape clusters, systematic 
stratified cluster sampling, or random sampling. The field data were harmonized by omitting 
all trees with DBH < 5 cm and sample plots with total stem volume < 3 m3 ha−1. In addition, 
trees identified as dead, and sample plots located in young seedling stands were omitted. 

Tree heights (H) were measured for all trees in the inventory areas, which were measured 
by TerraTec Oy and Blom Kartta Oy (see study I for details). In other areas, tree heights were 
only measured for a sample number of trees. For remainder of the trees, height was predicted 
using height models calibrated for each plot (Eerikäinen 2009). In one of the areas 
(Ilomantsi), field data were measured 1–2 years after the ALS data collection and, therefore, 
the NFI-based growth model service was used to account for the growth in a backward 
manner. The growth model service was provided by Luke (Natural Resources Institute 
Finland). 

Forest attributes considered in this thesis are stem volume (V), above-ground biomass 
(AGB) and dominant height (Hdom). For each sample plot, V was estimated by 1) calculating 
V by tree species (pine, spruce and birch) using the two parameter (DBH and H) models 
described in Laasasenaho (1982), 2) aggregating tree-level estimates to the plot-level, and 3) 
scaling the estimates to the hectare level (m3 ha−1) (I, II, III). The most common pine, spruce 
and birch trees in Finland are Scots pine (Pinus sylvestris (L.)), Norway spruce (Picea abies 
(L.) Karst.), silver birch (Betula pendula Roth) and downy birch (Betula Pubescens Ehrh.). 
The AGB of each sample plot was estimated similarly to V using the tree-level models 
described in Repola (2008 and 2009) (I). Dominant height (m) was estimated as the mean 
height of the 100 trees with the largest DBH values per hectare (Chapter 4.2.1 in Kangas et 
al. 2011) (I). The basic statistics of the nationwide field data are presented in Table 1, where 
inventory areas are listed from north to south. Table 1 clearly shows the geographical 
variation of forest attributes along the north-south axis. 
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Table 1. Inventory year, number of sample plots, average stem volume (V), average above-
ground biomass (AGB) and average dominant height (Hdom) in the inventory areas in the 
nationwide field data. Roman numerals indicate the inventory areas used and the forest 
attributes of interest examined in studies I, II and III. 
 

Inventory area Inventory 
year 

Number of 
sample plots 

V 
(m3 ha−1) 

AGB 
(t ha−1) 

Hdom 
(m) Study 

   I II, III I II, III I I  

Savukoski 2015  233  71.1   II, III 
Sodankylä 2015  301  86.4   II, III 
Kolari 2013 534 301 100.9 101.8 56.3 13.9 I, II, III 
Kuusamo 2014  301  92.0   II, III 
Ranua 2012 613 301 98.3 98.1 55.9 12.9 I, II, III 
Tornio 2013 596 301 97.2 98.0 57.3 12.7 I, II, III 
Pudasjärvi 2015  301  109.4   II, III 
Kuhmo 2014  301  127.5   II, III 
Siikalatva 2013 657 301 118.0 114.5 64.4 15.6 I, II, III 
Toholampi 2012 587 301 102.8 108.3 55.8 14.7 I, II, III 
Maaninka 2015  301  157.4   II, III 
Kaavi 2014  301  148.4   II, III 
Ilomantsi 2014–2015  149  213.8   II, III 
Ähtäri 2013 1233 301 139.7 137.6 73.9 16.8 I, II, III 
Kristiinankaupunki 2015  301  149.8   II, III 
Kangasniemi 2013  301  181.2   II, III 
Sulkava 2011 570 301 173.4 175.4 90.3 18.6 I, II, III 
Orivesi 2015  301  191.2   III, III 
Sastamala 2014  301  186.0   II, III 
Virolahti 2013 724 301 179.4 186.3 93.5 17.8 I, II, III 
Hyvinkää 2015  301  178.5   II, III 
Turku 2012 716 301 180.9 183.3 93.6 18.8 I, II, III 
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Figure 1. Locations of inventory areas of nationwide datasets (I, II, III).  
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2.1.2 ALS data 
 
The nationwide ALS data were collected from the same inventory areas as the nationwide 
field data, i.e., the dataset consisted of 22 ALS acquisitions from different geographical areas 
of Finland. A total of 12 different ALS sensors from two manufacturers were used (Leica and 
Optech). The single-pulse-in-the-air mode was used in 17 of the areas and multiple-pulses-
in-the-air scanning mode in five of the areas. The PRF varied from 50,000 to 71,800 Hz with 
single-pulse mode and was either 114,600 or 136,500 Hz with multiple-pulses mode. Flying 
altitude varied between 1675 and 2200 m and the half scan angle was either 15° or 20°. 
Average pulse density between the areas varied from 0.5 to 1.2 points m−2. All ALS datasets 
were acquired in leaf-on conditions. The ALS sensors and their settings are presented in 
Table 2. In study I, ALS data from nine areas were used. In studies II and III, ALS data from 
all 22 areas were utilized. Digital terrain models (DTM) were used to calculate above-ground 
heights for the ALS echoes. The DTM were created by Delaunay triangulation using the 
methods described by Axelsson (2000). The ALS datasets for sample plots were provided by 
Blom Kartta Oy, TerraTec Oy and Arbonaut Oy. The ALS data were used to calculate various 
height and density metrics to the sample plot-level. Calculation of ALS metrics is described 
in Section 3.1. 
 
 
Table 2. Manufacturer (Manuf.), individual scanner unit (Unit), pulse type (P. type), acquisition 
year (Year), flying altitude (Alt.) (m), pulse repetition frequency (PRF) (Hz) and half scan angle 
(HSA) (degrees) of the nationwide airborne laser scanning (ALS) data acquisitions. Roman 
numerals indicate the ALS datasets used in studies I, II and III. 
 
Inventory area Manuf. Unit P. type Year Alt. PRF HSA Study 
Savukoski Leica E Multi 2015 2200 136,500 20 II, III 
Sodankylä Optech F Single 2015 1890 70,000 20 II, III 
Kolari Optech B Single 2013 1950 50,000 15 I, II, III 
Kuusamo Leica H Single 2014 2000 63,700 15 II, III 
Ranua Optech A/B Single 2012 1750 70,000 20 I, II, III 
Tornio Leica C Single 2013 1950 71,000 20 I, II, III 
Pudasjärvi Leica I Single 2015 1800 60,000 20 II, III 
Kuhmo Leica J Multi 2014 2150 114,600 20 II, III 
Siikalatva Optech B Single 2013 1950 50,000 15 I, II, III 
Toholampi Optech B Single 2012 1750 70,000 20 I, II, III 
Maaninka Leica K Multi 2015 2000 114,600 20 II, III 
Kaavi Leica K Multi 2014 2000 114,600 20 II, III 
Ilomantsi Leica L Single 2013 2000 58,900 15 II, III 
Ähtäri Optech A Single 2013 1730 70,000 20 I, II, III 
Kristiinankaupunki Optech G Single 2015 1890 70,000 20 II, III 
Kangasniemi Leica H Single 2013 1675 60,000 20 II, III 
Sulkava Optech A Single 2011 2000 50,000 15 I, II, III 
Orivesi Optech G Single 2015 1850 70,000 20 III, III 
Sastamala Optech G Single 2014 1850 70,000 20 II, III 
Virolahti Leica D Single 2013 1900 71,800 20 I, II, III 
Hyvinkää Leica J Multi 2015 2050 114,600 20 II, III 
Turku Optech B Single 2012 1750 70,000 20 I, II, III 
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2.1.3 Calibration data 
 

A total of 31 continuous or discrete variables from multiple data sources were used to account 
for the geographical and environmental conditions throughout Finland. The data were used 
in the calibration of nationwide forest attribute models or in model prediction (II, III). The 
calibration variables were divided into five categories: 1) location, 2) site, 3) climate, 4) 
spectral, and 5) tree-species composition. A summary of the data is presented in Table 3. 

Geographical location in study II was addressed by x- and y-coordinates in the ETRS-
TM35FIN coordinate system (m) by orthometric height (m) (© National Land Survey of 
Finland 2015–2016), by forest vegetation zones and sub-zones (© Finnish Environment 
Institute (SYKE) 2015), and by distance from the coastline (km) (© European Environment 
Agency 2015). Finland is covered by four forest vegetation zones: 1) hemi-boreal, 2) south-
boreal, 3) mid-boreal, and 4) north-boreal (Figure 2), while zones 2–4 are further divided into 
sub-zones (2a–2c, 3a–3c and 4a–4d). Distance to the nearest coastline was calculated as 
Euclidean distance (II). Site properties in study II were described by site fertility and 
sediment classes. Site fertility classes 1–7 were present in the nationwide data, where small 
class number indicates fertile site and large class number indicates infertile site (© Natural 
Resources Institute Finland (Luke) 2013; Tomppo and Halme 2004). An alternative site 
fertility variable was also created where the most infertile site classes 4–7 were pooled. 
Sediment classes present in the nationwide data included a total of ten surface and eight base 
sediments (© Geological Survey of Finland 2010). More details on the fertility and sediment 
classes can be found in Appendix B in study II. 

