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ABSTRACT 
 
 
Luostarinen, K. 2006. Effects of environmental and internal factors of trees and timber 
treatment on colour of dried birch (Betula pendula) wood. University of Joensuu, Faculty of 
Forestry.  
 
Wood of silver birch (Betula pendula) has good properties that lead to its extensive use in 
mechanical wood industries in Finland. However, a problem with sawn birch timber is the 
darkening of the wood during kiln drying. The purpose of this study was to investigate the 
reasons for darkening of silver birch wood in order to suggest a way to avoid it. In these 
experiments, birch boards were sawn into the dimensions needed for parquet billet boards 
and dried by conventional and vacuum processes in laboratory kilns. The changes in wood 
colour and in proanthocyanidin concentration during conventional drying and after all 
drying processes were measured and compared to factors connected with timber handling, 
environmental factors and internal factors of the trunks, and selected anatomical 
characteristics of the wood were measured or observed visually. When different schedules 
for conventional drying were compared, the higher the temperature, the darker was the 
colour of the wood at the end of drying. Two critical points in wood colour changes were 
observed. After the conventional drying processes were started, the colour of wood became 
lighter until moisture content of about 30%; then darkening started and continued until the 
moisture content of the wood was ca. 15-20%. After that, during further drying the colour 
of the wood lightened again. A decrease in concentration of soluble proanthocyanidins, i.e. 
their polymerisation and/or oxidation to coloured compounds, occurred simultaneously 
with darkening of the wood. Differences between drying methods in terms of the measured 
anatomical characteristics that correlated with the colour coordinates were observed; in 
particular, the parenchyma cells of the wood and the width of the latewood layer were 
important in darkening during vacuum and conventional drying, respectively. The effect of 
anatomical differences, which develop during the whole life of a tree, on the colour reaction 
of wood suggests a new approach for controlling the darkening of birch wood that occurs 
during drying. With this approach, birch could be tried to breed for lighter wood or 
development of cells that affect wood darkening could be tried to minimize with 
silvicultural practices. 
 
Keywords: anatomy, Betula pendula, CIEL*a*b*, colour, drying, proanthocyanidins, wood 
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INTRODUCTION 
 
 
Birches (Betula pendula Roth and B. pubescens Ehrh.) are the most common deciduous tree 
species in northern regions, including Finland. Even though their resources are minor 
compared to those of pine and spruce (Peltola 2006), their use is especially important in the 
veneer and plywood industries where they make up ca. 42% of all raw material used 
(Peltola 2006). The proportion of birch logs used in sawing is only ca. 0.6%; but the 
importance of birch for small sawmills, ca. 6.7%, is greater (Peltola 2006). In addition, 
sawn birch wood is definitely used in ways that add value to products. For example, the 
proportion of birch timber in the furniture industry, where good quality of raw material is of 
key importance, has been 26 %, while the proportions of pine and wooden boards have 
been 26% and 32%, respectively (Isomäki & Koponen 2004). 

Of the two Finnish birch species with log-size trunks, B. pendula, silver birch, forms 
more wood suitable for logs (Louna & Valkonen 1995). Thus, silver birch is more 
commonly used in sawing than B. pubescens, white birch is, due to also the good properties 
of its wood, i.e. originally light and uniform colour, adequate strength and hardness with 
moderate density, ease of manual tooling, machining and finishing, and suitability for 
sawing and further processing of sawn timber. The most important property limiting the use 
of birch wood is its poor resistance to decay. This, together with the other properties, means 
that it is used only in interiors in joinery and carpentry for furniture, panelling and flooring 
and also in bathrooms and kitchens (Louna & Valkonen 1995), where wood is exposed to 
mild variations in moisture. The features of birches in sawing and further processing are 
collected and discussed in detail in Study I of this thesis. 

Some of the eight issues mentioned as needing further research in Study I (p. 25) have 
been investigated during the first years of this millennium. Heräjärvi (2002), who carried 
out a study concerning the properties of birch wood for sawmilling and further processing, 
concentrated on the technical properties of birch stems from the standpoint of sawmilling, 
bucking principles in relation to timber grade and value, and some mechanical properties. 
He concluded that in Finland the whole wood procurement chain needs to be developed. 
Possibilities to saw small-sized birch logs for the furniture industry (Lindblad et al. 2003) 
and to use them as a raw material in engineered wood products (EWP), such as oriented 
strand board (OSB) (Heräjärvi et al. 2003), have been examined with promising results. 
The timber of planted silver birch, which will become an important source of birch wood in 
the near future (see Peltola 2006), has also been under investigation: Möttönen et al. (2004) 
studied the Brinell hardness and the equilibrium moisture content of dried silver birch wood 
from plantations, discussing their effects on the usability of wood, and Möttönen and 
Luostarinen (2006) compared the density and shrinkage of natural and planted birches in 
order to compare the usability of the woods from these two sources, natural birches being 
slightly better. 

