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ABSTRACT 
 

Forests are dynamic ecosystems that are constantly changing. The most common natural 

reasons for change in forests are the growth and death of trees, as well as the damage 

occurring to them. Tree growth appears as an increment of its structural dimensions, such as 

stem diameter, height, and crown volume, which all affect the structure of a tree. Repeated 

measurements of tree characteristics enable observations of the respective increments 

indicating tree growth. According to current knowledge, the tree growth process follows the 

priority theory, where trees aim to achieve sufficient lightning conditions for the tree crown 

through primary growth, whereas increment in diameter results from the secondary growth. 

Tree growth is known to have an effect on the carbon sequestration potential of trees as well 

as on the quality of timber. To improve the understanding of the underlying cause–effect 

relations driving tree growth, methods to quantify structural changes in trees and forests are 

needed.    

The use of terrestrial laser scanning (TLS) has emerged during the recent decade as an 

effective tool to determine attributes of individual trees. However, the capacity of TLS point 

cloud-based methods to measure tree growth remains unexplored. This thesis aimed at 

developing new methods to measure tree growth in boreal forest conditions by utilizing two-

date TLS point clouds. The point clouds were also used to investigate how trees allocate their 

growth and how the stem form of trees develops, to deepen the understanding of tree growth 

processes under different conditions and over the life cycle of a tree. The capability of the 

developed methods was examined during a five- to nine-year monitoring period with two 

separate datasets consisting of 1315 trees in total.  

Study I demonstrated the feasibility of TLS point clouds for measuring tree growth in 

boreal forests. In studies II and III, an automated point cloud-based method was further 

developed and tested for measuring tree growth. The used method could detect trees from 

two-date point clouds, with the detected trees representing 84.5% of total basal area. In 

general, statistically significant changes in the examined attributes, such as diameter at breast 

height, tree height, stem volume, and logwood volume, were detected during the monitoring 

periods. Tree growth and stem volume allocation seemed to be more similar for trees growing 

in similar structural conditions.  

The findings obtained in this thesis demonstrate the capabilities of repeatedly acquired 

TLS point clouds to be used for measuring the growth of trees and for characterizing the 

structural changes in forests. This thesis showed that TLS point cloud-based methods can be 

used for enhancing the knowledge of how trees allocate their growth, and thus help discover 

the underlying reasons for processes driving changes in forests, which could generate benefits 

for ecological or silvicultural applications where information on tree growth and forest 

structural changes is needed.  

  

Keywords: TLS, forest mensuration, LiDAR, change detection, point cloud processing, tree 

growth allocation   
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1 INTRODUCTION 
 

 

1.1 Changes in trees and forest environments 

 

Forests are dynamic ecosystems and an essential part of the environment that is under 

constant change. In general, change can be defined as the act or result of something becoming 

different (Oxford University Press 2022). Changes may be logical, expected, sudden, slow, 

or even illogical, and often some kind of action is needed for a change to happen. The reasons 

for change vary and depend on the subject of the change as well as on the surrounding 

environment. For example, changes in climate have shown to have an effect on the 

environment (e.g., Hardy 2003) and thus on the growth conditions of forests (Lindner et al. 

2010). It has been reported that changes in how trees grow in forests have occurred during 

recent decades (Kangas et al. 2020), even though all the underlying reasons for these changes 

have not been determined exactly. On the whole, all changes happening in our universe, being 

small or large in size, may have small- or large-scale effects on other organisms of the 

universe.  

The occurrence of changes in the structures of trees and, through them, also in forests are 

of interest to many. For example, forest scientists aim to generate a better understanding of 

tree growth and how trees allocate growth to different structures (Pretzsch 2009). Accurate 

and up to date information about forests is also needed in the decision-making processes of 

forest management planning (Kershaw et al. 2016) and how forests could be utilized 

sustainably and cost-effectively around the world. Forests are of high value both on a local 

and global scale, and information about their changes is vital for forest owners as well as for 

investors. Changes in the carbon sequestration potential of forest biomass are a key factor in 

mitigating climate change, where detailed information about tree growth helps scientists to 

understand the effects of changing environments to tree and forest growth processes (Harris 

et al. 2021). On the other hand, ecologists are keen on studying different growth strategies of 

plants and how they evolve under changing growth environments (Sutherland et al. 2013).  

Considering the changes occurring to trees and forests, there are several types of change, 

all with various underlying factors and reasons. Both biotic and abiotic factors drive change. 

The most typical and natural source for a change in a tree or a forest stand is natural growth, 

which in general is a result of the tree’s genetic properties, its geographical location, and 

environmental conditions such as the temperature, altitude, and soil properties, as well as 

competition for growth resources between other organisms (e.g., Tomé and Burkhart 1989; 

Ericsson et al. 1996; Oliver and Larson 1996; Poorter and Nagel 2000; Craine 2005). Natural 

growth is an essential part of the life cycle of a tree, in which the growth process typically 

starts from a seed and includes the phases of developing into a sapling and further to a full-

sized tree. At the end of the cycle, the tree dies of some cause (e.g., being affected and 

weakened by drought, insect, or storm damage) and starts decaying or is cut down on purpose, 

to be further utilized as raw material. An increment in any of the observable attributes of the 

tree can be classified as growth (Kershaw et al. 2016). The growth of a tree consists of vertical 

growth, where the height of a tree increases, and radial growth, where the diameter of the tree 

increases on any height along the stem in a time horizon. For a tree, growth may also mean 

the increase in, for example, stem volume, biomass, or basal area. In practice, it is also 

possible for a change in some of the tree attributes to be negative; for example, the biomass 
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or volume may reduce as a result of damage to the tree or if the tree stem gets broken. These 

kinds of biotic changes may result from wind, storm, snow, or insect damage, spread of 

pathogens, or forest fires (e.g., Quine 1995; Cherubini et al. 2002; Lyytikäinen-Saarenmaa 

and Tomppo 2002; Gupta et al. 2015; Carvajal-Ramirez et al. 2019). All these changes 

resulting from natural disturbances may have an effect on the individual trees during their 

life cycle and thus also modify the forest structure on a scale that depends on the severity of 

the disturbance (e.g., Attiwill 1994). Furthermore, the changes related to abiotic factors 

mainly happen through the changes occurring to individual trees at first, but very often the 

reasons behind these changes are part of larger processes. Many anthropogenic actions 

related to land use, silviculture, and harvesting reshape forests, thus effecting changes on 

individual trees (Holopainen et al. 2014). Typically, forest operations such as thinning and 

harvesting reduce the number of trees and thus affect the structure of forests in the short and 

long term.  

Spatiotemporal information is essential to be able to better follow the wide spectrum of 

changes occurring in trees and forests. With the acquisition of more exact and detailed 

information about trees and forests over time and space, a better understanding of the changes 

resulting from natural phenomena or human actions, as well as more accurate determination 

of tree growth, can be achieved.     

 

1.2 How do trees grow? 

 

Different theories to describe tree growth exist, but currently the prevailing assumption is the 

priority theory summarized by Oliver and Larson (1996). According to the theory, a tree’s 

first priority is to maintain its respiration before using its resources to increase its size in a 

vertical direction or horizontally by further extending the branches of the tree crown. The 

increase in height or branches is defined as primary growth, wherein trees aim to ensure 

sufficient lightning conditions. Only after using resources for primary growth can trees 

concentrate on the secondary growth, which is radial growth of the tree stem. This is why 

trees’ adaptation to the environment and balancing between growth and survival have been 

evaluated by focusing on the ratio between primary and secondary growth (King et al. 2006; 

Bartholome et al. 2013).  

The progress of tree growth can indicate the state of the forest and what kind of effect the 

surrounding environment has on a tree. Studies focusing on tree growth and yield have 

shown, for example, how different thinnings and treatments affect the growth environment 

of a tree and thus also the tree growth itself (e.g., Pretzsch 2009; Weiskittel et al. 2011; 

Saarinen et al. 2021). Based on the assumptions of priority theory, it can be expected that 

trees that encounter less competition can use more resources for diameter growth, whereas 

trees experiencing severe competition when located in denser stands or suppressed by 

dominant trees have to allocate their resources to increasing tree height for better lighting 

conditions. Various studies have supported the priority theory, with results indicating that 

dominant and co-dominant trees that have achieved the best position in competition, as well 

as trees on more sparse or thinned stands, seem to be able to allocate more growth resources 

to secondary growth than trees amid more intense competition (e.g., Vuokila 1960; Larson 

1963; Kozlowski 1971; Muhairwe 1994; Tasissa and Burkhart 1997; Peltola et al. 2002; 

Mäkinen and Isomäki 2004a; Mäkinen and Isomäki 2004b; Saarinen et al. 2021). This 

development will lead to a relatively higher rate of diameter growth, which is especially 
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concentrated on the lower parts of the stem. This is further supported by findings (e.g., 

McMahon 1973; Bullock 2000; Sperry 2003; Mencuccini et al. 2011) stating that when trees 

are able to gain more height and may have a larger crown, they also need more supportive 

structures, especially in the lower parts of the stem, to ensure that the tree is capable of 

maintaining its vital functions. This leads to the development of a more tapered stem, since 

the height of the tree and the diameter of the stem in parts closer to ground level are increasing 

at the same time. To be able to evaluate tree growth, specific estimates have been derived 

from the measurable characteristics of trees. Attributes such as tapering, form quotient, form 

factor, and the ratio between tree height and stem diameter at breast height are used to 

describe the status of a tree (Kershaw et al. 2016). Changes in these attributes may also yield 

information about how trees allocate their growth between different parts of the stem. 

However, the preferences and purposes of the end user often determine what kind of 

increment is sought after. For example, with increased secondary growth, trees produce more 

biomass or stem wood (Oliver and Larson 1996), which is prioritized when the trees are being 

utilized as raw material by the forest industry (e.g., Hurmekoski et al. 2018), whereas in a 

more suppressed position the dimensions of the trees increase more slowly and thus produce 

wood, which has higher density and can be more suitable for solid-wood products, for 

example (Moore and Cown 2017). Demands for wood quality are also important to take into 

account when making decisions related to forest management.  

