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ABSTRACT 
 
The immediate effects of two human-related vegetation disturbances, (1) green tree 
retention (GTR) patch felling and scarification by harrowing and (2) experimental 
understorey vegetation layer removal, were examined in boreal forest stands in Finland. 
 
Effects of GTR patch felling and scarification on tree uprootings (I), on coarse woody 
debris (CWD) (II) and on epixylic plant community (III) were followed in upland and in 
paludified forest types. Uprootings increased considerably during 2-3 years after the 
fellings and were more frequent (47%) in the paludified than in the upland forest (13%). 
Scarification reduced 68% of the CWD in the felling area. Cover and especially species 
richness of epixylics declined in the both areas during 1-2 years after the felling. The 
increasing size of GTR patch correlated positively with the species richness.  
 
Regeneration of understorey vegetation community (IV) and Vaccinium myrtillus and 
Vaccinium vitis-idaea (IV) after different removals of vegetation layers in an old-growth 
forest took four years. The regeneration occurred mainly by vegetative means and it was 
faster in the terms of species richness than in the cover. In the most severe treatment, 
recovery occurred merely by sexual reproduction. V. myrtillus recovered mainly by 
producing new shoots. V. vitis-idaea recovered faster than V. myrtillus, mainly by 
increasing length growth. 
 
For ecological reasons, use of larger GTR patches on paludified biotope would be 
recommendable. In felling areas, scarification by harrowing could be replaced with some 
other spot-wise method. After moderate intensity level disturbance, recovery occurs rapidly 
by vegetative regrowth of the dominating species. High level of intensity may prevent the 
recovery of vegetation community for years, while enabling also the genetic regeneration of 
the initial species. Local anthropogenic-related disturbances are currently increasing and 
they can interact during temporally short times, which should be taken in to account in the 
future forest management plans. 
 
Keywords: coarse woody debris, epixylics, green tree retention, growth form, understorey 
community, uprooting 
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1 INTRODUCTION 
 

1.1 Anthropogenic disturbances in boreal forests 
 

Human activities, including forest management actions and increasing recreational usage 
are producing the great majority of disturbances in boreal forests today, while the 
significance of previously prevalent natural disturbances, such as forest fire, has decreased 
(Esseen et al. 1997). At the same time, biodiversity and resilience are considered to be very 
susceptible to the changes in disturbance regimes (Jentsch et al. 2002). In the context of this 
thesis, disturbance is examined as a physical event that destroys wholly or partially 
vegetation community with varying severity on spatially smaller (local) and on temporally 
shorter (few years) scale. 

Locally, the human-related disturbances reach from the tree stand to the individual plant 
level. The most important current anthropogenic disturbance is removal of the tree layer, as 
it directly controls the carbon balance of boreal forests (Magnani et al. 2007). For 
understorey vegetation too, tree layer removal may even exceed the effects of local 
environment, including e.g. substrate availability (Økland et al. 2003).  

During the last few decades, the most common tree layer removal method in boreal area 
has been clear-felling. During forest regeneration, especially in the early stages, clear-
felling areas are unfavourable habitats for interior and later successional forest species. Due 
to the increasing evidence of negative effects of clear-felling on plant communities (e.g. 
Bergstedt & Milberg 2001; Jalonen & Vanha-Majamaa 2001; Haeussler et al. 2002; 
Norwegian Institute of Land Inventory 2003, Dynesius & Hylander 2007), new pro-
environmental forest management methods, such as green tree retention (GTR) felling (see 
reviews by Vanha-Majamaa & Jalonen 2001 and Rosenvald & Lõhmus 2008), have been 
introduced recently. In GTR felling, some trees and their nearby environment are saved 
from fellings, either in a dispersed or in a patch form. The alleged main idea behind GTR 
methods is that they can both protect and sustain the initial biological and structural 
diversity found in the forests, while they simultaneously guarantee the desired economical 
objectives. Already Darwin & Wallace (1858) observed that "The same spot will support 
more life if occupied by very diverse forms. We see this in the many generic forms in a 
square yard of turf, and in the plants or insects on any little uniform islet,...". From the 
ecological point of view, the burning question is how to manage forests so that the 
increasing mosaic of clear-fellings, regeneration areas and unmanaged forest patches can be 
kept adequately functioning so that the long-term dispersal barriers for mature forest 
species can be prevented.  

Retained forest patches should be able to maintain a sufficient level of habitat and niche 
structures needed e.g. for sessile and sensitive epixylic1 species that depend largely or even 
totally on natural forest conditions. Vegetation dynamics in these isolated patches are more 
or less driven by edge-effects, more precisely 'adjacent opening effects' (Burton 2002), 
which in this thesis refers to the zone of influence of a clear-felling area in the adjoining 
forest. These effects change abiotic and biotic conditions of the edge area and they may 
reach several tens of metres into forest interior. In GTR patches, adjacent opening effects 
may increase susceptibility to windthrows on stand level or reduce abundance and diversity 
of the initial vegetation. It has been theorized that edge-effects may also interact with each 
                                                 
1 Species that use (dead) wood as their nesting/breeding site or for some other critical 
functions during their life cycle (definition of Stokland, 2007). 
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other. Currently, more estimates of impacts of edge-effects in fragmented forests are 
needed in order to understand the underlying mechanisms (Murcia 1995). 

According to the equilibrium theory of island biogeography of MacArthur & Wilson 
(1967), dynamic interplay of colonization and extinction defines the observation that 
number of species increases with the size of the area. In boreal forest management, it is 
already known that very small GTR patches do not support the species continuum (Jalonen 
& Vanha-Majamaa 2001). Study of larger areas could reveal whether or not increasing 
patch size can foster a more balanced dynamic interplay of colonization and extinction 
processes, i.e. that the number of surviving species would be higher in larger GTR patches.   

 Current metapopulation theory for fragmented landscapes by Hanski & Ovaskainen 
(2003) provides a modeling opportunity to examine the survival of species living within 
and among fragmented populations. However, the classical metapopulation models are not 
of the greatest value for studying smaller patch nets (Hanski 2004). It has also been 
suggested that single population approaches instead of metapopulation approaches could be 
used for the majority of plant species (Harrison & Ray 2002). It has been theorized that the 
survival of plant species depends mainly upon the reproductive characteristics and dispersal 
abilities of each respective species. During adverse conditions, clonally reproducing plants 
may form the most stable populations. With more short-lived species, it depends upon their 
dispersal ability whether they can sustain metapopulations (Eriksson 1996). When studying 
the survival of epixylic plant communities in retention fellings, more local and single 
population approaches could be used to test what real immediate effects in the abundance 
and diversity of the epixylic species can be seen in the isolated patches, such as GTR 
patches. To date, vegetation field studies on this subject are virtually lacking.      