According to Study I, based on the results of e.g. Johansson (1996), Kivistö et al. (1999) 
and Paukkonen et al. (1999), and on information from experts involved in birch timber 
processing, drying is perhaps the most critical phase in producing birch timber of good 
quality. Drying conditions strongly affect the colour of birch wood (I), darkening having 
been shown to be a serious problem for mechanical wood industries that use sawn birch 
timber (Harinen pers. comm.). Darkening of birch wood occurs in the inner parts of boards 
so that a surface layer of a few millimetres remains light in colour (Harinen pers. comm., 
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Paukkonen et al. 1999). Thus the darkening is specially harmful in parquet and comparable 
industries, where thin lamellae, ripped from thicker boards, are located side by side in the 
product. Placed in this way, the light surface layers form light stripes, which on large 
surfaces are thought to be aesthetically undesirable. 

In the case of birch, testing the schedules for raised-temperature dryings has produced no 
solutions that would be reliable enough to avoid darkening of wood during the drying 
process (Harinen pers. comm.). Even temperatures as low as warm summer weather in 
Finland may cause darkening of the inner parts of birch planks (I). Anyway, significant 
darkening can be avoided by drying at very low temperature, but this is usually too 
expensive for sawmills: they cannot tie up capital for the long time that drying at low 
temperature would demand. In addition, it is often impossible for small saw mills to invest 
for example in vacuum-drying equipment, although it is easier and faster to produce light-
coloured birch wood with this method than with the more common conventional warm-air 
method (Lahtinen pers. comm., Lahtinen 2001). Other drying methods suitable for sawn 
birch timber but seldom used are high frequency-vacuum drying (Auvinen 2001) and high-
temperature drying (Sonninen 2001).  

Thus, the failures to avoid darkening in connection with conventional drying have raised 
questions concerning the causes of colour darkening in birch wood. In general, darkening is 
believed to be caused mainly by chemical changes in wood. A source of colour changes is 
degradation reactions of cell wall components (McDonald et al. 2000), but the chemical 
changes may also be caused by reactions of unstructural wood compounds (Bauch 1984). 
The natural compounds that take part in darkening during drying differ, at least partly, in 
different tree species; these compounds include carbohydrates and compounds containing 
nitrogen (Theander et al. 1993, Kreber et al. 1998, McDonald et al. 2000) or phenolic 
extractives, including proanthocyanidins (condensed tannins) (Hillis 1985, Haluk et al. 
1991, Kreber 1993/1994, 1996, Charrier et al. 1995, Johansson et al. 2000). 
Proanthocyanidins, which have not been studied earlier in connection with colour changes 
of birch wood, are oligomers that are composed of flavan-3-ol units (Ferreira et al. 1999), 
i.e. they are based on flavonoid structure (Mononen 2001). They belong to secondary 
metabolites of plants and they are most commonly analysed from leaves in connection with 
stresses, e.g. herbivory and climatical changes (e.g. Tallamy & Raupp 1991, Julkunen-
Tiitto et al. 1996, Laitinen et al. 2000). These compounds are also known to take part in the 
colour changes of ripening fruits (Hillis & Swain 1959), and are supposed to cause loss of 
brightness in pulp (Hrutfiord et al. 1985).  

The solution for keeping birch wood light may be found in some other factors than 
directly from drying conditions or changes in them. Thus, for example, the growing and 
felling conditions of trees, as well as the effects of anatomical factors on wood colour, need 
to be studied, because they may affect the chemical composition of wood. 
 
 
AIMS OF THE STUDY AND HYPOTHESIS 
 
 
This thesis consists of a literature part (I) and an experimental part (II-VI). In the literature 
part information concerning birch in mechanical use is collected to determine the issues 
needing further research. The main purpose of the experimental part was to investigate the 
reasons for colour darkening of birch wood during drying in order to suggest how 
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darkening of birch wood colour during drying could be minimised or even avoided. For 
this, growing site as an environmental factor, wood location in the trunk as an internal 
factor, and felling date and log storage as factors related to timber treatment were studied 
from the standpoint of colour darkening during drying. It was hypothesised that these 
factors affect changes in wood colour during drying by causing differences in its chemical 
and/or cell composition.  