 

 

1.3 Attributes describing characteristics of trees and forests 

 

The more exact, accurate, and up to date forest resource information is available, the better 

the foundation that can be created for decisions related to forests. For this purpose, forest 

scientists around the world have been working to improve and develop methods of measuring 

and estimating different attributes that describe the state of single trees and forests. One of 

the focus areas has been how to more precisely follow and measure changes that are 

constantly happening in the forests of the world.  

Typically, the most used attributes to characterize trees are diameter at breast height 

(dbh), tree height (h), tree species, and age (Kershaw et al. 2016). In addition to these, 

diameters at other heights along the stem, for example at a height of 6.0 meters, and attributes 

describing the length and height of the tree crown are used. All these attributes have 

traditionally been, and are still on many occasions, determined in the field by a mensurationist 

or a measurement crew using devices such as calipers or measurement tapes for dbh and 

clinometers for measuring h (Avery and Burkhart 2015). The accuracy of determining these 

attributes is dependent on the tree attribute in question and the used observation method (e.g., 

McRoberts et al. 1994; Williams et al. 1994; Liu et al. 2011; Wang et al. 2019). Several other 

attributes, such as basal area, stem volume, and tree biomass, can be derived from the basic 

attributes with the help of allometric models developed to estimate attributes not possible to 

be measured directly (e.g., Laasasenaho 1982; Repola 2008; Repola 2009). However, the 

allometric models have not been developed for all tree species, and they are mainly designed 

to be used only within specific regions, which both limit their applicability in general.  

Stem volume is also often used to indicate the amount of wood, since modeling the stem 

volume is easier than weighing the tree, especially if the aim is to keep the tree alive (Kershaw 

et al. 2016). Depending on the end use purpose, it is also typical that the tree is divided into 
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different timber assortments, such as logwood and pulpwood, which have their own limits 

for the quality, diameter, and length of the parts of the tree trunk (Rantala 2011). Size and 

stem form are among the main factors determining the potential yield and quality of the 

timber (Uusitalo 1997; Kilpeläinen et al. 2011). With logwood normally being the most 

valuable part of a tree stem, for example for the sawmill industry, forest management 

practices are often planned and implemented to maximize its abundance (Kivinen and 

Uusitalo 2002).  

The attributes of individual trees are then used to characterize the structure of forests by 

estimating forest stand-level attributes; this is conducted by summing up individual tree 

attributes or utilizing, for example, sampling, modeling, and remote sensing technologies. 

Examples of attributes characterizing forests are stem count, total volume, and basal area per 

area unit, as well as either arithmetic or size-weighted means of h and dbh (Kershaw et al. 

2016). Typically, the estimates are either directly modeled from the tree observations, or a 

tree size distribution is predicted based on the measurements from the sample plots. The 

diameter distribution can then be used for predicting further attributes for the forest stands. 

Nowadays, remote sensing methods are used to provide information about forests over large 

areas by using, for example, area-based approaches, where airborne laser scanning (ALS) 

data are used to generalize field-measured forest inventory attributes over an entire inventory 

area (e.g., Næsset et al. 2004; White et al. 2013). 

Since it still is not possible to measure all the trees within the biosphere or even within 

large forested areas in practice, the aforementioned solutions are essential in producing 

information about the forests. For effective use of these methods, accurate information about 

attributes of individual trees that are being measured is extremely valuable. Thus, attempts 

to further improve the quality of these estimates, as well as knowledge and understanding of 

their production, is also beneficial for the decision makers utilizing forest resource 

information.  

 

1.4 Methods for detecting and measuring changes in tree and forest characteristics 

 

A potential change in some characteristic of interest can be determined by repeating an 

observation at least twice with a certain period of time in between, and then by comparing 

the observations to each other. In the case of attributes of an individual tree, repeated 

measurements can give direct information about tree growth through increments in its 

dimensions (Kershaw et al. 2016). This is relatively easy, practical, and fast; however, when 

the change detection is based on conventional field measurement methods, the investigation 

is naturally limited to the few attributes that are commonly determined for trees. Then, the 

strengths, weaknesses, and limitations of those measurement methods directly affect the 

accuracy and variety of the available information (e.g., Elzinga et al. 2005; Guillemette and 

Lambert 2009; Luoma et al. 2017). In addition to this, attributes recorded by means of 

conventional measurement methods do not include any additional information about the 

environment surrounding the measured tree. There are also measurement devices, such as 

dendrometer bands, which are specifically developed for acquiring repeated observations 

over time to characterize the change in tree stem diameter on a mm-scale (Drew and Downes 

2009). However, these measurements are also limited to describing the potential diameter 

increment only at the specific height at which the dendrometer is assembled at.  
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If prior observations of tree attributes have not been made, with some tree species, such 

as conifer trees Norway spruce (Picea Abies (L.) H. Karst.) or Scots pine (Pinus sylvestris 

L.), it is also possible to determine the annual height increment retrospectively, by measuring 

the vertical distance between annual branch whorls (Kershaw et al. 2016). In addition to this, 

it is also possible to use cross cuttings or increment borers to measure annual ring widths of 

the trees and thus determine the diameter increment during a specific time period. However, 

these options to measure diameter growth require destructive sampling, especially when 

using cross cuttings, since the tree needs to be completely cut down before any changes can 

be detected. The conventional methods have shown their capability to provide accurate 

information about forests and are widely used as a reference for developing new 

measurement techniques and technologies. However, some attributes are easier to measure 

than others, and variation in results may arise when the measurements are repeated several 

times—even at one time point (Luoma et al. 2017). Despite these differences being relatively 

small, it is worthwhile to contemplate what the absolute correct value of an attribute of 

interest is, and how it should be obtained.  

Considering the characterization of changes in the stem form or allocation of stem volume 

growth of a tree, the conventional ways have included either retrospective measurements 

from trees that were cut down, or modeling of the attributes of interest (e.g., Weiskittel et al. 

2011; Burkhart and Tomé et al. 2012; Kershaw et al. 2016). If a tree needs to be cut down 

for analysis, it will immediately mean the end of the monitoring period, which does not allow 

continuous time-series studies with several monitoring points. Furthermore, these kinds of 

destructive measurement operations cannot be seen as sustainable research methods, 

especially if performed on a larger scale. The use of models in the estimation of attributes 

that are not directly measurable with conventional methods, such as stem volume or biomass, 

is also affected by the changing environment. For example, it has been shown (Kangas et al. 

2020) that trees are no longer growing the same way as they were growing roughly 50 years 

ago, when, for example, the stem volume and taper curve models (Laasasenaho 1982), which 

are still nationally commonly used in Finland, were developed. The results also showed that 

the stem form of Scots pine and Norway spruce trees had changed (i.e., trees belonging to 

same dbh-class have larger stem volume nowadays) and updates for the model parameters 

would be needed. This kind of evolution lays ground for the development of new solutions 

and methods to measure and estimate attributes of interest—either only once or repeatedly—

to reveal the changes in forests. Recently, close-range laser scanning of trees has shown 

potential solutions and possibilities to answer these challenges by expanding the spectrum of 

tree measurements (e.g., Liang et al. 2018a; Calders et al. 2020).  

 

1.5 Terrestrial laser scanning of forests 

 

1.5.1 Technology and measurement principles 

 

The principle of laser scanning is based on measuring the distance and direction of 

backscattered laser signals to derive 3D point clouds from surfaces around the laser scanning 

unit. In terrestrial laser scanning (TLS), currently two techniques are mainly used for the 

range measurements—namely phase shift and time-of-flight methods (Wehr and Lohr 1999; 

Dassot et al. 2011). In phase shift laser scanning the distance between the scanner and the 

object of interest is determined based on the amplitude modulation of the laser beam resulting 
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from the use of continuous laser pulse. In contrast, with scanners working on time-of-flight 

method the distance can be calculated from the flight time of the backscattered laser signal 

with the help of the speed of light. With both methods, it is possible to rapidly create 3D 

point clouds with a millimeter-level of detail and geometric accuracy. The point clouds can 

be created through scans from single or multiple positions (Liang et al. 2016). If multiple 

scanning positions are used, the resulting point clouds from individual scans can be combined 

together with the help of artificial targets to form one complete point cloud over the area of 

interest. Typically, the whole horizontal 360° area surrounding the scanner can be scanned at 

once, since the scanner is placed on a tripod where it rotates horizontally. The vertical 

coverage is enabled by the fast-rotating vertical mirror, which also ensures a vertically 

complete coverage over the area, except for typically a small circular area on the ground in 

the nearest vicinity around the scanner, where the scanner itself causes a blind spot which 

cannot be observed without changing the position of the scanner (Maas et al. 2008; Wilkes 

et al. 2017). The development of commercial terrestrial laser scanners has led to the 

introduction of lighter devices with increased measurement speed and point density (Liang 

et al. 2022). With the current TLS-scanners it is possible to measure tens of thousands of 

returns (i.e., points) per square meter from each scanning position, at a distance of 10 meters.  

 

1.5.2 Tree and forest characterization           

 

The first TLS-based studies in the field of forest science date back to the early 2000s. The 

original aim of introducing TLS in forest inventories was to improve the work efficiency of 

data collection by replacing manual measurements with automatic data collection, as well as 

to open up new approaches to characterize tree attributes that could not be directly observed 

using conventional mensuration tools (Liang et al. 2016). In hindsight, it can be said that the 

original aims of replacing manual field work with TLS have not quite completely been met; 

despite this, TLS-based methods are nowadays utilized for measuring several different tree 

and forest attributes, such as dbh and h (e.g., Dassot et al. 2011; Liang et al. 2016; Calders et 

al. 2020). One of the reasons for this development is that research has shown that 

punctiliously performed point cloud data acquisition and processing can result in TLS data 

with single points on a millimeter-level accuracy (Wilkes et al. 2017; Liang et al. 2018a). 