The main categories for the climate related variables used in study II were degree days 
(i.e., effective temperature sum), monthly mean temperature and monthly precipitation. 
Degree day data were also used in study III. The nationwide degree day layer was 
interpolated as presented by Ojansuu and Henttonen (1983) using the degree day data from 
1951 to 1980 provided by Luke. In addition to continuous degree day observations, degree 
days were also assigned to three classes as recommended by Äijälä et al. (2019): 1) degree 
days > 1200, 2) degree days ≤ 1200 and > 1000, and 3) degree days ≤ 1000 (II). Monthly 
mean temperature and monthly precipitation data were used to calculate a total of eight 
different calibration variables (Table 3) (© Finnish Meteorological Institute 2000–2013). To 
simplify the calculations, the growing season was assumed to continue from May to 
September nationwide. The spectral variables in study II were extracted from MODIS 
satellite data. Reflectance composite was 005 MOD13Q1 product, courtesy of the NASA 
Land Processes Distributed Active Archive Center (LP DAAC), and the USGS / Earth 
Resources Observation and Science (EROS) Center (© NASA LP DAAC, 2011–2015). A 
total of four bands and two indices were used (Table 3). 

Tree species composition information was extracted from multi-source national forest 
inventory (MS-NFI) data, which provides the NFI predictions in 16 × 16 m spatial resolution 
and is created by combining the NFI field data with information from satellite images and 
other map data sources (Mäkisara et al. 2019). In study II, MS-NFI-based tree species 
information was used to calculate dominant tree species classes and tree species proportions 
(Table 3) (© Natural Resources Institute Finland (Luke) 2015a; © Natural Resources Institute 
Finland (Luke) 2015b). In study III, species information from MS-NFI was used to 
disaggregate the inventory units to coniferous and deciduous dominated sites when the 
nationwide model was applied to the test area (see Section 3.3) (© Natural Resources Institute 
Finland (Luke) 2017). In study II, inventory area-wise medians of MS-NFI-based total stem 
volumes were also tested in calibration (see Section 3.2).  
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Table 3. Variables used to account for the geographical and environmental conditions 
throughout Finland. Roman numerals indicate the variables used in studies II and III. 
 
Group Variable Description Unit Study 

1 x In ETRS-TM35FIN coordinate system Meter II 
1 y In ETRS-TM35FIN coordinate system Meter II 
1 cdist Distance from the sea Kilometer II 
1 elev Elevation from the sea level Meter II 

1 v.s.zone Vegetation sub-zone  
(classes 1, 2a–2c, 3a–3c and 4a–4d) Class II 

2 site.a Site fertility (classes 1–7) Class II 
2 site.b Site fertility (classes 1–4) Class II 
2 soil.a Surface sediment (classes 1–10) Class II 
2 soil.b Base sediment (classes 1–8) Class II 
3 d.d. Degree days (The effective temperature sum) °C II, III 

3 d.d.cl Geographical zones divided by degree days 
(classes 1–3) Class II 

3 tmean.a Mean of the monthly temperatures °C II 

3 tsd.a Standard deviation of the monthly mean 
temperatures °C II 

3 tmean.b Mean temperature of the growing season °C II 

3 tsd.b Standard deviation of the mean temperatures 
of growing seasons °C II 

3 pmean.a Mean of the monthly precipitations Millimeter/month II 

3 psd.a Standard deviation of the monthly 
precipitations Millimeter II 

3 pmean.b Mean of the annual monthly precipitation 
sums of the growing season 

Millimeter/  
5 month II 

3 psd.b Standard deviation of the annual monthly 
precipitation sums of the growing season Millimeter II 

4 red MODIS red reflectance  
(Band 1, 620–670 nm) 

16-Bit signed 
integer II 

4 NIR MODIS near-infrared reflectance  
(Band 2, 841–876 nm) 

16-Bit signed 
integer II 

4 blue MODIS blue reflectance  
(Band 3, 459–479 nm) 

16-Bit signed 
integer II 

4 MIR MODIS mid-infrared reflectance  
(Band 7, 2105–2155 nm) 

16-Bit signed 
integer II 

4 NDVI MODIS normalized difference vegetation 
index 

16-Bit signed 
integer II 

4 EVI MODIS enhanced vegetation index 16-Bit signed 
integer II 

5 dts Dominant tree species (classes 1–4) Class II 
5 pine.p Proportion of pine Percentage II 
5 spruce.p Proportion of spruce Percentage II 
5 birch.p Proportion of birch Percentage II 
5 ot.p Proportion of other tree species Percentage II 
5 decid Deciduous dominated (True = 1, False = 0) Logical III 
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2.2 Small area drone inventory data (III) 
 
2.2.1 Field data 
 
The additional field data used in study III consisted of square 30 m × 30 m test plots from 
the research area in Liperi, eastern Finland. The field work was conducted in 2017. The area 
is dominated by coniferous trees, although deciduous sites are also present. The 19 sample 
test plots were selected subjectively so that there was variability in tree species and age class 
among the data. Heights and diameter were measured from all trees with DBH ≥ 5 cm. The 
locations of each tree were solved in the field using ALS-based ITD map and field 
triangulation (Korpela et al. 2007). Each sample plot was further divided into smaller 15 × 
15 m cells, which resulted in a total of 76 forest inventory units. Volume (V) for each test 
plot was estimated by 1) calculating tree-level stem volumes by tree species (pine, spruce 
and birch) using the two parameter (DBH and H) models described in Laasasenaho (1982), 
2) aggregating tree-level estimates to the cell-level, 3) scaling the estimates to the hectare 
level (m3 ha−1), and 4) calculating the total stem volume for each test plot as a mean value of 
four cells. The average V in the 19 test plots was 237.8 m3 ha−1. Figure 2 shows the location 
of the small area drone inventory data with respect to the nationwide inventory areas. 
 
2.2.2 Drone data 
 
Drone images for the Liperi test plots were collected using a DJI Inspire 1 rotary-wing drone 
and Zenmuse x3 digital camera in 2017. The images were captured with a forward overlap 
of about 90% and with a side overlap of about 60%. Flying altitude was 75 m and the ground 
sampling distance (GSD) was 3.2 cm. Images were captured in varying weather conditions, 
i.e., sunny to cloudy, and calm to slightly windy conditions. However, the most hazardous 
imaging conditions were avoided (strong wind, rain, etc.). The DIPC were created using the 
Agisoft Photoscan software (AgiSoft PhotoScan Professional 2017). The average point 
density of the DIPC was approximately 1148 points m−2. The DIPC were adjusted 
horizontally and vertically using ALS datasets from the same area as GCP or other 
georeferencing methods were not used. In the horizontal adjustment, the DIPC were shifted 
so that the correlation between the DIPC and ALS (Optech Titan, see Section 2.2.3) based 
on canopy height models (CHM) reached the maximum value. In the vertical adjustment, 
DIPC altitude was corrected by calculating the difference between the ground observations 
of ALS (© National Land Survey of Finland 2016) and DIPC data, and by adding the 
difference to the DIPC data. Finally, DIPC heights were scaled to above ground-level using 
DTM created from the ground observations of ALS (© National Land Survey of Finland 
2016). 
 