Windthrows, where single or several trees uproot due to allogenic (mainly extreme 
winds) or autogenic (mainly fungal infection and insect attacks, Qinghong & Hytteborn 
1991) factors, contribute significantly to the creation of natural small-scale heterogeneity of 
boreal spruce (Picea abies L.) forest vegetation. In the absence of large-scale disturbances, 
this gap disturbance type is very important in those forest types that rarely experience fire 
(Kuuluvainen 1994; McCarthy 2001; Gromtsev 2002; Harper et al. 2003). In old-growth 
spruce forests, fungal infection comes often first and wind acts then as a contributing factor 
(Fraver et al. 2008). Forest fires are nowadays suppressed and delimited and the forested 
landscape of Fennoscandia consists mainly of a mosaic of thinned even-aged small stands 
and larger clear-felling areas, which together increase the likelihood for wind damages. 
Also, future scenarios predict that the likely decreasing vitality of spruce forests due to 
climate change can lead to rapid increase in the number of windthrows in boreal areas 
(Schlyter et al. 2006). Windthrow is typically launched by altered stand conditions after 
clear-felling. The susceptibility of a forest stand to windthrow depends upon the 
combination of different factors, including e.g. age, size, shape and placement of the stand, 
main direction of the forest edge, the soil and forest biotope type, the felling method and 
the former fertilization (Laiho 1987; Mayer 1989; Kalinin 1991; FRBC Proj. 1999; Ruel 
2000; Burton 2002). A single tree uprooting causes a local gap with a characteristic pit and 
mound -pattern among the understorey vegetation. Windthrow usually changes the local 
microclimatic conditions (Schaetzl et al. 1989), but it may also destroy adjacent living and 
dead wood. 
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Coarse woody debris (CWD2) is nowadays susceptible to anthropogenic disturbances, 
while it tops among the most important biodiversity key structures in the taiga biome 
(Esseen et al. 1997). For example in Finland, 20-25% of the forest-dwelling species has 
been estimated to be dependent on dead wood (Siitonen 2001). Currently, high levels of 
CWD are met only in a small area of protected northern forests, while level of CWD in 
managed forests e.g. in southern Finland is over 90% lower if compared to the old-growth 
forests (Siitonen 2001). Until these days, CWD has been systematically removed from the 
managed boreal forests in fear of pathogen or insect outbreaks (Kimmins 1997; Fridman & 
Walheim 2000). The role of CWD is threatened also after clear-felling, when abiotic 
conditions along with quality of the remaining CWD deteoriorate untenable for sensitive 
and demanding forest interior specialists (Esseen et al. 1997). The clear-felling area is also 
often treated mechanically in order to enhance the regeneration of tree seedlings and 
planted trees. In these treatments forest floor is disturbed to some degree so that the mineral 
soil is exposed. Along with understorey vegetation and saplings, also dead wood structures 
and epixylic species may be affected during these actions. As great number of species 
depend on CWD, adequate survival of CWD (qualitatively and quantitatively) in the clear-
felling areas over the regeneration phase probably largely determines if it is possible to save 
a prominent part of the boreal forest biodiversity from isolation, destruction and possible 
extinction. 

Understorey vegetation of boreal forests is under increasing small-scale human-related 
wearing pressure created by factors such as maintenance of over-large moose and reindeer 
populations (Persson et al. 2000; Suominen & Olofsson 2000), forest roads, trails of 
forestry machinery (Sumners & Archibold 2007) and recreational human trampling 
(Hamberg et al. 2008; Kangas et al. 2007). The occurrence of these small-scale gap 
disturbances is often sporadic, although they can be locally very intensive. Natural small-
scale disturbances are common in the forests that have escaped fires for longer time 
(Kuuluvainen 1994) and they enhance fine-scale heterogeneity e.g. by affecting temporarily 
on interspecific plant community dynamics by lowering the abundance of initial species 
and bringing in weaker competitors. The nonequilibrium intermediate disturbance 
hypothesis by Connell (1978) predicts that disturbances increase diversity by preventing 
competitive exclusion. According to this theory, in boreal forest understorey vegetation, 
disturbances of intermediate severity should then lead to greatest diversity in vegetation. 
Additionally, very low severity disturbance should disturb plant community only 
temporarily, while high severity disturbance should change the community composition 
permanently by removing the dominant clonally reproducing dwarf shrubs Vaccinium 
myrtillus and Vaccinium vitis-idaea. Their effective regeneration is based on rejuvenation 
from an abundant bud bank (Tolvanen 1994).   

 
1.2 Green tree retention patch felling and mechanical soil preparation 

 
In GTR patch felling, patches of initial forest are set aside from the fellings. The basic idea 
is to preserve part of the initial structural and biological diversity of the forest area 
unchanged in the patches over the forest regeneration phase, which is around 80-130 years 
between southern and northern boreal forests (Esseen et al. 1997). It has been believed that 
such patch retention can be carried out so that it resembles the natural disturbance regime of 
                                                 
2 Downed woody material, diameter > 10 cm (definition of Lofroth, 1998), logs throughout 
this thesis. 
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a boreal forest, where patches of initial stand survive following forest fire. Under boreal 
conditions, this kind of imitation could be realized, for example, if the patches were located 
in those spruce forest stands which under natural conditions remain more or less unburned 
after forest fires. Paludified spruce forests (i.e. swamp forests) represent such a forest type. 
It has been generally recognized that they sustain much higher structural and biological 
diversity than more common spruce forest types (Segerström 1997; Hörnberg et al. 1998; 
Vanha-Majamaa & Jalonen 2001; Korpela 2004). In Finland, this forest type has been 
subjected to heavy drainage in recent decades (Korpela 2004). Due to the fire resistance and 
long continuum of old trees, there is also more CWD available (Segerström 1997), more 
likely the number of epixylic species is higher, the understorey vegetation has developed 
for longer time and the species composition of vegetation of this forest type may differ 
from the surrounding, more common upland forests. All of the aforementioned processes 
probably contribute to the ß-diversity at the larger landscape level. One deficiency of GTR 
studies on sustaining biodiversity, hitherto, is that the influence of forest type is poorly 
studied (Rosenvald & Lõhmus 2008). To fulfill their ecological task, GTR patches should 
be large enough to prevent the edge-effects and guarantee the microclimatic conditions of 
the forest interior adequate for the most sensitive and sessile species. Additionally, the 
shape of GTR patches should (more or less) resemble a circle, where the ratio of edge vs. 
area is smaller than in a rectangle. Also local abiotic conditions, including e.g. soil 
characteristics, slope of the area and exposure to extreme winds also partly determine the 
function of a GTR patch. According to the meta-analysis of Rosenval & Lõhmus (2008) on 
GTR effects, GTR nearly always improves habitat and lifeboating for most of the 
organisms, excluding bryophytes and vascular plants. GTR study of Jalonen & Vanha-
Majamaa (2001) from Finland showed that currently used size of GTR patches is not 
adequate for survival of understorey species. Concerning tree seedlings and saplings, 
studies done on Pinus sylvestris stands in Finland, have revealed that patch retention has  
generally negative effects on the growth (Valkonen et al. 2001; 2002) and productivity 
(Ruuska et al. 2008) of the stands. The negative effects are smaller, if retention trees 
represent deciduous species (Valkonen et al. 2003). 

