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During the last decades there has been a global shift in forest management from a focus 
solely on timber management to ecosystem management that endorses all aspects of forest 
functions: ecological, economic and social. This has resulted in a shift in paradigm from 
sustained yield to sustained diversity of values, goods and benefits obtained at the same 
time, introducing new temporal and spatial scales into forest resource management. 

The purpose of the present dissertation was to develop methods that would enable spatial 
and temporal scales to be introduced into the storage, processing, access and utilization of 
forest resource data.  The methods developed are based on a conceptual view of a forest as a 
hierarchically nested collection of objects that can have a dynamically changing set of at-
tributes. The temporal aspect of the methods consists of lifetime management for the ob-
jects and their attributes and of a temporal succession linking the objects together. Devel-
opment of the forest resource data processing method concentrated on the extensibility and 
configurability of the data content and model calculations, allowing for a diverse set of 
processing operations to be executed using the same framework. The contribution of this 
dissertation to the utilisation of multi-scale forest resource data lies in the development of a 
reference data generation method to support forest inventory methods in approaching 
single-tree resolution.

Keywords: spatio-temporal data model, hierarchy, history management
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1 Introduction

1.1 Background 

The purpose of this work was to develop methods that would enable spatial and temporal 
scales to be introduced into the storage, processing and utilisation of forest resource data. 
Excluding the cartographic scale associated with maps, Lam and Quattrochi (1992) provide 
the following definitions of spatial scale that can be applied to the temporal dimension as 
well: (i) scale as the spatial extent of an area to be studied, i.e. geographical scale, domain 
(Turner et al. 1989), (ii) scale as the smallest distinguishable part of the spatial data set, i.e. 
resolution, grain (Turner et al.  1989), and (iii) the scale at which a process operates in the 
environment, i.e. operational scale. 

When the management of forest resources is equated with timber management, the do-
main of forest resource data in the case of Finland has been the forest holding of a single 
owner,  or in case of centralised planning of the management of private forests,  a group of 
forest holdings. The resolution has been the forest stand and the operational scale has varied 
between the forest holding and the stand depending on the type of forestry operation. The 
most commonly used operational scale on the temporal dimension has spanned 10 years 
into the future, while the past has been largely neglected. The temporal resolution of the 
data itself is one year, while the resolution used with the operational scale can be finer than 
that, up to one day. 

There has been a global shift in forest management during recent decades from a focus 
solely on timber management to ecosystem management that endorses all aspects of forest 
functions: ecological, economic and social (Iftekhar 2005).  This has resulted in a shift in 
paradigm from sustained yield to sustained diversity of the values, goods and benefits ob-
tained (Rauscher and Reynolds 2005). These new objectives introduce new temporal and 
spatial scales into management. 

Two fundamental and interconnected themes in ecology are the development and main-
tenance of a spatial and temporal pattern and the consequences of that pattern for the dy-
namics of populations and ecosystems. Central to these questions is the issue of how the 
scale of observation influences the description of a pattern, as each individual and each spe-
cies experiences the environment on a unique range of scales, and thus responds to variabil-
ity in an individualistic manner (Levin 1992). Thus, where the conservation of biodiversity 
is concerned, one should adjust the scale of observation to the appropriate landscape 
patches for key species. Biodiversity can also be assessed through species richness, an at-
tribute of broad-scale landscape mosaics. To observe and monitor the dynamics of species 
richness one would need to expand the temporal scale of observation as well, as the tempo-
ral scale of the system increases with the spatial scale (Wiens 1989). Expansion of the tem-
poral scale is not only associated with broad spatial scales, as at the individual species level, 
however, as the response to habitat changes may be experienced only after a time lag (Han-
ski and Ovaskainen 2002).

The question of what scales should be included in a combined system of timber and 
forest ecosystem management can be approached from different viewpoints. One approach 
is to study the structural characteristics of a forest on different scales simultaneously. The 
spatial scales combined in these studies vary from sub-basins (thousands of km ) to sub-
catchment areas (tens of km ) (Wimberly and Ohmann 2004),  from landscape to stand 
(Pennanen et al.  2004, Mendoza et al. 2005), from sub-catchment to stand (Reynolds and 
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Hessburg 2005),  for forest to sample plot (Montes et al. 2005) and as far as within-stand 
variation (García-Gigorro and Saura 2005, Wolf 2005, Zenner 2005). Another approach is 
to concentrate on a particular phenomenon and the appropriate scale for measuring it, i.e. 
scales for measuring forest fragmentation (García-Gigorro and Saura 2005),  biodiversity 
(Yue et al. 2005), the risk of natural disturbance (Barbour et al. 2005), or the socioeconomic 
services provided by a forest (Horne et al. 2005, Köchli and Brang 2005). 

There are only few studies concentrating on the appropriate time scale for measuring 
changes in structural properties or other forest phenomena. The time scale used in evalua-
tions of changes in the past is usually limited to decades (Wimberly and Ohmann 2004, 
Montes et al. 2005, Löfman 2006), whereas simulation studies charting possible futures can 
cover spans of up to 10,000 years (Pennanen et al. 2004). 

The question of scale can also be approached from a species point of view. The answer 
to the question is necessarily species-dependent,  as there is no single correct scale on which 
to describe species-habitat relationships (Wiens 1989), and each species responds to its en-
vironment on a range of scales (Levin 1992). 

Depending on the characteristics of the species concerned, the relevant scales can vary 
dramatically. Nams et al.  (2006), studying the habitat preferences of grizzly bears, found all 
the resolutions examined, from 1 km  to 6400 km , to be significant, and a similar finding 
emerged in the case of the capercaillie (Tetrao urogallus), but the scale varied from 1 to 
1,100 ha (Graf et al. 2004), whereas Kurki et al. (2000) found 100 km  to be the spatial ex-
tent that best explained the variability of nesting success for both the capercaillie and black 
grouse (Tetrao tetrix). The findings of Moore et al. (2000) emphasize that when evaluating 
the effect of management actions on a certain species, knowing the correct spatial scales is 
not enough if the information on populations of the species concerned is incomplete,  e.g. 
only presence/absence data without information on the spatial distribution. 

Ecosystem management can be operationalised as a form of adaptive management that 
consists of a cycle (Fig.  1) of planning, action, monitoring and evaluation (Walters 1986, 
Reynolds 2005). This allows for the integration of new goals, knowledge and technology 
into the management at the stage where the results of monitoring the previous round of 
planning and action is evaluated. This nevertheless places requirements on the ability of the 
data management system to assimilate modifications and extensions to its data content and 
processing methods. The scale at which data are acquired and analysed may change be-

Figure 1. Phases in the adaptive management cycle (adapted from Maser et al. 1994).
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tween successive planning actions and especially in boreal forests, there can be a consider-
able time lag, quite often measured in decades, between planning and implementation, and 
also between implementation and evaluation. The past can therefore not be neglected in 
forest data management, if the goal is to support adaptive forest management. The ability to 
handle a long time frame and the associated changes in data content gains further in empha-
sis in the event of a policy failure being detected.  In such cases the key variables have not 
usually been recognised before and new monitoring systems have to be rapidly introduced 
as a corrective measure (Walters 1986),  e.g.  forest health monitoring in the 1980s and 1990s 
(Hall 1995, Ferretti 1997). The compatibility of the new monitoring system with the old one 
should be ensured in order to maintain an ability to review the changes.

1.2 Multiple scales of forest resource data—operational scale versus grain size

Trees are the basic units of resource information for forest products,  and other levels in the 
information hierarchy can be obtained by aggregation from the tree level. At its simplest 
and most straightforward the term forest resources in the boreal vegetation zone means 
trees. Trees are physical objects with well-defined geographical and temporal locations. In 
terms of planar geometry the spatial location of a tree can be approximated with a point that 
does not change position over the lifetime of the tree, although viewed in three dimensions, 
it obviously changes in vertical extent as it grows. If trees were the only objects that forest 
resource data management deals with, it would be quite straightforward to define their spa-
tial and temporal extents by stating their point location and lifetime. The time dimension 
would even shrink to an instant and could thus be ignored if the resource manager were 
only interested in the current situation in the forest,  a common practice until recently apart 
from plans to  retain a given cutting volume over a longer period of time. 

