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ABSTRACT 

Sironen, S. 2009. Estimating individual tree growth using non-parametric methods. 
Dissertationes Forestales 94. 54 p. Available at http://www.metla.fi/dissertationes/df94.htm. 

Information about the current condition, extent and quantity of forests that is provided by 
forest inventories, combined with forest growth models, is of great importance in 
forecasting the future development of forests. The ability to make reliable predictions has 
an important role as a tool of management planning, in evaluating silvicultural options, and 
ensuring sustainable forest management. In Finland, growth models are typically national 
models which may be markedly biased for a given stand or region. Non-parametric 
methods offer an alternative to the traditional regression methods. In non-parametric 
methods, the value of the variable of interest for a target observation is estimated often as a 
weighted average of the values of neighbouring reference observations, which are similar to 
the target observation in terms of the independent variables and weighted by their proximity 
to the target observation Locality can easily be described by non-parametric methods, if 
local data is available. The overall purpose of this thesis was to examine and evaluate 
different non-parametric methods as a method for individual tree growth estimation. One of 
the main focuses was to test non-parametric methods in order to reduce the regional biases 
associated in the growth estimates. 

The study material comprised temporary local sample plot data from Kuusamo in north-
eastern Finland and nationwide permanent inventory growth plot data (INKA). The tree 
species considered were Scots pine (Pinus sylvestris L.) and Norway spruce (Picea abies 
(L.) Karst.). The tested methods included k-nearest neighbour methods employing various 
distance functions and generalized additive models. The different topics analysed in this 
thesis include local non-parametric growth estimation methods, localizing the non-
parametric growth estimates, simultaneous estimation of individual tree diameter and height 
increment, and the effects of correlated observations on non-parametric growth estimation 
methods.  

The results showed that non-parametric methods are suitable for estimation of growth, 
although the performance of the different methods varied depending on the purpose and the 
data used. The non-parametric methods were capable of reducing the regional biases. The 
most promising alternative to the means of localization was the sub-setting of the reference 
data by selecting the neighbours from a circle around the target tree. The levels of accuracy 
achieved in the estimation of individual tree growth were at least as good as those obtained 
by the parametric models at the tree, stand and regional levels. The methods presented in 
this thesis could be implemented in practical planning systems, although several issues still 
require further study and consideration, especially the issues concerning silvicultural 
treatments.  

 
Keywords: diameter increment, height increment, nearest neighbour, k-NN, generalized 
additive models, GAM 
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1 INTRODUCTION 

1.1 Modelling growth 

In long-term management of forests, planning decisions concerning optimal silvicultural 
regimes are needed, and this requires a large amount of information on both the current and 
future condition, extent, and quantity of forests. In order to make informed decisions for 
using and managing forest resources, accurate growth estimates are very important, since 
forestry databases are normally projected using growth models. Growth models may be 
classified according to many criteria based on different characteristics of the models. In 
general, there are two ways to develop growth and yield models; methods based on the 
physiological mechanism of plant growth and empirical methods. The former are developed 
for understanding, and are difficult to apply practically due to the constraints of 
complicated environmental factors (e.g. Vanclay 1994). The latter are developed for 
prediction and may sacrifice specific detail of growth processes in order to achieve 
efficiency and accuracy in providing information for management planning (e.g., Vanclay 
1994). 

Traditionally empirical growth and yield models have been classified into whole stand 
models, diameter class models and individual tree models based on the level of detail they 
provide. Whole stand models predict growth for the entire stand and require stand-level 
information, such as basal area of the stand, stand age and site type (e.g. Clutter 1963, 
Sullivan and Clutter 1972, Nyyssönen and Mielikäinen 1978, Pienaar and Harrison 1989, 
Ochi and Cao 2003, Huuskonen and Miina 2007, Martínez Pastur et al. 2008). Whole stand 
models are easy to use in practical applications. They are easy to control and analyse, 
therefore their applicability is more easily distinguished (e.g. Gustavsen 1998). Inventory 
costs concerning the input data are low compared with individual tree growth models. 
Although the accuracy of whole stand models has been as good as that of individual tree 
models, they may not be reliable in mixed stands or suitable for uneven-aged stands (e.g., 
Gustavsen 1998, Hasenauer 2006, Mäkinen et al. 2008). Diameter class models are 
developed to predict stand growth rates by diameter classes and can be seen as a 
compromise between whole stand models and individual tree models (e.g. Adams and Ek 
1974, Ek 1974, Solomon et al. 1995, Eerikäinen and Maltamo 2003). These models have 
some information regarding the structure of the stand and there are several techniques to 
estimate this structure, one of the most widely used being stand table projection, which 
produces histograms of stem diameters (e.g. Vanclay 1994). Furthermore, transition matrix 
models can be built for different entities as basic units (Buongiorno and Michie 1980). The 
largest group of transition matrix models are constructed with a single tree as the basic 
entity and diameter as the state-defining variable (e.g. Usher 1969, Haight and Getz 1987). 
Area transition matrix models instead apply forest area as the basic unit and the state-
defining variables are related to area (e.g.  Hool 1966, Sallnäs 1990). 

Individual tree models predict the development of each individual tree in a stand and are 
usually based on a combination of tree- and stand-level information (e.g. Hynynen 1995, 
Monserud and Sterba 1996, Andreassen and Tomter 2002, Hynynen et al. 2002, Zhao et al. 
2003). The individual tree growth model enables, in principle, predictions to be made 
regardless of species mixture, age distribution or applicable silvicultural system (Hasenauer 
2006). However, the suitability also depends on the specific models, so that in practice the 
suitability is not quite so straightforward. Predictions can attain more accuracy, if tree-wise 
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input data is available instead of trees generated using a predicted distribution (e.g. 
Gustavsen 1998). However, forest growth simulators applying individual tree growth 
models may modify uneven-aged stands to make them resemble even-aged stands by 
removing small trees. Individual tree models may be further divided into distance-
independent and distance-dependent models, the latter requiring mapped or simulated tree 
locations for incorporating competition information (Munro 1974).  