Mechanical soil preparation is practiced commonly in the clear-felling areas of Finland 
today. Since the 1980's, around 120000 hectares of regeneration areas are prepared 
annually, which is nearly the same amount of forest that is being clear-felled 
simultaneously (Finnish Statistical Yearbook of Forestry 2006). Mechanical soil 
preparation exposes mineral soil and releases nutrients for tree seedlings, which leads to 
increased number of saplings especially on spruce-dominated lands (Hyppönen et al. 2002). 
Soil preparation may also simultaneously disturb and deplete understorey vegetation 
(Karlsson et. al 2002) and dead wood. The latter can have other indirect consequences: 
Reduction of CWD affects directly on the amount of epixylics, but also on the future 
substrate of logs as 'stepping-tones' for epixylic plant species during the forest regeneration 
phase. This may cause long-term and even fatal dispersal barrier for the sessile species. 

      
1.3 Understorey vegetation removal and wearing 

 
Boreal spruce forest understorey vegetation consists typically of remarkably thick and 

abundant field, ground and humus layers, which are regulated by allogenic (e.g. 
disturbances) and autogenic (e.g. inter- and intraspecific competition) dynamics. 
Occasional replacement of vegetation via disturbance releases space and resources and the 
canopy then forms the only barrier e.g. for light (Lieffers et al. 1999).  
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Anthropogenic imprints like hiking paths, lichen picking sites, forestry trails and other 
similar disturbances that affect the understorey vegetation of uncut boreal spruce forests are 
often relatively narrow and small, although their spatial and temporal intensity and severity 
may be high, e.g. in forests near urban areas (Malmivaara et al. 2002, Hamberg et al. 2008). 
If the disturbance is severe enough, all of the vegetation along with the regeneration 
propagules may be completely destroyed throughout both the organic and mineral soil 
horizons. Significant local community changes are also possible (Hamberg et al. 2008).  

This type of disturbance has its natural analogues e.g. in animal browsings, burrowings, 
diggings and small tree uprootings. However, animal activity rarely leads to the removal of 
the entire understorey vegetation, while tree uprooting usually creates exposed mineral soil 
patches (at the scale of a square meter to an acre) within the understorey vegetation. 
Anthropogenic activity can create small-scale patch disturbances of all intensity and 
severity classes.  

   
1.4 Aims of the thesis 

 
This thesis includes two anthropogenic regimes:  

The first is GTR patch felling combined with mechanical soil preparation by 
scarification (harrowing). This felling method is believed to be more ecological, as it spares 
patches of the original forest and it has been thought that sensitive forest species could 
survive in the patches over the forest regeneration period. To meet both ecological and 
economical goals, GTR felling could be a potential management solution for heavily 
utilized forest areas, such as southern Finland. Scarification is a commonly used post-
felling treatment, which should enhance regeneration of trees. The ecological effects of the 
two former methods on the ecological key elements, such as CWD and species depending 
on it, are still largely unknown. Additionally, it is not known how stable GTR patches are to 
extreme winds or what is the effect of location (biotope type) and size of the patches for the 
initial environment within them.  

The second is an experimental understorey vegetation removal, which was designated 
so that it was possible to imitate small-sized understorey disturbances, such as recreational 
trampling or animal browsing by controlling the severity of disturbance. The importance of 
this disturbance type in previously unmanaged forests has increased rapidly lasting recent 
decades due to human encroachment and forest fragmentation. The effects of the severity of 
this disturbance on composition and regeneration of initial understorey vegetation are 
largely unknown. Knowledge of this aspect of succession could help e.g. in the designation 
of ecologically sustainable tourist trails and herding areas.     

The effects of both disturbance regimes on boreal spruce forest vegetation structures 
were examined over short (immediate) and small-sized (local) scales. The basic idea behind 
the whole study was that disturbances are not merely discrete events, but that they also can 
interact between the examined levels, i.e. disturbance at the tree stand level can lead to 
disturbance at the understorey vegetation level.  

Study I presents how GTR patch felling affects tree uprooting in two different spruce 
forest biotopes. Study II examines the effects of GTR patch felling and scarification on 
CWD. Study III follows survival of the epixylic community (including vascular plants, 
mosses and lichens) after GTR patch felling and scarification. Here, it was thought that the 
basic prerequisites for epixylic species include decent environmental conditions (as defined 
by stability of tree layer and size of patch) and growing substrate (CWD) availability. Study 
IV examines regeneration of the understorey vegetation community after different removals 
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of vegetation layers and study V presents the regeneration of two dominant understorey 
vascular species (deciduous V. myrtillus and evergreen V. vitis-idaea) after different 
removals of vegetation layers and artificial seed-sowing. 

In the GTR studies (I-III) it was hypothesized that immediately after felling and 
scarification, (I) the number of uprootings increases depending on the forest biotope and on 
the size of the GTR patch, (II) that the amount of CWD is reduced through direct 
scarification or indirect uprooting disturbances, depending on species and decay class of the 
logs and (III) that the cover and species richness of epixylic vegetation change in the felling 
area and also in the GTR patches due to the felling-related disturbances. In these studies, it 
was also examined whether equilibrium theory of island biogeography of MacArthur & 
Wilson (1967), which predicts that increasing size of an island correlates with species 
diversity, can be applied to increasing size change of GTR patches. The purpose of these 
studies was also to increase much needed knowledge on edge-effects in fragmented forests 
(Murcia 1995) and respectively, still exiguous knowledge on influence of forest type on 
biodiversity in GTR studies (Rosenwald & Lõhmus 2008). As the setting of the study had a 
smaller-scale and more local approach and because the studied species represented 
epixylics with relatively low dispersal abilities over clear-cuts, the studies also produced 
new basic data, which can be utilized in studying metapopulations.    