The transition from the basic operational scale of a single tree to the data collection 
grain size of a single tree is anything but trivial,  however. The compiling of an inventory of 
all the trees in a forest and data management at that level have been impaired because of 
both impracticalities associated with obtaining data on individual trees and the demands 
that such a task would impose on data processing. For cost reasons, all the conventional 
methods of producing forest resource data are based on samples drawn from a complete 
enumeration of the trees in the target area. These samples are then aggregated to predict the 
properties of the forests delineated in the area. The sampling scheme is by necessity tied to 
the spatial scale of the delineation in order to achieve the required information in the most 
cost-efficient way. The delineations are based either on the properties of the set of trees,  i.e. 
the forest stand, or based on the location of the trees, e.g. forest resource data derived from 
satellite images and managed in units that correspond to the spatial extent of an image pixel 
on the ground. In both cases data management operates on only one spatial scale, as even in 
stand-based data management the stands are quite uniform in size. The fact that stand de-
lineation is based both on the requirements of forestry operations and on the characteristics 
of the trees and soil leads to a roughly uniform stand size for any given area. The ability to 
change the temporal or spatial scale of observation has thus not traditionally played much 
of a role in the production and management of forest resource data, except for the estate-
stand dichotomy, where the estate,  or region, level has been used to define goals for forest 
management and the stand or inventory unit level has provided the data.  A change to a finer 
scale of observation would be impractical, as the data sample would not be optimal for the 
new scale. Were we able to enumerate all the trees in the area under study and state their 
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locations, changing the spatial scale of observation would not pose a problem if the tree 
level were indeed the finest scale of interest.  The change of scale would just mean a new 
aggregation of the underlying tree data. Such aggregations could be based on widely differ-
ent criteria, however, or entail a subjective component, depending on their purpose. Objects 
at higher levels of aggregation would therefore be likely to lack the clear definition of geo-
graphical and temporal location that trees possess.

New forest inventory methods generally strive towards the tree-level scale in order to 
describe the structure of the forest more accurately and thus tally the timber resources more 
accurately. As a result, there are inventory methods that aim to approach the tree level by 
using sub-stand partitions (Hyvönen et al.  2005) or even aim at the complete enumeration 
of trees. Even the established field inventories which produce aggregated data on partitions 
of the area concerned usually produce initial data on finer scale within the partitions on 
which the aggregation is based: sample plots and perhaps trees within the plots. Field data 
collection techniques have been enhanced recently by facilitating the measurement of single 
trees, including their exact location (Kalliovirta et al.  2005), and remote sensing methodol-
ogy and the sensors themselves have been developed in the same direction (e.g. Pekkarinen 
2002, Maltamo et al. 2004,  Korpela and Tokola 2006). The varying height structure of a 
natural forest stand as opposed to a plantation forest makes the location of all trees a de-
manding task, however, when the data signal is captured above the forest.  In a heterogene-
ous stand more than half of the trees can go undetected (Maltamo et al. 2004, Korpela and 
Tokola 2006). 

An alternative approach would be to utilise tree data from other forestry operations, e.g. 
clear cutting, leading to a dramatic decrease in data acquisition costs.  The information con-
tent may not be optimal from the inventory point of view, but it may be sufficient, espe-
cially as a reference data source to be combined with inventory methods (Stendahl and 
Dahlin 2002). 

1.3 Spatio-temporal data management

El-Geresy and Jones (2000) give a classification of models used to link time and space. The 
main entities of features are their state, their relations to space and time, and their interrela-
tions within space and time. The problem therefore has three dimensions: spatial, temporal 
and feature. An elementary solution would be to select one of these as a basis for modelling, 
resulting in location, feature, or time-based models. Concentrating on a single dimension 
does  not facilitate the analysis of the relations between the three,  however. There are a 
number of approaches available for integrating all three dimensions into a single model 
(Langran 1991, Worboys 1994, Peuquet and Duan 1995, Yuan 1999, Wachowicz 1999, 
Griffiths et al. 2004). In event-based models, a change between two successive states or 
locations of objects is represented as an event which links location, feature and time. An 
alternative approach for viewing changes in state would be to promote the process to the 
role of a feature; i.e. instead of tracking the states of the system, one represents and stores 
the processes (Reitsma and Albrecht 2005).

Since the main focus has been on the development of data models, spatio-temporal data 
access methods have received less attention. One exception is the Tripod model (Griffiths et 
al. 2004), which extends the ROSE algebra (Güting and Schneider 1995) to the temporal 
domain and provides a base for implementing a query processing architecture and object 
manipulation capabilities.  Mountrakis et al. (2002) present a difference-based change-
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oriented model complemented with the operators needed to aggregate the change over time 
and to propagate the change across the different resolutions used in the system. Camossi et 
al. (2006) present an object-oriented framework that explicitly supports conversions be-
tween different spatial and temporal granularities.

1.3.1 Technical aspects of data management

Three technical solutions of data storage can be distinguished,  depending on how they treat 
the actual data content and the metadata, i.e. the description of the content of the data. In 
the file-based approach the raw data is the only stored component, the metadata content 
being external to the data file. A structured document, while usually also stored as a data 
file, combines the description of the content with the actual content. The idea of a database 
is to add a layer of separation between the description of the data and the data as such. The 
data content can be accessed through the metadata layer without knowledge of the actual 
implementation of data storage. For database storage there is also a continuum from the 
decomposition of data into individual attributes, i.e. relational databases,  to the storage of 
objects that are described not only through their attributes properties but also through their 
behaviour, i.e. object databases.

Once stored,  it should be possible to access the data. Data access methods fall into two 
categories: programmatic access and query language access. The former is the only option 
for raw data stored in files, as in that case the formal language description of the program 
will contain the metadata description of the data content. Query languages, e.g. SQL 
(Chamberlin and Boyce 1974) for relational databases and XQuery (Boag et al.  2005) for 
structured documents, require existing metadata which they can rely on for data access im-
plementation and which will provide an additional layer of abstraction between how the 
data is stored and how it is accessed.

1.4 Aims 

When viewing adaptive forest resource management as a means of reacting to any undesir-
able changes in the managed natural environment, the abilities to track how the forest has 
changed over an extensive period of time and to assess what may have been the driving 
forces behind the changes arise as crucial aspects. It should also be noted that a forest in 
this sense can mean a small collection of trees, a landscape of thousands of hectares or any-
thing between, so that the objects recognised in it may not be unambiguous in their geome-
try and the data collected from it is likely to change considerably in content during the 
monitoring period.

The aim of the present work was to develop methods that could be used to manage 
multi-scale forest resource data on both the spatial and temporal dimensions. Data man-
agement is defined here as including both the storage and processing of data and access to 
the stored data. The effects of introducing the spatial and temporal scales into the manage-
ment of forest resource data were studied with respect to five aspects: 

i) Development of a conceptual data model for the storage of forest resource data on 
temporal and spatial scales (Paper I) 

ii) Processing forest resource data that spans different scales of spatial observation, con-
centrating on the extensibility and configurability of the data content and processing tasks 
(Paper II) 
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iii) Exploring mechanisms for accessing a multi-scale forest resource data store (Paper 
III).

iv) Development of a method for generating reference data to support forest inventory 
methods that approach single tree resolution (Paper IV).

v) Assessment of the suitability of the resulting methods for handling a more general 
definition of spatial hierarchy than that used in developing the method, including incom-
plete spatial nesting and uncertain relationships.

2 Conceptualisation of a forest

For the purposes of this study, a forest was defined as a collection of objects, trees being the 
basic objects which are then used to form higher-level objects by aggregation. At the higher 
level there are also objects that are not derived from the properties of trees but from the 
properties of the soil and terrain. These are crucial to the ecosystem-based view of forest 
management and should thus be incorporated into data management. As they are not di-
rectly derived from trees, however, their inclusion breaks the assumption of complete spa-
tial nesting of data hierarchy levels within each other. There are also objects at finer levels 
than that of trees that are relevant to ecosystem management. This microhabitat-level in-
formation can be partly derived from the tree-level data, but is otherwise currently unob-
tainable for any substantial area. 