Furthermore, two different modelling approaches for predicting individual tree diameter 
and height increment have been commonly used. One is the growth-potential independent 
approach, in which actual diameter or height increment rates are directly expressed as a 
function of tree and stand characteristics from the available data, including the 
competitiveness of the tree in the stand (Wykoff et al. 1982, Wykoff 1990, Monserud and 
Sterba 1996). The other is the growth-potential dependent approach, which assumes a 
species and site specific upper limit or limited growth (e.g. Hasenauer 2006). Models based 
on this approach must first select a function that defines the potential diameter or height 
growth of competition-free trees, then a modifier function is used to reduce this potential 
for each tree within a stand, according to the competition situation of the tree (Ek and 
Monserud 1974, Daniels and Burkhart 1975, Pretzsch et al. 2002). Base potential for 
diameter increment functions may be defined by the dimensions of open-grown trees, 
which may be considered as the potential dimensions that a tree may have (e.g. Hasenauer 
1997). The potential height increment is often defined by mean dominant height increment 
derived from site index functions. The modifier that predicts the tree growth in relation to 
the potential growth is commonly expressed as a function of the individual tree’s attributes, 
such as crown ratio, crown length and competition indices (e.g. Hynynen et al. 2002, 
Hasenauer 2006).   

Primary applications for the information provided by growth models include inventory 
updating (Burkhart 1992), and when growth models are used for that purpose the time 
horizon in growth prediction is usually a few years (Hynynen 1995). Growth models are 
also used in long-term simulations. Long-term forecasts covering some decades are needed, 
for example, in forest management planning and in making decisions on forest policy 
strategies (Hynynen 1995). While considering long-term forecasts, the method applied 
should be capable of reliably predicting the effects of silvicultural treatments and practices 
applied today and in the future (e.g. Hynynen 1995). Furthermore, predictions of the 
impacts of changing climate somehow need to represent the key biological processes and 
take into account the effect of climatic and edaphic factors on the physiological process 
behind the growth of trees (Matala et al. 2006, Nuutinen et al. 2006).   

Most growth models are constructed from several equations independently fitted to the 
data (Vanclay and Skovsgaard 1997). However, implicit assumption of independence does 
not apply from a biological point of view, and is inefficient from a statistical point of view 
(e.g. Borders and Bailey 1986, Hasenauer et al. 1998). Since cross-equation correlations 
and feedback mechanisms might exist among variables that are used to describe growth 
relationships, forest stand dynamics should be described by simultaneous systems rather 
than separate individual equations (e.g. Daniels and Burkhart 1988, Huang and Titus 1999). 
Simultaneous estimations of all model components minimizes overall model errors and 
provides a variance-covariance matrix for the model as a whole (Vanclay and Skovsgaard 
1997). A considerable number of simultaneous stand-level equations based on mean and 
total stand characteristics have been constructed (e.g. Furnival and Wilson 1971, Borders 
and Bailey, 1986, Fang et al. 2001, Eerikäinen 2002), but few simultaneous individual tree 
models (Hasenauer et al. 1998, Huang and Titus 1999).  

http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6T6X-3X889K3-5&_user=949127&_rdoc=1&_fmt=&_orig=search&_sort=d&view=c&_version=1&_urlVersion=0&_userid=949127&md5=68c93b6a38865086b8a9f7c4a9f0ad97#b7
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6T6X-3X889K3-5&_user=949127&_rdoc=1&_fmt=&_orig=search&_sort=d&view=c&_version=1&_urlVersion=0&_userid=949127&md5=68c93b6a38865086b8a9f7c4a9f0ad97#b4
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6T6X-3X889K3-5&_user=949127&_rdoc=1&_fmt=&_orig=search&_sort=d&view=c&_version=1&_urlVersion=0&_userid=949127&md5=68c93b6a38865086b8a9f7c4a9f0ad97#b4
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6T6X-3X889K3-5&_user=949127&_rdoc=1&_fmt=&_orig=search&_sort=d&view=c&_version=1&_urlVersion=0&_userid=949127&md5=68c93b6a38865086b8a9f7c4a9f0ad97#b1
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Models used for growth prediction are typically on a large scale. While these models 
may give accurate results for larger areas, they may be markedly biased for a given stand or 
region. Gustavsen (1998) found notable differences across the Forestry Centre regions in 
Finland when assessing the performance of national growth models; regional biases for 
five-year volume growth were as large as 7.97 m3 ha-1 in North Karelia or 5.93 m3 ha-1 in 
north-eastern Finland, whereas it was as low as -0.44 m3 ha-1 in northern Häme. The 
accuracy of forestry databases can be effectively improved by accounting for regional 
differences in the associated growth predictions. This could be done by fitting local growth 
models, but this may be overly costly in practice. Another solution would be calibration of 
the national models for a particular area (Talvitie 2005). For example, linear prediction 
theory can be used to calibrate mixed models for a given stand (e.g. Lappi 1986, 1991, 
Kangas and Korhonen 1995). However, this approach is not suitable for regional 
adjustment unless an expected value of stand effect in a region can be estimated. Räty and 
Kangas (2007, 2008) tested selecting the localizing areas for general models based on local 
indices of spatial association and the method seemed to be useful and the localization 
removed the local bias associated in the global model.  

Growth and yield models have been developed for many purposes and the choice of one 
from among the different approaches may simply be a matter of preference or convenience, 
because each approach can produce acceptable predictions if appropriately used 
considering the model’s own function, the requirements of the application in question and 
the data available. Different kinds of problems may require different kinds of solutions and 
model types (Daniels 1993). In general, different model types should be applied to the kind 
of data from which the models are constructed in order to obtain reliable predictions 
(Gustavsen 1998). Currently in Finland, the growth models used in practice are usually 
individual tree growth models constructed with parametric regression technique, in which 
growth of trees is predicted with distance-independent models for tree basal-area growth 
and height growth (Hynynen et al. 2002). The former are growth-potential independent 
models and the latter are driven by the height development of dominant trees. An 
alternative to traditional regression models is to construct estimates applying different non-
parametric methods.  