In the understorey vegetation removal studies (IV-V) it was hypothesized (IV) that the 
recovery of dominating species depends strongly on the availability of the reproductive 
organs and that the recovery of different plant growth forms is related to the removals of 
specific vegetation layers and that after a severe disturbance the community composition of 
recovered plant community differs the most in comparison with the untreated vegetation 
and (V) that the recovery rates of V. myrtillus and V. vitis-idaea differ mainly due to their 
different growth forms and that the experimental seed-sowing of the two Vaccinium-species 
increases the number of their seedlings, especially in exposed mineral soil habitats. In these 
studies, it was examined whether the intermediate disturbance hypothesis (Connell 1978) 
applies to small-sized disturbance in a boreal forest understorey vegetation community 
under natural conditions. Here, different plant layer removals and their combinations along 
a continuum represented the severity of disturbance. 

By examining boreal forest vegetation components and structures on five different 
levels (tree stand, CWD, epixylics, understorey plant community, understorey plant 
population), an extensive picture of immediate effects of the most common smaller-scale 
anthropogenic disturbances and their interacting relationships in a boreal forest stand could 
be created. The conclusions of this thesis can be directly applied in to the practical use of 
various forest professionals, who plan and carry out sustainable management and 
restoration operations in boreal forests.   
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2 MATERIALS AND METHODS 
 

2.1 Study areas and sampling 
 

The data of this thesis was collected from two separate areas: The GTR patch felling study 
area was located in the southern boreal vegetation zone at Heinävesi, middle Finland 
(62°25' N; 28°37' E). During the last half of the 20th century, the time of the most intense 
forest management in the history of Finland, forests of the area have been conventionally 
used, i.e. they have been thinned regularly to some degree and part of the dead trees have 
been removed from the forests, which has led eventually to more even-aged structure of the 
remaining mature forest stands. The forests represent the most typical type of managed 
forests met in southern Finland. As the area of unmanaged forests is almost negligible and 
e.g. the amount of CWD is very low in the southern and middle Finland, examination of 
alternative and restorative forest management methods are very much needed in this part of 
the country. 

The study area was first biotope-mapped in 1997 in order to distinguish the different 
Myrtillus-type spruce forest biotopes. Around 200 ha of mature mesic spruce forest were 
mapped before the fellings. In this mapping, clearly defined and homogenous biotopes were 
distinguished from the mapped forest. Minimum size of a biotope was between 100 and 300 
m2. Of the sampled biotopes, from an area of 100 m2, the following variables were 
measured: vegetation type, distance of the area to the biotope edge, medium length of trees, 
topography, slope, soil type, amount of ditches, peat layer thickness, humus layer thickness, 
level of mire water, cover of tree and shrub layer, branch litter cover, amount of decaying 
wood and basal area of trees. Understorey vegetation (species cover) was also assessed 
from four randomized 1 m2 sample sites per each sampled biotope. Through the mapping 
procedure, five different forest and peatland biotopes were determined. The selection was 
based on ordination analysis of the understorey vegetation (Global Non-metric Multi-
dimensional Scaling, GNMDS) and fitting of environmental vectors (amount of decaying 
wood, basal area of Pinus sylvestris, basal area of Populus tremula, cover percentage (%) of 
branch litter, humus layer thickness, peat layer thickness) to the ordination patterns. The 
selected biotopes differed significantly from upland forest types according to the following 
environmental variables: 1. amount of decaying wood (m3/ha), 2. basal area of Pinus 
sylvestris, 3. basal area of Populus tremula, 4. branch litter cover percentage (%), 5. mor 
layer thickness (cm) and 6. peat layer thickness (cm), On the basis of this, the locations of 
the GTR patches were chosen. Two biotopes were included: Paludified spruce forest (11 
patches) and typical drier upland spruce forest (8 patches), from where the shape and the 
size of the patches were measured. The edges of the paludified GTR patches were set to 
coincide with the natural edges of the biotope patches. Due to practical limitations, upland 
GTR patches were left relatively small. The mean size of GTR patch was 0.2 ha (between 
0.09 and 0.55 ha) on paludified biotope and on upland biotope 0.06 ha (between 0.03 and 
0.09 ha) (I; Vanha-Majamaa & Jalonen 2001). 

After site marking and selection, the logs (CWD) along with the 200 cm2 sized epixylic 
study plots on the logs were chosen and marked. The study plots were located on both ends 
and in the middle of the logs. At each location there were three study plots, one on top and 
two on either side of the logs (Figure 1). The number of study plots (between 6 and 15) on 
each log depended on length of the log. Pre-treatment data, which included number of 
living trees (I), location and size data of CWD (II) and cover and species number of 
epixylic vegetation (III), was collected from the GTR patches during 1998. The 
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surroundings of the GTR patches were felled during spring of 1999 and they were 
mechanically harrowed with a disc trencher during autumn 1999. Post-treatment data, 
which included number of living and uprooted trees (I, 1999-2001), visual estimation (with 
aid of pre-treatment length and log description data) of CWD damage percentage (II, 1999-
2000) and cover and species number of epixylic vegetation (III, 1999-2000), was collected 
from the clear-felling areas and the GTR patches. 

The understorey vegetation removal study area was located in the northern boreal 
vegetation zone in a mesic spruce forest at Oulanka National Park, Kuusamo, northern 
Finland (66°20' N; 29°20' E). The forest stand represents the most primeval type of 
Hylocomium-Myrtillus -spruce forest in Finland. As the forests here are in their (practically) 
natural state, the possible anthropogenic side-effects could be minimized and with the 
executed experiment it was possible to predict similar natural disturbances, like recreational 
human trampling or reindeer browsing in the forest.   

The experiment consisted of 50 square plots (sized 0.5 m2) on the forest floor. The plots 
were experimentally disturbed during spring of 1994 in the following way: (a) control, (b) 
removal of the ground layer, (c) removal of the field layer, (d) removal of both the ground 
and field layers and (e) removal of both the ground and field layers and humus layer down 
to the mineral soil. After the initial removal, ramet densities of V. myrtillus and V. vitis-
idaea, were recorded. The study period was five years (1994-1999) during which recovery 
of the understorey vegetation community (IV) and recovery of the two most common field 
layer species, V. myrtillus and V. vitis-idaea (V), were measured in terms of cover (IV, V), 
species numbers (IV), shoot length and relative growth rate (V) from the plots. Cover was 
estimated using the point-frequency method (100 random points on a plastic disc with 400 
drilled holes), where first touches with both field and ground layer were recorded. Study V 
included also an experimental sowing of V. myrtillus and V. vitis-idaea seeds to the plots. 
The seeds, 500 from V. myrtillus berries and 400 from V. vitis-idaea fruiting ramets from 
the area were collected, dried and mixed during September 1994 and sowed one month 
later. On each disturbance treatment, 5 plots were sowed with 200 seeds and 5 plots were 
left as control. The number of seedlings was counted before and a year after the seed-
sowing (V).  
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Figure 1. Location of epixylic study plots on a log (III). 
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Table 1. Timetable of the thesis studies I-V. 
 