The multilevel nature of the data was expressed as a hierarchy of objects, which was 
expected from the method development perspective to form a rooted tree graph, i.e. a sim-
ple, undirected, connected, acyclic graph with a special root node. Furthermore, all the 
nodes in the graph were associated with a data object level, e.g. stand-stratum-tree, and the 
children of any node in the tree were expected to be at the same data level (Fig. 2a).  This 
assumption was relaxed in the summary in order to study the effect of an incomplete hierar-
chy on the methods developed, i.e. a node in the hierarchy could have children at several 
data levels (Fig. 2b). This would be beneficial for cases in which the aggregation level 
depths vary spatially, e.g.  a stand-substand-stratum-tree view of a forest in which the stand 
would have an additional sub-stand child level if the tree composition were to vary consid-
erably within the stand,  but at grain sizes that are deemed too small from the operational 
point of view to warrant stand-level status.

Furthermore, the parentage link was allowed to be uncertain in the summary, i.e. the 
edges of the graph were labelled with a membership grade between 0 and 1, thus expressing 
the degree of certainty of the existence of the parental link (Fig. 2b). This kind of uncer-

roota) b)

1

.8.2

1

11

root type 1 root type 2

siblings on data object level 1

siblings on data object level 2

Figure 2. Object hierarchy for expressing spatial scales: a) rooted tree with children at the 

same descendant level, b) a forest of trees with labelled edges having children at different 

descendant levels.
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tainty may stem from either the spatial or the temporal relationship between data levels.  The 
spatial case arises when two object delineations of different origin are integrated into the 
same data graph, e.g. an operational stand delineation and an administrative recreational 
area delineation, and the temporal case when the basis of object delineation changes be-
tween two successive instants in time, leading to the spatially inconsistent representation of 
objects at the same location. For example, an area consisting of a single forest stand may 
later consist of two stands without any changes in the underlying properties of the forest, 
simply because the person responsible for the delineation has changed (see Thierry and 
Lowell 2001).

The whole data structure in the summary was also allowed to have more than one type 
of top-level object, thus creating a forest of tree graphs (Fig. 2b) reflecting the fact that the 
conceptualisation of a forest just as a collection of trees is a gross simplification that is not 
necessarily valid from the ecosystem management perspective.  It would be desirable to 
integrate a host of other data levels not derived from tree data into the data management 
solution.  By allowing the graph to have several roots, more general interdependences be-
tween objects at different data levels can be modelled. 

3 Case material

3.1 Development of the methods

Three data-sets were used to develop the methods presented in papers I, III and IV.
The starting point for the development of a conceptual data model that enables spatially 

explicit storage of forest resource information over time and at various scales (paper I) was 
a data-set covering 4,900 hectares of boreal forest in Central Finland for a period of 75 
years (1926–2001). The data had been collected using stand-wise forest inventory tech-
niques as part of the monitoring of the use made of state forests. The spatial form of the 
data was a subdivision of the whole forested area into adjacent polygons, each representing 
a homogeneous area of the forest with regard to species composition, size structure of the 
trees and factors such as soil type. The data-set contained observations from six points in 
time: 1926, 1936, 1949, 1962,  1988 and 2001 and representing a single level, that of the 
stand, for the data-sets up to 1962 . and a two-level hierarchy with stand and tree speci-
es–sized strata from 1988 onwards.

Data from nine inventories carried out on a 1,000-hectare forest estate in Southern Fin-
land in 1871, 1907, 1925, 1935, 1950, 1962,  1976, 1984 and 1994 were used to illustrate 
the data retrieval method (paper III). The stand linkages between the points in time had 
been determined manually by the composer of the data-set, employing attribute information 
and spatial overlay techniques.

A complete census of trees on two final felling stands in Central Finland was used to 
develop the sub-stand tree composition and volume reference prediction method presented 
in paper IV. A total of 1,474 trees occupying a total area of 3.2 ha were surveyed using a 
tachymeter, and the resulting data were combined with the individual tree measurement 
data recorded by the harvester. To enable combination of the data, the order in which the 
trees were felled, locations of the harvester and the time when each tree was felled were 
also recorded.
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3.2 Testing of the methods

To illustrate the methods developed here and to study the effects of the relaxed data 
structure assumptions on them, an artificial forest data-set was synthesised that aimed to 
mimic adaptive forest management data that consist of timber data at a far more detailed 
level than is customary nowadays and to integrate non-timber data sources as well. In this 
case soil and catchment area data were used as ‘proxies’ for ecological factors. The timber 
resource data were incompletely nested at three levels, the top, stand level representing op-
erational units, an optional middle level representing homogeneous areas with regard to tree 
size and species within the stands, and the lowest level, that of individual trees. 

Time is handled in two ways in these methods: as explicit time periods and instants, and 
as temporal relationships. Since the relaxed assumptions did not affect the explicit represen-
tation of time, and since the temporal relationships are conceptually identical to the spatial 
relationships, there was no specific time component in the test data-set that was generated . 
The events that caused the changes in the data could also be left out of the test set, as they 
were either conceptually identical to the spatio-temporal objects or simplified versions of 
them. 

The soil classification delineations produced by the Geological Survey of Finland for a 
400 km  area in central Finland was selected as a starting point,  and a parallel set of top-
level objects, catchment areas, was generated from a 25*25 m elevation model supplied by 
the National Land Survey of Finland. The catchment areas were generated using the Hy-
drology Modeling tool for ArcGIS (Hydrology modelling… 2001) with a minimum catch-
ment area of 62.5 ha.

The first child object level for the soil and catchment units in the synthetic data hierar-
chy consisted of forest stand polygons. The initial stands were generated with the SIMMAP 
program (Saura and Martínez-Millán 2000) as a clustered landscape of 2,000*2,000 pixels 
that were ordered into 3 classes using a p-value of 0.5 and the minimum mapped unit size 
of 99 pixels. The classified raster was then georeferenced to cover the same 20*20 km area 
as the soil class map and converted to polygons. The initial stands were intersected with the 
soil class objects, excluding the water body polygons. Any resulting intersection polygons 
that had disjoint parts were disintegrated to single-part polygons, after which polygons 
smaller than 5,000 m  were merged with the neighbouring with which they shared the long-
est common border. As the stand polygons were created independently of the catchment 
areas,  the spatial nesting of catchments and forest stand polygons was not complete in the 
sense that a single stand polygon could intersect more than one catchment polygon. The 
proportion of the whole stand area that overlapped any particular catchment unit was used 
as the edge label in the data graph expressing the spatial relationship between objects. 

SIMMAP was used again to create a relatively unclustered landscape of 2,000*2,000 
pixels containing three classes (p-value 0.3,  minimum mapped unit size 10 pixels). The 
same raster to vector conversion as for the stand layer was performed to obtain a layer of 
polygons representing the sub-stand level variation in tree composition. A subset of the soil 
classes was selected to represent those areas in which the tree composition varies on finer 
spatial scales. The polygons representing those classes were then used as a mask to select 
only those substand-level variation polygons that intersected with the mask polygons. After 
studying the intersections between the mask and sub-stand polygons, any resulting poly-
gons smaller than 3,000 m  were removed, thus leaving a complete spatial nesting relation-
ship between the stand and sub-stand polygons.
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The tree data level was generated using a random point pattern. For each stand in the 
data-set an initial tree set was first generated which covered the minimum bounding box 
around the polygon with a random tree density between 600 and 2,000 trees/ha. Of the ini-
tial tree set the trees that were located inside the stand polygon were selected, and the rela-
tionship between the catchment units and possible sub-stands determined. Apart from coor-
dinates, each tree was also allocated a random tree species, height and diameter at breast 
height.

The total synthetic forest data-set (Fig. 3) consisted of 434 catchments, 3,351 soil units, 
14,726 stands,  4,449 sub-stands, and 47,693,031 trees covering the 372 km  of land within 
the 20*20 km area. The data-set was processed with a program written in the Python lan-
guage and the data were stored both as serialised Python objects and as XML documents 
using an Oracle Berkeley DB embeddable database engine (Oracle Berkeley… 2007).

Figure 3. A view of the synthetic forest with catchment areas outlined with thick grey lines, 

stand polygons filled with solid grey and sub-stands with a dotted pattern. One stand 

crossing a catchment boundary is highlighted with a black border.
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4 Results 

4.1 Effect of spatial scale on forest resource data management

4.1.1 Storage

The conceptual data model presented here (paper I) is based on a single logical entity, a 
spatio-temporal feature, that has scale-related relations in space. The features form a nested 
spatial hierarchy, i.e. a top-level feature has child features that can again have children of 
their own.  These spatial parent-child relations are expressed as relational links between the 
features, corresponding to the edges in a graph representation. The key mechanism for at-
tribute representation is the association of an interpretation with each value. This revokes 
the need for a fixed data model for feature attributes, but requires the handling of attribute 
semantics as data. Since the attribute interpretations are no longer fixed in the schema of the 
data model, a separate semantic class is used to track the attributes within all the data levels. 
The same mechanism can be used to track the interpretation of each spatio-temporal feature 
should it not be indicated at the class level, i.e. if all the features are stored in one class 
(Fig. 4a) instead of separate subclasses of spatio-temporal features for each feature type 
(Fig. 4b).