2.2.3 ALS data 
 
The ALS data for the test plots in Liperi were acquired using an Optech Titan multispectral 
ALS sensor in 2016. The data were acquired in leaf-on conditions. Optech Titan operates on 
three channels (channel 1 = 1550 nm, channel 2 = 1064 nm, channel 3 = 532 nm), but only 
data from channel 2 were used in this thesis. Pulse density in channel 2 was approximately 
12.4 point m−2. Multiple-pulses-in-the-air mode and half scan angle of 20° were used. The 
PRF was 250,000 Hz, flying altitude was 850 m and lateral overlap 55%.  
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Figure 2. a) Test plots in Liperi (red points) with respect to the nationwide field data used in 
studies II and III (purple and green points) within the forest vegetation zones. The Sulkava 
area (green points) was considered as the nearest inventory area with similar growth 
conditions and species distributions. b) Locations of the test plots in Liperi. c) One of the 30 × 
30 m test plots deviated to four 15 × 15 m cells with a drone image point cloud-based (DIPC) 
canopy height model (CHM). Base maps: a) © National Land Survey of Finland 2011; © 
Finnish Environment Institute (SYKE) 2015, © European Environment Agency 2015, b) © 
National Land Survey of Finland 2018.  
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3 METHODS 
 
 
3.1 Modelling and validation of nationwide ALS-based forest attribute models (I, II) 
 
 
In this thesis, two basic ALS-based nationwide models for V (I, II), one basic nationwide 
model for AGB (I) and one basic nationwide model for Hdom (I) were formulated. The term 
“basic” is used here for models that were fitted using only ALS metrics as predictor variables. 
The modelling process was divided into three steps: 1) calculation of ALS metrics for the 
sample plots, 2) variable selection and model fitting, and 3) validation. The basic nationwide 
models were fitted using OLS estimation (see Chapter 4.4.1 in Mehtätalo and Lappi 2020) 
by utilizing the sample plots from multiple inventory areas in the same model (n = 6230 in 
study I, n = 6402 in study II). 

The following ALS metrics were calculated for each plot: mean, standard deviation, 
maximum, density percentages and height quantiles (I, II). The metrics were calculated from 
both first (F) and last (L) echo categories. First echoes included the original echo categories 
of “first of many” and “only”, and last echoes included the categories of “last of many” and 
“only”. In the preliminary tests in studies I and II, the nationwide models were observed to 
be more transferable between the ALS datasets when the height threshold (e.g. echo height 
≥ 2 m) for ALS height metrics was ignored. Therefore, all the echoes from the first and last 
echo categories were used when calculating the ALS metrics. Height quantiles were 
calculated using the quantile function in the R software (quantile type 7) (R Core Team 2017; 
Hyndman and Fan 1996). The density percentages, in turn, were calculated by dividing the 
number of echoes over a certain threshold by the number of all echoes. Table 4 shows the 
variables used in each study. 

The basic nationwide V and AGB models were fitted using two ALS metrics as predictor 
variables, while the basic nationwide Hdom was fitted with one ALS metric. For example, 
the linear model with two ALS predictors was as follows: 
 
y� = β0 + β1ALS1 + β2ALS2                (1) 
 
where 
ŷ is the response variable (V, AGB or Hdom), 
ALS1–2 are the predictor variables calculated from ALS data, and 
β0–2 are the model coefficients. 
 
The selection of regression models was conducted using a comprehensive investigation of 
predictor variables. In other words, the nationwide models were fitted with all possible 
variable combinations and the best model form was selected by means of the smallest root 
mean square error (RMSE) value (Equation 4). Square root, logarithmic, polynomial (I, II) 
and inverse transformations (II) for predictor variables were also tested. In addition, the use 
of square root transformations for response variables was examined.  
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Table 4. Airborne laser scanning (ALS) variable groups and variable settings used in studies 
I, II and III. 
 
Variable group Used variables Study 
mean havgF and havgL 

I 

standard deviation hstdF and hstdL 
maximum hmaxF and hmaxL 

density percentages veg1/2/3/…/23/24/25F and 
veg1/2/3/…/23/24/25L 

height quantiles h5/10/15/…/90/95/99F and 
h5/10/15/…/90/95/99L 

mean havgF and havgL 

II 

standard deviation hsdF and hsdL 
maximum hmaxF and hmaxL 

density percentages veg1/2/3/…/23/24/25F and 
veg1/2/3/…/23/24/25L 

height quantiles h1/2/3/…/97/98/99F and  
h1/2/3/…/97/98/99L 

mean havgF 

III 

median hmedF 
standard deviation hstdF 
maximum hmaxF 
density percentages veg0.5/2/5/10/15/20F 
height quantiles h5/10/15/…85/90/95F 

 
 

Square root transformation of a response variable requires a bias correction when the 
predicted response value is transformed back to its original scale (Chapter 5.4 in Lappi 1993). 
The bias-corrected predicted value was calculated as follows: 
 
y� = �β0 + β1ALS1 + β2ALS2�

2
 + σ2                (2) 

 
where the bias correction is the residual variance (σ2)  
 

σ2 = 
∑ (yi – y�i)

2n
i=1

n
                             (3)  

 
where  
yi is the observed value of attribute y in sample plot i,  
ŷi is the predicted value of attribute y in sample plot i, and  
n is number of sample plots. 
 

The nationwide models were validated by leave-one-inventory-area-out cross validation. 
The error rates of the nationwide models were compared to the error rates of the regional 
ALS models, i.e., compared to models fitted for individual inventory areas using in-situ field 
measurements. The regional models were selected in the same manner as the nationwide 
models. In study I, a total of nine regional models were fitted for each response variable (V, 
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AGB and Hdom). In study II, a total of 22 regional models for V were fitted. Each regional 
model was leave-one-plot-out cross validated. The performance of cross validated 
nationwide and regional models was compared using inventory area-wise RMSE and MD 
(mean difference) values: 
 

RMSE = 100 × �∑ (yi – y�i)
2n

i=1
n

/ y�                            (4) 
 
MD = 100 × ∑ (yi – y�i)

n
i=1

n
/ y�                (5) 

 
where ӯ is the mean value of attribute y and other abbreviations are the same as in Equation 
3. In this thesis summary, and in studies I and II, a negative MD value denotes systematic 
overprediction and a positive MD value denotes systematic underprediction. In study III, the 
interpretation of MD was opposite (negative value denotes underprediction and positive 
value denotes overprediction). The summary statistics (minimum, maximum, mean, median, 
standard deviation) of inventory area-wise RMSE and |MD| (absolute value of mean 
differences) values were used to compare the results at the nationwide level. In the summary 
statistics, absolute MD values were used because the negative and positive MD values would 
have canceled each other out. The nationwide models are denoted with the abbreviation N 
and regional models by R. 
 
 
3.2 Calibration of nationwide ALS-based models (I, II) 
 
Calibration of the nationwide models was undertaken to improve the inventory area-wise 
performance of the models. Calibrations were tested with four main scenarios: 1) calibration 
with a small number of new sample plots (I), 2) calibration with additional predictor variables 
(II), 3) calibration with existing sample plots from nearby inventory areas (II), and 4) 
calibration through MS-NFI predictions (II). In calibration scenarios 2–4, it was assumed 
that new field measurements were not needed. The performance of the calibration scenarios 
was compared to the basic nationwide models and regional models based on inventory-wise 
RMSE and MD values. The summary statistics of the RMSE and |MD| values associated with 
each calibration scenario were used to compare the results at the nationwide level. 

Calibration with a small number of new sample plots was conducted using mixed-effect 
models and the best linear unbiased predictor (BLUP) estimator (Chapter 5.4.1 in Mehtätalo 
and Lappi 2020). Mixed-effect models were fitted using the same predictor variables as in 
the basic nationwide V, AGB and Hdom models. Inventory areas were defined as groups, 
i.e., inventory area-wise random effects were estimated for model intercept and predictors. 
The calculations were simulated with the following steps: a) leave inventory area j out, b) fit 
nationwide mixed-effect models for V, AGB and Hdom with other inventory areas, c) select 
20 of sample plots from area j, d) predict new group effects with the BLUP-estimator, and e) 
predict V, AGB and Hdom for the remainder of the plots in area j using new group effects, 
where j is the order number of the inventory area. The simulation was repeated 10,000 times. 
A small number of sample plots from each inventory area was randomly selected based on 
the stratification of the sample plots by the ALS metric havgF. The inventory area-wise 
RMSE and MD values were calculated as the mean RMSE and MD values from 10,000 
simulations. Calibration with a small number of new sample plots is denoted by SN. 
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Calibration with the additional predictor variables was studied for 29 calibration variables 
that were used to account for the geographical and environmental conditions throughout 
Finland (Table 3, with the exception of variables decid and v.s.zone). Calibration variables 
were assumed to bring more predictive power for the nationwide ALS based model, which 
improves the inventory area wise predictions. Either 1, 2 or 3 additional variables were added 
to the basic nationwide V model and new coefficients were estimated with OLS. The models 
were leave-one-inventory-area-out cross validated and the final model forms were selected 
based on the smallest mean |MD| value. The calibrations with additional variables were 
denoted either AV1, AV2 or AV3, depending on the number of additional variables used in 
the calibration. 