     I  

(uprootings) 
II 

(CWD) 
III 

(epixylics) 
IV 

(understorey) 
V 

(Vaccinium) 

1994 - - - choosing site, 
treatments, 
measuring 
cover and 
species 
numbers  

choosing site, 
treatments, 
measuring 
ramets and 
cover, 
seedling 
counting 

1995 - 
 
 
 
 

- - measuring 
cover and 
species 
numbers  

measuring 
ramets and 
cover, 
seedling 
counting 

1997 biotope-
mapping, GTR 
patch marking 

biotope-
mapping, 
CWD marking 

biotope-
mapping, 
CWD marking 

measuring 
cover and 
species 
numbers  

measuring 
cover 

1998 collection of 
pre-treatment 
data (living 
tree variables) 

collection of 
pre-treatment 
data 

 

epixylic study 
plot marking, 
collection of 
pre-treatment 
data  

measuring 
plant cover 
and species 
numbers  

measuring 
cover 

1999 felling 
(spring), 
collection of 
post-felling 
data, 
scarification 
(autumn), 

felling 
(spring), 
collection of 
post-felling 
data, 
scarification 
(autumn), 

felling 
(spring), 
collection of 
post-felling 
data, 
scarification 
(autumn), 

measuring 
cover and 
species 
numbers  

measuring 
cover 

2000 collection of 
post-
scarification 
data 

collection of 
post-
scarification 
data 

collection of 
post-
scarification 
data 

- - 

2001 post-treatment 
data 
(uprootings 
and tree size 
variables) 

- - - - 
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2.2 Statistical methods 
 

Statistical analyses were performed with SPSS (I, II, III, IV, V) and for illustrations, 
SigmaPlot (I, II, III, IV,V) software was used. The following analytical methods were used 
in the studies I-V: A linear regression analysis to check dependence of vegetation variables 
on the GTR patch traits (I, II, III), an independent-samples t-test to check differences 
between the biotopes (I), a paired-samples t-test to check differences between the years (I, 
II), a Wilcoxon's signed-ranks test to check differences between the years (I, III), repeated-
measures ANOVA to check interactions between the time and the disturbance variables 
(II), 1-way ANOVA to check differences between the biotopes and the differences between 
the vegetative traits (II, V), factorial ANOVA to check differences between the disturbance 
treatments (IV, V), Tukey's HSD-test for pairwise comparisons (VI), Tukey's B test for 
pairwise comparisons (V), arithmetic (I, II, III) and logarithmic transformation (I, II, III, 
IV, V).  
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3 RESULTS 
 

3.1 Uprooted trees 
 

In this study, it was hypothesized that the number of uprootings increases soon depending 
on the forest biotope (I). According to the pre-treatment comparison, neither the number of 
living tree numbers, nor the basal area differed between the paludified and upland spruce 
forest types before the treatments. Before the treatments, average number of living trees 
was around 809 trees/ha on the paludified biotope and around 725 trees/ha on upland 
biotope. In both treatments, the two most common tree species were Picea abies and Betula 
pubescens. After the 1st year, there was a small, but non-significant uprooting percentage 
difference between the two biotopes. The percentage shares of the uprooted trees were low 
(paludified: 7%; upland: 2%). By the end of the 2nd and 3rd year, the numbers of uprootings 
had increased considerably in comparison with the 1st post-treatment year. By then, the 
uprooting percentage was around four times higher in the paludified biotope (3rd year: 47%) 
than in the upland biotope (3rd year: 13%). The highest recorded amount of uprooted trees 
in a single (paludified) green-tree retention GTR patch, was around 727 trees/ha. The 
highest within-species uprooting rate was recorded for P. abies in paludified biotope, 
around 47% of the trees had uprooted. Uprooting rate did not correlate with patch shape. 
There was an increasing trend, however statistically non-significant, of dependence 
between increasing size of GTR patch and decreasing amount of uprootings. The original 
hypotheses was verified as true (I). 

 
3.2 Coarse woody debris 

 
In this study, it was hypothesized that the amount of CWD reduces soon to some extent 
through direct or indirect disturbances, while depending on the respective species and decay 
class of the logs. Pre-treatment comparison revealed that the paludified biotope had over 
seven times higher volume of initial CWD than the upland biotope: 15.6 m3/ha on 
paludified and 2.2 m3/ha on upland biotope. During the 1st year felling operations, 8% of the 
initial volume of CWD was depleted from the felling area. On the contrary, during the 2nd 

year scarification, 68% of CWD was destroyed or disappeared from the felling area. 
Between times, 20% of CWD was depleted from the GTR patches. The greatest total losses 
occurred for the deciduous (76%) and the highly decayed (88%) logs in the felling area. 
Respectively, of the individual species, the greatest loss of CWD was recorded for Populus 
tremula, 72%, and of the individual decay classes, for class 5, 90%, both in the felling area. 
During the study, 33% of the logs disappeared during the study, if these logs are included 
on the total loss, 81% of the initial volume of CWD had disappeared after the scarification. 
There was no significant connection between remaining CWD and the distance to the patch 
edge. The original hypotheses was verified, although the amount of depleted CWD in the 
felling area after scarification surpassed expectations (II). 

 
3.3 Epixylic vegetation 

 
In this study, it was hypothesized that the cover and species richness of epixylic vegetation 
is affected to some extent in the felling area and also in the GTR patches. Pre-treatment 
comparison showed that the initial cover and the number of species were slightly higher in 
the paludified biotope (GTR patches) than in the upland biotope (felling area). During the 
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study period, of all species groups, bryophytes had the highest covers and species numbers. 
In the beginning of the study, the most common species were V. myrtillus (1%, in vascular 
plants), Pleurozium schreberi (19%, in mosses), Ptilidium pulcherrinum (2%, in liverworts) 
and Cladonia coniocraea (1%, in lichens). After the felling, the cover and species diversity 
of almost all epixylic species groups declined rapidly in the both areas (the highest drops in 
the RTGs: cover of mosses, -15%; number of liverwort species, -20%; in the felling areas: 
cover of mosses, -28%; numbers of liverwort species, -30%), while the amount of dead 
and/or dying vegetation and felling-related litter increased in the both areas. After 
scarification, the cover and number of species continued to decline in the felling area (the 
highest drops: cover of mosses, -4%; number of moss species, -50%), while 
correspondingly in the GTR patches, the covers remained around the same (the highest 
increment: lichens, 0.5%), but the species numbers declined still (the highest drop: mosses, 
-14%). The increasing size of a GTR patch correlated positively with the total species 
numbers, but not with the total cover. The original hypotheses was verified (III). 