Although it would be possible to implement the conceptual data model in a relational 
database system, this would be very cumbersome, on account of the hierarchical nature of 
the model,  as relational systems are based solely on set operations (Peuquet 2002), which 
do not as such support the nesting of entities. Relatively soon after the introduction of the 
basic relational model (Codd 1970), however,  abstraction mechanisms were added that al-
lowed for hierarchical content (Codd 1979), and thus an object-relational database imple-

ST_feature name:String
semantic_category:String
meaning:String

semantics

* 1
semantics

ST_feature

stand stratum tree

a)

b)

Figure 4. a) A single class for all types of features with an associated semantic class giving 

the class instance interpretation, b) sub-classes of feature types derived from a common 

super-class.
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mentation of the conceptual model is presented in paper I in which these extensions are 
employed as well as object-oriented features. The object-relational representation of the 
database allows the database tables to be viewed as collections of object instances that can 
have methods in addition to attributes. Two mechanisms for handling spatial nesting are 
explored in paper III that utilise the hierarchical nature of the Extensible Markup Language 
XML (Bray et al. 2004).  The first mechanism expresses the spatial hierarchy as a direct 
embedding of objects within each other in the XML document, but this allows only for 
navigation in a top-down direction for any fragment of the data tree. The second option is 
identical to the original solution presented in paper I, in which the edge information detail-
ing the connection between two nodes is explicitly stored for each node in the form of ei-
ther object identifiers or object references. 

The extension of the data structure from a rooted tree to a forest of trees with non-
uniform children structure requires no changes to the data model if the edge information is 
stored explicitly. The implementation used for the synthetic data-set (Fig. 5) stored the node 
data as a dictionary or associative array in which the parent and child edges were stored as 
dictionaries having the parent or child level as their key and a sequence of level node ids as 
data.

stand:1

{'attrs': {'d': 19.0,

          'h': 20.5,

          'sp': 1,

          'x': 2515324.10,

          'y': 6864567.60},

 'superf': {'substand': ['substand:1']}}

{'attrs': {…},

 'superf': {'stand': 

            ['stand:1']}}

tree:2

soil:1 cm:1

{'subf': {'substand':['substand:1'],

          'tree': ['tree:1',

                   'tree:2']},

 'superf': {'soil': ['soil:1'],

           'catchment': ['cm:1']}}

tree:1

{'subf': {'tree': ['tree:3']},

 'superf': {'stand': ['stand:1']}}

substand:1

tree:3

Figure 5. Multi-scale data as a forest of trees with non-uniform descendant structure, and 

the corresponding Python object instances for some of the tree nodes. Two data structures 

are used: dictionaries are used to give key-value pairs, and lists contain lists of values. The 

syntax for a dictionary is {key1:value1, key2:value2, …}. The value in the key-value pair 

can be of any data structure, including dictionaries and lists. The syntax for a list is [val-

ue1, value2, …].
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In the synthetic data-set the edges between the catchment and stand nodes are subject to 
labelling, which expresses the magnitude of the association between the nodes. The edge 
labelling can be implemented by storing the label together with the edge. At the same time, 
however, the number of nodes must be increased to express the relationship between all 
nodes at all levels, so as not to lose known information, e.g. even though the relationship 
between a catchment and a stand may be ambiguous, the relationship between the trees in 
the stand and the catchment is not (Fig. 6).

The whole data-set took 18.3 GB of disk space when stored as serialised Python objects 
compressed using the zlib algorithm (zlib… 1996). The data were stored in edge-labelled 
connected graph form, i.e. containing the relationship of any given data node to all data 
levels. If we assume that there are 77 billion trees taller than 1.3 m in Finland, on 20 million 
hectares of forest land (Pitkänen 2006), a data-set containing the coordinates, species, 
height and diameter at breast height for every tree together with higher level aggregated 
objects and a complete linking of objects throughout the data levels would consume ap-

{'attrs': {'d': 12.0,

          'h': 13.0,

          'sp': 2,

          'x': 2515745.64,

          'y': 6864530.06},

 'superf': {'soil': [('soil:3752', 1)],

           'stand': [('stand:12581', 1)],

           'substand': [('substand:9919', 1)],

           'catchment': [('cm:124', 1)]}}

tree:36606423

stand:12581

{'attrs': {'d': 18.0,

          'h': 18.5,

          'sp': 2,

          'x': 2515640.60,

          'y': 6864433.10},

 'superf': {'soil': [('soil:3752', 1)],

           'stand': [('stand:12581', 1)],

           'catchment': [('cm:134', 1)]}}

tree:36603319

soil:3752 cm:124 cm:134

substand:9919

.58 .42

{'subf': {'substand': [('substand:9919', 1),

                       …

                       ('substand:10099', 1)],

          'tree': [('tree:36603319', 1),

                   …

                   ('tree:36606423', 1)]},

 'superf': {'soil': [('soil:3752', 1)],

            'catchment': [('cm:124', 0.58),

                          ('cm:134', 0.42)]}}

1

1

1

1

1

1

1

1

1

1

Figure 6. A simple, connected graph with edge labelling, and its Python implementation. 

Edges express the complete mapping of nodes at different levels, while the edge labels are 

used to express the magnitudes of the associations between nodes. A further data struc-

ture, tuple, is used to define the edges together with their labels. The syntax for a tuple of 

values is (value1, value2, …). The parent-child edges are drawn with a solid line and the 

ancestor-descendant edges with dashed lines.
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proximately 30 TB of disk storage when serialised as Python objects in a compressed for-
mat.

The first 100 soil units out of the total of 3,351 units, having as their sub-features 368 
stands, 6 sub-stands and 1,208,243 trees, took 281 MB of disc space to store in an XML 
database, and 25 MB as uncompressed serialised Python objects with the same information 
content as in the XML formulation.

4.1.2 Processing

The processing of forest resource data is defined here as consisting of two tasks: prediction 
of non-measured properties for objects and creation of new objects based on known ones 
and their properties.  In planning tasks the models are applied to data in order to predict 
changes in the properties of features with time. 

A forest resource data processing tool is presented in paper II that aims to achieve inde-
pendence in the processing task, i.e. it should function as a generic forest resource data 
processing framework. The main design principles were data content configurability, proc-
essing model extensibility, and an adaptable control mechanism between the data and the 
models.

Data content configurability was implemented using a hierarchical data structure that 
entailed a recursive structure of objects having attributes and sub-objects, where the sub-
objects reproduced the basic structure of objects. The attributes at all levels were indicated 
as value-value interpretation pairs, for which the semantics is expressed as a descriptive 
domain-specific ontology (Agarwal 2005). In the ontology the different object levels in data 
hierarchy are given their meaning, i.e. the ontology may state that the topmost object level 
is the stand,  which contains strata objects, which in turn contain trees. The permitted attrib-
utes for each object level in the ontology are then stated.

Model extensibility was approached by separating the implementations of the models 
from the core processing system to form model libraries which shared a common program-
matic interface. The individual models were tied to the framework through the same ontol-
ogy that was used to specify the data. The data processing tasks were formulated as model 
chains,  i.e. sequences of models,  each of which was used to predict a certain attribute of the 
forest. A data structure for implementing the model execution logic was introduced for the 
model chains, i.e. the processing task logic was not treated as program code but as data.  The 
data structure used to decouple the processing logic from the program code included the 
composition, order and execution logic of individual tasks in the form of hierarchical task 
structures (Fig. 7).  The tasks describe how individual models can be applied to data to ob-
tain the desired result. The execution of a task may be conditional, and each task may have 
subtasks that have the same task structure. The leaves of the resulting recursive task tree are 
formed by the models that ultimately execute the task. A model chain consists of a group of 
top-level tasks that are assigned to a certain level in the data tree, i.e. the tasks in any model 
chain only process data at a single level in the data hierarchy, although the input values for 
the models in the chain may be taken from any level in the data tree, as their parentage and 
descendants are always known. Thus a data processing operation consists of a data set, the 
data processing models and a group of model chains for different data levels that have an 
execution order. By employing a simple, connected, edge-labelled graph as the internal data 
structure, the data processing tool is able to assimilate and process data that have a non-
uniform hierarchy of scale levels and parallel object types on any level.
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4.1.3 Access

A matching data access mechanism for the conceptual model presented in paper I is crucial, 
as data access using mechanisms geared towards the fixed-semantics tuple-oriented view of 
data, i.e. the relational model, is not feasible. The hierarchical data with varying semantics 
can be accessed using either programmatic implementation together with the storage 
mechanism or a query language which has support for data of a hierarchical nature. 