1.2 Non-parametric methods 

Intensive efforts have been devoted to non-parametric methods over the past few decades 
(Fan 2000). The progress in the field of non-parametric methods has been dynamic. Non-
parametric methods allow data to search appropriate nonlinear forms that best describe the 
available data, and as non-parametric methods make fewer assumptions, their applicability 
is much wider than that of the corresponding parametric methods (Fan 2000). In non-
parametric methods, the estimate for the target observation is a local estimate, for example, 
a local mean, of the values of neighbouring reference observations, each value weighted by 
its proximity to the target observation in the space of dependent variables (e.g. Härdle 1989, 
Altman 1992). Reference observations form a group of potential nearest neighbours and 
have information on both dependent variables and independent variables, while target 
observations have information only on independent variables. The neighbourhood is 
defined by these independent variables which are known in both data (e.g. Härdle 1989, 
Altman 1992, Korhonen and Kangas 1997).  
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The non-parametric approach subsumes many methods and variations on methods. 
Many useful techniques have been proposed for univariate smoothing, including kernel, 
local polynomials and splines (e.g. Rosenblatt 1956, Stone 1977). Univariate smoothing 
techniques can be extended in a straightforward manner to situations including many 
independent variables. However, such extensions are not useful due to the “curse of 
dimensionality”, which means that when the number of independent variables increases, the 
solution of the estimation tasks rapidly becomes more complex (e.g. Bellman 1961, 
Friedman 1994). Many techniques have been proposed to overcome this problem, including 
generalized additive models (GAMs) (Hastie and Tibshirani 1986), which are broadly 
applied in ecological studies (Guisan et al. 2002). Forestry applications of GAMs include 
modelling forest characteristics and model-assisted estimation of forest resources (Frescino 
et al. 2001, Moisen and Frescino 2002, Opsomer et al. 2007, Zhang et al. 2008). In 
addition, nearest neighbour methods are suitable for multivariate settings. Nearest 
neighbour methods are used in numerous forestry applications, including generalization of 
sample tree information, estimation of diameter distribution, in remote sensing applications 
and many multivariate and multisource forest inventory applications (see Moeur and Stage 
1995, Korhonen and Kangas 1997, Maltamo and Kangas 1998, Moeur and Hershey 1999, 
Holmström et al. 2001, Packalén and Maltamo 2007, LeMay et al. 2008, Temesgen et al. 
2003, 2008). Beyond this thesis, non-parametric methods have been applied to estimation 
of stand-level volume growth for Pinus kesiya plantations by Maltamo and Eerikäinen 
(2001). In addition, Neurogenetic Algorithm System, an artificial neural network with 
genetic algorithm has been applied in individual tree growth modelling (Liao et al. 1998). 
Artificial neural networks are computer models that attempt to mimic the way in which the 
human brain performs a particular task. They are non-parametric methods; they do not 
assume any particular noise process and can learn linear and nonlinear processes directly 
from the data. In addition, random forests are among the recent additions to the non-
parametric statistics and machine learning methods (e.g. Breiman 2001). Random forests 
can be used both for regression and classification, and they have shown to be effective in 
practical applications and their generalization properties are good. 

Non-parametric methods have certain advantages over the traditional regression 
methods. Firstly, the model structure in non-parametric methods is not specified a priori. 
The non-parametric methods do not rely on any probability distribution or require any 
predefined information on the form of underlying function, thus they are very flexible (e.g. 
Härdle 1989). Secondly, non-parametric methods can retain more of the variance structure 
of the data. However, this cannot be guaranteed, if more than one neighbour is used in the 
estimation. Furthermore, to retain the full variation of the data, the occasions on which the 
same reference observation is imputed have to be restricted. Barth and Ståhl (2007) 
restricted the ordinary imputation in order that the method preserved the composition of the 
original data at the landscape level. This was obtained by imputing each observation in 
reference data into the target observations for a limited number of times. Each observation 
was represented in the reference data as many times as it should be found in the population 
level. Non-parametric estimates are formed from existing measured samples, hence the 
estimates are always within the bounds of biological reality and unrealistic growth 
estimates cannot occur (e.g. Moeur and Stage 1995). In certain applications; however, the 
non-parametric methods may produce combinations that do not exist within the realm of 
real values, if more than one nearest neighbour is averaged (e.g. LeMay and Temesgen 
2005). In addition, careful attention must be paid if the data is not continuous, since non-
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parametric methods may interpolate to areas not allowable in these kinds of situations 
(Maltamo and Eerikäinen 2001) 

 Some of the non-parametric methods are multivariate and make it possible to estimate 
many variables of interest simultaneously (Moeur and Stage 1995, Katila and Tomppo 
2002, Packalén and Maltamo 2007). These applications consider mainly simultaneous 
estimations of stand-level characteristics, but the method can similarly be applied at 
individual tree level for many characteristics. Furthermore, non-parametric methods can 
effectively describe local conditions, if sufficient local data is available. Localization in the 
case of nearest neighbour estimation has been investigated in numerous studies by using 
different approaches (e.g. Tokola 2000, Maltamo et al. 2003, Koistinen et al. 2008). 
Localization of the non-parametric estimates may be obtained through a variety of methods, 
in particular, by including both variable-space and physical-space in the imputations. 
Previously, Katila and Tomppo (2001) have studied the inclusion of moving geographical 
reference areas both in horizontal and vertical directions in the nearest neighbour method.  

Non-parametric methods need reference data in the database in the application phase as 
well; and such reference data should be of good quality and cover the whole range of 
possible values of the dependent variables (Moeur and Stage 1995). This also requires 
permission to use the reference database at the application phase. However, databases and 
estimates produced by non-parametric methods are easy to maintain and update when it is 
necessary to add or remove data (Maltamo and Eerikäinen 2001). According to McRoberts 
et al. (2002), non-parametric methods are unlike regression analyses in that inclusion of 
additional independent variables may actually increase residual uncertainty. This concerns 
only modelling data; however, and the adjusted R-square may decrease with increasing 
number of independent variables in the parametric methods as well. Nevertheless, because 
of the high flexibility of non-parametric methods, caution must be taken not to over-fit the 
data, that is, to apply an overly complex model to data so as to produce a good fit that likely 
will not be replicated in subsequent applications (e.g. Hastie and Tibshirani 1990). This 
does not pose such a problem when cross-validation is used and observations, for example, 
from the same stand as the target tree are excluded. However, if the weighting matrix 
applied in non-parametric methods is calculated on the basis of all possible variables and 
correlations, the results might be poorer in independent data due to over-fitting compared 
with fewer independent variables used. The possible nearest neighbours may also be more 
difficult to find, if there are several dependent variables (McRoberts et al. 2002). 
Additionally non-parametric methods do not automatically guarantee unbiased estimates as 
do the regression models in the modelling data (e.g. Korhonen and Kangas 1997).  