This allows the creation of geometrically precise 3D reconstructions of trees and 

measurement of their dimensions comprehensively from any part of the stem, at least in 

theory (Hackenberg et al. 2014).  

At first, solutions to locate and characterize individual trees from TLS point clouds were 

developed (Lovell et al. 2003; Simonse et al. 2003; Aschoff and Spiecker 2004; Thies et al. 

2004; Maas et al. 2008). According to Liang et al. (2016), the two most common methods 

for identifying trees from TLS point clouds are based on the detection of circular shapes 

representing the cross-sections of trees (e.g., Aschoff et al. 2004; Maas et al. 2008) or clusters 

of points representing similar surface characteristics (e.g., Cabo et al. 2018; Zhang et al. 

2019). Development of the sensor technology and new findings in point cloud processing 

approaches have widened the field of tree observations (e.g., Disney et al. 2018; Calders et 

al. 2020). Reconstruction of trees can be done with the help of a series of geometrical 

primitives, especially circular cylinders (Raumonen et al. 2013; Hackenberg et al. 2014; 

Åkerblom et al. 2015). To be able to reconstruct the trees, points need to be classified to 

represent their source, which in this case means the part of a tree they have been obtained 
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from. An algorithm-based tree classification typically follows assumptions that 

characteristics of stem points have more cylindrical, vertical, and planar neighborhoods than 

points representing branches or foliage (e.g., Liang et al. 2012b; Raumonen et al. 2013; 

Olofsson and Holmgren 2016; Yrttimaa et al. 2019). The aim of the processing and the 

method used then determine whether the reconstruction consists of the whole tree (Raumonen 

et al. 2013; Hackenberg et al. 2014) or just the main stem of a tree (e.g., Liang et al. 2012b; 

Heinzel and Huber 2016).  

The typical measurement geometry of TLS especially supports the investigation of 

horizontal forest structure, which favors measuring the dimensions of tree stems foremost 

(Dassot et al. 2011; Liang et al. 2016). Earlier research has shown the capabilities of TLS 

point clouds in measuring tree dbh on a level of accuracy equal to that of conventional field 

measurements (e.g., Henning and Radtke 2006; Huang et al. 2011; Liang et al. 2013; Kankare 

et al. 2014b; Cabo et al. 2018; Pitkänen et al. 2019). In contrast to single measurements of 

stem diameter at specific heights with, for example, calipers or measurement tapes, it is also 

possible to form a complete stem curve by measuring stem diameters along the stem from a 

point cloud. This allows for a more comprehensive investigation of the characteristics of a 

tree.  

However, mostly due to the measurement geometry—which is optimal for horizontal 

investigation—the vertical characterization of trees has been noted to be more complicated 

with the TLS point clouds (Dassot et al. 2011; Liang et al. 2016). Due to this and the occlusion 

caused by other tree stems and especially tree crowns or branches, the point cloud may be 

particularly incomplete in the upper parts of the tree crowns, and some important information 

may be missing. The limited visibility from the scanner to treetops, particularly in dense 

forest conditions, may cause difficulties in determining the location of the tree top and in tree 

height measurements. Thus, the accuracy of TLS point cloud-based h measurements has been 

reported to fall short of that of other measurement methods (e.g., Huang et al. 2011; Olofsson 

et al. 2014; Kankare et al. 2014b; Cabo et al. 2018) and underestimation of h is typical. The 

challenges in deriving attributes characterizing the vertical structure of trees have thus been 

a limiting factor in making the utilization of TLS more common.  

In addition to diameter and height measurements, TLS point cloud-based methods have 

been utilized to measure, for example, stem volume (e.g., Moskal and Zheng 2012; Ducey et 

al. 2014; Kankare et al. 2014a; Saarinen et al. 2017), tree biomass (e.g., Holopainen et al. 

2011; Kankare et al. 2013; Yu et al. 2013; Calders et al. 2015; Disney et al. 2018), as well as 

tapering of the stem through creation of taper curves (e.g., Henning and Radtke 2006; Maas 

et al. 2008). Earlier, estimation of these attributes from standing trees required the use of 

modeling and prediction based on the results of diameter and height measurements, whereas 

now they can be directly measured from the TLS point clouds with a plot-level accuracy on 

an equal level to the allometric models that are in use (Newnham et al. 2015; Liang et al. 

2016). Characterization of tree communities and forests can then be performed by processing 

the obtained point clouds thoroughly tree by tree and then summarizing the results from 

individual trees over the selected investigation area.         

 

1.5.3 Detecting changes in trees and forests 

 

One of the major strengths of using a TLS point cloud is that it enables measurements at 

millimeter scale without damaging trees, which separates it from some of the other 



16 

 

 

 

operational methods that are used, for example, for tree growth measurements. Observation 

of stem volume and profile without destructive measurements is an especially valuable 

advantage when evaluating how trees allocate their growth resources. Naturally, maintaining 

trees undamaged can be seen as an important aspect, since it ensures continuity of monitoring 

studies. Another advantage of using point cloud-based methods to characterize tree growth 

is that the 3D reconstruction of the object of interest is available for additional analysis and 

comparisons even years after the actual survey itself has been made. Despite these advantages 

and the fact that observation of several tree attributes through TLS point clouds has already 

been investigated for years, tree growth, as well as changes in the structure and form of trees 

have, until recent years, been gaining relatively little ground in the field of TLS point cloud-

based measurements.  

Kaasalainen et al. (2014) used Quantitative Structure Modeling (QSM) (Raumonen et al. 

2013) to investigate changes in branch volume and length of a single sample tree during a 

four-year period, while Sheppard et al. (2017) used QSM models to study the annual 

development of stem and branch dimensions of wild cherry (Prunus avium L.) trees over a 

three-year period. Mengesha et al. (2015) reported the advantages of multi-temporal TLS 

data in stem volume growth estimation. Changes in tree biomass were modeled by Sirinvasan 

et al. (2014), who reported that TLS point cloud-based canopy volume and height change 

observations were the best indicators of the change with a dataset of 29 loblolly pine (Pinus 

taeda L.) trees. Changes in forest structure have been studied, too: Liang et al. (2012a) used 

an automated method, which was able to detect almost all the changes resulting from 

harvesting on a sample plot level. Hess et al. (2018) developed a voxel-based method that 

was used to analyze changes in canopy occupancy over time. Still, the number of studies 

focusing on determining tree growth and changes from two- or multi-date TLS point clouds 

has stayed relatively low. Previous studies (e.g., Kaasalainen et al. 2014; Sirinvasan et al. 

2014; Sheppard et al. 2017) have either been performed mainly with small samples or 

covered only deciduous tree species. Furthermore, the monitoring period has been short 

relative to the length of the life cycle of the studied tree species. The novelty of TLS 

technology is a restricting factor for the length of the monitoring period, since data from 

earlier years is needed to be able to perform change detection studies without having to wait 

for years for the changes to happen. However, as earlier studies (e.g., Kaasalainen et al. 2014; 

Sirinvasan et al. 2014; Mengesha et al. 2015; Sheppard et al. 2017) have shown, development 

of change detection methods and discovery of new opportunities with already-existing point 

cloud data are already possible under the current circumstances.     

 

1.6 Objectives  

 

The current understanding and knowledge of the capabilities of TLS-based methods in forest 

mensuration have reached the level, over the last two decades, where TLS point clouds are 

being used reliably and successfully to obtain attributes of individual trees and tree 

communities (e.g., Liang et al. 2018a; Calders et al. 2020). Yet, for TLS, there have still been 

certain technological and methodical restrictions and limitations that have prevented it from 

becoming the primary method in providing field reference information from forests. 

Meanwhile, the need for accurate and up to date information about forests is increasing and 

demands for new additional knowledge arise. Thus, based on the hierarchical structure of a 
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forest ecosystem, understanding the growth processes of an individual tree is essential to 

comprehending the development of forest stands and landscapes.  

Prior to this thesis, only a few studies had reported utilization of TLS point cloud-based 

approaches to characterize tree growth and changes in trees or forests in general (e.g., Liang 

et al. 2012a; Kaasalainen et al. 2014; Srinivasan et al. 2014; Sheppard et al. 2017). However, 

earlier studies have mainly been focused on measuring the growth of deciduous trees, with 

relatively small samples. To further increase the knowledge related to the use of TLS point 

cloud-based tree growth measurements in different environments and to broaden awareness 

of potential opportunities it could offer, for example, in the field of forestry, a need for further 

studies exists. This thesis aims to develop TLS point cloud-based methods for change 

detection, tree, and forest growth measurements, as well as elucidating how tree growth 

allocation could be effectively measured and quantified on a single tree level and among tree 

communities. The results and solutions of this thesis could improve the understanding of 

forest ecology and tree physiology in general. The new findings could also promote the use 

of TLS point clouds in forest monitoring applications and thus potentially increase 

opportunities for their operational use.  

 

Thus, the objectives of this thesis are:  

(1) Developing TLS point cloud-based tree growth measurement methods. 

 

(2) Exploring the capability of TLS point cloud-based methods to measure tree growth in 

boreal forest conditions and hence detect the occurring changes in attributes characterizing 

individual trees and the forest structure. 

 

(3) Enhancing understanding of how trees allocate growth into their structures in different 

phases of their life cycle and in different growth environments. 

 

Two different TLS point cloud-based methods to measure tree growth from two-date data 

are presented in the thesis. First, a method combining TLS point cloud-based stem diameter 

measurements and conventional tree height measurements for measuring tree growth is 

presented in study I. Then, a fully automated point cloud processing method to measure tree 

growth is used in studies II and III to further investigate the feasibility of TLS point clouds 

to measure tree growth with a larger sample of trees from varying boreal forest conditions. 