 
3.4 Understorey vegetation 

 
In this study, it was hypothesized that the recovery of dominant species depends strongly on 
the availability of the reproductive organs and that the recovery of different plant growth 
forms is related to the removal of specific vegetation layers and that after a severe 
disturbance the community composition of regenerating plant community differs the most 
in comparison with the untreated vegetation. In the removal treatments where the humus 
layer was not disturbed, the cover of both ground and field layers recovered to the initial 
level during four years mainly due to rapid regeneration of the dominant dwarf shrubs. In 
the 5th year after the disturbance cover was over 85%. Recovery was generally faster in 
terms of species numbers than cover. In the humus layer removal treatment, regeneration of 
vegetation was very slow and it occurred mainly by sexual reproduction, while the 
community composition of the treatment differed considerably from the others: 62% of the 
cover consisted of graminoids. The most rapidly regenerating species were V. myrtillus, V. 
vitis-idaea, Hylocomium splendens, Pleurozium schreberi and Polytrichum commune. 
Seedlings of tree species were recorded only on disturbed plots. All of the regenerated 
species in the experiment represented the members of initial community. In the study, 
especially high cover and species diversity during 1998 could be connected to rainy 
weather conditions during that year. The original hypotheses was verified (IV). 

 
3.5 Vaccinium myrtillus and Vaccinium vitis-idea 

 
In this study, it was hypothesized that the recovery rates of V. myrtillus and V. vitis-idaea 
differ mainly due to their different growth forms and that the experimental seed-sowing of 
the two Vaccinium-species increases the number of their seedlings especially on bare 
mineral soil habitat. Deciduous plants, which renew leaves annually, have generally greater 
reproduction capacity, mostly due to their abundant belowground resources (Karlsson 
1985). Evergreen plants retain green leaves throughout the winter period, and for example, 
V. vitis-idaea regenerates more slowly from disturbance than V. myrtillus (Tolvanen & 
Laine 1997). In the beginning of the study, around 294 ramets/m2 and 132 ramets/m2 of V. 
myrtillus and V.vitis-idaea, respectively, were recorded from the plots. New ramet 
production during the 1st and 2nd year was rapid for the both species, and it increased in a 
pattern consistent with the severity of the initial disturbance (A, B, C, D). After disturbance, 
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the mean current shoot length decreased for the both species. Cover of evergreen V. vitis-
idaea returned to the level occurring in controls after one year in the treatment where only 
the field layer was removed. The rapid regeneration took place by efficient production of 
new ramets, while in the other treatments regeneration took four years. This was faster than 
with deciduous V. myrtillus, which recovered fully in four years. The former species 
responded to damage with increased length growth of shoots, while the latter concentrated 
on increased production of annual shoots. During the first year after severe disturbance 
(removal of the field and ground layers), ramet mortality was high (around 35% for the 
both species) if compared to the control (around 0% for the both species). In the most 
severe treatment, regeneration of both species was exiguous. Experimental seed-sowing 
produced the highest number of Vaccinium-seedlings when the humus layer was removed 
(sown: 149 seedlings/m2; unsown: 6 seedlings/m2), although the mortality of seedlings after 
the first winter increased considerably in this treatment. In contrast to the original 
hypotheses, no growth form –related differences in the recovery rate between the species 
were found (V). 
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4 DISCUSSION 
 

4.1 Green tree retention patch felling and scarification 
 
Location of GTR patches on boreal forest landscape significantly affects short-term 
vegetation structure dynamics within the patches. This thesis also shows that local epixylic 
species dynamics in single patches are very intense in the beginning phases of regeneration 
(III). It is possible that metapopulation dynamics in the very beginning of regeneration 
period may be shadowed by the local dynamics, which supports the view of Harrison & 
Ray (2002), who argued that using metapopulation dynamics is not always appropriate in 
case of plants. The paludified forest type sustains significant amount of biological and 
structural diversity, but the sum of other characteristics of this biotope, e.g. wet and stony 
soil and the flat root structure of the dominant tree species (P. abies), endanger the trees to 
very extensive windthrow disturbance after indirect anthropogenic disturbance, i.e. clear-
felling of adjacent areas (I). Generally, moist forest sites are known to be very susceptible 
to uprooting (see survey of Ilisson et al. 2004). Also mature, old-growth-like stands seem to 
be more susceptible to wind damage at high tree removal rates (Coates 1997). Even though 
the mean size of the GTR patches was almost 10 times higher than the average size 
currently used in Finland, the patches came in for excessive windthrows during the 2nd 
year since the felling (I). The magnitude of tree uprootings was almost 40 times higher than 
the normal tree mortality rates in these forests, which are under 1% (Jonsson 2000; Siitonen 
et al. 2000; Rouvinen et al. 2002; Fraver et al. 2008). Still, the wind speeds measured from 
the area during the study period were normal and no strong storms were officially recorded 
from the study area (I), although some local observations of strong winds were made during 
that time (II). It is known that windthrows may show large variation over time (Jonsson & 
Dynesius 1993). There was a small trend between increasing GTR patch size and 
decreasing number of uprootings, which may indicate that the GTR patch size used in this 
study was near the possible threshold level, above which the effect could be much more 
pronounced. 

If it is decided that trees are to be preserved within the paludified patches, it seems 
possible to sustain and even restore CWD over the forest regeneration phase due to the high 
uprooting susceptibility of trees (II). This is in accordance with the stochastic equations 
based on computer simulation by Ranius et al. (2003), in which retention of small 
productive areas leads to an acceptable continuum of CWD. Clear-felling operations alone 
do not destroy high quantities of CWD from the felling areas, especially if the fellings are 
done during the period of snow cover. For the continuum of initial CWD, the most crucial 
defining factor seems to be the scarification of clear-felling area. Harrowing with disc-
trencher proves to be very devastating, as the great majority of the initial CWD (especially 
the deciduous and highly decayed logs) either gets destroyed or will be buried under the 
soil (II). Additionally, during harrowing it is not always possible to bypass the downed logs 
even though the regulations could advise to do so. Further, the damaged logs are also 
possibly prone to degradation due to the desiccation and temperature extremes in the felling 
area.  

The logs are best preserved in the GTR patches, where microclimatic conditions are also 
supposedly milder (II). The better recovery of epixylics in the GTR patches vs. the felling 
area suggests that the post-felling windthrows may even enhance microclimate in the forest 
interior patches (III), as uprooted trees often package in to tight agglomerations and piles 
(H. Hautala, personal observation). It has been observed earlier also that windthrows can 
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enhance spruce regeneration (Drobyshev 2001) and increased amount of dead wood in the 
clear-felling area can improve abundance of polypores (Selonen et al. 2005). On the other 
hand, frequent uprootings in GTR patches can consume a considerably large portion of the 
initial CWD by crushing and breaking it into pieces, which may lead to unilateral 
accumulation of new CWD. 