In non-parametric methods observations are also assumed to be independent of each 
other. In practical situations the correlation among observations is a common occurrence. In 
general, correlation can have important consequences on the statistical properties of the 
estimator and on the selection of the smoothing parameter. The smoothing parameter is 
usually selected with some kind of data-driven method, such as cross-validation or plug-in 
methods. However, the presence of correlation among the errors may cause the commonly 
used automatic tuning parameter selection methods to break down (Opsomer et al. 2001). In 
forestry applications the correlations may especially pose a problem. The cross-validation 
method might give too optimistic results of the performance of the method, if the estimate 
is formed based on nearest neighbours from the same stand where the target tree is situated. 
Moreover, such data is not available in practical situations. Therefore observations from the 
same stand as the target tree are usually excluded from the pool of possible nearest 
neighbours (Packalén and Maltamo 2007). However, at tree level the nearest neighbours 
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may still all be selected from one particular stand, if the stand-level variables contain much 
weight in the distance function. Stand-level results may be affected if the errors of all 
individual trees point in the same direction, for example, if all the nearest neighbours are 
selected from a stand in a dry site, while the target tree is growing in a damp site.  

1.3 Objectives of the thesis 

The overall purpose of this thesis was to examine and evaluate different non-parametric 
methods as a method for growth estimation. One of the main focuses was to test non-
parametric methods in order to reduce the regional biases associated in the growth 
estimates. The non-parametric methods were compared with parametric models at tree, 
stand and regional levels. This thesis has been implemented in a series of papers, 
designated I–VI. Each of the individual papers concentrated on one topic, but had some 
elements in common with other papers, and each of them provided some new information 
for the next paper. The specific aims of papers I–VI were as follows: 
 
Paper I: To apply and test two different k-nearest neighbour methods for local conditions in 
north-eastern Finland and to construct five-year individual tree diameter increment 
estimates under bark for Scots pine and Norway spruce.  
 
Paper II: To compare two different k-nearest neighbour methods and generalized additive 
models in constructing individual tree diameter increment estimates for local conditions in 
north-eastern Finland.  
 
Paper III: To construct five-year individual tree diameter increment estimates over bark for 
Scots pine and Norway spruce applying k-nearest neighbour method, and to examine the 
localization of this method by including spatial neighbourhood in the imputation in order to 
obtain regionally unbiased growth predictions.  

 
Paper IV: To simultaneously estimate individual tree diameter and height increment with k-
nearest neighbour method. The performance of the method was analysed in different forest 
site types, within stands and in producing long-term growth forecasts.   
 
Paper V: To test further the simultaneous k-nearest neighbour estimation method against 
independent test data as well as localization of the non-parametric methods and the effects 
of reference data size on the accuracy of growth estimates. 
 
Paper VI: To apply different non-parametric methods to the estimation of individual five-
year diameter increment estimates for Scots pine and Norway spruce, and compare the 
performance of different types of non-parametric methods when observations are 
correlated.  
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2 STATISTICAL BACKGROUND OF NON-PARAMETRIC 
METHODS 

2.1 Common features of non-parametric methods 

In non-parametric methods, the value of the variable of interest for a target observation is 
estimated often as a weighted average of the values of neighbouring reference observations, 
which are similar to the target observation in terms of the independent variables and 
weighted by their proximity to the target observation (Härdle 1989, Altman 1992). Unlike 
in regression analysis, where the whole data is used, the weighted averages are calculated 
and the local estimate is formed based on part of the data, with the neighbourhood size 
varying depending on the method and application used. The non-parametric estimator can 
be calculated as follows: 
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where k is the number of the nearest neighbours, ijw  is the weight of the reference tree j  
to the target tree i and jy  is the value of the variable for reference tree i . Applying non-
parametric methods requires decisions regarding the distance function to be used to find the 
nearest neighbours, neighbourhood size and possible weighting function to define 
weighting of the reference trees.  

Size of the neighbourhood is of critical importance in non-parametric methods. 
Applying more than one neighbour results in greater precision, but smoothing of the 
estimates and in particular, the bias of the extreme values of variables of interest may rise 
with increasing size of the neighbourhood (e.g. McRoberts et al. 2002). The neighbourhood 
can be selected on the basis of a fixed bandwidth, as with kernel estimators, or a variable 
bandwidth with a fixed number of nearest neighbours, as in k-nearest neighbour methods 
(k-NN) (Altman 1992). In fixed bandwidth methods the number of neighbours used varies 
according to the input space. However, a fixed bandwidth and a weighting function that 
progresses to zero at a finite distance can involve large variance in areas where the density 
of the data is low, in particular, on the edges of the dataset or between data clusters. In 
general, the variance is more stable with nearest neighbour bandwidth selection methods 
than with the fixed bandwidth approach (e.g. Atkeson et al. 1997). 

Weighted averages are used to reduce the bias of the non-parametric estimators (Altman 
1992). The weighting function should have its maximum value at zero distance and 
decrease smoothly as the distance increases (Cleveland and Loader 1994). Weighting 
functions such as tricube, Gaussian and quadratic are applied; however, one of the most 
common weighting functions is that based on inverse of the distance (Cleveland 1979, 
Atkeson et al. 1997). Then the weight of reference tree for target tree  can be as follows: j i
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2.2 Nearest neighbour methods 

Nearest neighbour methods (k-NN) have been applied in the fields of non-parametric 
statistics and pattern recognition and they continue to be very popular because of their 
simplicity and suitability to many practical problems (Lin and Jeon 2002). A variety of 
distance functions have been proposed to be used in nearest neighbour methods. Three 
commonly used distance measures for continuous variables are based on the Minkowski 
distance of 1-norm, 2-norm and infinity norm (Batchelor 1978, Rao et al. 2008). These are 
called Manhattan distance, Euclidean distance and Chebychev distance, respectively. Other 
distance measures include Mahalanobis (Mahalanobis 1936), Quadratic, Canberra and Chi-
Square (e.g. Diday 1974). The Most Similar Neighbour technique (MSN) is based on 
Mahalanobis distance, but employs weighting derived from canonical correlation analysis 
and uses single nearest neighbour (Moeur and Stage 1995). Furthermore, Gradient Nearest 
Neighbour is a specific combination of single nearest neighbour and distance metric based 
on canonical correspondence analysis (Ohmann and Gregory 2002).  