Performance of these methods to measure tree growth is examined with comparisons to 

reference data, and the capability to detect the significant changes in tree attributes resulting 

from tree growth during the monitoring period is tested. The ability to measure tree growth 

allocation provides new, detailed information about the behavior of individual trees as well 

as the variation in tree growth in diverse environments. The fundamental idea behind these 

objectives is to aim at creating new opportunities and possibilities to identify and measure 

the eco-physiological phenomena shaping the structure of trees and forests by using the point 

cloud-based methods developed and presented in this thesis. 
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2 MATERIALS AND METHODS 
 

 

2.1 Study sites 

 

Two study sites, located in southern Finland, were used in the investigations of this thesis 

(Figure 1). The areas were “Nuuksio” (60°18’ N, 24°31’ E), located approximately 30 km 

northwest of Helsinki, and “Evo” (61°11’ N, 25°8’ E), located approximately 100 km north 

of Helsinki. Study I was performed in the Nuuksio study site (Figure 1), which is located in 

Nuuksio National Park. The national park area is 53 km2 in total, consisting of large 

continuous forested areas and several lakes, with altitude varying from 27 m to 114 m above 

sea level. The main tree species in the study area are Scots pine and Norway spruce, but 

broadleaved species such as silver birch (Betula pendula Roth.), white birch (Betula 

pubescens Ehrh.), lime tree (Tilia cordata Mill.), aspen (Populus tremula L.), and maple 

(Acer Platanoides L.) are also represented in mixed-species forest stands. The site type in 

Nuuksio varies from groves to barren heaths and rocky hilltops. In 2008, a systematic 

network of 216 sample plots with fixed plot intervals of 100 m was established in the Nuuksio 

study area. Field measurements were initially carried out on the sample plots to be used as a 

reference mainly for airborne laser scanning research (Vastaranta et al. 2009). Later in 2008, 

eight plots covering the overall variation of the sample plot network were selected from the 

whole sample to be recorded with TLS. Prior to repeating the TLS campaign in 2017, a field 

control was performed, which revealed that four sample plots out of the eight original TLS 

plots had remained undisturbed since the first scanning. Thus, these four plots were re-

scanned in 2017 and selected to be used in study I. The plots were located on mineral soils 

and the site type varied from sub-xeric to herb-rich heath forests. Scots pine and Norway 

spruce were the main tree species on the plots with a mixture of silver birch, lime tree, aspen, 

and maple also present. The forest development class varied from young thinning stands to 

mature forests. In study I the sample plots were circular, with a radius of 7.98 m and an area 

of 200.1 m2.  
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Figure 1. Map of the study site locations of the thesis. Study I was performed in study site 

“Nuuksio” and studies II & III in study site “Evo” in Finland. 

 

 

Studies II and III took place in the Evo study site (Figure 1) consisting of a forested area 

of ~2000 ha with elevation varying from 125 m to 185 m above sea level. The forests in the 

Evo study site are characterized by typical southern boreal forest conditions. Scots pine and 

Norway spruce are the dominant tree species in the area, whereas deciduous species comprise 

ca. one fifth of the total stem volume. Silver birch and white birch are the main deciduous 

tree species in the area.  

In 2014 a sample plot network was established on the study site, consisting of 91 square-

shaped sample plots 32 m x 32 m in size. The sample plots were placed in such a way as to 

ensure that the structural variation of forests was represented (Yu et al. 2015). At the time of 

establishment, a complete tree-wise field inventory as well as TLS data-acquisition were 

performed on all the plots. The initial data collection was followed by a repeated field 

inventory and TLS data-acquisition campaign on 37 out of the original 91 sample plots in 

2019. After the data collection, a circular sample plot was created within each of the re-

measured 37 square-shaped plots to be used in studies II and III. The radius of the circular 

sample plot was 11 meters (380.1 m2), with the plot center located at the center of the original 

square-shaped plot.    
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2.2 TLS point clouds 

 

2.2.1 Data collection 

 

TLS data acquisition in the circular sample plots of study I was performed in 2008 and further 

repeated in 2017 (Table 1). On both occasions the same measurement principle was used. A 

phase shift scanner Leica HDS6100 (Leica Geosystems AG, St. Gallen, Switzerland) was 

used with high-resolution settings, measuring up to 508,000 points per second and delivering 

a point cloud with 6.3-mm point spacing at 10-m distance from the scanner. The field of view 

was 310° vertical × 360° horizontal with an angular resolution of 0.018° in both vertical and 

horizontal directions. To generate a complete 3D point cloud from the sample plots, a multi-

scan data collection method was used. On each of the sample plots, the scan set-up included 

one central scan at the plot center and four to six supplementary scans depending on the 

factors affecting the visibility on the circular plot (e.g., stem density, undergrowth, age of the 

stand, and dominant tree species). Artificial reference targets were used on the plots to enable 

co-registering of the unique scans to one 3D point cloud over the whole sample plot. 

The first TLS data-acquisition for studies II and III was performed in 2014 using two 

separate phase shift scanners, a Leica HDS6100 and a Faro Focus 3D X330 (Faro 

Technologies Inc., Lake Mary, FL, USA) (Table 1 & Table 2). Due to limited time resources 

and availability of scanners in 2014, the TLS campaign was carried out by two independent 

field crews operating with the same scanner on different sample plots. Thus, only one and 

the same scanner was used per each plot. The scanners operate at wavelengths of 690 nm 

(Leica) and 1550 nm (Faro), measuring up to 508,000 points per second and delivering a 

point cloud with 6.3-mm point spacing at 10-m distance from the scanner (Table 2). The field 

of view was 310° vertical × 360° horizontal (Leica) and 300° vertical × 360° horizontal (Faro) 

with an angular resolution of 0.018° in both vertical and horizontal directions, respectively. 

Again, the multi-scan data collection method was applied on the plots. The center scan was 

performed at the plot center and the four auxiliary scans at quadrant directions (i.e., northeast, 

southeast, southwest, and northwest) approximately 11 m away from the plot center. 

Artificial reference targets were spread out on the plots to ensure the formation of a merged 

point cloud by co-registering the scans.     

 

Table 1. The time points of TLS data-acquisition processes in studies I–III, summary of the 

used laser scanning devices as well as number of used sample plots and trees in respective 

studies. 

 

Study Plots 
TLS 

trees 

1st TLS scanning 2nd TLS scanning 

Year Scanner Year Scanner 

I 4 35 2008 Leica HDS6100 2017 Leica HDS6100 

II 37 795 2014 
Leica HDS6100 & 

Faro Focus 3D X330 
2019 Leica RTC360 

III 37 736 2014 
Leica HDS6100 & 

Faro Focus 3D X330 
2019 Leica RTC360 
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Table 2. Summary of the technical specifications for the three terrestrial laser scanners utilized 

in data acquisition of studies I–III. 

 

Scanner Measurement 

method 

Operation 

range 

Point spacing at a 

distance of 10 m 

Wavelength 

Leica HDS6100 phase shift 1–79 m 6.3 mm 690 nm 

Faro Focus 3D X330 phase shift 0.6–330 m 6.3 mm 1550 nm 

Leica RTC360 time-of-flight 0.5–130 m 3 mm 1550 nm 

 

 

In 2019, the same data collection procedure was repeated, but using a Leica RTC360 

(Leica Geosystems AG, St. Gallen, Switzerland) time-of-flight scanner, which operates at a 

wavelength of 1550 nm and measures 2,000,000 points per second with a point spacing of 3-

mm at a distance of 10 m (Table 1 & Table 2). The scanner delivers a hemispherical (300° 

vertical × 360° horizontal) point cloud with an angular resolution of 0.009° in both vertical 

and horizontal directions. The scanning process used in 2019 was similar to the one used in 

2014 to ensure similar quality of point clouds. Only the locations of the auxiliary scans were 

moved a few meters further away from the plot center towards the plot corners when 

compared to the locations used in 2014. This adjustment was based on the findings of 

Yrttimaa et al. (2019) to improve the visibility and range in individual scans and thus create 

an even more complete point cloud over the whole sample plot area.  

 

2.2.2 Data processing and estimation of tree and forest attributes 

 

The point cloud data in study I, acquired both in 2008 and 2017 through TLS scans, were co-

registered to complete point clouds over sample plots by using Z+F LaserControl software 

(Zoller and Fröhlich GmbH, Wangen im Allgäu, Germany) and the artificial reference 

targets. Trees were then manually identified from the resulting point clouds and tree-specific 

point clouds were extracted for the analysis by using TerraScan software (Terrasolid, 

Helsinki, Finland).  

Due to the hemispherical measurement geometry of TLS and resulting occlusion to tree 

crowns, the field-measured tree height was also used as the value of h in point cloud analysis 

in study I. This aimed at removing uncertainty regarding the accuracy of TLS point cloud-

based tree height measurement, which was at that time (e.g., Liang et al. 2016)—and can still 

be considered as—one of the most challenging attributes to be measured from TLS point 

cloud data. The tree-specific point clouds were analyzed with R-software (R Core Team, 

2020) to fit circles with 10-cm intervals along each stem to be able to measure stem diameters 

and to estimate a taper curve for each tree following the method presented by Saarinen et al. 

(2017). In the creation of the stem curve, the validity of each diameter measurement was 

tested by applying maximum tapering values and comparing the results to the three previous 

diameter measurements to decide whether to include the measurement or exclude it as an 

outlier. The stem volumes were then estimated from the resulting taper curves. First, volumes 

of separate stem sections were defined by multiplying the cross-sectional area at the middle 
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of the cylinder with the height of the cylinder. The volumes of stem sections were then 

summarized as the total stem volume (V). 