The implications of using XQuery, the query language for the hierarchical data structure 
of XML, for data access purposes was analysed in paper III.  Various aspects of retrieval 
from a data store conforming to the hierarchical entity-attribute-value data model were 
studied by dividing retrieval into three elementary tasks: pivoting, sequencing and aggrega-
tion (Johnson and Chatziantoniou 1999). Pivoting serves a convenience function in trans-
forming the attribute-value pairs to a more compact and commonly used columnwise for-
mat in which the attribute definitions are detached from the values to serve as column head-
ers in a data table. This transformation also allows tuple-oriented data retrieval mechanisms 
to be used.  The sequencing function is crucial for traversing the hierarchical structures in 
data, as it can be used to traverse both the temporal lineage of an object and the different 
spatial scales of the data. Aggregation is used to change the scale of examination of attrib-
utes to a coarser level, i.e. when summarising the data content.

model chain
evaluation level:tree

grow treegrow tree

on peatlandon peatland on mineral soilon mineral soil

...

predict growthpredict growth

for pinefor pine

for sprucefor spruce

for deciduousfor deciduous

height:
model(ih_pine)
height:
model(ih_pine)

height:
model(ih_spruce)
height:
model(ih_spruce)

height:
model(ih_birch)
height:
model(ih_birch)

basal area:
model(iba_pine)
basal area:
model(iba_pine)

basal area:
model(iba_spruce)
basal area:
model(iba_spruce)

basal area:
model(iba_birch)
basal area:
model(iba_birch)

update attributesupdate attributes

height:
sum(h{tree},i_h{tree})
height:
sum(h{tree},i_h{tree})

update diameterupdate diameter

basal area:
sum(ba{tree},i_ba{tree})
basal area:
sum(ba{tree},i_ba{tree})

diameter:
model(d_from_ba)
diameter:
model(d_from_ba)

h{tree}>=1.3

PEAT{comp_unit}=1 PEAT{comp_unit}=0

sp{tree} in [1,8]

sp{tree}=2

sp{tree} in [3,4,5,6,7,9]

Data hierarchy used:

comp_unit

  -tree species stratum

    -tree

Figure 7. Illustration of the model chain concept in tree graph form: decomposition of tasks 

into sub-tasks, having models as leaves. The tree is traversed from top to bottom and from 

left to right, and the traversal conditions are given as edge labels. Note the use of a higher-

level attribute (PEAT{comp_unit}) in the tree-level model chain.
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These top-level data retrieval tasks were successfully formulated using the For-Let-
Where-Order by-Return (FLWOR) syntax and the expression extension capability of 
XQuery.  It was also demonstrated that the nested expression structure of XQuery allows for 
combining top-level data access tasks to formulate more complex access patterns.

Should the data storage implementation allow it, programmatic access methods mirror-
ing the logic of the XQuery expressions presented here could be formulated. The main dif-
ference between the two approaches is that XQuery provides an additional abstraction layer 
between data storage and access, while programmatic access provides data manipulation 
capabilities in addition to data retrieval.

4.2 Effect of time on forest resource data management

4.2.1 Storage

The effect of time was expressed in internal changes in the objects and the temporal rela-
tions between them. The test data in paper I were analysed for changes in both the meas-
urement information content and the definition of a forest stand. The ability of the model to 
handle these two types of change was the primary objective when designing the data model. 

To track internal changes in objects,  the spatio-temporal object has a lifetime during 
which several attributes, in turn having lifetimes of their own,  can be associated with it.  The 
value–value interpretation attribute representation coupled with the semantic class allows 
for temporal change in the set of properties recorded for an object. Along with the names of 
attributes and their interpretations, the semantic class also stores the lifetime of each attrib-
ute within the system. Changes in the spatial representation of an object during its lifetime 
were stored using the same method, i.e. recognising that an object may undergo several 
geometrical representations, each of which has a lifetime.

The temporal relations between objects were handled using an identical method to that 
applied to the spatial relations: regarding the relations as edges in a time graph of object 
nodes forming links to other objects that are either predecessors or successors of the object 
in question. The temporal succession of features may be subject to uncertainty should the 
spatial delineation of objects contain inaccuracies or if the delineation principles are 
changed. Uncertainty in temporal relations between objects may be expressed using edge 
labels in an identical fashion to the method used for expressing ambiguity in spatial rela-
tions between objects. This would result in a directed, edge-labelled multigraph (Fig. 8), in 
which the multiple directed edges between nodes will provide for an interpretation of the 
passage of time in the absence of an identifiable root node for the graph, i.e. for spatial 
graphs the top-level object, or root node,  will anchor the interpretation of the order of spa-
tial levels, but for temporal graphs each edge has to carry information as to whether time is 
being traversed in the ‘past’ or ‘future’ direction for that particular edge.

To facilitate the analysis of change over time, the data model contains a class for events 
that drive the changes in spatio-temporal features.  In the original model the events occur at 
points in time, they have locations and haves interpretations that are expressed in relation to 
the semantic class. Events and features are connected through bi-directional relationships. 
Each feature stores references to the events that have affected it, and each event has a list of 
references that it has affected. A more detailed relationship between events and features can 
be computed from the stored locations, i.e. the exact spatial intersection of an event and a 
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features can be derived from the geometries between the event and the features it has been 
linked to.

Should the evolution of an event over time be of interest, e.g. the development of a for-
est fire or insect outbreak,  events can also be modelled as a sub-class of spatio-temporal 
features, thus allowing them to occur over a period of time within which they can have mul-
tiple geometries and attribute values. 

4.2.2 Processing

Time and the processing of forest resource data are intertwined when models are applied to 
data in order to predict changes in the properties of features with time. Should the forward, 
or in rare cases backward, prediction be deterministic, i.e. only a single development path is 
predicted, the composition of the conceptual model as presented so far will be capable of 
handling the results, but it is usually desirable in forest management planning to generate 
several alternative future scenarios for the development of forests based on different man-
agement measures and their timing. The measures to be carried out can then be chosen from 
this set based on the goals and constraints set for forest management. Similarly, the effect of 
cumulative prediction errors in forest growth simulations can be studied by predicting a set 
of outcomes using Monte Carlo simulation (see Kangas 1997).

To enable an approach of this kind, an alternative to the original method for time man-
agement was presented in paper III. Instead of being centred around objects,  the method is 
time-centric. The results of a simulation are stored for each point in time used in the predic-
tion,  as also is the status of the whole data hierarchy. Alternative development paths are 
stored by branching the data tree at the top level (Fig. 9).

child:1

parent:1

child:0.8
child:1

parent:0.8 parent:1

1

2

3

1 2
31

1 2

time

Figure 8. Conceptual representation of the temporal relationships between four forest 

stands, and the associated graph representation. The directed edges represent the direc-

tion of temporal lineage: parent or child. The certainty of the existence of an edge in the 

graph is given as a number between 0 (non-existent) and 1 (existing link) in the edge label.
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4.2.3 Access 

Temporal data retrieval methods rely on operations that can be used to deduce the relative 
temporal positions of objects and their temporal succession. In the object-oriented imple-
mentation of the conceptual model in paper I,  the relative temporal operation was a method 
associated with an object class for a given period in time. The method supported the com-
parison of a point in time with a period as well as of two time periods, giving the result as 
one of 13 temporal relationships (Allen 1983). A similar implementation but limited only to 
three of the relationships between a point in time and a period, before, within and after, was 
also presented in paper III, employing the extension mechanism of XQuery.

As noted earlier, the temporal object succession implementation was identical to the 
spatial object hierarchy implementation in the sense that object references were implicitly 
used to express the temporal succession both backwards and forwards in time.  The sequenc-
ing operation defined in paper III could therefore be used for both spatial and temporal 
graph traversal.