The common terminology concerning the different variations of nearest neighbour 
methods is not yet stabilized. The k-Nearest Neighbour is the most general term, and it 
permits the use of various distance measures and any numbers of nearest neighbours. The 
k-NN method including many nearest neighbours and distance measure based on canonical 
correlation is often called k-Most Similar Neighbour method (k-MSN) (e.g. Packalen and 
Maltamo 2008). This is the situation in this thesis as well, when the particular study 
included more than one variation of the k-NN methods, since easily separable abbreviations 
were required.  

Euclidean distance function can be applied with or without weighting the variables and 
is usually calculated without taking the square root.  Non-weighted function gives equal 
weight to each of the independent variables. Weights for the variables may be achieved, for 
example, by applying grid search, non-linear optimization algorithm or genetic algorithm 
(e.g. Haara et al. 1997, Haara 2002, Tomppo and Halme 2004). The weighted Euclidean 
distance function can be defined as: 
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where  
ilx = value of the considered variable l  for target tree i  
jlx  = value of the considered variable l  for reference tree j  

lc = coefficient for variable lx  
p = number of the variables. 

Applying this kind of distance functions requires that variables of different ranges are first 
standardized, for example, by subtracting the mean of the variable and dividing it by the 
standard deviation of the variable, otherwise the variables that have large values receive 
more weight in the distance function. Manhattan distance (or Minskowski 1-norm distance) 
is based on absolute differences between the values of the considered variables. Similarly to 
the Euclidean distance function, variables require standardizing and can be non-weighted or 
weighted. The weights for the variables may be obtained by grid search (Korhonen and 
Kangas 1997) or by robust regression using least absolute deviations, for example. The 
weighted Manhattan distance function can be defined as: 
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where  

ilx = value of the considered variable l  for target tree i  
jlx   = value of the considered variable l  for reference tree j  

lc = coefficient for variable lx  
p = number of the variables. 

The Mahalanobis distance (Mahalanobis 1936) differs from the Euclidean distance in 
that it takes into account the correlation structure between the variables, whereas the 
Euclidean distance is blind to correlated variables and may weight a correlated variable 
more heavily than other variables even though it does not provide any new information. In 
the Mahalanobis distance, the inverse of the covariance function is inserted into the middle 
of the quadratic form in order to reduce the weights of highly correlated pairs (Theodoridis 
and Koutroumbas 2006). This method enables the coefficients of variables to be obtained 
directly from a linear regression analysis, and it is therefore computationally fast. The 
Mahalanobis distance function calculates the squared distance metrics between the target 
tree and the reference tree as follows: 

)(́)( 12 ′−∑−= −
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where 

iX   = independent variables of the target tree i  
jX  = independent variables of the reference tree j  

β  = vector of the regression coefficients (or matrix in the case of many dependent 
variables) 

zz = inverse of the variance of the dependent variable (or inverse of the variance-
covariance matrix in the case of many dependent variables). 
∑ −1

Distance metric derived from canonical correlation analysis is as follows: 
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where 
iX = independent variables of the target tree i  
jX   = independent variables of the reference tree j  

Γ = matrix of canonical coefficients of the independent variables, k
pxs
γ  

2Λ = diagonal matrix of squared canonical correlations, k
sxs
λ    

s  = number of the canonical correlations used 
p = number of the independent variables. 
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The weighting matrix in the distance function is calculated on canonical correlation 
analysis by summarizing the relationships between dependent and independent variables 
simultaneously (Moeur and Stage 1995). In canonical correlation linear transformations (Ur 
and Vr) are formed from the set of dependent and independent variables, in such a way that 
the correlation between them is maximized 

YU rr α= and XV rr γ= ,    (7) 

where Ur  represents the canonical coefficients of the dependent variables (r = 1…s) and Vr  
the canonical coefficients of the independent variables (r = 1…s). There are s possible pairs 
of canonical variates (Ur and Vr) as the result of the analysis, where s is either the number 
of dependent or independent variables, depending on which is smaller. Canonical variates 
are ordered in such a way that canonical correlation between them is the largest for variate 
(U1,V1), second largest for (U2,V2) and so on. Thus, the predictive relationship between 
original variables is concentrated in the first few canonical variates and less important 
variates can be left out without loss of predictability (Moeur and Stage 1995). However, 
canonical correlation and linear regression give equivalent weighting when there is only 
one dependent variable, or when the full-rank coefficient matrix is used in both. If multiple 
variables are estimated simultaneously, canonical correlation formulation offers the 
possibility to restrict the distance function to use only the first significant canonical 
variates, which may guide the nearest neighbour selection towards the variables that are 
most useful (Moeur and Stage 1995, Crookston et al. 2002). On the other hand, if 
correlations between all dependent and independent variables are taken into consideration, 
the neighbourhood selection is guided towards the best all-around neighbour (Crookston et 
al. 2002). However, the correlation structure may be more straightforward to interpret and 
possible transformations for the independent variables easier to find with linear regression 
analysis (Maltamo et al. 2003). 

2.3 Generalized additive models 

Generalized additive models (GAM) are a method of fitting a smooth relationship between 
two or more variables through a scatterplot of data points (Hastie and Tibshirani 1986). The 
purpose of GAMs is to maximize the quality of prediction of a dependent variable from 
various distributions, by estimating unspecific functions of the independent variables which 
are connected to the dependent variable via a link function. GAMs are extensions of 
generalized linear models (GLM) (Hastie and Tibshirani 1987). The only underlying 
assumption in generalized additive models is that the functions are additive and that the 
components are smooth. However, the probability distribution of the dependent variable 
must still be specified, and in this respect, generalized additive models are parametric. Thus 
they are more aptly named semi-parametric models rather than non-parametric methods 
(Guisan et al. 2002). A wide variety of distributions for the dependent variable are allowed 
to be selected though, as well as many link functions (McCullagh and Nelder 1989, Hastie 
and Tibshirani 1990). Generalized additive models consist of a random component, an 
additive component and a link function relating these two components. GAMs have the 
form 

http://www.statsoft.com/textbook/glosl.html#Link Function and Distribution Function
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where  )(Xη   is a known link function and 0)( =jj XEf . GAMs replace the linear form in 
parametric models )( jj XβΣ  by a sum of smoothing functions )( jj XfΣ (Hastie and 
Tibshirani 1986). Instead of estimating single parameters like the regression weights in 
multiple regression, a general unspecific non-parametric function that relates the predicted 
dependent values to the independent values is specified.  By assuming that the mean 
function is a sum of one-dimensional smooth functions, the curse of dimensionality can be 
avoided (Opsomer 2000b). Furthermore, the resulting one-dimensional additive fits are 
easily displayed and interpreted, unlike in unrestricted multi-dimensional smoothing 
(Opsomer 2002). 