The specific objectives of the sub-studies were: 
1) to compile information on usage of birch wood, properties affecting its usage and the 

problems encountered in its use as sawn timber and to gather the unwritten knowledge from 
professionals (Study I), 

2) to compare the effects of drying temperatures on the colour and deformations of birch 
boards and to determine the phases of drying during which colour changes occur. The 
issues to be taken into account in Studies III-VI were specified on the basis of this study 
(Study II), 

3) to study the effects of drying method, growing site, felling time, log storage and 
location of wood in the trunk on the colour of birch wood (Study III), 

4) to investigate the effects of growing site, felling time, log storage and location of wood 
in the trunk on proanthocyanidin concentration in wood at different stages of conventional 
drying and to determine the correlation between colour and proanthocyanidin concentration 
(Studies IV and V), and 

5) to investigate the anatomical characteristics of wood and their relation to wood colour 
in differently dried birch wood (Study VI). 

 
 

MATERIALS AND METHODS 
 
 
Wood material 
 
Sawn birch timber for Study II was provided by the Karjalan Puu sawmill, Rääkkylä, North 
Karelia, Finland, from its regular production. The boards were sawn into dimensions for 
parquet billet boards (30 mm x 70 mm in dried condition).  

For Studies III, IV, V and VI, silver birches were felled on two growing sites in 
Ilomantsi, North Karelia, to compare the effect of two very different growing sites on wood 
darkening during drying. Birches were felled in summer, autumn, winter and spring and 
two logs were taken from each tree for immediate sawing and for both 5 and 10 weeks 
storage to be sawn later. During sawing (into dimensions 30 mm x 70 mm in dried 
condition), the boards cut from the trunk surface, near the pith and in the middle between 
the surface and the pith were marked for later identification. 

 
 

Drying 
 
Boards were dried by conventional (II-VI) and vacuum (III-VI) processes in laboratory 
kilns (Brunner Trockenteknik GMBH). The course of drying was based on the moisture 
content of wood measured continuously from 12 points on the boards during drying. The 
conventional drying processes were carried out in Joensuu (Faculty of Forestry, University 
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of Joensuu), and vacuum drying processes in Mikkeli (YTI-Research Centre, Mikkeli 
Polytechnic). The conventional schedules (temperature below 100 ˚C) used in Study II 
were: 1) a schedule with high temperature, 2) a schedule with moderate temperature and 3) 
a schedule with low temperature; all lots of Studies III-VI were dried using the same 
conventional and vacuum schedules, which were tried to plan so that darkening would 
occur. 

In addition to kiln-drying processes, to obtain light-coloured dried birch wood, in Studies 
III-VI room-temperature dryings were performed in laboratory at ca. 20 ˚C and at air 
humidity of ca. 40-50% on a limited scale. 
 
 
Measurement of reflectance spectra and presentation of colour as CIEL*a*b* colour 
coordinates 
 
To determine wood colour, in Studies II and III the reflectance spectra were measured from 
undried wood after planing the flat side of the boards thinly to make the surface smooth for 
even reflectance of light and to remove the yellowed surface that developed rapidly on the 
timber pieces after sawing; the yellowed surface itself was not studied. It was assumed that 
before drying, wood is the same colour throughout under the yellowed surface, and thus 
inner and surface woods of undried boards were not measured separately. The changing of 
the colour of the inner wood of the boards was charted in Studies II and III by sampling two 
boards at a time and ripping and planing them for spectral measurements several times 
during conventional dryings. During the same samplings, the surface of the boards was 
planed thinly to determine the colour of the surface layer. The final colour of the wood at 
its final moisture content was measured in the same way from both inner and surface wood 
of boards dried conventionally (II, III), in vacuum (III) and at room temperature (III). 
Possible knots, pith flecks and other irregularities that affect colour were avoided, and 
measurements were made on sound wood. On each board, from both surface and inner 
wood, the spectrum was measured from three points, the average of them being the result 
for that board. 

The reflectance spectra were measured using a Minolta CM-2002 portable 
spectrophotometer at visible light range (400-700 nm). The spectra were converted to the 
widely used CIEL*a*b* colour coordinates (e.g. Precise color…1994), in which the 
coordinate L* stands for lightness, negative and positive values of the coordinate a* for 
greenness and redness, respectively, and negative and positive values of the coordinate b* 
stand for blueness and yellowness, respectively. For birch wood the values of the 
coordinates a* and b* are positive.  