The temporal aspect has a strong impact on the data manipulation operations.  For 
changes in the data attributes of an object, the simple update mechanism of replacing the 
old attribute value with a new one must be extended to cover two new aspects. Since the 
data content of an object is not known at the time of creation, the object must support the 
addition of new attributes to it,  and as a convenience function to allow for data input errors 
it must also, conversely,  support the removal of attributes. The modification of existing at-
tributes must support the temporal modifications triggered by a change in an attribute.  In 
that case a period must be set for the validity of the old value and a new period initialised 
for that of the new value. The same applies to the current value indicator should it be util-
ised in implementing the data model (Fig. 10).

Another type of internal change in an object is a change in its geometry. Again three 
operations can be recognised, add, modify and remove,  but their interpretation differs from 
that of attribute changes. The adding of a new geometry is equivalent to the modifying of an 
attribute, i.e. the period of validity of the old geometry is terminated and that of the new 
geometry is initialised and the latter is set as the current geometry (see stand1 in Fig. 11b). 
The modification of a geometry can be interpreted as a regular update operation, the old 

branch:1

branch:2

time:1

branch:1

branch:2

time:2

branch:3

id:1 id:1 id:1 id:1 id:1

Figure 9. The implementation of branching time, a time point-based approach to alternative 

scenarios.
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value being replaced with a new, correct value without any temporal implications.  The same 
applies to the removal operation, which simply removes an erroneous geometry from an 
object.

Data manipulation operations should also support manipulation of the temporal object 
succession. Three interactions between objects were recognised in paper I: substitution, 
division and fusion (Fig. 11). In substitution a new object replaces the old one, resulting in a 
one-to-one relationship in the temporal succession graph, in division a new object replaces 
part of the old object, but the old object continues its existence, thus resulting in a one-to-
one relationship in the temporal succession graph but leaving the possibility open that the 
old object can have more successors later, while in fusion several objects form a single new 
object, resulting in a many-to-one temporal relationship. To augment these succession op-
erations, the data manipulation implementation should also include the case where there is 
no temporal succession between objects. In that situation objects are created and terminated 
but they have no temporal relationship between them except the simple association that can 
be derived from their temporal extent, e.g. that they overlap in time.

time
t1 t2

at t1: tree1={'numattr': [('d', 16, (t1, ), True),

                          ('h', 17, (t1, ), True)],

              'catattr': [('sp', 1, (t1, ), True)]}

at t2: tree1={'numattr': [('d', 16, (t1, t2), False),

                          ('h', 17, (t1, t2), False),

                          ('d', 18, (t2, ), True),

                          ('h', 19, (t2, ), True),

                          ('logvol', 91, (t2, ), True)],

              'catattr': [('sp', 1, (t1, ), True)]}

Figure 10. Changes in the attributes of a tree object: changing existing attribute values and 

adding a new attribute. Each individual attribute value is given as a tuple of attribute name, 

value, validity period and current value indicator. The validity period is a tuple of the start 

and end dates.
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time

2

1

21 3

substitution

division

fusion

t1 t2

at t1: stand1={'geometry': [(geom11, (t1, ))]

                'lifetime': (t1, )}

at t2: stand1={'geometry': [(geom11, (t1,t2),

               'lifetime': (t1,t2),

               'successor': [stand2]}

       stand2={'geometry': [(geom21, (t2, ))]

                'lifetime': (t2, ),

                'ancestor': [stand1]}

at t1: stand1={'geometry': [(geom11, (t1, ))]

                'lifetime': (t1, )}

at t2: stand1={'geometry': [(geom11, (t1,t2)),

                            (geom12, (t2, ))]

               'lifetime': (t1, ),

               'successor': [stand2]}

       stand2={'geometry': [(geom21, (t2, ))]

                'lifetime': (t2, ),

                'ancestor': [stand1]}

at t1: stand1={'geometry': [(geom11, (t1, ))]

                'lifetime': (t1, )}

       stand2={'geometry': [(geom21, (t1, ))]

               'lifetime': (t1, )}

at t2: stand1={'geometry': [(geom11, (t1,t2))]

               'lifetime': (t1, ),

               'successor': [stand3]}

       stand2={'geometry': [(geom21, (t1, t2))]

                'lifetime': (t1, t2),

                'successor': [stand3]}

       stand3={'geometry': [(geom31, (t2, ))]

                'lifetime': (t2, ),

                'ancestor': [stand1, stand2]}

a)

b)

c)

Figure 11. Temporal interactions between objects and the associated changes in their spa-

tial, lifetime and temporal succession properties. The spatial data structure is a list of tu-

ples, each containing a data structure and a tuple of start and end dates for the geometry. 

The lifetime is similarly a start,end-tuple, while the temporal succession is given as lists of 

object identifiers.
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4.3 Trees that once were—what do they reveal of the forest that was?

The focus in paper IV is on one of the practical hurdles in the way of a more common adap-
tation of the multiscale view of forests, the cost of data acquisition at or close to the indi-
vidual tree level. A method was developed to create accurate reference data for a set of for-
est inventory grain sizes using a cost-efficient data source. The method used as its own data 
source semi-localised individual tree measurements from a clear cut area, as given by the 
harvester used in logging operations,  i.e. the data are a by-product of the logging operations 
and as such entail negligible costs.

Individual tree locations were simulated from the location observations of the harvester 
at the time of cutting, using Monte Carlo simulation with two probability density functions: 
the distance and angle of the tree from the harvester cutting it. As a result of the simulation, 
each tree has a set of predicted locations, and its membership of any given subdivision of 
the stand can be predicted in terms of the simulation location realisations inside the subdivi-
sion as a proportion of all the simulation location realisations inside the stand.

The method was able to sharpen our view of the "forest that was" to a degree compara-
ble with the unprocessed harvester data. The total volume estimate by species was im-
proved by 20% and the timber assortment volume estimates by species by 17% for logs and 
by 35% for pulpwood. The method was progressively less able,  however, to reveal accu-
rately the properties of the forest as the observation grain size approached the single tree 
level. The RMSE of the volume prediction increased as a function of the decrease in subdi-
vision area, whereas the four subdivision methods tested had no marked effect on the vol-
ume predictions.  The method matches a sub-stand level,  or group of trees,  view of a forest, 
and would thus be able to produce reference data for remote sensing methods that target 
within-stand variation but do not go to the tree level.

5 Discussion

The benefit of the reference data generation method is the extreme accuracy of its individ-
ual tree volume measurements,  while the drawback with regard to the single tree approach 
is the uncertainty of tree location, which increases the error in volume predictions the 
smaller the area becomes. This illustrates the asymmetric relationship between the different 
levels of scale: transition from a finer to a coarser level is a straightforward aggregation 
operation, whereas it is impossible to move in the opposite direction without prior informa-
tion on the finer scale (Camossi et al. 2006). The method developed here facilitates the use, 
as a field source for remote sensing inventory methods or as a verification data-set, of a so 
far largely untapped data source involving negligible acquisition costs compared with other 
field data collection methods. Harvester data in itself could also serve as a source for the 
local adaptation of volume models. As the average throughput of a single harvester is in the 
range of 15–25 m /h (Mielikäinen and Riikilä 1997), data collection is extremely efficient 
and could be easily automated. Accumulated over time and space,  such data would permit 
analyses that are not possible with current data sets, such as the relationship between the 
form and location of trees or between log assortment and location, on both large and small 
geographical scales. Combined with automated data production procedures for non-timber 
entities (e.g. MacMillan et al.  2004) the method could assist in the production of multi-scale 
data-sets for forest resource management planning.
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To be useful in forest management, forest resource data must be stored in such a way 
that it is accessible to the decision support systems used in the management planning. Data 
storage was successfully implemented here using all the main approaches: file, structured 
document and database techniques. The critical component of data storage, however, is not 
the actual implementation but the conceptual data model that describes the representation of 
the data in the information system. The search for a single, universal, representation of 
space-time would be a fruitless exercise, as any conceptual model for data covering both 
space and time is affected by the application domain (Peuquet 2002). In the domain of for-
est management, which embraces the timber and ecosystem aspects, the ability to utilise 
data on several operational scales is crucial. 