Calibration with the existing sample plots from nearby inventory areas was performed in 
two ways. The first alternative (NN1) was conducted as follows: a) select inventory area j, 
b) select the 200 nearest sample plots from the nearest inventory areas based on Euclidean 
distances calculated between the center of area j and sample plot centers of the other 
inventory areas, c) refit the basic nationwide V model using the 200 nearest sample plots, 
and d) apply the refitted model for area j. In the second alternative (NN2), the 200 nearest 
sample plots for the target inventory area were selected from the same vegetation sub-zone 
(v.s.zone in Table 3). If 200 sample plots from the same vegetation sub-zone were not 
available, sample plots from the most similar sub-zone were used. In addition, if the area was 
separated into multiple vegetation sub-zones, the calibration was repeated for each sub-area 
separately. 

 Calibration with the MS-NFI information was conducted by matching the inventory area-
wise V median value associated with the nationwide model predictions to the corresponding 
median value of the MS-NFI based predictions. The MS-NFI V was extracted for the 
nationwide sample plot data from MS-NFI rasters (16 × 16 m) (see Section 2.1.3). The MS-
NFI-based calibration was performed using leave-one-inventory-area-out cross validation 
routine. Two variations of this scenario were tested. The first alternative was simulated as 
follows: a) leave inventory area j out, b) predict V for area j using the basic nationwide model, 
c) calculate the V median value for area j from plot-level V predictions of the basic 
nationwide model, d) calculate the V median value for area j from plot-level V predictions 
of MS-NFI, and e) determine the calibration coefficient for the nationwide model so that plot-
level predictions would result in the same V median value for area j as MS-NFI (NFI1). The 
second alternative was conducted with the same simulation but only used the sample plots 
for which the ALS-based prediction was > 0.5 × MS-NFI prediction and < 2 × MS-NFI 
prediction (NFI2). The second alternative was expected to ignore loggings and other major 
inconsistencies between the ALS and MS-NFI data. The time difference between the ALS 
inventories and MS-NFI was ± 2 years. 
 
 
3.3 Prediction of forest attributes for small areas using ALS-based models and drone 
image data (III) 
 
The DIPC inventory without new field measurements was studied in three steps: 1) selection 
of ALS metrics that were similar to DIPC metrics, 2) fitting the ALS-based nationwide and 
regional V models using selected ALS metrics, and 3) prediction of V in the Liperi test plots 
(Figure 2) using ALS-based V models with DIPC metrics as predictor variables. 

First, the ALS and DIPC metrics were calculated for 15 × 15 m cells of the Liperi test 
plots. The calculated ALS metrics are presented in Table 4. It was assumed that ALS metrics 
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from the first echo category (F) would correspond better to the DIPC metrics than the ALS 
metrics from last echo category (L) and so only first echoes were used. Corresponding DIPC 
metrics were calculated using all point observations. The ALS metric was considered as a 
candidate variable of a model, if a) Pearson's correlation coefficient (r2) between the ALS 
and DIPC metrics in the Liperi test plots was > 0.9, and b) coefficients β0 and β1 of 
relationship function 
 
DIPCm = β0 + β1ALSm                 (6) 
 
were between −1.0 and 1.0 and 0.9 and 1.1, respectively. Coefficients were estimated with 
OLS. 

In the second step, the model forms for the nationwide and regional ALS models were 
selected based on the smallest RMSE values (see Section 3.1). However, in study III, the 
number of degree days was assumed to be the best variable to account for the geographical 
and environmental conditions throughout Finland (d.d. in Table 3). Therefore, the nationwide 
model was fitted with three predictor variables that assumed that the best model form would 
include two ALS metrics and degree days. Regional models were fitted using the sample 
plots from the Sulkava area, which was assessed to have similar forests to the Liperi test area. 
Degree day information was not included in the regional models, i.e., only two ALS metrics 
were used. Alternatives to the nationwide and regional models were also constructed in which 
the dominance of deciduous trees was used as a dummy variable. While fitting the models 
with OLS, it was found that the residual variance of V increased with respect to the 
predictions. For that reason, the final models in study III were fitted with a nonlinear form 
assuming a power type variance for residual errors: 
 
var(ei) = σ2h95i

2δ                (7) 
 

where 
ei is the residual error for plot i, 
h95i is the 95% height quantile of first echoes for plot i, and  
σ and δ are estimated parameters. 
 
Model coefficients and σ were estimated with nonlinear generalized least squares (NGLS) 
and δ with maximum likelihood (Chapters 7.5 and 8.3.3 in Pinheiro and Bates 2000; R Core 
Team 2017; Chapter 7.2.6 in Mehtätalo and Lappi 2020; Pinheiro et al. 2022). As an example, 
the final nationwide model with dummy variable is presented as follows: 
 
y� = β0 + (β1 + β2ALSm1 + β3ALSm2 + β4d.d. + β5decid)2              (8) 
 
where 
d.d. is degree days, and 
decid is a dummy variable for dominance of deciduous trees. 
 

In the last step, ALS-based nationwide and regional models were applied to the Liperi 
test plots with DIPC data. Then, V was predicted to the 15 × 15 m cells using DIPC metrics 
as predictor variables. In alternative scenarios, where the models were fitted with a dummy 
variable, MS-NFI data (© Natural Resources Institute Finland (Luke) 2017; Tomppo and 
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Halme 2004) were used to disaggregate the test plots as either coniferous and deciduous 
dominated before the prediction (decid in Table 3). Predictions were further aggregated to 
the 30 × 30 m test plots. Error rates were compared with the RMSE and MD values. The 
scenarios where nationwide and regional ALS-based models were applied using DIPC 
metrics without disaggregation are denoted by NatDIPC and RegDIPC, respectively. The 
corresponding abbreviations for scenarios with disaggregation to coniferous and deciduous 
dominated inventory units are denoted by NatDIPCD and RegDIPCD. 

The RMSE and MD values associated with the nationwide and regional models were also 
compared to the performance of the corresponding local scenarios. The local ALS models 
were fitted using ALS and field data from the 15 × 15 m cells of the Liperi test area. In the 
local scenarios, the ALS model was applied to the same data that was used to fit the model. 
Disaggregation to coniferous and deciduous dominated in the local prediction was performed 
with field observations. The RMSE values associated with local scenarios represent the 
lowest possible error rates with ALS data and local field measurements. The local scenarios 
with and without disaggregation were denoted by LocALS and LocALSD, respectively. 

Finally, the uncertainty of the results in the 30 × 30 m plots was examined by the model-
based 95% confidence intervals: 
 
y�i ± 1.96�var� (y�i)                (9) 
 
where var� (y�i) is the estimated model-based variance of the predicted mean V value in test 
plot i (details of variance estimation can be found in study III). 
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4 RESULTS 
 
 
4.1 Nationwide models (I, II) 
 
The most essential outputs of this thesis are the nationwide ALS-based forest attribute 
models. The basic models with the model coefficients for nationwide V, AGB and Hdom 
models are presented in Table 5. All of the predictor variables in the nationwide V, AGB and 
Hdom models were statistically significant. 

The first (Equation 10) and the second (Equation 11) basic nationwide V models were 
fitted using sample plots from 9 and 22 inventory areas, respectively. Although the first 
sample (I) covered a geographically much smaller area than the second sample (II), both 
models had the same predictor variables: 1) average height of first echoes (havgF), and 2) 
95% quantile of last echoes (h95L). The only difference between the V model forms was that 
the predictor variable transformations were used only for the first model (I). In the training 
data, RMSE (27.8% vs. 28.5%) and adjusted R-square values (0.88 vs. 0.87) of the 
nationwide V models were very similar. Note that the RMSE value in the training dataset for 
the basic nationwide V model in study II was not previously reported in the original article. 
Likewise, the adjusted R-square values for the nationwide models in study I are reported only 
in this thesis summary. 

Both the V models and the nationwide AGB model used havgF as a predictor variable. 
The second predictor for AGB was the maximum value of last echoes (hmaxL). The RMSE 
and the adjusted R-squared values for the nationwide AGB model in the training data (27.2% 
and 0.87) were comparable to the V models. The high percentiles of first echoes had a strong 
correlation with Hdom, which resulted in 95% quantile of first echoes (h95F) selected as the 
best predictor for the nationwide Hdom model (Equation 13). The RMSE value associated 
with the nationwide Hdom model (6.7%) in the training data was only a quarter of the RMSE 
values associated with the V and AGB models. The adjusted R-square value of the Hdom 
model (0.96) was close to one. 
 
 
Table 5. The basic nationwide models presented in studies I and II for stem volume (V), 
above-ground biomass (AGB) and dominant height (Hdom). 
 