The estimation procedure for a GAM requires iterative approximation in order to find 
the optimal estimates. In general, there are two separate iterative operations involved in the 
algorithm, which are usually called the outer and inner loop. The purpose of the outer loop 
is to maximize the overall fit of the model by minimizing the overall likelihood of the data 
given the model. The purpose of the inner loop is to refine the scatterplot smoother. In 
particular, the estimation is based on a combination of local scoring algorithm and 
backfitting algorithm. The local scoring procedure uses a scatterplot smoother as a building 
block in the estimation of individual components of the additive model. Many different 
univariate and bivariate smoothing techniques can be used, for instance, running means, 
running lines, kernel, splines and locally weighted regression models.  

In a standard approach inside each step of the local scoring algorithm a weighted 
backfitting algorithm is applied to the adjusted dependent variable until convergence. Then, 
based on the estimates from this weighted backfitting algorithm, a new set of weights is 
formed and the next iteration of the local scoring algorithm starts. During each iteration, an 
adjusted dependent variable and a set of weights are computed, and then the smoothing 
components are estimated using a weighted backfitting algorithm. At each step of the 
backfitting algorithm, partial residuals are defined and one component is estimated keeping 
the other components fixed. The partial residuals are obtained by removing the estimated 
functions or covariate effects of all other variables (Hastie and Tibshirani, 1987). The 
backfitting algorithm cycles through the partial residuals fitting the individual smoothing 
components to its partial residuals. The iterative procedures are repeated until convergence 
(Hastie and Tibshirani, 1986). 

Locally weighted regression (LOESS) is a method for constructing an estimate from 
observed data by fitting a model in a local manner by defining a neighbourhood of the 
target observation in the space of the independent variables and weighting the points in the 
neighbourhood according to their distance from the target observation (Cleveland 1979). 
The observations close to the target observation ix  have large weight and observations far 
from ix  have small weight (Cleveland and Devlin 1988). Hence, the smoothing function is 
formed pointwise to a subset of the data by fitting a polynomial using weighted least 
squares. The local polynomials fitted to each subset of the data are usually of first or second 
degree (Cleveland and Devlin 1988). Many details of the locally weighted regression are 
flexible, such as the degree of the polynomials and the form of the weighting function. For 
instance, tri-cube weight function, where the weights are proportional to the cubic distance 
from the target observation ix , may be applied. First, largest distances between 
observations ix  and jx  in the neighbourhood )( ixN  are calculated by using 

http://www.statsoft.com/textbook/glosm.html#Multiple Regression
http://www.statsoft.com/textbook/gloss.html#Scatterplot Smoothers
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Weights are calculated for every observation in the neighbourhood using tri-cube weight 
function: 
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Thus, the observations outside of the set of nearest neighbours of the target observation ix  
receive zero weight (Cleveland 1979). The final estimate is the predicted value from a 
weighted least squares fit of the dependent variable values of the reference observations on 
the neighbourhood )( ixN . 

Smoothing splines emerges as a solution to an optimization problem. A smoothing 
spline is the solution to the following optimization problem: among all functions )(xf with 
two continuous derivatives, find one that minimizes the penalized residual sum of squares 
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whereλ  is a fixed constant and bxxa n ≤≤≤≤ ...1  (e.g. Silverman 1984, Härdle 1990). 
The first term in the equation measures closeness to the data, while the second term 
penalizes curvature in the function. It can be shown that there exists an explicit, unique 
minimizer, and that minimizer is a natural cubic spline with knots at the unique values of 

jx . The parameterλ  is the smoothing parameter. Large values of λ  produce smoother 
curves, while smaller values produce wiggly curves. The boundary defined by a  and b is 
arbitrary, as long as it contains the data. The smoothing spline is linear beyond the data 
points regardless of the values of a  and b  (e.g. Härdle 1990).   

3 STUDY MATERIAL  

The study material consisted of two different datasets. The first is a small dataset collected 
from temporary sample plots from the areas owned by Kuusamo Common Forest situated 
in Kuusamo in north-eastern Finland. This data was purposely collected to be used in 
estimating individual tree growth with non-parametric methods (I, II, IV). The second 
dataset is the nationwide permanent inventory growth plot database INKA, provided by the 
Finnish Forest Research Institute (Gustavsen et al. 1988) (III–VI). These data were applied 
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in a different manner in each of the separate papers. Growth estimates were constructed for 
(Pinus sylvestris L.) and Norway spruce (Picea abies (L.) H. Karst.), except in paper II, 
where only Scots pines were used. Birch trees were excluded from all of these sub-studies 
because of limited numbers of birches in both datasets. 

3.1 Kuusamo data 

The Kuusamo data was collected from temporary sample plots from the areas owned by 
Kuusamo Common Forest situated in Kuusamo in north-eastern Finland. The sample plots 
were measured during the summer of 1999. Sampling included seven main strata according 
to stand register data: pine and spruce dominated damp forest site types, pine dominated 
dryish and dry forest site types, pine and spruce swamps and pine forests with low 
productivity. The Finnish forest site type classification, which originates from botany and 
was started by A.K. Cajander more than 100 years ago, is based on the assumption that the 
presence of different plant species is determined by the ecology of the habitat, and the 
habitat characterized by certain vegetation reflects the potential forest productivity of that 
site (e.g. Cajander 1909, Lindholm and Heikkilä 2006).  Forest site type groups are poor 
dry (barren), dry, semi dry (dryish), mesic (damp), semi herb rich (rich) and herb rich (very 
rich) (Kalliola 1973). All the main strata were further divided into six 30-year age classes 
and two stands were supposed to be measured from each of these strata. The stands with 
notable damage or dominant height lower than 3 metres were not included in the data.  