In studies II and III the point cloud data acquired in 2014 were co-registered to complete 

point clouds over sample plots by using the Z+F LaserControl and Faro Scene (Faro 

Technologies Inc., Lake Mary, FL, USA) software. For these studies, the point cloud data 

acquired in 2019 were co-registered using Leica Cyclone software (Leica Geosystems AG, 

St. Gallen, Switzerland). At both timepoints, all the co-registrations were performed with the 

help of the artificial reference targets. The co-registered point-clouds from sample plots were 

then processed following an automatic method presented by Yrttimaa et al. (2020) and 

available in Yrttimaa (2021). At first, the point clouds were divided to separate point clouds 

with a raster-based segmentation procedure so that each segment represented mainly a single 

tree or a small group of trees, if tree crowns were overlapping (Figure 2). Then the points 

were classified as either stem or non-stem points based on their origin, assuming that stem 

points have more planar, vertical, and cylindrical neighborhoods in comparison to points 

describing branches and foliage (Liang et al. 2012b; Yrttimaa et al. 2019). The classification 

procedure iteratively searched for the desired point cloud characteristics using grid average 

downsampling, surface normal filtering, point clustering, and random sample consensus 

(RANSAC)-cylinder filtering (for more details, see Yrttimaa et al. 2020). From the tree-wise 

extracted point clouds, tree attributes were determined for each tree following the methods 

initially presented in Yrttimaa et al. (2019). The point cloud-based estimate for h was 

obtained by measuring the vertical distance between the lowest and highest points of each 

tree. Height of the crown base (hc) was defined as the height of the lowest living branches 

and crown ratio (cr) represented the proportion of the living tree crown from the tree height, 

and was calculated by utilizing h and hc according to Equation 1: 

 

𝑐𝑟 =
ℎ − ℎ𝑐

ℎ
 (1) 

 

A taper curve was estimated for each tree from the TLS point clouds by measuring 

diameters along the stem and filtering potential outliers as well as interpolating missing ones 

using the same methods as in study I. Dbh as well as diameters at the height of 6.0 meters 

(d6.0) and at the relative height of 50% (d0.5h) were obtained from the taper curve (Figure 2). 

Basal area (g) was derived from dbh following Equation 2: 

 

𝑔 =
𝜋 ∗ 𝑑𝑏ℎ2

4
 (2) 
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Figure 2. A graphical illustration summarizing the point cloud data processing performed in 

studies II & III and description of taper curve derivation as well as extraction of tree height, 

diameter, and volume attributes from the TLS point cloud of individual trees.  
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Stem tapering (TAP) and relative tapering (TAP%), cylindrical form factor (f), normal 

form quotient (q0.5h), and height to diameter ratio (HDR) were derived from the diameter and 

height (i.e., dbh, d6.0, d0.5h, and h) measurements according to Equations 3–7: 

 

𝑇𝐴𝑃 = 𝑑𝑏ℎ −  𝑑6.0 (3) 

𝑇𝐴𝑃% =
𝑑𝑏ℎ − 𝑑6.0

𝑑𝑏ℎ
 (4) 

𝑓 =
𝑉

𝑔 ∗ ℎ
 (5) 

𝑞0.5ℎ =
𝑑0.5ℎ

𝑑𝑏ℎ
 (6) 

𝐻𝐷𝑅 =
ℎ

𝑑𝑏ℎ
 (7) 

 

V and logwood volume (Vlog) were estimated using the taper curve, with Vlog representing 

the volume of the part of the stem whose diameter exceeded 15 cm (Figure 2). Logwood 

percentage for trees (Vlog%) was calculated from estimates of V and Vlog following Equation 

8:  

 

𝑉𝑙𝑜𝑔% =
𝑉𝑙𝑜𝑔

𝑉
 (8) 

 

Forest structural attributes basal area weighted mean diameter (Dg) and basal area 

weighted mean height—known also as Lorey’s height (Hg)—as well as mean basal area (G) 

and number of trees per hectare (TPH) were estimated from the attributes of individual trees 

at sample plot level following Equations 9–12: 

 

𝐷𝑔 =
∑ 𝑑𝑖𝑔𝑖

𝑛
𝑖=1

∑ 𝑔𝑖
𝑛
𝑖=1

 (9) 

𝐻𝑔 =
∑ ℎ𝑖𝑔𝑖

𝑛
𝑖=1

∑ 𝑔𝑖
𝑛
𝑖=1

 (10) 

𝐺 =
∑ 𝑔𝑖

𝑛
𝑖=1

𝐴
 (11) 

𝑇𝑃𝐻 =
𝑛

𝐴
 (12) 
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where n is the number of trees in a sample plot and di, gi, hi, and vi are the dbh, basal area, 

height, and stem volume of the ith tree in a sample plot, respectively. A is the area of the 

sample plot in hectares.  

 In study II 795 trees were detected from the point clouds and used in the analysis, 

whereas in study III the sample size was further reduced to 736 trees (Table 1). The number 

of sample trees in studies II and III was based on the success of the automated tree detection 

method, meaning that all the trees whose attributes could be completely characterized from 

the point clouds at both time points were included in the studies. 

 

2.2.3 Characterizing tree and forest growth 

 

Tree growth and changes in tree and forest attributes were measured by comparing the 

observations from the beginning and at the end of the monitoring period. The potential results 

of the comparisons were an increase, decrease, or no change in the attribute in question. 

Whether the results were defined as tree or forest growth or as a change in the attribute 

depended on the investigated attribute. The absolute difference (ΔX) in values of observed 

attributes in each study was calculated by subtracting the value of the attribute in the 

beginning (XT1) of the monitoring period from the value of the attribute at the end (XT2) of 

the period following Equation 13: 

∆𝑋 = 𝑋𝑇2 − 𝑋𝑇1 (13) 

 

The relative change (ΔX%) of the attributes was determined by dividing the absolute 

change (ΔX) with the attribute value in the beginning (XT1) of the monitoring period 

following Equation 14: 

∆𝑋% =
∆𝑋

𝑋𝑇1

 (14) 

 

Paired-sample t-tests were used to investigate whether a significant change had happened 

during the monitoring period in the observed attributes. The H0 in these tests stated that: “No 

significant change happened between the beginning and the end of the monitoring period for 

the attribute in question,” whereas the alternative hypothesis assumed that: “A significant 

change, either positive or negative, occurred during the monitoring period.”  

In study III, two-sample t-tests were used to evaluate whether the changes in stem form 

or volume allocation between different forest conditions were significantly different. It was 

also analyzed whether the changes between trees on similar forest conditions and between 

trees from different forest conditions were significant. 

 

 

2.3 Acquisition of the reference data 

 

A tree-wise field inventory was performed in all study sites to acquire reference 

measurements for the analyses. In study I, tree species, dbh, and h of all the trees on the plot 

were defined during the field measurements in both 2008 and 2017. The h was measured on 

a 0.1-meter scale with a Haglöf Vertex Ultrasonic (Haglöf Sweden AB, Långsele, Sweden) 

clinometer, calibrated to current weather conditions. Dbh was determined as the mean of two 
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caliper measurements perpendicular to each other. From the four sample plots used in study 

I, all the trees with dbh exceeding a threshold of 5 cm in 2008 and defined as alive in 2017 

were classified as eligible for the study. In total, 35 trees were used in study I. Of the 35 trees, 

10 were Scots pines, 14 were Norway spruces, five were silver birches, and six were other 

deciduous trees (one maple, two aspens, and three lime trees). According to the field 

measurements in 2008, tree size varied from 6.2 cm to 50.7 cm, and from 5.0 m to 34.0 m 

for dbh and h, respectively (Table 3).  

For studies II and III, a tree map of each sample plot was created before the field 

inventory in 2014 by using manual detection of tree stems from horizontal TLS point cloud 

slices. Tree maps were verified and completed during the field inventory by determining the 

locations of undetected trees, if they exceeded the set minimum-dbh threshold of 5 cm. After 

completion of the tree maps, a tree-wise field inventory was performed to acquire reference 

measurements of tree attributes. Tree species, dbh, h, and health status (alive/dead) were 

recorded for all the trees. Visual interpretation was used to determine the species and health 

status of the trees. Steel calipers were used to measure the dbh as the mean of two 

measurements perpendicular to each other at the height of 1.3 m above the ground. The 

Haglöf Vertex Ultrasonic clinometer was used to measure h. The precision of field-measured 

dbh and h in 2014 were approximately 0.3 cm and 0.5 m, respectively, as reported by Luoma 

et al. (2017).  

The field inventory was repeated in 2019 following the same principles as in the field 

inventory from 2014. Tree maps were updated with fallen or harvested trees as well as with 

trees that had reached the threshold-dbh of 5 cm during the monitoring period. Again, dbh 

and h were measured for all trees, as well as hc for Scots pines. Finally, from the 37 sample 

plots a total of 1280 trees were measured on the field both in 2014 and 2019. Of these trees, 

270 (21.1%) were Scots pines, 649 (50.7%) Norway spruces, and 361 (28.2%) broadleaved 

 

Table 3. Variation in diameter at breast height (dbh) and tree height (h) of the sample trees in 

studies I–III. The attributes are based on the results of the field inventory performed in the 

beginning of the respective monitoring period (i.e., year 2008 for study I and year 2014 for 

studies II–III). Mean, minimum (min), and maximum (max) values are reported separately for 

Scots pine, Norway spruce, and other trees, as well as for all trees.   

 

Study Species 

Number 

of trees, 

n 

dbh, cm h, m 

Mean Min Max Mean Min Max 

I Scots pine 10 10.5 7.6 14.5 10.2 7.1 12.8 

 Norway spruce 14 27.3 6.2 50.7 23.8 5.0 34.0 

 Others 11 28.4 7.2 49.2 23.4 5.6 32.6 

 All trees 35 22.8 6.2 50.7 19.8 5.0 34.0 

II & III Scots pine 270 20.3 5.2 59.7 17.8 5.0 34.5 

 Norway spruce 649 16.9 5.0 57.9 15.2 2.2 36.6 

 Others 361 14.9 5.1 59.9 17.0 2.2 32.5 

 All trees 1280 16.9 5.0 59.9 16.3 2.2 36.6 
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trees, being mainly birches and aspen. In 2014, the mean dbh of field-measured sample trees 

was 16.9 cm with minimum and maximum dbh being 5.0 cm and 59.9 cm, respectively, 

whereas h varied from 2.2 m to 36.6 m with a mean h of 16.3 m (Table 3).  