The difference in colour between woods from two treatments is presented as ΔEab*, 
which corresponds to the distance between two points in the three-dimensional colour 
coordinate system and is calculated as follows (e.g. Precise color… 1994): 

 
ΔEab*=[(ΔL*)2+(Δa*)2+(Δb*)2]1/2                                                                                                        (1) 
 
 
Analysis of proanthocyanidins 
 
Concentration of soluble proanthocyanidins (condensed tannins; phenolic) was measured 
from wood in Studies II, IV and V with the method of Hagerman (1995; see also Hagerman 
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2005), based on the method of Porter et al. (1986). According to this method, soluble 
proanthocyanidins were extracted from milled samples with acetone, and after adding the 
reagents (butanol+HCl, ferric ammonium sulphate+HCl) the soluble proanthocyanidins 
were converted to coloured anthocyanidins in a boiling water bath. The amount of 
anthocyanidins was determined spectrophotometrically (550 nm). The extraction was made 
twice for every specimen to ensure that most of the soluble proanthocyanidins could be 
extracted, the sum of the two extractions being the total amount of soluble 
proanthocyanidins of the specimen. 
 
 
Wood anatomy 
 
In Study VI, birch wood was observed under a light-microscope to determine the tissue-
level factors affecting darkening of the wood. The crosscuts for the measurements were 
stained with safranin-alcian blue (Fagerstedt et al. 1996) to emphasise the cell structures for 
measuring. These measurements were carried out for undried and for both conventionally 
and vacuum-dried wood. The amounts of axial and terminal parenchyma were estimated on 
a three-step scale (little, average, much). 

Phenolic extractives in wood tissue were observed both from FeSO4-fixed (Johansen 
1940, Schneider 1980), and unfixed, i.e. unstained, specimens. FeSO4 stains tannins from 
orange to black (Schneider 1980); but as coloured compounds, they can also be seen 
without staining. 
 
 
Analysis of deformations  
 
In Study II, deformations (twist and warp in radial and tangential direction, cupping, 
casehardening, shrinkage) were measured according to the method of Paukkonen et al. 
(1999). 
 
 
Statistical analyses 
 
The statistical analyses in Studies II-VI were performed with SPSS statistical software 
using GLM procedure, and Pearson and partial correlation procedures as well as non-
parametric Kruskall-Wallis analysis of variance and Spearman correlation. The differences 
in colour and proanthocyanidin results between the compared factors and between the 
different phases of drying were compared to each other with analysis of variance, while the 
relation of colour to proanthocyanidin concentration and, on the other hand, its relation to 
anatomical characteristics were calculated with correlation procedures. 
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RESULTS 
 
 
Dependence of wood colour and deformations on drying, growing site, felling date, log 
storage and location of wood in the trunk 
 
The effect of different drying conditions on wood colour was clear: the higher the drying 
temperature, the darker was the colour of the inner wood of the boards at the end of drying 
(II, III). According to calculated colour differences (ΔEab*), in the moderate- and high-
temperature conventional dryings (II) (Table 1) and in conventional drying of Study III (see 
III), the difference in colour between the inner parts of the boards and the wood located just 
under the yellowed surface of boards was clear. As well as in vacuum-drying (III), the 
surface layer also darkened to near the colour of the inner wood when birch wood was dried 
conventionally in the mildest conditions (lot 3; II) (Table 1). In drying at room temperature, 
wood remained light-coloured throughout (III). 
 In both Studies II and III, two critical points in wood colour changes could be observed 
in conventional drying. After the drying processes started, the wood became lighter in 
colour until about the moisture content was about 30%, below which to a moisture content 
of ca. 15-20% the wood darkened. After that, with further drying, the wood lightened 
clearly again, but remained visibly darker than before drying (Figure 1). 
 Felling date, length of log storage period, fertility of the growing site, and radial and 
longitudinal locations of wood in the trunk affected wood colour; and these effects were 
somewhat different when wood was dried by different methods (III). For example, wood 
from winter-felled trees was lightest after conventional drying, the difference being 
statistically significant compared with most of the felling dates, but in vacuum drying, 
wood from autumn-felled trees remained the lightest. On the other hand, fresh wood was 
lightest when trees were felled in summer. When storages were compared, wood stored for 
10 weeks was least red after conventional and vacuum drying, and after vacuum drying 
unstored wood was lightest. The colour of wood from different growing sites differed, the 
wood from the MT site being generally lighter and less red than wood from the VT site. On 
the other  hand, longitudinally on the trunk, colour  differences were rare, occurring  mainly 
 

 
Table 1. Comparisons of colours measured in 
Study II, difference presented as as ΔEab*. The 
colour of fresh wood was compared to that of 
the inner wood of drying 1 and the surface 
wood of drying 2 because after drying the 
wood colours in these dryings/locations were 
the darkest and the lightest, respectively. 
 