Two fixed-radius circular plots were systematically placed in each sample stand. The 
distance between the two plots was 40 metres apart from the centre of each other and the 
plot size varied from 100 m2 to 700 m2 according to the stand density. Tree species and 
diameter at breast height (DBH) were recorded for all tallied trees in these plots. From 
every plot, an average of nine sample trees were selected for more detailed measurements 
by establishing a circular subplot comprising a quarter of the area of the larger plot. 
Characteristics of the sample trees measured within the inner circles included tree height, 
length of the live crown, bark thickness and five-year diameter increment. Mean stand age 
was determined by measuring age from one-third of the sample trees. In addition, several 
variables describing the site and the growing stock were also registered for each stand. 
These variables included location, altitude, temperature sum, soil type, forest site type 
group and dominant tree species. 

A total of 71 stands were measured, comprising 53 stands dominated by Scots pine and 
18 stands dominated by Norway spruce. The whole measured data consisted of 4051 tally 
trees and 1308 sample trees, the latter including 941 Scots pines and 367 Norway spruces. 
Most of the pines were located in damp and dryish forest site types and the proportion of 
pines located in dry sites was low. Norway spruces were mainly located in damp sites. Most 
spruces belonged to mature forests and the proportions of other stages of stand development 
were small. The pines were more evenly distributed to different age classes. Mean age of 
the spruce stands was 109 years and pine stands 65 years. The average of the five-year 
stand-level volume growth was 12.8 m³ha-1 with a standard deviation of 7.1 m³ha-1. The 
minimum, maximum and mean values of the most important tree- and stand-level 
characteristics are presented in Table 1 of paper I and in Table I of paper V.   

Preparation of the Kuusamo data included calculation of tree and stand-level 
characteristics that had not been directly measured and variables that describe competition 
among the trees within a stand. Basal area of the stand (BA), basal area median diameter 
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(DgM), dominant height (Hdom), relative size of a tree (drel) and basal area of the trees larger 
than the subject tree (BAL) were calculated based on the tally tree plots, including all tree 
species. Relative size of a tree was calculated by dividing DBH with DgM. Data preparation 
also included back-calculations of all characteristics, since the data were collected from 
temporary sample plots. Tree diameter under bark for the sample trees at the beginning of 
the growth period was calculated by subtracting the measured five-year diameter increment 
and thickness of the bark from the measured tree diameter. Bark thickness and tree height at 
the beginning of the growth period were estimated with random parameter models applying 
the MIXED procedure in SAS (SAS 1992). In addition, simple regression models were 
separately constructed for every sample plot to calculate tree diameters at the beginning of 
the growth period for tally trees. Other tree and stand characteristics at the beginning of the 
growth period were calculated by means of estimated tree diameters and heights.  

Sample trees from the Kuusamo data were used as study material in the non-parametric 
estimation of diameter increment for local conditions (papers I and II), and as independent 
test data in paper V. In paper II, the Kuusamo data was further divided into separate target 
data and reference data so that the proportions of different forest site types and age-classes 
were similar in both data. 

3.2 INKA data 

The INKA data consisted of a sample of the stands measured for the sixth National Forest 
Inventory (NFI6) in northern Finland and seventh National Forest Inventory (NFI7) in 
southern Finland, thus the stands were distributed extensively over the whole area of 
Finland (Fig. 1) (Gustavsen et al. 1988). Only stands on forest land with mineral soils were 
included and sapling stands, i.e., stands with dominant height below 5 metres, were 
excluded. However, the INKA data included a few stands in drained peatlands and swamps, 
and these stands were not excluded from these studies (e.g. Table 2 in IV). Healthy, single-
storied stands with the proportion of the major three species being at least 50% of the total 
volume of the growing stock were included. The dominant tree species considered were 
Scots pine, Norway spruce or birch. Furthermore, the basic population was restricted to 
pine-dominated stands on dry and dryish sites and pine, spruce and birch-dominated stands 
on damp sites. The plots were established during the years 1976–1983 and have in most 
cases been re-measured twice at intervals of five years. The original INKA data consisted 
altogether of 828 measured stands. In each measured stand a cluster of three fixed-radius 
circular plots was established. The plots were located systematically 40 metres apart from 
the centre of each other. The size of the plot varied according to the stand density, in order 
that at least 100 trees were measured in each stand in northern Finland and 120 in southern 
Finland. In addition to stand descriptors, tree species and DBH were recorded for all trees 
on these plots. A smaller concentric circular sample plot equal in size to one-third of the 
tally tree plot was delineated within each plot, and tree height and crown length were 
recorded for all sample trees within these latter plots.  
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Figure 1. Locations of the original permanent inventory growth plots (INKA). The areas 
represent the eight vegetation zones into which Finland is divided. 

Similarly to the preparation of the Kuusamo data, stand-level variables that had not been 
directly measured and variables that describe competition among the trees within a stand 
were calculated. Since the heights of all trees were needed to calculate tree volumes and 
dominant tree heights, for instance, random parameter height models were constructed for 
Norway spruce, Scots pine and birch based on measurements of trees on plots located in 
different stands (III). Diameter increments over bark and height increments were obtained 
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by means of two successive measurements. The minimum, mean and maximum values, as 
well as standard deviations, of the most important tree- and stand-level characteristics are 
presented in Table 2 of paper III and Table 1 in each of papers IV, V, VI. Note that these 
tables are calculated on the basis of the sub-data used in different papers, including those 
observations of the original INKA data that fulfil the requirements stated in each paper. The 
numbers of observations used in performing the imputations are presented in Table 1 and 2 
of paper III and in Table 1 of paper IV, V and VI. 

The study material of paper III comprised both tally trees and sample trees of INKA 
data from two growing periods. Each five-year growing period of a tree was used as one 
growth observation.  In order to examine the effects of localization methods and regional 
accuracy, the data were further divided into eight subsets consisting of trees in the eight 
sub-boreal vegetation zones into which Finland is divided; hemi-boreal, south-western, 
Lake District, southern Ostrobothnia, Ostrobothnia, Kainuu, southern Lapland and Forest 
Lapland (Fig. 1 in III) (Kalliola 1973, Maltamo et al. 2003). The fourth and fifth papers 
(IV, V) used the sample trees of the INKA data for which tree diameter, tree height and 
length of the live crown had been recorded at the second and the third measurement 
occasion. Therefore the study material contained observations from one five-year growing 
period. The material for the sixth paper (VI) consisted of the tally trees and sample trees 
from the second and third measurement occasion located in south-western Finland, the 
Lake District and Ostrobothnia. These three vegetation zones form a large area in the 
middle of Finland. The coastal areas, northern Finland and Kainuu were excluded from the 
data. 