The multi-scale forest resource feature hierarchy could be stored in an information sys-
tem either as field-based or entity-based data. In the field-based approach a forest could be 
seen as a field representing the density of trees (Christakos et al. 2001), and there are effi-
cient storage mechanisms for hierarchical, spatially nested field data, e.g. quadtrees (Csillag 
1997). As at the finest scale forest resource data will consist of trees,  natural bona fide enti-
ties, the entity-based view is also justifiable, especially so as the higher levels in the data 
hierarchy can be seen as fiat, human-demarcated, objects. They are aggregations of bona 
fide tree entities, but their spatial demarcations are not based on bona fide object boundaries 
(Smith 2001). The choice between the two views is not a radical one, as the entity-based 
and field-based views are duals, i.e. a spatio-temporal phenomenon can be presented using 
either view (Peuquet 2002), so that continuous fields, for example,  can be discretised into 
spatial objects whose location in space and time can be stored (Shekhar et al. 1997).  The 
fundamental requirement, however, is that the data model should be complex enough to 
capture the multi-scale phenomena. Otherwise the information stored will be incomplete 
(Burrough 1996). The complexity of data is supported in the methods presented here by the 
very general definitions; essentially all that is predetermined is that the system consists of 
"objects of some kind" that have "properties of some kind" and that these objects can have 
relationships to other objects of "the same or another kind" both in space and time. 

The importance of the ability to handle different kinds of objects on varying scales is 
emphasised when studying the interdependence of the two aspects of scale: resolution or 
grain,  as the smallest distinguishable part of a spatial data-set,  and operational scale, which 
refers to the scale of operation of the phenomenon under study (Lam and Quattrochi 1992). 
Bian (1997) suggests that the resolution of entity-based areal units overlaps with opera-
tional scale, as both are defined by biophysical features. This is beneficial,  as the data can 
be handled directly at the correct scale for analysing the processes under scrutiny. The op-
erational scales of the processes should be known beforehand in order to take full advantage 
of the resolution-operational scale match,  but as this is not always the case, the model for 
storing and analysing the multi-scale data should allow for later aggregation to the correct 
operational scale if the data are recorded at a finer grain than that required for the process to 
be analysed. Aggregation is not unproblematic, though, as Openshaw (1984) explored in his 
paper on the Modifiable Areal Unit Problem. Similarly the defining of the correct resolution 
for the process under study is not always unproblematic,  especially if there are no clearly 
distinguishable physical objects to be studied, but rather fiat objects originating from sub-
jective human demarcation. Worboys (1998) touches on the same subject when analysing 
the effect of the schema on what is observable, maintaining that the extent of the schema 
specifies the size of the semantic and spatial observation window, which in turn specifies 
which entities are distinguishable from one another. By allowing different schemas within 
the confines of a very broad, generic top-level schema, the conceptual model and data proc-
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essing frameworks presented here should avoid the situation where "limitations in the ex-
tent and granularity of a schema lead to incompleteness and imprecision respectively in the 
observation made with respect to the schema" (Worboys 1998). The schema configurability 
aspect of data storage and processing has an ontology aspect as well. Guarino (1997, 1998) 
states that as different views of reality are inherent, there can be no one unifying ontology, 
but hierarchies of ontologies: top-level, domain and application ontologies.  The view of 
reality is also subject to change through time, implying that temporal data management 
methods should be able to accommodate ontology changes. This aspect was not explicitly 
studied for the data management methods presented in this work, but for data storage the 
implicit ontologies of different types of object, each being instances of the same base class, 
the temporal relationships between the objects,  and the configurable semantics would sug-
gest that changes in ontology could be accommodated. For the data processing framework 
an explicit but modifiable ontology for any data processing task was used, and therefore the 
ontology is fixed within a single processing operation, but modifications are possible be-
tween operations. This aspect has been largely ignored in recent attempts to abstract the 
forest resource data management framework to allow reusability of code and extensibility 
by means of object-oriented design (Baskent et al. 2001, Salminen et al.  2005). The com-
monly used approaches rely on the ability to define common base classes and their attrib-
utes and methods, but in that case the forest ontology and semantics will still be fixed inside 
the program code. Ontology changes at the object level pose no problems for data access, as 
long as the changes are implemented through the temporal relationships between objects. 
Changes in object attribute semantics, however, are not supported by the proposed methods. 
Pedersen and Jensen (1999) suggest a method for data warehousing in which analysis 
across changes is achieved by links between the variables that represent the "same" thing 
before and after the change. The semantic class could serve in the same role in the concep-
tual model, if it were augmented with a link property that would map between the semanti-
cally identical entities in the class. The Entity-Attribute-Value model used for object attrib-
utes in itself already naturally accommodates changes in data content by allowing changes 
in the attribute composition of an object without schema changes.

Peuquet (2002) argues that "fundamental issues in the development of data models that 
can best capture the intrinsic characteristics of geographic data thus become, first, how to 
overcome the difference in the nature of the phenomena being represented and that of the 
representation medium", where the representation medium means here a computer. She 
goes on to list the main differences as being the irregularity of geographical boundaries, 
leading to large databases, inexact and scale-dependent locational definitions, context-
dependent and inexact spatial relationships and scale-specific phenomena. Even though 
certainly leading to even larger databases, the ability to handle multiple scales seems to be a 
key issue for overcoming the difference between the phenomena and their representation. 
The context-dependence of spatial relationships is illustrated by a study of vegetation and 
ecosystem classifications (Allen and Hoekstra 1990), which are hierarchical in the sense 
that finer classes are contained within the broader classes,  but this containment does not 
necessarily apply to spatial nesting. To handle such situations the conceptual data model 
separates the explicit relationship information from the spatial information objects. This 
also confers the ability to model cases in which some levels in the hierarchy are operational 
aggregations of objects at a lower level but have the spatial resolution of a higher level in 
the hierarchy,  e.g. the common stand-tree species stratum-tree data hierarchy,  in which the 
stratum usually shares the geometry of the stand although it is on a lower level in the hier-
archy.  Even though the model employs the “forester’s view of a forest” for the actual spatial 
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location, i.e. assuming crisp and unambiguous borders (Bennett 2001), the inexactness in 
spatial relationships can be implemented by extending the relationship information to in-
clude a measure of certainty regarding the existence of the link. This would allow represent-
ing spatial features using a two level hierarchy, in which at the bottom are “atomic” objects 
that are aggregated as top level objects. The certainty of the membership of each lower 
level object in each top-level object can be expressed in the certainty of the link. The cer-
tainty measure between the aggregated features and their constituting, “atomic” parts can be 
derived using the attribute, geometric,  and neighborhood properties of the lower level fea-
tures (Allan and Lowell 2002). An alternative approach to managing non-crisp or ambigu-
ous borders would be to utilise the spatial object hierarchy to implement an egg-yolk model 
(Cohn and Gotts 1996) for spatial regions with indeterminate boundaries, in which a region 
with vague boundaries is represented as a pair of concentric regions with determinate 
boundaries. In that case an object could have two sub-levels, “egg” and “yolk”, with their 
own but interrelated geometries.

Although planning would be possible merely by constructing a representation of the 
current status of the forest from the multi-scale data-set,  the monitoring and evaluation as-
pects of management would have to be bypassed, as these steps require information on the 
changes that have occurred. There is a clear discrepancy between the phenomena and the 
conceptual data models used to study changes in stand structure (Etheridge et al. 2005, Wolf 
2005), forest habitat structure (Löfman and Kouki 2001, Di Orio et al. 2005, Kennedy and 
Spies 2005) and land cover (Wimberly and Ohmann 2004, Bender et al. 2005, Radeloff et 
al. 2005). These studies are based on comparisons of snapshots taken at different times, 
derived either from remote sensing material or inventory records.  The discrepancy is un-
avoidable, as there are usually no other data available. The change phenomena, however, 
conform to a conceptual model that implies events,  discrete or continuous,  that drive the 
changes and life histories of features that record the changes at a per feature level. Worboys 
(2005) draws a developmental time-line for spatio-temporal models from sequences of 
temporal snapshots through object life histories to event chronicles, and presents an alge-
braic approach to events or "happenings" in order to analyse geographical phenomena over 
space and time. The methods presented in this work draw from all stages in such spatio-
temporal models.  The conceptual data model utilises life histories but extends them with a 
rudimentary implementation of event chronicles. The conceptual model allows for express-
ing event–object interactions, but lacks an event–event interaction expression mechanism. 
However, by treating events as analogous to objects (Galton 2001), the model immediately 
gains that mechanism, as a spatio-temporal object class can express object–object interac-
tion.  This could be used to shift the focus from the object-centric system state to that of 
process-centric analysis (Reitsma and Albrecht 2005). The handling of branching time in 
the data processing framework adopts the temporal snapshot sequence approach, with the 
notable exception that the temporal sequence does indeed record the complete life histories 
of objects even though not in an object-centric manner. The time concept used throughout is 
that of a single point,  but the methods could also accommodate bi-temporal support, allow-
ing a more fine grained approach of valid time and transactional time to the time points 
recorded for objects.