Comparison ΔEab*

Drying 1, surface - inner wood 6,92 
Drying 2, surface - inner wood 7,51 
Drying 3, surface - inner wood 1,35 
Fresh - inner wood of drying 1 9,64 
Fresh - surface wood of drying 2 4,63 
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in fresh wood: the wood of the top log was lighter and more yellow than that of the butt log, 
the trend toward yellowing remaining only in conventional drying. Radially in the trunk, 
there was a clear tendency toward redness: in most cases the wood located near the pith was 
reddest both before and after drying. 
 In Study II, the effect of drying schedules on the deformations was limited to differences 
in case-hardening. Among every three drying lots case-hardening was greatest after drying 
at moderate temperature and smallest after drying at high temperature. 
 
 
Dependence of wood colour on the proanthocyanidin concentration of wood 
 
At the final wood moisture content, drying method affected the concentration of soluble 
proanthocyanidins in birch wood (IV, V). The final average proanthocyanidin concentration 
of wood was in accordance with the final colour of the wood, the concentration being 
lowest  in  the  darkest  vacuum-dried wood  and  highest  in  the  lightest room-dried wood. 
Percentage  yields  of  soluble  proanthocyanidins  differed  between   the  first  and  second 
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Figure 1. Example (spring-felled, stored 5 weeks) of the average colour of undried birch 
boards, boards sampled during conventional drying and conventionally dried boards; 
the moisture content at which the measurements were performed is presented as the 
name of a spectrum. After the name, L*a*b* colour coordinates are presented in this 
order. Spectra represent the colour measured from the inner wood of the boards. 
ΔEab*’s were 7.6, 12.4 and 5.3 between 97 and 6%, 97 and 20%, and 20 and 6%, 
respectively. For moisture contents 97 % and 6 %, the number of measured boards was 
31; and for each of the other moisture contents, the number was 2. 
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Figure 2. Average concentrations (±SE) of soluble proanthocyanidins (sPa, 
dry weight basis) in undried wood, during and after conventional drying (CD), 
in vacuum-dried (VD) wood and in wood dried at room temperature (RD) 
calculated for the whole material of Studies IV and V. 

 
 
extraction of the specimens (V). Soluble proanthocyanidins were attached more firmly in 
wood dried in vacuum than in samples dried in other ways or in undried samples. 
 The analyses of soluble proanthocyanidins made from specimens of birch wood taken 
during conventional drying showed that the concentration of proanthocyanidins increased 
until about 30% of wood moisture content, at which point it started to decrease (IV, V) 
(Figure 2). Below a moisture content of 30%, the decrease in concentration of soluble 
proanthocyanidins occurred simultaneously with darkening of the wood. In wood stored for 
10 weeks, however, the increase in concentration of soluble proanthocyanidins was smaller 
than in wood from other storage periods, and the slight increase continued to lower the 
wood moisture content than in unstored wood or wood stored for 5 weeks (IV). 
Furthermore, the darkening of wood stored for 10 weeks lasted until the moisture content 
was lowest, ca. 15%. In general, wood of logs stored for 10 weeks remained least red and 
least yellow during drying (III). When storage periods were compared, however, the final 
proanthocyanidin concentrations of similarly dried birch boards were similar.  
 In fresh wood some differences in proanthocyanidin concentration were observed 
between sampling dates and at different radial locations in the trunk; but during 
conventional drying these differences disappeared. On the other hand, after vacuum drying 
in addition to between sampling dates and radial locations in the trunk, statistical 
differences in the concentration were also observed between growing sites and storage 
periods. On this level, however, there was no clear relationship between colour and the 
proanthocyanidin concentration of wood (IV, V). 
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Correlation of tissue-level factors with wood colour 
 