Nationwide model 
Equation 
number 

Inventory 
areas (n) 

Study 

V = 2.0923 + (0.7622 + 3.3582 × �havgF +0.0100 × h95L2)
2
 (10) 9 I 

V = 2.3512 + (3.1063 + 0.5834 × havgF + 0.3038 × h95L)2 (11) 22 II 

AGB = 1.1161 + (–0.4247 + 0.1494 × hmaxL + 2.5196 × �havgF)
2
 (12) 9 I 

Hdom = 3.1475 + 0.9855 × h95F                               (13) 9 I 
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The summary statistics of the leave-one-out cross validated nationwide and regional 
models are presented in Table 6. The summary statistics were calculated from inventory area-
wise RMSE and |MD| values. The RMSE and MD values in study I are presented from that 
perspective only in this thesis summary. It should also be noted that the median values for 
the regional RMSE and |MD| values were not previously reported in study II. 

The results presented in Table 6 show that the regional V and AGB models had mean 
RMSE values approximately 4–5 percentage points lower than the corresponding nationwide 
models. The differences between the regional and nationwide maximum RMSE values were 
even higher; about 6–8 percentage points. However, there were also areas where the 
nationwide V and AGB models performed similar to the regional models, e.g., differences in 
minimum RMSE values were only about 1–2 percentage points. The region-wise RMSE 
values associated with the nationwide V and AGB models exhibited a wide range, which was 
also observed in the standard deviations. In turn, the |MD| values associated with the 
nationwide V and AGB models varied from 1% to 19%, and the mean of the |MD| values 
was between 8% and 10%. 

The performance of the nationwide Hdom model was almost similar to the regional Hdom 
models. The mean RMSE value associated with the regional models was only one percentage 
point lower than the mean RMSE of the nationwide model. The main reason for the difference 
was that the nationwide Hdom model did not perform well in one area (Tornio). If that area 
was removed from the results, the difference between the regional and nationwide mean 
RMSE values was only marginal (0.4 percentage points). In addition, with the exception of 
the Tornio area, the |MD| values associated with the nationwide Hdom model were close to 
zero. 
 
 
Table 6. Summary statistics of root mean square error (RMSE, %) and absolute mean 
difference (|MD|, %) values of leave-one-out (inventory area or plot) cross validated 
nationwide (N) and regional models (R) models for stem volume (V), above-ground biomass 
(AGB) and dominant height (Hdom). The |MD| values associated with the regional models 
were always close to zero and are not presented here. Statistics are summarized from the 
regional RMSE and MD values presented in studies I and II. 
 
Scenario  N R 
Forest attribute V V AGB Hdom V V AGB Hdom 
Study I II I I I II I I 
Inventory areas 
(n) 9 22 9 9 9 22 9 9 

RMSE 

Min 23.0 21.2 22.3 5.4 21.7 19.9 20.2 5.2 
Max 32.9 35.8 33.8 11.4 26.8 28.0 25.4 6.7 
Mean 28.1 28.6 27.9 7.0 24.0 23.9 23.2 6.0 
Median 28.0 28.4 27.3 6.6 24.3 23.6 23.5 6.3 
Sd 3.3 4.3 3.4 1.8 1.6 2.3 1.4 0.6 

|MD| 

Min 2.0 0.6 2.6 0.2 -- -- -- -- 
Max 18.2 19.3 18.7 9.1 -- -- -- -- 
Mean 9.7 8.3 9.1 2.2 -- -- -- -- 
Median 8.8 7.9 8.0 1.7 -- -- -- -- 
Sd 5.5 5.6 5.3 2.7 -- -- -- -- 
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4.2 Nationwide model calibration (I, II) 
 
The nationwide V models were calibrated with ancillary data without additional field 
measurements. A total of seven calibration scenarios (AV1–3, NN1–2, NFI1–2) were 
compared to the uncalibrated nationwide model (N) and to the regional models (R). The 
results were also compared to the calibration scenario where new field measurements were 
simulated (SN). The nationwide V models with calibration variables (scenarios AV1–3) and 
their coefficients are presented in Table 7. Summary statistics of all calibration scenarios for 
V are presented in Table 8. Noted that the median values for the regional RMSE and |MD| 
values were not previously reported in study II. 

The best calibration performance was attained by simulating new field measurements and 
calibrating the nationwide V models with the BLUP-estimator (SN). Compared to the basic 
nationwide V model in study I (N), the mean RMSE value decreased by about 2 percentage 
points and the mean |MD| value by about 8 when the calibration plots from each inventory 
area were used (SN). It is also notable that the maximum |MD| value was 14 percentage points 
lower after the simulation with the new field measurements (N vs. SN). The mean RMSE 
value associated with the new field measurements (SN) was only about 2 percentage points 
greater than the mean RMSE value associated with the regional models (R). The results of 
SN scenario for nationwide AGB model were in line with the nationwide V model (see study 
I for details). The nationwide Hdom model did not benefit significantly from the calibration 
plots as the uncalibrated model had already exhibited small error rates (I). 

The results reported in study II showed that the additional variables (AV1–3) decreased 
the mean RMSE value associated with the nationwide model from 1 to 3 percentage points 
compared to the basic nationwide model (N). Although, the number of inventory areas varied 
between studies I and II, the similar RMSE mean values indicate that the RMSE values 
decreased similarly when three additional calibration variables (AV3) were used as when 
measuring the small number of new sample plots from the target area (SN). However, the 
additional calibration variables (AV1–3) decreased the mean |MD| values less than the new 
calibration plots (SN). Compared to the basic nationwide model (N) in study II, the mean 
and maximum |MD| values decreased by about 3 percentage points when the three additional 
calibration variables (AV3) were used. From the AV scenarios, AV3 had the lowest mean 
and median |MD| values, although the lowest extreme and standard deviation |MD| values 
were in AV2. The best performing additional calibration variables for the AV scenarios were 
degree days (d.d. and d.d.cl in Table 3), proportion of pine and birch from MS-NFI (pine.p 
and birch.p) and standard deviation of the monthly precipitations (psd.a). Details on how the 
other calibration variables decreased RMSE and |MD| values can be found in Section 3.2 in 
study II. 

With regard to RMSE statistics, calibration with the MS-NFI information (NFI2) 
performed similar to the calibration with the two additional calibration variables (AV2). 
However, with regard to |MD| statistics, the NFI2 calibration was closer to AV3 than to AV2. 
The results indicated that the extreme |MD| values were more common when elimination of 
systematic inconsistency between the MS-NFI and ALS data was not used (NFI1 vs. NFI2), 
i.e., elimination of inconsistencies is a required step in the MS-NFI-based calibration. The 
calibration scenarios NN1 and NN2, where nationwide models were refitted using sample 
plots from nearby inventory areas, resulted in greater mean and median values for region-
wise |MD| values than were observed for NFI1 and NFI2. Major differences between the NN 
and NFI scenarios were not found with regard to mean and median RMSE values. However, 
it should be noted that the standard deviation value associated with the region-wise RMSE 
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values in the NN2 scenario was slightly lower than in the NFI2 scenario, although the 
maximum RMSE value in NN2 was notably higher. The use of vegetation sub-zones in 
sample plot selection (NN2) resulted in lower mean |MD| values compared to the distance-
based approach (NN1). 

The spatial distribution of MD values in the basic nationwide model (N) and the best 
calibration scenarios from each calibration category where additional field measurements 
were not used (AV3, NN2 and NF2) are visualized in Figure 3. The spatial distribution shows 
that the basic nationwide model (N) systematically underpredicted (positive MD values) for 
the northern part of Finland and systematically overpredicted (negative MD values) for the 
southern part. The basic nationwide model (N) also had greater mean |MD| value for the 
northern part. Each calibration scenario improved the MD values, especially for the northern 
part of the country. In some of the inventory areas, calibration improved the MD value and 
even changed the MD sign. The most uniform spatial distribution was obtained using three 
additional variables in the nationwide model (AV3). 

In study I, with the basic nationwide V and AGB models, the region-wise MD values 
associated with the Optech scanners were, on average, greater than the values associated with 
the Leica scanners. However, very different results were observed in study II: a) with the 
basic nationwide V model, the mean and standard deviation values associated with |MD| for 
Leica were 8.8% and 5.3%, and 7.7% and 6.1% for Optech and b) after the AV3 calibration, 
the mean and standard deviation values associated with |MD| were 6.8% and 5.2% for Leica, 
and only 4.5% and 3.3% for Optech, respectively. Note that these findings from study II were 
not reported in the original article. 
 
 
Table 7. Calibrated nationwide models for stem volume (V) presented in study II. 
 