The objective of modern forest management, to sustain the social, ecological and eco-
nomic value of forests,  has implications for the extraction of timber resources. These are 
generally expressed as policy changes on the stand level (Lämås and Fries 1995, Karppinen 
1998, Bettinger et al. 2005). The implications of these forest management policies when 
implemented nevertheless cover a much wider spatial range as well as a temporal one. To 
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evaluate the effects of proposed or implemented management policies on the social,  eco-
logical and economic processes associated with forests, one would need to be able to 
change the spatial and temporal scale of analysis to match that of the process under study. 
The lack of fully integrated support for multiple granularities of time, as opposed to the 
granular spatial hierarchy of objects, means, however, that a change in temporal granularity 
has to be implemented through granularity conversion functions (Camossi et al. 2006). 
This, combined with the fact that the relationships between temporal intervals (Allen 1983) 
are not sufficient to represent continuous change (Galton 1990), means that the conceptual 
model and data access methods need to be refined to fully support “why” queries in addi-
tion to “what, where and when” queries.

If the data available allow for a multi-scale approach, the analysis can either be con-
ducted with a single model that is amended to cover all the scales relevant to the task of the 
analysis (Lasch et al. 2005), or by means of a modelling framework that allows for a com-
bination of multiple scales of data and models in a coherent way. McNulty et al. (1997) 
tested the effect of data aggregation over three spatial scales, stand (1-10 ha), ecosystem 
(10-1000 ha) and region (>100,000 ha), on the predictions given by an ecosystem-level 
forest productivity model and found temporal and spatial aggregation to exercise a major 
influence on the predictions. The aggregation was performed in a non-hierarchical setting, 
however, where the data sources for the various model components differed greatly between 
the scales. Li and Reynolds (1997) promoted the approach of hierarchical modelling by 
studying a phenomenon on different scales in order to overcome the problem of a lack of 
large-scale information (with less detail) by using data and models on smaller scales (with 
more detail) to extrapolate to the long-term and to large spatial extent (see Moloney et al. 
1992, Wu and Loucks 1995).  Examples of hierarchical modelling and planning frameworks 
do exist covering spatial scales from sub-hectare to tens of hectares (Bettinger et al. 2005), 
tens of hectares to hundreds of hectares (Kurttila and Pukkala 2003) and tens of hectares to 
thousands of square kilometres (Seely et al. 2004). Data and implemented models are usu-
ally tightly coupled in hierarchical modelling frameworks, which is natural as they are in-
terdependent,  but at the same time the tasks that the framework is suitable for are fixed. 
True extensibility and adaptability would require an ability to revise the data and model 
components of the framework to adjust to the changing requirements for decision support. 
This has been acknowledged in recent developments, in which the need for an advanced 
data management system to support the integration of different data levels and the use of a 
common, extendable model base for planning has been identified (Nelson 2003, Lämås and 
Eriksson 2003). The diversified goals for management planning, e.g. protection of wildlife, 
biodiversity, scenic beauty or a reduction in water sedimentation and erosion, require not 
only a hierarchical approach but also an explicit implementation of spatial processing as 
part of the planning process. The same applies to cases in which the phenomena of interest 
cannot be reduced to a hierarchical representation of objects. If there is no clear contain-
ment relation between objects, they can still be modelled as independent object levels using 
the conceptual model. The relationship between the levels will then have to be resolved 
explicitly using a spatial relation operation. The direct incorporation of spatial calculations 
into planning models has been considered unwieldy (Baskent and Jordan 1996),  but the 
integration of spatial properties of an object directly into the data management solution 
changes this. The integration of a spatial processing capability as a component of the data 
processing framework as presented here remains a task for future work, however. The spa-
tial processing would also affect the combination of branching time and tracking of object 
life histories in the simulation results. The current time-centric model does not explicitly 
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support object–object interactions,  as the top-level objects are processed independently of 
each other.

In his analysis of the representation of space and time, Galton (2001) concludes that "an 
effective spatio-temporal representation should be able to handle locations, times,  objects 
and events as primitive entities, to assign attributes to any of these, and to keep track of the 
interdependencies amongst the various attributes assigned." Handling could be taken to 
mean both storage of the data, including the attributes and relationships,  and access to these 
data. The mechanisms of access to spatio-temporal data can be divided into two ap-
proaches: programmatic and logical. Programmatic access is characterised by tight coupling 
between the implementation level of data storage and access to the data, while in logical 
access there is a layer separating the implementation level from the logical level of data 
storage and the access methods are matched with the logical level data storage implementa-
tion.  Logical access mechanisms usually rely on a language interface, possibly augmented 
with a visual interface (Calcinelli and Mainguenaud 1994, Lbath et al. 1997, Elariss et al. 
2006). 

The main benefit of the conceptual data model presented here is its generic nature, 
which absorbs the changes in data content that are bound to happen over time. On the flip 
side of this generic nature are the complications that this causes for using the commonly 
prevailing logical data access mechanisms, most notably the Structured Query Language 
(SQL) used with relational databases.  Thus, when implemented in an object-relational data-
base, data access for the generic data model is a combination of SQL-operations and proce-
dural program code. The circle that led from the hierarchical databases of the late 1960s to 
relational databases (Elmasri and Navathe 2000) is now closing with the arrival of XML, 
however, and we are again returning to hierarchical data access as one of the focal areas. As 
demonstrated, it is mainly because of its inherent extensibility that XQuery can be used as a 
logical access mechanism to implement data access for the generic spatio-temporal data 
model. 

The ability to abstract data access from data storage with the help of XQuery does not 
come without its price. The 30 TB needed to store “all the trees in Finland” in an object 
database is not an unduly large figure by today’s standards, although to be manageable on a 
personal computer, a leap of an order of magnitude is needed for the storage and processing 
power of a single computer. As the storage of data in an XML database consumes at least an 
order of magnitude more storage space, however, advances both in XML database and 
computer technology will be needed before the XML-XQuery combination is feasible for 
large data sets.

One aspect affecting the storage size needed for the spatio-temporal data-set is whether 
each object should be stored with its complete lineage and descendants at every successive 
level. As noted earlier, this would be necessary in the case of uncertain or partial links at 
some point in the data hierarchy. With “solid links”, however, there is a choice of only stor-
ing the relationships to the object’s own parents and children, in which case the data access 
would have to be recursive. The preferred method depends on the data access patterns, the 
computational cost of recursive data access and the amount of storage space saved.

All the spatial data access features studied here were based on the explicit coding of 
spatial relationships of objects as links between them. This was a result of the specific 
properties of the problem studied: time has a tendency to bring changes with it, and the dif-
ferent spatial scales at which a forest can be observed tend to bring with them different con-
cepts of the forest; some corresponding strictly to real world objects and some to more hu-
man concepts that may vary between individuals. These two properties of the problem im-
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ply that most of the data management solutions in wide use nowadays are of limited appli-
cability to data management over time and over different scales.  

The emphasis in data analysis is not always on tracking changes and their possible 
causes over time, however, or on the relationships between objects at different grain levels 
over time. Quite often the focus is on the various objects and their properties in a particular 
area at one point in time.  This is where the databases in use today excel, as they are able to 
store and give access to data that has a constant structural content and unambiguous loca-
tion.  It remains a task for future work to integrate the ideas presented in this paper into the 
one-dimensional (e.g.  Bayer and McCreight 1972) and multidimensional (e.g. Guttman 
1984, Samet 1984, Hellerstein et al.  1995) index-based data access methods now in com-
mon use.

Other aspects of future work include use of the methods presented here as a basis for 
building a data warehouse in which spatio-temporal objects could be analysed in a by-
proberty manner (Pedersen and Jensen 1998) instead of the by-feature approach used here. 
Such a data warehouse would also benefit from an interactive exploration and analysis tool 
(Rivest et al. 2005).
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