 

 

2.4 Assessment of the methods used 

 

The performance of the automated TLS-based measurement method used in studies II and 

III was evaluated by comparing results from the point cloud-based measurements with the 

field-measured tree and forest structural attributes. The ability of the method to detect trees 

was assessed by investigating how large of a proportion of the field-determined trees were 

detected from the TLS point clouds. The accuracy of the point cloud-based tree and forest 

structural attributes in the beginning and at the end of the monitoring period as well as the 

accuracy of detected change was evaluated by using mean absolute error (bias) and root-

mean-square-error (RMSE) as variables of the accuracy. Bias and RMSE were defined 

following Equations 15 and 16: 

𝑏𝑖𝑎𝑠 =
∑ (𝑋�̂�  −  𝑋𝑖)

𝑛
𝑖 = 1

𝑛
 

 

(15) 

𝑅𝑀𝑆𝐸 = √∑ (𝑋�̂�  −  𝑋𝑖)
2𝑛

𝑖 = 1

𝑛
 

 

(16) 

where n is the number of trees or sample plots, 𝑋�̂� is the tree or forest structural attribute for 

tree i or plot i derived from the point cloud-based measurements, and Xi is the equivalent 

attribute based on field measurements. The relative bias (bias%) and RMSE (RMSE%) were 

calculated by dividing the respective absolute variable with the field-measured average value 

of the attribute in question. The accuracy was assessed on the tree level by tree species (Scots 

pine, Norway spruce, broadleaved) in study II as well as by forest structural group (young 

managed, young unmanaged, mature managed, old-growth) in study III. The accuracy of 

forest structural attributes was evaluated in general for all plots and by dividing the plots into 

three groups per main tree species on the sample plot (Scots pine-dominated, Norway spruce-

dominated, and mixed-species sample plots). The relationship between the TLS point cloud-

based and field-measured tree and forest structural attributes was further analyzed by 

calculating the coefficient of the determination (R2). 

 

 

3 RESULTS AND DISCUSSION 
 

 

3.1 Detection of trees from TLS point clouds 

 

As the first step of this thesis, an approach, which utilized measurement information from 

both TLS point clouds and conventional measurements, was selected to be investigated in 

study I. The applied method showed its capability of detection of volume growth and changes 

in the stem form during the nine-year monitoring period. The combination of two different 
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sources was conducted to minimize the effect of uncertainty regarding the measurement of h 

from TLS point clouds, which was and is still known to be a challenge for ground-based laser 

scanning, especially in boreal forest conditions (Liang et al. 2016). Thus, clinometer 

measurements were used for determining h. Another known challenge regarding 

measurements from TLS point clouds is the tree detection accuracy, mainly due to the quality 

of point clouds (Liang et al. 2016). Since in study I the aim was to primarily develop and test 

the method to observe and measure changes in trees, all the trees used in study I were 

manually searched and detected from the TLS point clouds. Only trees that could be found 

in the data from both time points were investigated. Naturally, repeated observations from at 

least two different time points are a prerequisite for investigating structural changes in trees, 

but in this case this also ensured that it was possible to avoid the potential challenges of tree 

detection. 

One of the key issues for the future use of point cloud-based measurements both in 

research as well as in operational use is that the method should be applicable for a large 

number of trees. Considering the method used in study I, this is not possible, since manual 

determination and extraction of individual trees from the TLS point clouds is time consuming 

and limits the capacity of trees to be processed. In addition to this, to make the measurement 

process effective, all the dimensions of a tree should be measured from the point clouds 

instead of using alternative observation methods. Even if the results and findings of study I 

were similar to the earlier studies and thus supportive of applicability of TLS point clouds to 

change detection in trees, certain needs for development of the point cloud-based methods to 

measure tree growth still existed.  

Those needs were considered when implementing studies II and III. There, an automated 

TLS point cloud-based tree detection and measurement method was used to first identify and 

then measure trees located on 37 sample plots. In total, 795 out of the 1280 trees that were 

standing on the sample plots both in the beginning and at the end of the five-year monitoring 

period were identified with the used method. In total, approximately ⅔ of all trees, 

representing 84.5% of the total basal area, were detected at both time points. For species-

specific detection accuracy, 91.3%, 85.7% and 73.3% of the total basal area of Scots pine, 

Norway spruce, and broadleaved trees were detected, respectively. The basal area-based 

detection accuracy was especially high for Scots pine and Norway spruce trees. This 

indicated that the method could detect the vast majority of the large—and thus the most 

valuable and dominant—trees on the plots. This is clearly visible also in Figure 3, which 

demonstrates the species-specific diameter distributions of trees detected both from TLS 

point clouds and by means of conventional field measurements at the end of the monitoring 

period in study II. The results also created an opportunity to consider whether the tree 

detection methods should be evaluated and further developed to maximize individual tree 

detection or, for example, basal area detection capability. The results of study III also 

revealed in greater detail the effect of the forest structure on tree detection. The individual 

tree detection rate in managed forest plots was over 40%-points higher than on unmanaged 

plots, with the detection rates being 81.7%, 77.6% and 86.5% in young, mature, and old 

growth managed forest plots, in comparison to a detection rate of 35.7% in unmanaged young 

forests. This further supports the finding that the absent trees in tree detection are mainly 

smaller trees, in this case especially broadleaved trees and Norway spruces, belonging to the 

undergrowth. However, even if most of the missing trees belong to the undergrowth, it has 

to be considered that if the aim is to detect all trees, the methods used can still be improved. 
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Figure 3. Species-specific (i.e., Scots pine, Norway spruce, and broadleaved trees, as well 

as all trees of the study) diameter at breast height (dbh) distributions of TLS point cloud-based 

tree detection and field inventory at the end of the monitoring period (T2, year 2019) in study 

II. The relative frequency (f) of trees is presented in 1-cm dbh classes. The colored bars 

represent the proportion of trees detected from the TLS point clouds. Mean values (μ) and 

standard deviations (σ) of dbh of TLS point cloud-based measurements (TLS) and field 

inventory (Ref.) are presented in the graphs.  

 

 

Even if the performance of the point cloud-based method is a major factor in the success 

rate of tree detection, other issues also need to be considered when evaluating the success of 

the process. Among others, the role of the scanning set up and the selection of the data 

acquisition method, as well as the available resources for TLS point cloud data acquisition, 

play a significant role in the quality of the resulting point cloud data and thus directly affect 

the number of trees that are possible to be detected and further measured (Trochta et al. 2013; 

Abegg et al. 2017; Wilkes et al. 2017; Liang et al. 2018a; Yrttimaa et al. 2019). When the 

number of scans on each plot is limited (i.e., 5 scans per plot as in studies II and III), there 

is a high probability for occlusion, especially in dense forests, even if the scanning set-up is 

well-planned. The occlusion effect could possibly be reduced by performing a couple of, or 

even several additional, TLS-scans, or by applying completely different methods, such as 

mobile laser scanning (e.g., Liang et al. 2018b) to increase the point cloud coverage. When 

combining several scans together, the effect of wind also needs to be taken into consideration; 

Vaaja et al. (2016) observed in their study, that if the windspeed was 9 m/s or above during 

the data collection, it may have an impact on tree diameter measurements from the resulting 

combined TLS point clouds due to movement of the tree stem. However, a trade-off between 

the consumed time and the proportion of trees to be covered is an essential decision to be 

made to ensure a successful TLS point cloud measurement process. 

 Altogether, results of studies II and III show that the fully automated point cloud 

processing method is capable of reaching an adequate level of accuracy in tree detection 

regardless of certain technological, methodical, and environmental limitations related to tree 

detection performance. The structure of the forest, occlusion, distance from the scanner to 
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the trees, and size of the trees all affect the probability of a tree to be detected (e.g., Wilkes 

et al. 2017). But, as previously mentioned, in point cloud-based tree detection the method 

itself can be held, at the most, only partially responsible for the missing trees because it is 

not possible to detect a tree if it does not exist in the point cloud at all due to insufficient scan 

setup with respect to the complexity of the forest stand. 

  

 

3.2 Characterization of tree and forest attributes  

 

In studies II and III, the accuracy of the automated method to measure and derive attributes 

from TLS point clouds was evaluated by comparing the point cloud-derived estimates to the 

respective field-measured reference values. In general, the bias and RMSE of dbh and g 

estimations was on a similar level to the accuracies reported for diameter measurements in 

earlier studies (e.g., Liang et al. 2016; Liang et al. 2018a). For dbh, the RMSE for all trees at 

the beginning (T1) and at the end of the monitoring period (T2) was 1.2 cm (5.7%) and 0.9 

cm (4.1%), respectively, with no significant differences between tree species (Table 4). Thus, 

a strong relationship (R2 = 0.99) between the point cloud-based and field-measured estimates 

of dbh and g was recorded at T1 and T2. 

For h, the point cloud-based estimates were underestimated, which is typical for TLS-

derived estimates of h (e.g., Liang et al. 2016). The RMSEs varied between tree species, with 

estimates of Scots pine h being the most accurate at T1 (2.5 m; 13.7%) and at T2 (2.4 m; 

12.1%) followed by Norway spruce (4.0 m; 20.1% and 3.0 m; 14.4%) and broadleaved trees 

(6.3 m; 31.7% and 6.6 m; 30.8%), respectively (Table 4). 