Nationwide model 
Equation 
number 

Inventory 
areas (n) 

Study 

V = 2.1481 + (d.d.cl + 3.4000 + 0.6593 × havgF + 0.2892 × h95L)2  (14) 22 II 

V = 2.0561 +�
d.d.cl + 2.4441 + 0.6981 × havgF +
0.2715 × h95L + 0.1272 × �pine.p �

2

  (15) 22 II 

V = 1.8895 +�
4.6931 + 0.7383 × havgF +

0.2332 × h95L – 0.2266 × �birch.p +
0.0019 × psd.a2 – 2.2607 × 10–6 × d.d2

�

2

  (16) 22 II 

Note: In equation 14, d.d.cl is −1.2686 when d.d. > 1200, d.d.cl is −0.8267 when d.d. ≤ 1200 
and > 1000, and 0 otherwise. In equation 15, d.d.cl is −1.1695 when d.d. > 1200, d.d.cl is 
−0.7490 when d.d. ≤ 1200 and > 1000, and 0 otherwise.  
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Table 8. Summary statistics of root mean square error (RMSE, %) and absolute mean 
difference values (|MD|, %) of the nationwide (N) stem volume models (V) with different 
calibration scenarios (SN, AV1–3, NN1–2, NFI1–2) and regional models (R). Statistics are 
summarized from the regional RMSE and MD values presented in studies I and II. SN refers 
to the calibration with new field measurements from the target area, AV to the calibration with 
additional calibration variables, NN to the calibration using data from the nearest inventory 
areas, and NFI to the calibration based on multisource national forest inventory data (MS-
NFI). 
 
Scenario  N SN AV1 AV2 AV3 NN1 NN2 NFI1 NFI2 R 
Forest attribute V 
Study I II I II II II II II II II I II 
Inventory areas 
(n) 

9 22 9 22 22 22 22 22 22 22 9 22 

RMSE 

Min 23.0 21.2 23.3 20.9 20.9 20.2 20.9 22.9 20.1 20.1 21.7 19.9 
Max 32.9 35.8 28.3 34.9 33.9 34.4 36.8 38.5 36.7 33.5 26.8 28.0 
Mean 28.1 28.6 25.9 27.3 27.1 25.9 27.7 27.7 27.8 27.4 24.0 23.9 
Median 28.0 28.4 26.3 27.8 27.7 25.5 27.6 27.4 27.7 27.1 24.3 23.6 
Sd 3.3 4.3 1.6 3.7 3.5 3.9 3.5 3.5 4.3 3.7 1.6 2.3 

|MD| 

Min 2.0 0.6 0.3 0.1 0.1 0.7 0.0 0.1 0.5 0.7 -- -- 
Max 18.2 19.3 3.9 18.8 14.3 16.7 17.9 20.5 22.0 16.3 -- -- 
Mean 9.7 8.3 1.8 6.7 5.9 5.6 7.0 6.6 6.2 5.9 -- -- 
Median 8.8 7.9 1.5 6.8 6.0 5.0 6.0 6.3 4.0 4.9 -- -- 
Sd 5.5 5.6 1.3 4.6 3.9 4.4 5.3 5.2 6.2 4.4 -- -- 

Note: Inventory area-wise RMSE and MD values associated with the SN scenario were 
calculated as the mean RMSE and MD values from 10,000 simulations. 
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Figure 3. Inventory area-wise absolute mean difference (|MD|, %) values with the basic 
nationwide model (N) and with the best calibration scenarios from each calibration category 
(AV, NN and NF) without new field measurements (study II). AV refers to the calibration with 
additional calibration variables, NN to the calibration that used data from the nearest inventory 
areas, and NFI to the calibration based on multisource national forest inventory data (MS-
NFI). Optech and Leica refers to the manufacturer of the used airborne laser scanning sensor. 
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4.3 ALS-based models in DIPC-based forest inventories (III) 
 
The results of study III highlighted the ALS metrics that are usable in forest attribute models 
when the models are utilized in DIPC-based forest inventories. Two nationwide and two 
regional V models were established with ALS data and their predictive performance was 
assessed with DIPC data. The nationwide models are shown in Table 9 and the RMSE and 
MD values associated with the different inventory scenarios are shown in Table 10. 

From the calculated ALS metrics (Table 4), only 45% were comparable to the DIPC 
metrics. The metrics that described the dominant tree layer were the most similar between 
the ALS and DIPC datasets (h60–h95, havg, hmax, d15–20). This result is logical since DIPC 
data do not include observations that are not visible from the images. Height metrics for low 
percentiles (h5–h55), which represent the understory, and the density metrics (d0.5–d10) 
with small threshold values were not similar between the ALS and DIPC data. 

The nationwide V models used in the DIPC-based prediction (Table 9) were quite similar 
to the nationwide V models presented in studies I and II (Tables 5 and 7). In the first model 
(Equation 17), the predictor variables were: average height of first echoes (havgF), 95% 
quantile of first echoes (h95F) and degree days. In the second model (Equation 18), the 85% 
quantile of first echoes (h85F) was used instead of the 95% quantile. If the site was deciduous 
dominated, the predictions of the second model were systematically adjusted with the 
estimated constant (decid). 

The RMSE values in studies I and II were reported for the circular sample plots used in 
operational inventories (radius between 9 m and 12.65 m). However, in study III, the results 
of a DIPC-based inventory were reported for larger 30 × 30 m test plots. In aggregation of V 
from 15 × 15 m cell to the 30 × 30 m test plot-level, the RMSE value decreases as the errors 
compensate for each other. The fact that aggregation decreases the RMSE value indicates 
that the RMSE values presented in studies I and II are not directly comparable to the results 
in study III. Nevertheless, it is still worth noting that the RMSE value in the scenario where 
the nationwide V model (Equation 17) was used in the DIPC inventory and inventory units 
were not disaggregated to coniferous and deciduous dominated (NatDIPC) was the same as 
the mean of the region-wise RMSE values associated with the nationwide V model with three 
additional calibration variables (AV3) (25.9%, see Tables 8 and 10) (II, III). In turn, the 
RMSE value in the scenario where the nationwide V model was used in the DIPC inventory 
with disaggregation of inventory units (Equation 18; NatDIPCD) was the same as the lowest 
RMSE value observed from the cross validated regional V models (R) (about 20%) (I, II, 
III). In other words, the disaggregation of sample plots to coniferous and deciduous 
dominated in the nationwide DIPC scenarios decreased the RMSE value by about 6 
percentage points. In contrast to the RMSE values, the MD values of the studies are 
comparable, since aggregation of V from 15 × 15 m to the 30 × 30 m level does not change 
the MD value. The results showed that the |MD| values associated with the nationwide DIPC 
scenarios (10.4% and 9.6%) were closer to the mean |MD| value associated with the basic 
nationwide model (N) (8.3%) than the mean |MD| values associated with the nationwide 
calibration scenarios without additional field measurements (AV1–3, NN1–2, NFI1–2) 
(5.6%–7.0%) (II, III). Disaggregation of inventory units only improved the MD value by 
about 1 percentage point in the nationwide DIPC scenarios. 

In the DIPC-based inventory, the use of the regional models from the Sulkava area, 
instead of the nationwide models, improved the MD values. The MD value associated with 
the regional scenario using disaggregation (RegDIPCD) was approximately 9 percentage 
points better than the MD value of the corresponding nationwide scenario (NatDIPCD), i.e., 
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ALS-based model from Sulkava area using disaggregation of inventory units to coniferous 
and deciduous dominated resulted in a MD value close to zero. Improvements in the RMSE 
values were also observed; the RMSE value associated with scenario RegDIPCD was 7 
percentage points lower than the value for NatDIPCD. In the local DIPC scenarios, MD values 
were essentially absent and RMSE values were generally the lowest. 

Although there were clear differences in the RMSE and MD values associated with the 
nationwide and regional scenarios, the observed versus predicted values of these scenarios 
were quite similar (Figure 4). In scenarios NatDIPC and NatDIPCD, 84.2% and 89.8% of the 
confidence intervals included the observed stem volume, respectively. Corresponding values 
for scenarios RegDIPC and RegDIPCD were 84.2% and 94.7%, respectively. In the local 
scenarios, all the observations were inside the confidence intervals. 
 
 
Table 9. Nationwide models for stem volume (V) presented in study III. 
 

Nationwide model 
Equation 
number 

Inventory 
areas (n) 

Study 

V = 4.89585 +�
0.69467 × havgF +

2.11538 × √h95F  – 1.34654 × � d.d.
1000

�
2�

2

  (17) 22 III 

V = 5.18609 +�
2.80389 + 0.72222 × havgF + 2.00006 × √h85F – 

3.18360 × d.d.
1000

 – 2.16066 × decid
�

2

  (18) 22 III 

Note: decid = 1 in deciduous dominated and decid = 0 in coniferous dominated sites. 
 