In Study VI, the darkening of birch wood was investigated on the cell level. Only small 
amounts of darkened compounds could be seen in undried and room-dried samples, but 
more appeared in conventionally and vacuum-dried unstained specimens. The darkening 
and condensing of the compounds were more evident in vacuum-dried than in 
conventionally dried specimens. These compounds were located mainly inside the ray 
parenchyma cells, with small amounts in axial and terminal parenchymas, but not in the cell 
walls. They stained with FeSO4 in both light-coloured and in darkened specimens, 
indicating that they were phenolics. 
 When the anatomical characteristics measured here were correlated with colour 
coordinates, the clearliest finding was the differences between drying methods in terms of 
characteristics that correlated with colour coordinates, and the scarcity of such 
characteristics in undried wood. In both drying methods with raised temperature, the 
importance of the rays was obvious; however, the effect of the rays differed in the two 
methods. In conventionally dried wood, the more rays there were, the lighter, less red and 
less yellow the colour of the wood was; and in vacuum-dried wood, the larger the width of 
the rays, the darker, redder and yellower the colour of the wood was. In conventionally 
dried wood, a wide band of latewood caused darkening of wood, while in vacuum drying 
axial parenchyma also played an important part in colour darkening: the more axial 
parenchyma there was in a specimen, the darker, redder and yellower its colour was (Figure 
3). 
 
 
DISCUSSION 
 
 
Effects of drying on colour and proanthocyanidin concentration of wood 
 
In this study, it was confirmed that the most obvious factor affecting the degree of 
darkening of birch wood during conventional drying is temperature: the higher the 
temperature, the darker the birch wood was after drying (II, Paukkonen et al. 1999, Stenudd 
2002). When drying methods were compared, several results suggested that there was a 
difference between drying methods in colour darkening; the different temperatures used in 
conventional and vacuum drying may have also played a part in this. Vacuum drying at 
lowered air pressure caused redder colour than conventional drying did, different felling 
times and storages affected the degree of darkening differently in conventionally and 
vacuum-dried wood (III), and in these two drying methods, the final concentration of 
soluble proanthocyanidins differed as did the extractability of these compounds (V). In 
addition, the appearance of the dark compounds inside the ray parenchyma and also the 
tissue-level characteristics that correlated significantly with colour coordinates differed in 
different drying methods (VI). Although the ease of vacuum drying in keeping wood colour 
as light as possible is based on the deficiency of oxygen concentration in kiln as well as on 
rapidity of drying in lowered vaporisation heat of water, the method does not completely 
hinder the darkening of wood colour. According to Frey-Wyssling  and  Bosshard  (1959),  
decrease  of  non-structural  carbohydrates  −  which  was  observed  in  these  samples,  too 
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Figure 3. Crosscuts of birch wood with different 
amounts of axial parenchyma (arrows): a) little, b) 
average, and c) much. R - ray, T - terminal 
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(Mononen  et  al.  2001) − raises the redox-potential so that very low concentration of 
gaseous oxygen is enough for oxidation reactions. The colour differences, measured from 
the inner wood of the boards, between different dryings in Study II and between drying 
methods in Study III were clearly visible and would be harmful if boards from different 
dryings were used for the same product, in writer’s opinion. On the other hand, the 
variation observed in the colour of similarly dried boards was not as great, and similarly 
dried wood would be acceptable for the same product, assuming that darkened wood would 
be acceptable at all. 

Different drying conditions in conventional drying (II, III) and vacuum drying (III) 
affected the development of a surface layer that differed in colour from the inner wood of 
the boards. The surface layer is usually light; but in very mild conditions that do not favour 
formation of a dry surface layer, like in lot 3 of Study II, the surface wood also darkened. 
The same conditions emphasise both formation of the light surface layer and case-
hardening. In the case of Study II, differences in case-hardening may be due to the fact that 
the boards of lot 2, with the largest case-hardening and with the largest colour difference 
between surface and inner wood was frozen when drying was started at quite low 
temperature. In these kinds of conditions the surface starts to thaw and even dry when inner 
parts of timber are still frozen. This means that the transport of water towards the surface of 
boards is limited. Drying of the surface layer is also assumed to block the passage of water 
out of the wood, which prolongs the hot and wet conditions inside the piece of timber 
(Paukkonen et al. 1999). In vacuum-drying (III) the observed total darkening of the boards 
can be explained as being due to decreased possibilities for water to evaporate from the 
board surfaces at low air pressure, as well as to high temperature. Sugars may have 
enhanced the darkening of the surface layer because they migrated with water and 
accumulated on the surface of the boards, and formed clearer gradient in vacuum-dried than 
in conventionally dried boards (Piispanen & Saranpää 2001). Migration of sugars and 
nitrogen to the surface of pieces of timber has been observed also earlier in conventional 
drying (Terziev 1996), but phenolics have not been observed to migrate (Lavisci et al. 
1991, see Möttönen & Luostarinen 2005). Thus colour changes occurring in different parts 
of the timber may be caused by different compounds and reactions. If the surface layer that 
differs from the inner wood of timber piece due to its colour is very thin, it is removed in 
planing and does no harm. 