For forest structural attribute level, the point cloud-based estimates were accurate at both 

time points. Of the investigated attributes, the estimation accuracy of Dg, Hg, G, and TPH 

was evaluated on Scots pine and Norway spruce-dominated plots as well as on mixed-species 

sample plots. Dg was both under- and overestimated on the sample plots, with bias ranging 

between -0.3 cm (-0.7%) and 0.6 cm (2.4%) depending on the main tree species in a forest 

stand (Table 5). Hg was underestimated from -2.9 m (-10.7%) to -0.4 m (-1.9%) in all cases 

except for Scots pine-dominated plots at the end of the monitoring period, where 

overestimation was 0.2 m (1.0%). The RMSE% for Dg and Hg varied from 2.5% to 9.6% and 

from 2.9% to 13.1%, respectively. G and TPH were underestimated regardless of tree species, 

with the bias ranging from -10.5 m2/ha (-29.2%) to -3.2 m2/ha (-8.1%) and -659 stems/ha (-

43.3%) to -47 stems/ha (-7.7%), respectively. The RMSE% of respective estimates varied 

from 10.6% to 35.7% for G and for TPH from 10.7% to 60.0%. The accuracies of forest 

structural attributes were on a similar level to the findings of a study performed in comparable 

conditions (Yrttimaa et al. 2019). In general, the decreased accuracy of G and TPH compared 

to other forest structural attributes was mainly caused by unsuccessful detection of trees from 

the TLS point clouds, as G and TPH were computed by summing up the number of trees or 

g of detected trees. For Dg and Hg, the estimated value was based on a weighted mean of dbh 

or h of the detected trees, and the accuracy depended on the representativeness of the sample 

of detected trees. Altogether, the obtained results further support the finding that if trees are 

not detected from the point clouds, it will also cause errors in the estimates. 
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Table 4. Bias and root-mean-square-error (RMSE) of TLS point cloud-based tree attribute 

measurements at the beginning (T1, year 2014) and at the end (T2, year 2019) of the 

monitoring period in study II. Bias and RMSE of diameter at breast height (dbh), basal area 

(g) and tree height (h) are presented for all trees of the study as well as separately for Scots 

pine, Norway spruce, and broadleaved trees. Relative bias and RMSE are reported in 

parentheses, respectively. Negative bias indicates underestimation.  

 

Tree 

Attribute 

Tree Species Bias RMSE 

T1 T2 T1 T2 

dbh (cm) All trees 
−0.1 

(−0.3%) 

0.0 

 (0.2%) 

1.2 

 (5.7%) 

0.9 

 (4.1%) 

 Scots pine 
−0.4 

(−2.0%) 

−0.3 

(−1.4%) 

1.1 

 (5.2%) 

1.0 

 (4.5%) 

 Norway spruce 
0.3 

 (1.2%) 

0.3 

 (1.3%) 

1.3 

 (5.7%) 

0.8 

 (3.3%) 

 Broadleaved 
−0.2 

(−1.1%) 

−0.0 

(−0.15%) 

1.1 

 (6.3%) 

1.0  

(5.3%) 

g (cm2) All trees 
−7.7 

(−1.9%) 

−3.4 

(−0.7%) 

49.3 

(11.9%) 

47.6 

(10.4%) 

 Scots pine 
−21.5 

(−5.1%) 

−18.5 

(−3.9%) 

52.8 

(12.5%) 

60.8 

(13.0%) 

 Norway spruce 
1.8 

 (0.4%) 

7.4 

 (1.4%) 

50.5 

(10.6%) 

32.4 

(6.2%) 

 Broadleaved 
−9.2 

(−3.1%) 

−6.0 

(−1.8%) 

42.4 

(14.5%) 

53.5 

(16.3%) 

h (m) All trees 
−1.3 

(−6.9%) 

−0.7 

(−3.6%) 

4.4 

(22.5%) 

4.1 

(19.7%) 

 Scots pine 
−0.9 

(−4.8%) 

−0.5 

(−2.3%) 

2.5 

(13.7%) 

2.4 

(12.1%) 

 Norway spruce 
−0.5 

(−2.6%) 

0.4 

 (1.8%) 

4.0 

(20.1%) 

3.0 

(14.4%) 

 Broadleaved 
−3.3 

(−16.8%) 

−3.1 

(−14.6%) 

6.3 

(31.7%) 

6.6 

(30.8%) 
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Table 5. Bias and root-mean-square-error (RMSE) of TLS point cloud-based forest structural 

attribute estimations at the beginning (T1, year 2014) and at the end (T2, year 2019) of the 

monitoring period in study II. Bias and RMSE of basal area-weighted mean diameter (Dg), and 

–height (Hg) mean basal area (G) and number of trees per hectare (TPH) are presented for 

all plots of the study and separately for Scots pine-, and Norway spruce-dominated as well as 

for Mixed-species plots. Relative bias and RMSE are reported in parentheses, respectively. 

Negative bias indicates underestimation. 

 

Forest 
Structural 
Attribute 

Main Tree 
Species 

Bias RMSE 

T1 T2 T1 T2 

Dg (cm) All plots 
0.1 

 (0.3%) 
0.3 

 (0.9%) 
1.4 

 (5.2%) 
1.7 

 (6.0%) 

 Scots pine-
dominated 

0.1 
 (0.4%) 

0.6 
 (2.4%) 

0.6 
 (2.7%) 

0.8 
 (3.4%)  

Norway spruce-
dominated 

−0.3 
(−0.7%) 

−0.2 
(−0.4%) 

0.9 
 (2.5%) 

1.1 
 (2.9%)  

Mixed-species 
0.4 

 (1.6%) 
0.4 

 (1.6%) 
2.1 

 (8.4%) 
2.5 

 (9.6%) 

Hg (m) All plots 
−1.7 

(−7.8%) 
−0.5 

(−2.1%) 
2.5 

(11.2%) 
1.9 

 (7.9%)  
Scots pine-
dominated 

−0.4 
(−1.9%) 

0.2 
 (1.0%) 

0.5 
 (2.9%) 

0.7 
 (3.5%)  

Norway spruce-
dominated 

−2.9 
(−10.7%) 

−0.8 
(−2.9%) 

3.1 
(11.6%) 

1.1 
 (3.9%)  

Mixed-species 
−1.7 

(−8.0%) 
−0.7 

(−3.1%) 
2.7 

(13.1%) 
2.8 

(12.6%) 

G (m2/ha) All plots 
−6.5 

(−20.5%) 
−6.6 

(19.1%) 
8.5 

(26.9%) 
9.3 

(26.9%) 

 Scots pine-
dominated 

−5.3 
(−23.6%) 

−5.6 
(−21.8%) 

7.0 
(31.1%) 

8.1 
(31.6%)  

Norway spruce-
dominated 

−3.8 
(−10.2%) 

−3.2 
(−8.1%) 

5.1 
(13.5%) 

4.2 
(10.6%)  

Mixed-species 
−9.8 

(−30.2%) 
−10.5 

(−29.2%) 
11.5 

(35.5%) 
12.8 

(35.7%) 

TPH (n/ha) All plots 
−373 

(−35.2%) 
−292 

(−27.9%) 
620 

(58.5%) 
515 

(49.3%) 

 Scots pine-
dominated 

−337 
(−35.0%) 

−268 
(−26.9%) 

486 
(50.5%) 

428 
(42.9%) 

 Norway spruce-
dominated 

−91 
(−14.3%) 

−47 
(−7.7%) 

117 
(18.5%) 

65  
(10.7%) 

 Mixed-species 
−659 

(−43.3%) 
−536 

(−36.0) 
914 

(60.0%) 
753 

(50.6%) 
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3.3 Measuring tree growth and detection of forest structural changes  

 

Tree growth was measured through detecting and quantifying changes in the observed 

attributes. Statistically significant changes in attributes describing the size and form of the 

trees within the nine- (study I) and five-year-long (studies II & III) monitoring periods were 

detected in all three sub-studies of this thesis. In study I, development of stem form due to 

tree growth processes over a life cycle was detected and measured with the point cloud-based 

method. The results showed that a statistically significant change during the monitoring 

period had occurred in V, TAP, and q0.5h according to paired sample Student’s t-tests, whereas 

there was no significant change in f or HDR. On average, TAP decreased, but there was 

variation within the plots, too. Especially for the largest trees, a marginal change in TAP was 

recorded, while Δq0.5h indicated that the increase in stem diameters was relatively higher in 

the upper parts of the stem than at breast height (i.e., 1.3 m above the ground). However, 

considering the low number of sample trees in study I and the location of the study site in 

Nuuksio National Park, where the forest conditions differ slightly from the ones in managed 

boreal forests, it is not recommended to make major conclusions about findings related to 

tree growth based on these results. Due to the location of the study site, the variation in tree 

species on each plot was probably larger than it would have been in more actively managed 

boreal forests. Also, the range in the size of the trees was notable within the sample plots. 

When taking this into account, further research with larger datasets was needed to be able to 

evaluate the differences in tree growth more extensively in varying forest conditions. Still, 

study I demonstrated the feasibility of using TLS point clouds to measure tree growth in 

boreal forests.  

In studies II & III, changes in all examined attributes of individual trees were successfully 

detected. A significant change during the monitoring period was recorded for dbh, g, h, HDR, 

hc, cr, TAP%, f, q0.5h, V, Vlog, and Vlog%. When ΔTAP%, Δf, Δq0.5h, ΔV, ΔVlog, and ΔVlog% 

were further investigated within four different forest structural groups in study III, the results 

showed that the changes were of similar kinds in equal forest conditions. The value of TAP% 

decreased in all classes except for old-growth forests, but ΔTAP% was statistically significant 

only in the young forest class (Figure 4). This supports the understanding that the 

development of stem form has an equal trend in similar forest conditions (e.g., Larson 1963; 

Oliver and Larson 1996). Changes in the attributes describing stem form were also relatively 

small due to the rather short monitoring period, but it was still possible to see slight 

differences in tree growth processes and in trees’ responses to different forest conditions. 
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FIGURE 4 (facing page). Box and whisker plots describing the variation in change of relative 

tapering (ΔTAP%), stem volume (ΔV), logwood volume (ΔVlog), and logwood percentage 

(ΔVlog%) within the forest structural groups during the monitoring period in study III. In the 

plots, the black line represents the median of change, and the box borders show the lower 

and upper quartile of the variation. The whiskers are used to indicate 1.5 times the interquartile 

range from the upper and lower quartiles. For ΔTAP% in A) and for ΔVlog% in D), the change 

is reported in percentage points. For ΔV in B) and ΔVlog in C), the relative change is presented 

in percentages. The horizontal red line is equal to no change. 