 
Table 10. Root mean square error (RMSE, %) and mean difference values (MD, %) of stem 
volume predictions for the 30 × 30 m test plot in the Liperi area with nationwide (Nat), regional 
(Reg) and local (Loc) models (study III). DIPC refers to the drone image point cloud-based 
prediction and ALS to airborne laser scanning. D denotes the scenarios where test plots were 
disaggregated to coniferous and deciduous plots before the prediction. 
 
Scenario NatDIPC NatDIPCD RegDIPC RegDIPCD LocALS LocALSD 
RMSE 25.9 20.0 24.1 13.1 14.1 7.9 
MD −10.4 −9.6 −5.7 −0.9 −0.2 −0.3 

Note: In study III, the corresponding MD values are presented as opposite, i.e., systematic 
overpredictions are positive values.  
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Figure 4. Observed (m3 ha−1) versus predicted stem volumes (m3 ha−1) with 95% model-based 
confidence intervals for the 30 × 30 m test plots in the Liperi area using nationwide (Nat), 
regional (Reg) and local (Loc) prediction scenarios (study III). DIPC refers to the drone image 
point cloud-based prediction and ALS to airborne laser scanning. D denotes the scenarios 
where test plots were disaggregated to coniferous and deciduous plots before the prediction.  
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5 DISCUSSION 
 
 
5.1 Is the prediction of forest attributes without new in-situ field measurements 
possible using nationwide ALS-based models? 
 
The main objective of this thesis was to predict forest attributes without new in-situ field 
measurements using ALS-based models. One possible solution is to fit a model that uses 
sample plots distributed over a large area and to then use it for predictions elsewhere. In 
general, the results of this thesis demonstrated that nationwide ALS-based model 
performance was associated with moderate error rates, especially when geographical and 
environmental information were used in conjunction with the ALS data. Systematic errors in 
the nationwide models were minimized when degree days, precipitation and tree species 
proportion information was included in the predictive models. However, calibration of 
nationwide models with a small amount of field data from the target area is recommended, 
provided the training data from the target areas is easily available. 

To examine nationwide predictions, one nationwide model for Hdom (I), one nationwide 
model for AGB (I) and a total of seven nationwide models for V (I, II, and III) were 
constructed. Different growing conditions, especially between the northern and southern 
parts of Finland (Table 1; Section 1.3), lead to systematic regional errors in nationwide V 
and AGB predictions, especially when calibration for the nationwide models is not used (N) 
(I, II). Using the basic nationwide V models (N), extreme underpredictions were observed 
for the northern part of Finland, with considerable overpredictions observed for the southern 
part. For V, nationwide model calibration with a small number of sample plots from the target 
area had the best calibration effect. The RMSE distributions in study I showed that with 
suitable sample plot combinations, scenario SN would provide even smaller RMSE values 
than the regional models (R). The observed benefit of the calibration plots is in line with 
findings of de Lera Garrido et al. (2022). They concluded that 20 calibration plots would 
result in predictions comparable to the local models when spatially or temporally transferred 
models are applied to the target area. However, it should also be noted that solely using a 
small number of sample plots from the target area (e.g., 40 plots) may be sufficient for V 
prediction (Suvanto and Maltamo 2010; Gobakken et al. 2013). 

In the absence of in-situ field measurements, the RMSE values of the nationwide V 
models were the most comparable to the RMSE values of the regional models (R) when the 
models were calibrated with additional variables: degree days, precipitation, and proportion 
of birch trees (AV3). The environmental and geographical information in the ALS-based 
models minimized the number of extreme MD values. The smallest mean |MD| value and the 
most uniform spatial distribution of MD values for V without new in-situ field measurements 
were also obtained using the model with three additional variables. As V and AGB are similar 
and closely correlated forest attributes, this resulted in comparable RMSE and MD values in 
the basic nationwide models. The similarity of these attributes indicates that the additional 
variables would also decrease the error rates of the nationwide AGB model. The nationwide 
Hdom model would probably not benefit to any great extent from calibration with additional 
variables as the uncalibrated model had performed well in almost all of the inventory areas. 
The results in study I showed that even calibration with a small number of sample plots from 
the target area (SN) did not result in major improvements in the nationwide Hdom 
predictions. 
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In general, refitting of nationwide models using sample plots from the nearest inventory 
areas (NN) or calibration with MS-NFI data (NFI) did not perform as well as calibration with 
additional variables. However, the results indicate that NN calibration could be useful in 
some of the inventory areas if nearby available sample plots provide a good representation 
of the target area. ALS assisted plot selection for NN calibration should be considered in the 
future (Maltamo et al. 2011; Gobakken et al. 2013). In addition, MS-NFI data could provide 
good calibration for the inventory area, provided inconsistencies (such as loggings) between 
the datasets are reliably detected and taken into account. 

The findings related to the extreme MD values in the nationwide predictions of V and 
AGB are in line with other studies (e.g., Uuttera et al. 2006; Tompalski et al. 2019; van Ewijk 
et al. 2020). The extreme MD values observed regionally in the nationwide prediction are 
probably related to the different species distributions in the different regions. Bouvier et al. 
(2015), for example, showed that fitting separate models for coniferous, deciduous and mixed 
sites improved the MD values. Maltamo et al. (2016) also highlighted that species 
disaggregation is an important factor in large area predictions and that separate models by 
species should be considered in pine and deciduous dominated regions, while a common 
model of all tree species could be used in spruce dominated regions. In this thesis, the 
proportions of pine and birch were also important variables in calibration scenarios AV2 and 
AV3. Based on the model coefficients (Equations 15 and 16), a greater proportion of pine 
increases the value of V, while a greater proportion of birch decreases the value of V. In turn, 
study III showed that disaggregation of the prediction units to coniferous and deciduous 
dominated would provide sufficient information for the calibration. It should be noted that 
all the tree species variables in this thesis were extracted from MS-NFI data. However, the 
MS-NFI based attributes may exhibit high error rates at the pixel-level (Mäkisara et al. 2019), 
which affect the corresponding variables. Therefore, information from former stand-level 
management inventories (Minguet 2013; Kangas et al. 2020) or high-resolution satellite 
images (Kukkonen et al. 2018; Piispanen 2019) should also be considered as additional 
variables to account for tree species. 

Other geographical and environmental variables that were important in the nationwide 
prediction were degree days and standard deviation of the monthly precipitations. Degree 
days was always selected for the nationwide V models. The coefficients of degree days were 
negative in each model. The negative coefficient of degree days indicates that V was reduced 
when degree days increased along a north to south gradient and can be explained by the 
different height-diameter relationships in northern and southern Finland. Trees in southern 
Finland have smaller diameters than trees with the same height in northern Finland, which 
correspondingly results in larger V values for the same height trees in the north. The trees in 
the south grow taller and are, therefore, more slender than trees with the same height in the 
north (Korhonen et al. 2021). Standard deviation of the monthly precipitations, in turn, had 
a positive coefficient in the nationwide V model (Equation 16), i.e., high standard deviation 
of the monthly precipitations in an area indicates a generally greater V value. Moreover, 
mean annual precipitation was found to be a better calibration variable than the corresponding 
variable calculated for the growing season (Section 3.2 in study II). It is probable that the 
deep snow layer provides frost protection for the root system in winter (Sutinen et al. 2014) 
and available melt water may relieve the stress of the trees in spring, which has positive 
effects on V. Excluding peatlands, summertime precipitation is usually the main variable that 
limits forest growth in Finland (Henttonen et al. 2014). 

In addition to the geographical and environmental variables, the ALS sensor and 
acquisition settings can influence the error rates (Næsset 2005; Næsset 2009; Hopkinson 
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2007; Keränen et al. 2016). In study I, the ALS data were acquired with Leica scanners in 
22% of the regions. The corresponding value in studies II and III was 50%. In the other 
regions, Optech scanners were used. In Section 4.2, it was reported that MD values associated 
with the Leica scanners were, on average, greater than with Optech scanners using the basic 
nationwide model (N, II). After the calibration with additional variables (AV3), the mean 
|MD| difference between Leica and Optech increased. The calibration scenario AV3 
improved the MD values, especially from the inventory areas where the Optech scanners 
were used. Calibration was found to affect more the areas scanned with Optech, because the 
ALS data from the Optech scanners were more homogenous than ALS data within areas 
scanned with Leica (see Table 2). It should be noted that even scenario AV3 probably did 
not account for all the environmental and geographical effects. Therefore, the comparison 
between the Optech and Leica scanners is not completely unbiased. The results of AV3 could 
probably be improved further if the nationwide models were fitted separately by the 
manufacturer or if the sensor unit was used as a dummy variable. However, the sensor or 
manufacturer information in nationwide models were not used in this thesis because the 
technology is constantly developing, and new scanner models are introduced every year. 
Moreover, if models are also targeted for use with DIPC data, the ALS sensor information in 
the prediction cannot be used. 
 