 Clear-felling causes immediate and steep declines of epixylic species in the felling 
area (III). Further, microclimatic extremes and deterioration of the logs as growing 
substrate in the clear-felling area will present new challenges even for the most tolerant 
epixylic bryophyte species. Also, the depletion of CWD during the soil harrowing 
correlates directly with the quantitative decrease of epixylics especially in the clear-felling 
area, which supports the view of Newmaster et al. (2007), according to whom displacement 
of CWD, along with organic layers during site preparation, is the main cause for the decline 
in species richness. It has been observed earlier that soil preparation has also other negative 
ecological consequences, like delays in the growth of field layer vegetation (Karlsson et al. 
2002) and potentially facilitating the invasion of ruderals (Haeussler et al. 2002). 

The immediate microclimatic edge-effects caused by clear-felling reach also the interior 
of GTR patches and seem to lead to a decline in cover for all epixylic species groups (III). 
According to the informal climate data recorded during summer of 2003, there were no 
notable temperature and air humidity differences between the edges and the interior of the 
GTR patches. It has been estimated that the edge-effects from clear-felling area (i.e. 'the 
adjacent opening effects') can extend several tens of meters into the boreal forest interior 
(Burton 2002; Harper & Macdonald 2002; Moe & Jonsson 2003). In modern forestry, it is 
often not understood that preserving particular areas of initial forest from felling does not 
necessarily mean that equivalent areas of 'unchanged initial forest' are preserved for the 
future. Instead, adjacent opening effects may diminish greatly the value of preserved forest 
(Murcia 1995). Liverworts, as well as certain common forest interior vascular plants, are 
especially sensitive to edge-effects, which according to this thesis, seem to be transient for 
the most of the epixylics (III). However, larger GTR patch size seems to correlate 
positively with the species diversity (III), which means that the proportion of edge-effects 
may decrease at some level already at this size-scale of GTR patches. The former result is 
also supported by statistically non-significant observation, according to which, there are 
less uprootings in larger GTR patches (I). These observations support the classical view of 
MacArthur & Wilson (1967), where increasing island size correlates with increasing 
number of species due to the more balanced interplay of community dynamics in the larger 
islands. However, the increasing number of epixylic species with the increasing size of 
GTR patch immediately after the isolation most likely results from the enhanced local 
conditions (microclimate, aided by increased tree uprooting) than colonization from 
outside. As felling areas during the first years seem to be unsuitable for epixylic species, it 
is probable to local dynamics outcompete possible effects of metapopulation dynamics, at 
least in the beginning. 

In order to sustain the initial conditions with minimal change, the size of GTR patches 
should still be notably larger than the size used in this thesis in order to guarantee their full 
ecological function (I, II, III). Generally, small patch size leads usually to functional 
reductions and to transformation of GTR patches into edge habitats (Esseen 1994; North et 
al. 1996; Halpern & McKenzie 2001; Jalonen & Vanha-Majamaa 2001; Bradbury 2004; 
Halpern et al. 2005). It has been estimated that the threshold size of a GTR patch could be 
around 1 ha (Esseen 1994), also for key habitats in general (Pykälä 2007). Then, it would 
be possible to attain the state of 'core area', where the retained patch is free of the edge-
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effects from surrounding habitats (Ohman 2000). The current practice in Fennoscandia is to 
leave 5-10 trees/ha (Vanha-Majamaa & Jalonen 2001), which is most likely inadequate in 
an ecological sense. For urban areas, Hamberg et al. (2008) recommend that size of forest 
fragments should be at least 2-3 ha. In Finland, one current problem is also the poor 
implementation of forest legislation and thus the poor fulfilling of biodiversity targets 
(Pykälä 2007), like retention of trees.   

In practice, it is not always possible to estimate or imitate locally the initial forest's 
natural disturbance regime to the full extent, as there are many factors involved in it, 
including e.g. biotope variation, disturbance history and earlier forest management actions 
which all have affected the present state of the forest stand. Executing management actions 
according to the presumed disturbance regime of the area is certainly better option than to 
ignore completely what has happened historically. Even single-tree retention can sometimes 
be a better option than clear-felling (see Atlegrim & Sjöberg 1996). By leaving retention 
trees into the fire-refugia biotopes, it is possible to more closely mimic the natural 
disturbance regimes, where smaller islands often remain unburned for a longer period than 
larger islands (see Wardle et al. 1997). 

  
4.2 Understorey vegetation removal 
 
Boreal spruce forest understorey plant growth forms respond individually to the removal of 
single vegetation layers and their respective combinations (IV). In general, response of 
vegetation to the different intensities of disturbance fits well with the intermediate 
disturbance hypothesis of Connell (1978). The main evidence of this is as follows: 1. the 
number of species was greatest after moderately intensity of disturbance, 2. after low 
intensity disturbance, the plant community returned rapidly to its initial state, where dwarf 
shrubs dominate in the vegetation, and 3. after high intensity disturbance, community 
composition had changed very significantly and there was no sign of healthy recovery even 
five years after the disturbance.     

Due to the characteristically thick and ‘packed’ structure of undisturbed understorey 
vegetation layers in boreal spruce forest, competition for released resources, such as growth 
space, is rigid and regeneration after low and moderately severe disturbance is restricted to 
the vegetative growth of the dominant clonal dwarf shrubs, V. myrtillus and V. vitis-idaea 
(IV, V). Removal of a specific layer or a growth form releases resources for an existing 
layer or for another growth form, respectively. For example, a dense ground layer 
suppresses growth of the field layer to some extent. Generally, mosses seem to recover 
slower than vascular plants (IV), which is in accordance with the results of Rydgren et al. 
(1998). The same trend has been recognized also in the heavily trampled urban boreal 
forests (Malmivaara et al. 2002). Mosses recover mainly by growing new segments or 
lateral shoots (Salemaa et al. 2008), while their main competitors, dwarf shrubs, can 
reallocate effectively resources from their belowground storages into the regeneration of 
new ramets. For tree seedling regeneration, some level of disturbance seems to be necessary 
(IV).   

If disturbance removes plant regenerative organs and the organic horizons the soil, i.e. 
environmental conditions represent a state of primary succession, the regeneration of 
vegetation is very slow and pioneers consist mainly of graminoid tillers, seedlings and 
bryophytes, the latter of which can rejuvenate on mineral soil from their vegetative 
fragments (IV). It is genetically important that the exposure of mineral soil in boreal spruce 
forest floor enables the sexual reproduction of plants, while the gaps also allow a 
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‘reasonable chance’ for the reproduction of weaker competitors, such as annual herbs. Also 
trampling routes in urban boreal forests (Hamberg et al. 2008) and other analogous 
disturbance regimes, like raking (Lindholm & Nummelin 1983) can produce similar results. 
Eventually, small gaps will close largely via the resprouting of dwarf shrubs and also partly 
by the inward growth of mosses (Frego 1996) from the outer edges. Additionally, in small 
gaps, plant species composition even after severe disturbances consists almost entirely of 
the same species that have previously persisted in the undisturbed community (IV, V), 
which is in contrast to the results of Jonsson (1993) and Jonsson & Esseen (1998). Small-
sized, mechanical disturbance does not also seem to introduce new pioneer species that 
often born after forest fire or soil preparation after clear-felling (Haeussler et al. 2002; Frey 
et al. 2003). The reason for this may be simply low light availability. Species richness often 
correlates with high light availability (Liira et al. 2007; Hart & Chen 2008). 