The two critical points of drying determined in conventional dryings (ca. 30% and 15-
20% moisture content), between which the darkening occurred, suggest that chemical 
reactions of proanthocyanidins, polymerisation and oxidation, that lead to darkening require 
oxygen and moisture in addition to raised temperature. On the contrary, the formation of 
soluble proanthocyanidins, which occurs mainly at higher moisture contents than 30% 
(although it was possible also below it), do not require high temperatures, as it also 
occurred in room temperature. When the two results, i.e. that reactions of soluble 
proanthocyanidins into insoluble form mainly occurred simultaneously with colour 
darkening and that the final concentration of soluble proanthocyanidins corresponded to the 
final colour of wood when drying was carried out with different methods, are compared, it 
becomes clear that chemical reactions of proanthocyanidins take part in darkening of birch 
wood. It is not, however, possible to predict the final colour based on the concentration of 
soluble proanthocyanidins in undried wood. For example, the rapidity of drying in the 
early, capillary phase, which has been observed to help keep birch wood light (Stenudd 
2002, Sundqvist 2002), may affect colour by decreasing the formation of 
proanthocyanidins: in wood of planted silver birch, formation of proanthocyanidins in the 
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lighter, faster dried surface layer has been observed to be lower than in inner parts of the 
boards (Möttönen & Luostarinen 2005). As well, the results obtained with planted silver 
birches (Möttönen & Luostarinen 2005) show that the concentration of soluble 
proanthocyanidins was lower in undried wood of planted birches than in wood of natural 
birches here; and although in conventional drying the wood of planted birches remained 
lighter than that of natural birches, during vacuum drying the wood of planted birches 
darkened more. Any reason for the lightening of the wood colour at moisture content below 
15-20% could not be determined according to this study, but photooxidation (Vano & 
Németh 1996, Csonka & Németh 1998), temperature having an effect, too (Csonka & 
Németh 1998), has earlier been observed to destroy the flavonoid structure; breaking down 
of the structure causes lightening of the colour. From birch wood, two flavonoids, (+)-
catechin and (+)-catechin-7-O-β-D-xylopyranoside have been found (Mononen et al. 2001). 

 
 

Effects of felling season, growing site, log storage and wood location in the trunk on 
colour and proanthocyanidin concentration of wood 
 
Differences that depended on felling season, growing site, log storage and wood location in 
the trunk were observed more often in wood colour than in proanthocyanidin concentration; 
and on this level the colour and proanthocyanidin results were seldom in accordance with 
each other. This does not, however, exclude the possibility that concentrations of 
polymerised insoluble and/or oxidised proanthocyanidins (which were not measured) would 
not correlate with wood colour even on this level. However, other factors, e.g. other 
extractives, probably also play a role in the colour differences of wood on this level. For 
example, in birch wood the total concentration of extractives is lowest in autumn and winter 
(Perilä 1958, Perilä & Toivonen 1958), at which times the colour of birch wood (III) 
remained lightest during drying. Between sites, water content of the soil in spring causes 
colour differences in fresh wood (Klumpers et al. 1993), but the colour of oak wood from 
different sites has been observed to differ also after drying (Charrier et al. 1992). In 
addition to between-season variation, the chemical composition of birch wood differs 
between sites (e.g. Mononen et al. 2001).  

Furthermore, storage has been observed to cause changes in the extractive composition of 
birch wood (Assarsson & Croon 1963, Donetzhuber & Swan 1965, Paasonen 1967, 
Mononen et al. 2001, Piispanen & Saranpää 2001). Other effects of storage are the decrease 
in moisture content and the death of the parenchyma cells in wood. All of these probably 
affect slight changes in wood colour during drying. Because the concentration of soluble 
proanthocyanidins did not rise to as high a level in wood stored for 10 weeks than in 
unstored wood and wood stored for 5 weeks, the total amount of these compounds, and thus 
the amount of polymerised and/or oxidised proanthocyanidins, remained lower than in 
wood in other types of storage. Correspondingly, the colour change in conventional drying 
to redder was clearer in unstored wood and that stored for 5 weeks than in wood stored for 
10 weeks.  

In addition, the colour differences observed radially in the trunk – particularly a decrease 
in the redness from the pith to the surface (III) –  were in accordance with other previously 
observed differences between locations in birch trunks. For example, the proportion of rays 
decreases from the pith to the surface (Bhat & Kärkkäinen 1981), and mechanical 
properties are better in the surface wood than in wood near the pith (Heräjärvi 2002). 
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Concentration of soluble proanthocyanidins showed also a downward trend from the pith to 
the surface in both undried and dried wood (V).  