 
5.2 Are ALS-based models transferable to DIPC data? 

 
This thesis illustrated that ALS-based models are transferable to DIPC data provided the 

point cloud metrics used in the ALS models are selected carefully, i.e., the predictor variables 
are similar between the datasets. Especially, the point cloud metrics that represent the upper 
canopy are good predictor candidates for the models. The results of the DIPC-based inventory 
in the Liperi test area also indicated that sample plots from a nearby ALS inventory area with 
similar growth conditions and species distributions is recommended instead of nationwide 
data. Likewise, the inventory unit disaggregation to deciduous and coniferous dominated 
forests should be performed before predictions to ensure lower error rates. 

In general, the error rates of ALS-based models with DIPC data were in line with studies 
where both the models and the predictions were based on DIPC data (Puliti et al. 2015, 
Tuominen et al. 2015, Ota et al. 2017). The ALS-based nationwide models exhibited greater 
error rates in the Liperi test plots than the ALS models fitted using sample plots from the 
nearby inventory area (Sulkava). The difference between the nationwide and regional model 
performance was especially notable when disaggregation of the test plots to coniferous and 
deciduous dominated forests was used before the predictions. The nationwide model with 
disaggregation (NatDIPCD) tended to show greater systematic overprediction compared to 
the corresponding regional model (RegDIPCD). The RMSE value for V reported by Puliti et 
al. (2015) was relatively close to the RMSE value reported here for RegDIPCD. 

Tompalski et al. (2019) noted that ALS-based models can be transferred to IPC data in 
the same area with acceptable error rates, which also demonstrates the similarity between the 
ALS and IPC metrics. The empirical test in study III showed that height-related DIPC 
metrics, such as h60–h95, havg and hmax, were similar to corresponding ALS metrics. 
However, it was also observed that DIPC data tended to produce systematically greater values 
than ALS data for some of the predictor variables (e.g., havg). The reason for that tendency 
is that most of the DIPC observations are from the upper part of the canopy layer, i.e., DIPC 
data do not include the understory observations that are not visible from the images (Lisein 
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et al. 2013), although ALS data does penetrate through the canopy. Greater predictor variable 
values lead to systematic overpredictions if these variables are included in the models. Even 
though nationwide models can produce systematic errors at the regional-level (I, II), it can 
be concluded that overpredictions of ALS-based models in the Liperi area were at least partly 
caused by the use of DIPC metrics in the predictions (III). The systematic differences 
between DIPC and ALS metrics may level out in forests with a dense canopy cover (White 
et al. 2015). 

Weather conditions, such as variable cloud conditions and wind, could also affect the 
quality of DIPC and subsequent prediction error rates (Dandois et al. 2015). However, the 
effect of variable illumination on the error rates was not observed here, although the images 
were collected under both sunny and cloudy conditions. Wind conditions during the Liperi 
data acquisition were rather stable. One error source in DIPC-based predictions may be the 
geolocation accuracy of the DIPC data and the height normalization of the point observations. 
In study III, DIPC data were adjusted horizontally and vertically with ALS data, and DIPC 
heights were normalized based on ALS DTM. If ALS data are not available, one option is to 
use DIPC-based DTM in height normalization (Kukkonen et al. 2021a). As DIPC-based 
normalization may perform poorly in areas with a dense canopy, the metrics that are not 
dependent on the DTM should be studied more in the future (Giannetti et al. 2018). 
 
 
5.3 Further studies 

 
Studies I, II and III have inspired several other studies. First, Piispanen (2019) created 

normalization functions between Sentinel-2 and Landsat 8 satellite images and used the 
information from the pooled image bands to calibrate the basic V model presented in study 
II (Equation 11). Their results showed similar mean RMSE values for calibrated model using 
the pooled red and short-wave infrared bands (II) than in AV3. However, the mean |MD| 
values with pooled image bands remained greater. Aaltonen (2019) studied the effects of 
height-diameter ratios, basal area weighted median diameter and numbers of stems per 
hectare as predictor variables in regional-level basal area predictions. They used sample plots 
from the subset of the regions presented in study II (n = 10). The results illustrated that in 
most of the studied areas, number of stems resulted in the relatively greatest decrement in 
regional-level RMSE values and noted the importance of height-diameter ratios in prediction. 
It would be an interesting option to interpolate general diameter-height relationship rasters 
for the whole of Finland and to test the information as additional variables in nationwide 
models. Most recently, Toivonen et al. (2021) predicted Hdom and V for the Liperi test plots 
by examining multiple ALS-based models from different regions in DIPC-based predictions. 
They used the same data and estimation methods presented in study III to fit fixed ALS-
based Hdom and V models for all 22 regions. They obtained smaller error rates for the Liperi 
test area using a regional ALS-based V model from Hyvinkää (Figure 1) than using the model 
from Sulkava. In future studies, one option to improve the DIPC-based predictions would be 
to create an approach to select the optimal set of training plots from multiple regions for the 
model construction. 

The operational forest inventory and the planning of forest management usually requires 
species-specific predictions from the forest inventories (Maltamo and Packalen 2014). 
Therefore, the next step is to examine species-specific predictions without new in-situ field 
measurements. One possible option is to use satellite image data in species-specific 
prediction (Kukkonen et al. 2018). Kukkonen et al. (2021a) have already demonstrated the 
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use of spectral information from Sentinel-2 images in the prediction of species proportions 
in DIPC-based forest inventories without new in-situ field measurements. Species 
proportions were then used to derive the species-specific V predictions. In the study of 
Kukkonen et al. (2021a), total V was predicted similarly to our approach in study III using 
the ALS-based model from a nearby area and DIPC metrics in the prediction. The results 
reported by Kukkonen et al. (2021a) are promising; the species-specific error rates for V were 
in line with the traditional ALS-based inventories (e.g., Packalén and Maltamo 2007, 
Kukkonen et al. 2018, Kukkonen et al. 2019a, Kotivuori et al. 2021). In the context of 
nationwide ALS inventories, satellite images of species proportions should be similarly 
tested. Separate species-specific nationwide models for the main tree species should also be 
considered. For species-specific nationwide models, standardization of predictor variables 
between the different geographical areas may be required (Rana et al. 2022). 

In addition to the nationwide species-specific predictions, the calibration of nationwide 
models should be further studied. For example, it would be interesting to study the calibration 
of the nationwide models using regional NFI sample plots in conjunction with ALS data. 
However, ALS and NFI data would have different acquisition years in many areas and 
therefore growth prediction for the field data should be used to eliminate the differences. The 
re-use of the existing sample plots and ALS data should also be more deeply studied when a 
new inventory is implemented for the same area (de Lera Garrido et al. 2020). The ITD-based 
samples (e.g., from drone LiDAR) from the target area would also be one possible option to 
simulate field training data for nationwide model calibration. Likewise, the statistical 
modelling could be improved. For example, the effects of multicollinearity and different 
modelling techniques should be tested. Multicollinearity of the predictor variables could be 
problematic, especially when the correlation of predictors varies notably between the separate 
inventory areas (Werkowska et al. 2017; van Ewijk et al. 2020). Tompalski et al. (2019) also 
reported that V models fitted with the random forest model may be more transferable between 
the inventory areas than OLS models. It would be useful to create calibration maps for the 
nationwide models to ensure the easy calibration of the predictions. In addition, the 
possibility of engaging local forest professionals to advise on the most appropriate model for 
transfer to a particular target area should be investigated.  
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6 CONCLUSIONS 
 
 
This thesis investigated the prediction of forest attributes without new in-situ field 
measurements in ALS and DIPC-based forest inventories. Prediction of forest attributes is 
possible with moderate error rates using nationwide ALS-based models. Systematic errors 
are minimized when the nationwide models are calibrated with geographical and 
environmental variables, such as degree days, precipitation, and tree species proportions. 
However, the local calibration of nationwide models with a small number of sample plots is 
recommended, provided the local training data is easily available. Forest attribute prediction 
by applying ALS-based models with DIPC metrics is possible if the metrics used as predictor 
variables are pre-selected carefully. In particular, ALS metrics that describe the upper canopy 
layer are recommended when the ALS models are used with DIPC data. According to this 
thesis, a model from a nearby region may perform better than the corresponding nationwide 
model when DIPC metrics are used in the predictions. Moreover, a model from a nearby 
region may perform particularly well if the inventory units are disaggregated to coniferous 
and deciduous dominated before the predictions. In the future, species-specific predictions 
without new in-situ field measurements should be studied with nationwide models. The re-
use of existing ALS and field datasets when a new inventory for the same area is implemented 
should also be studied further. 
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