In V. myrtillus and V. vitis-idaea, almost any kind of mechanical disturbance from low 
to moderate severity leads to increased vegetative production of new ramets and cover (V), 
which clearly demonstrates that these species are well-adapted to herbivory, as shown 
earlier by the extensive work of Tolvanen (1994). It is already known that V. vitis-idaea 
recovers better from e.g. experimental tamping (Kellomäki & Saastamoinen 1975). 
However, according to this thesis, the recovery growth strategies seem to differ between the 
deciduous and evergreen growth forms which is in accordance with earlier studies 
(Karlsson 1985; Salemaa et al. 1999). Deciduous V. myrtillus can rapidly diverge into new 
ramets, a feature of which can be thought as an effective advantage against e.g. animal 
browsing, while evergreen V. vitis-idaea invests in growing length of the ramets (V). This 
latter investment, however, may be partly caused also by the forest type: In moist spruce 
forests, thick and shady understorey vegetation causes relatively greater competition within 
the community than in drier boreal forest types, where V .vitis-idaea usually dominates. 

After severe small-sized understorey disturbance, deciduous and evergreen growth 
forms rely merely on sexual reproduction instead of otherwise prevalent vegetative 
recovery (V). Sexual reproduction of V. myrtillus and V. vitis-idaea seems to be limited 
both by the poor availability of bare mineral soil substrate and seeds in the boreal forest 
floor. For this reason, severe disturbance, which removes all existing plant layers up to the 
mineral soil, is imperative for the maintenance of adequate local genetic diversity of the 
populations of these species (IV, V). One shortcoming of bare mineral soil patches is that 
they do not seem to offer much shelter for the new seedlings, which then may be exposed to 
temperature changes, small floodings or alternatively become easy forage for herbivores in 
the beginning phases. 
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5 CONCLUSIONS AND IMPLICATIONS FOR PRACTICAL 
SILVICULTURE 

 
Results gained in this thesis present new ecological data from less well-known effects of 

smaller-scale disturbances on different levels of vegetation dynamics in boreal forests. The 
findings also support some well-known ecological theories. Green-tree retention (GTR) 
studies showed that increasing island size correlates with increasing number of species and 
that the local initial vegetation dynamics are very strong, while understorey vegetation 
removal studies supported strongly the intermediate disturbance hypothesis.    

The GTR patch felling studies of this thesis were executed in forest stands which have 
represented typical Finnish forest management histories, including e.g. occasional thinning, 
fertilization and removal of dead wood during recent decades. Most of the current forest 
stands in Finland and elsewhere in Scandinavia have been treated in a similar way. Thus, 
the lessons learned here can be applied also to the larger boreal forest zone within 
Fennoscandia.  

GTR patch felling, with a larger patch size than currently used in Finnish forestry, 
seems to preserve and even restore elements of the initial vegetation. Therefore, this felling 
method has clear ecological advantages in comparison to e.g. clear-felling and dispersed 
GTR felling, where the immediate effects of e.g. microclimate change are much more 
pronounced. The GTR patches should be located according to the set local objectives of the 
respective management plans. In order to ensure the initial biological and structural 
diversity in the retained forest area, it is recommended to locate the GTR patches 
principally in those stands where initial biological and structural diversity is already 
prominent. Paludified forest patches among upland spruce forest are reasonable for this 
purpose as: (a) they are prone to uprooting, which assures the flow of new CWD during the 
forest regeneration process, (b) they have naturally high initial abundance and diversity of 
the most important ecological key resource in boreal forests, CWD and species diversity 
connected to it, (c) they also function often as forest aqueducts, and (d) they are easy to 
recognize and delimit without advanced expert knowledge. However, the size of the 
patches should be significantly larger than the current voluntary standards call for. 
According to this thesis, if size of the GTR patches is at least 10 times larger than the 
current practice, higher species richness can be maintained.  

If the objectives of the local management plans demand preserving of existing CWD, 
use of less destructive methods than scarification should be recommended for the felling 
areas. Along with more localized options, such as mounding, one method could be e.g. 
prescribed burning, which also resembles better the natural boreal disturbance dynamics. 
However, the effects of the other available methods on CWD, including currently 
increasing stump removal, are still largely unknown and more future research should be 
directed toward understanding their ecological effects.   

Even though the understorey vegetation of natural spruce forest can rejuvenate rapidly 
from small-scale disturbances by vegetative means of the dominating plants, the intensity of 
the initial disturbance is, as it ultimately defines the speed of recovery. The forest floor 
withstands well moderately severe disturbance, which is typically created by animals and 
light trails, for example. High severity disturbances that remove the entire vegetation layer, 
such as single tree uprootings typical for moist natural spruce forests, are nowadays mainly 
affiliated with modern foresty practices. Infrequent small-sized high severity disturbances 
form an essential part in the natural cycle of boreal spruce forest stand dynamics. These 
disturbances enable the maintenance of small-scale heterogeneity through the occasional 
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establishment and maintenance of weaker competitors and enabling the sexual reproduction 
of the initial forest floor species. In sensitive areas, where natural small-scale disturbance 
dynamics are functioning properly, excessive scarification of the forest floor should be 
avoided. 

This thesis has shown that the boreal forest disturbances function within different 
vascular and non-vascular plant groups and they can interact (for example: felling increases 
the number of uprootings, which affects CWD and additionally epixylics) even over short 
temporal scales and thus it would always be useful to estimate the extent of this interaction 
in e.g. local forest usage and management plans in order to prevent unwanted side-effects. 

Prior to modern times, boreal forest disturbance dynamics had certain temporal and 
spatial regimes to which forest-dwelling species had adapted over thousands of years. 
Today, the most common natural and anthropogenic disturbances are increasingly 
interactive and due to this we may witness in the near future different types of related 
extreme phenomenon, such as catastrophic windthrows and massive insect outbreaks. 
Whether it is possible to achieve a situation where ecological and economical goals can 
both be fulfilled satisfactorily in these forests, which are part of the world's largest 
terrestrial biome, depends upon our choices and actions. 
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