Although wood colour differed statistically significantly between felling dates, growing 
sites, storage and location of wood in the trunk, these differences were visually so small 
that they probably have only slight importance in practice, particularly when drying 
schedules for producing light-coloured wood are used. However, the best combinations of 
the factors studied here would be with conventional drying: winter-felling, more fertile 
growing site, long storage of logs and wood from the surface of the trunks, and with 
vacuum drying: autumn-felling, more fertile growing site, no storage of logs and wood 
from the surface or the middle of trunks. 

 
 

Effects of tissue-level factors on wood colour 
 
In conventionally dried wood, the width of the latewood was important in terms of 
darkening. This was expected because latewood can be seen as dark bands with naked eye.  
In addition, dense latewood is a barrier to water movements and may thus prolong wet and 
hot conditions inside timber pieces. The contribution of the parenchyma, in particular the 
rays, to wood darkening has also been observed earlier, leading to the conclusion that its 
effect depends on the compounds inside these cells (McMillen 1975, Koch et al. 2003). The 
effect of compounds inside parenchyma seemed obvious also here. Thus a surprising result 
was that the phenolics in the parenchyma of conventionally dried wood would not cause 
darkening; the darkening effect of the phenolics located in the ray and axial parenchyma 
was clear only in the vacuum-dried samples. The effect of rays on faster water movements 
perpendicularly to latewood might have been emphasised in conventional drying. The 
results of Study VI suggest that differentiation of different types of cells during the whole 
life of a birch tree affects the colour changing during drying. For example, differences in 
numbers of parenchyma cells in the xylem have been observed to occur between clones 
(Rao et al. 2002) and between trees growing in differing environmental conditions (Alves 
& Angyalossy-Alfonso 2002, Quilhó et al. 2003). Environmental conditions affect the 
concentration of hormones, of which ethylene, for example, in high concentrations, has 
been observed to increase the differentiation of parenchyma cells (Yamamoto & Kozlowski 
1987, Junghans et al. 2004). 
 
 
CONCLUSIONS 
 
 
According to these results, the most obvious factor affecting darkening of birch wood 
during drying were drying conditions in the drying phase, in which wood moisture content 
is between ca. 30 and 15-20%. In this phase of drying, darkening of colour and a decrease 
in the concentration of soluble proanthocyanidins occurred simultaneously. Differences 
between drying lots in the formation of a light-coloured surface layer suggest that the 
duration of wood drying may also contribute significantly to darkening. In conclusion, in 
artificial drying with raised temperature it might be possible to keep birch light in colour, if 
the wood is dried extremely rapidly. In the case of especially thick sawn timber, this is not 
possible, at least not with the conventional process. In this case, one solution might be to 



 20

dry the wood rapidly until about 30% moisture content, at which moisture content the 
temperature of the wood should be lowered to a maximum of about 30 °C, rather to a 
temperature below that. When a moisture content lower than 15-20% is reached, the 
temperature could be raised again. The difficulty with this is correct timing of the 
temperature changes, because on-line measuring of the moisture content of wood with 
adequate accuracy is impossible, and the moisture content in different pieces of timber may 
differ significantly, particularly in this phase of drying.  

Thus the possibilities to affect the concentration of proanthocyanidins in wood and their 
reactions during artificial drying are limited. Even killing the parenchyma cells before 
drying is not enough, as formation of proanthocyanidin was observed in wood stored for 10 
weeks, in which the cells were most likely dead. Rather, a solution may be found in the 
breeding, including gene technology, and cultivation of birches on the basis of the 
anatomical characteristics found to correlate with wood darkening. By controlling the 
genetic origin and growing conditions, which is possible particularly when the origin of 
birch seeds for plantlets and sites for birch stands are chosen, it might be possible to affect 
the cell composition and thus the colour of wood. The possibilities to control colour by 
manipulating anatomical characteristics need to be studied, also because the drying 
schedules used here were planned to cause darkening of the wood, not to keep wood light. 
However, it is improbable that the effects of the tested factors would be totally different if a 
schedule planned to keep the colour as light as possible were used. Another issue worth 
further studying is the observed colour lightening at the final stage of drying. In this stage, 
it might be possible to enhance the lightening so that the final colour of wood would be 
acceptable from the inner parts to the surface of timber pieces. 
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