 

 

When studying how trees allocate volume growth in study III, a significant change in V, 

Vlog, and Vlog% was expected, since the increase of these attributes as a function of time is 

supported by the theories related to tree growth (e.g., Oliver and Larson 1996). The obtained 

results showed that the applied point cloud-based methods had performed successfully in 

recording the occurred changes. Specifically, the Vlog increased notably more in the groups 

of young managed forest (146.2%) and young unmanaged forest (76.5%) in comparison to 

groups of mature managed (23.5%) and old-growth forests (18.5%) (Table 6 & Figure 5). 

This is understandable, since the Vlog% of trees belonging to groups of mature managed and 

old-growth forests has already reached such a level that, even if their growth were to continue, 

the increase in the proportion of Vlog would only be minor. This is in contrast to the younger 

trees, where increase of Vlog is rapid since the trees have, or are only just reaching, dimensions 

above the logwood threshold in large parts of their stems. There were no differences within 

the four forest structural groups in ΔV, but statistically significant differences were detected 

between the groups. This again supports the current understanding of tree growth and the 

effects of the surrounding environment on it. Trees in younger development phases are forced 

to allocate their growth efforts to vertical growth and to extend their branches to compete for 

light and other resources, to avoid ending up suppressed by neighboring trees (e.g., Oliver 

and Larson 1996). Therefore, they are not able to allocate an equal amount of resources to 

increase the diameter at the lower end of their stems, whereas dominant trees in mature and 

old-growth forests can allocate their resources to extending the stem girth, thus strengthening 

the supportive structure of the tree. 

The accuracy of detecting changes in forest structural attributes was investigated in study 

II. The results from conventional field measurements were used as a reference for whether a 

statistically significant change in ΔDg, ΔHg, ΔG or ΔTPH had occurred on the sample plots. 

Detection of change with methods based on TLS point clouds was successful on all tested 

forest attributes except for ΔTPH. According to the field reference, there was a significant 

change in ΔTPH on Norway spruce-dominated and mixed-species plots, but it was not 

detected with point cloud-based methods. This defect is directly related to the difficulties of 

detecting individual trees from the plots either in the beginning or at the end of the monitoring 

period. The same issue was also the reason for higher errors in estimation of G and TPH from 

the TLS point cloud data. To improve detection accuracy, better point cloud coverage with 

additional scans or data acquisition from a mobile platform could be a solution (Wilkes et al. 

2017; Liang et al. 2018b).  
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Table 6. Means and standard deviations of the estimated changes in stem volume (ΔV), 

logwood volume (ΔVlog), and logwood percentage (ΔVlog%) during the monitoring period in 

study III for all trees and for trees belonging to different forest structural groups. Mean change 

in stem volume (ΔV) and in logwood volume (ΔVlog) is reported as the relative change in 

percentages. The mean change in logwood percentage (ΔVlog%) is reported in percentage 

points. Standard deviations of the respective changes are reported in parentheses.   

 

Forest 

structural 

group 

ΔV, % ΔVlog, % ΔVlog%, %-points 

young-

managed 
35.3 (27.2) 146.2 (467.1) 9.1 (13.2) 

young-

unmanaged 
29.2 (38.7) 76.5 (220.2) 5.4 (15.2) 

mature-

managed 
17.8 (16.1) 23.5 (34.7) 1.6 (7.3) 

old-growth 10.0 (13.7) 18.5 (63.4) 0.7 (4.4) 

All trees 25.4 (29.6) 67.1 (267) 4.9 (12.3) 

 

  

Measurements of hc and cr for Scots pines with methods based on TLS point clouds were 

affected by similar challenges in vertical measurements, which had an effect on the 

measurements of h, too. The uncertainty in measuring h or hc also caused errors in change 

detection of Δhc and Δcr of Scots pines. This was expected, as the TLS point cloud data in 

these studies was collected on a sample plot level and the data collection process did not 

focus only on individual trees. To be able to perform more detailed point cloud-based 

measurements of crown attributes of all the sample trees, for example, the data collection 

should probably have been adjusted towards these targets. Typically, the collection of more 

comprehensive TLS point clouds with several scans targeted to an individual tree is possible 

if the study is more focused on individual trees and the sample size is thus significantly 

smaller (e.g., Saarinen et al. 2017).  

Considering the point cloud-based methods for measuring tree growth and detecting 

forest structural changes, the novelty of TLS technology in forest inventory applications is 

still limiting the length of observation periods. Especially in boreal forest conditions, where 

the rotation time of commercially managed coniferous forests may reach up to 80–100 years, 

the annual diameter increment of trees may be on a millimeter level. This means that the scale 

of the detectable change during current monitoring periods is still relatively small, whereas 

longer time horizons will make the differences more distinct for the measurement methods. 

Even though accurate measurements at T1 and T2 are the foundation of growth analyses, the 
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relative effect of the measurement accuracy to the growth analysis is expected to decrease 

with a longer monitoring period when the growth is more prominent. 

 

  

3.4 Insights and implications 

 

In this thesis, the attributes selected to be measured have already been defined for trees and 

forests for decades (Kershaw et al. 2016). The decision to use attributes characterizing 

diameter increment at a specific height, tree height increment, stem tapering, form factors, 

etc. to measure tree growth was made mainly due to the conventionality of the attributes. 

Those were the attributes for which it was in practice possible to acquire an equivalent 

reference with the other available methods. The ability to compare the obtained results to 

those obtained from earlier studies, where tree growth was measured with TLS point clouds, 

favored the use of those attributes, too. However, suggestions to create and take advantage 

of the new attributes derived from features that are measurable from TLS point clouds have 

emerged through the ability of TLS to characterize almost all the structural details of the 

trees. For example, several researchers (e.g., Seidel et al. 2011; Cattaneo et al. 2020; Saarinen 

et al. 2020; Jacobs et al. 2021; Uzquiano et al. 2021; Yrttimaa et al. 2022) have already started 

to develop and test such new point cloud-based tree attributes that have been impossible to 

measure using conventional methods in attempts to increase the understanding of factors 

affecting tree growth, such as tree crown structure and competition between trees. Following 

the example of recent studies, it might be recommended to consider which attributes should 

and can be used to measure growth of trees and forests in the future. In addition to this, the 

possibility of re-processing the previously collected point cloud data is an unrivaled feature 

of point cloud-based methods. The already-existing point clouds make it possible to gather 

additional information from the surrounding environment, or even determine later such 

attributes for trees as were neither of interest nor determined when the data was originally 

collected.   

Altogether, the advantages of point clouds to measure trees should be utilized in full in 

the future when investigating tree growth. However, instead of characterizing trees and their 

growth using attributes designed to be measured with conventional mensuration techniques, 

one could fully deploy the ability of point clouds to characterize all the structural details of 

trees. Exploring the opportunities provided by the TLS point cloud-based methods may create 

possibilities to find even better indicators for some phenomena, such as tree growth, and thus 

contribute to extending the use of TLS point clouds even more widely among forest and other 

natural sciences.   

 

 

4 CONCLUSIONS 
 

 

The importance of the ability to observe and understand the current state and development of 

dynamic ecosystems, such as forests, is vital for researchers and decision makers around the 

world. Information about constant changes in forests can be utilized in analyzing and 

managing ecological, social, and economic processes and their direct or indirect effects on 

human well-being.   
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This thesis contributed to fulfilling the demand for more accurate and detailed 

information about changes in forests through its three main objectives. The aims of the thesis 

were: Firstly, to develop methods for TLS point cloud-based tree growth measurements by 

utilizing repeatedly acquired TLS point clouds. Secondly, to explore the capability of the 

developed methods in measuring tree growth in boreal forest conditions and to detect the 

occurring changes in attributes characterizing individual trees and the forest structure. And 

finally, to enhance understanding of how trees allocate resources into the growth of their 

structures in different phases of their life cycle as well as in different growth environments, 

and thus increase awareness of the functioning of the forest ecosystems.       

The feasibility of TLS point clouds to measure tree growth was demonstrated in study I. 

A combination of TLS point cloud-based tree diameter measurements and traditionally 

measured tree height information was successfully used to detect tree growth and thus 

characterize the changes in size and form of individual trees during a nine-year-long 

monitoring period. 

The fully automated TLS point cloud-based tree detection and measurement method, 

presented in study II and validated with a large number of trees, could measure tree growth 

in boreal forest conditions. The tree attributes were successfully characterized at T1 and T2 

even though the detection accuracy of smaller trees on the plots was particularly restricted 

by point cloud occlusion in dense forests, which could be expected based on the existing 

knowledge related to the challenges of TLS point cloud-based methods. For trees that were 

detected at both time points, the attributes of individual trees could then be derived to quantify 

growth-induced changes in the forest structure. 

Study III aimed at investigating how trees allocate growth into their structures. TLS point 

cloud-based measurements were utilized in investigating the allocation of tree growth and 

changes in attributes describing the stem form of trees. A statistically significant change in 

stem volume, logwood volume, and logwood percentage, as well as for attributes describing 

stem form (i.e., relative tapering, cylindrical form factor, and normal form quotient) was 

measured during the five-year monitoring period. The results also revealed environment-

induced variation in tree growth that further supported the existing growth theories.  

Following the findings of this thesis, the TLS point cloud-based tree growth measurement 

methods used could be expanded into conditions outside the boreal forests and tested with 

other tree species as well. The follow-up studies demand measurements from at least two 

time points, but even now, the already-existing point cloud data is available for creation of 

new time series of digitized trees and forests. The methods used can also be utilized in the 

future to continue the topics of current studies with extended monitoring periods. 

Furthermore, short-term measurements with a millimeter level of detail could also be utilized 

in exploring sudden shifts in tree growth, and thus improve understanding of the state of 

individual trees and forests in a changing environment.  

This thesis has shown the capability of  TLS point cloud-based methods to measure tree 

growth and characterize changes in forest structure. The benefits of further utilizing point 

cloud-based methods as measurement tools will open new worlds for ecological and 

silvicultural applications, and will thus undoubtedly improve the understanding of the 

underlying cause–effect relations driving the changes related to tree growth processes.  
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