4 METHODS 

4.1 Local non-parametric growth estimates (I and II) 

Local non-parametric diameter increment estimates for Kuusamo in north-eastern Finland 
were constructed using nearest neighbour methods and generalized additive models 
(GAM). The distance functions applied in the nearest neighbour methods included 
Manhattan distance (referred to here as k-NN Manhattan) and distance measure based on 
canonical correlation (referred to here as k-MSN). Optimal variables for the distance 
function, coefficients of the variables, number of the nearest neighbours and weighting 
parameter were determined using grid search when applying k-NN with Manhattan 
distance. Both five-year diameter increment under bark and bark thickness were estimated 
on the basis of the same neighbouring trees. However, the estimation was not performed 
simultaneously, thus the only variable whereby the weights were optimized was diameter 
increment. The GAMs for the five-year diameter increment under bark and for the 
thickness of the bark were first fitted to the reference data and then growth and bark 
estimates were predicted for the target data (II). Smoothing splines and locally weighted 
regression were tested as scatterplot smoothers. 



 23 

4.2 Localization of the non-parametric growth estimates (III) 

Individual tree diameter increment estimates were constructed with non-spatial k-NN 
method applying Mahalanobis distance, which was referred to as the basic k-NN method 
(BASIC). This method was then localized in various ways (Fig. 2). The first approach was 
to use geographical coordinates measured at sample plot level as independent variables 
(COORDINATES). The coordinates were measured from the plot centre and represent 
variation of growth in a larger area. The second approach was to restrict the spatial 
neighbourhood by using moving geographical areas (CIRCULAR). This involved selecting 
the nearest neighbours from a circle around the target tree, having first tested radiuses with 
varying sizes from 50 to 300 kilometres for this circle. Thus, in the localized methods real 
space is included in addition to variable space. The estimates were formed on the basis of 
the whole dataset, as were the basic non-spatial k-NN estimates. The growth estimates 
given by these localized methods were subsequently divided into vegetation zones and 
regional growth estimates were calculated.  

 

 
Figure 2. Different localization methods in Paper III. 
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Localization was also achieved by choosing the neighbours from a local database in 
order to be able to compare this approach with localizing methods based on the whole 
dataset.  Local k-NN estimates were constructed in three ways (LOCAL). Separate local k-
NN with optimal values for all parameters were first performed for each region based on 
the data divided into vegetation zones. Secondly, the basic k-NN, i.e., the same variables, 
was used but with regional weighting matrices and neighbours selected from the regional 
data. Finally, the basic k-NN method was used and the weighting matrices were common to 
the whole dataset, i.e., formed on the basis of the whole data, while the neighbours were 
still selected from the corresponding regional data.  

4.3 Predicting tree- and stand-level growth using simultaneous k-Nearest Neighbour 
imputation for diameter and height increment (IV) 

Individual tree diameter and height increments were constructed with the k-NN method 
using distance measure based on canonical correlation analysis. Performance of the k-NN 
method and parametric models were analysed and compared in more detail. First, the logic 
of the growth estimates produced in relation to the position of a tree in a stand was analysed 
by means of plotting the growth estimates versus relative tree size. The figures were created 
from six randomly selected stands dominated by the Scots pine or Norway spruce and 
representing various age classes. Secondly, the performance of the methods was analysed in 
various forest site-type groups by calculating RMSEs, biases, averages, standard deviations 
and variances of the growth estimates both at tree and stand level within each group. 
Finally, the performance of the k-NN method in forecasting long-term growth was analysed 
by producing growth estimates for an 80-year growing period at five-year intervals and then 
plotting the growth curves against growing period both at tree and stand level. Five young 
stands representing different forest site types were randomly selected from the INKA data 
for this analysis. Simulations were performed without thinning, including one thinning, and 
including two thinnings during the forecasting period. In addition, the simulations were 
performed applying thinning dummy as auxiliary variable in the k-NN method. 

4.4 Effect of reference data selection on the accuracy of non-parametric k-NN 
imputation for individual tree growth (V) 

The simultaneous k-NN method was tested against independent test data collected from 
Kuusamo in northeastern Finland. Evaluation was carried out by using the Kuusamo data as 
the target data for which the diameter and height increment estimates were imputed and the 
INKA data as the reference data. Furthermore, localization of the k-NN method and, in 
particular, the effects of local observations and size of the reference data on the accuracy of 
the growth estimates produced for the Kuusamo area were tested. This analysis was carried 
out by adding a varying number of local observations from the Kuusamo data to the 
reference data (Fig. 3).  
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Figure 3. Different k-NN methods and reference datasets applied in Paper V. 

4.5 Comparison of different non-parametric growth imputation methods in the 
presence of correlated observations (VI) 

The applied non-parametric methods included two k-NN methods and generalized additive 
models (GAM). In the k-NN methods the distance measure was based on either Euclidean 
distance (referred to here as k-EUC) or canonical correlation analysis (referred to here as k-
MSN). Examining the effects of correlated observations was implemented by defining 
different restrictions to the pool of possible reference trees in all of the abovementioned 
methods: 
 

1. No restrictions to the possible reference trees. 
2. Plot restriction: trees from the same plot as the target tree were excluded from 

the possible reference trees.  
3. Stand restriction: trees from the same stand as the target tree were excluded 

from the possible reference trees. 
4. One per plot restriction: in addition to stand restriction (3) only one tree from 

each original INKA plot was allowed to be in a group of possible nearest 
neighbours 

5. One per stand restriction: in addition to stand restriction (3) only one tree 
from each original INKA stand was allowed to be in a group of possible 
nearest neighbours. 
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4.6 Evaluation criteria 

The results were calculated by means of leave-one-out cross-validation, which can be used 
to estimate the generalization error of a given model or to choose from among several 
models the one that has the smallest estimated generalization error (Härdle 1989). In this 
method, each observation is used in turn as a target tree and predicted with the reference 
data excluding the observation itself. It was also determined that the nearest neighbours 
should not be selected from the same stand, i.e., from the same cluster of three plots, as the 
target tree on either of the measurement periods, since observations in the same stand are 
closely correlated and would be given too much weight in the calculations and might give 
excessively optimistic results or the performance of the model. The root mean squared error 
(RMSE) and mean of residuals (bias) were used as criteria for choosing the variables and 
assessing the reliability of the estimates. The RMSE weights the average goodness of the 
estimates, but penalizes biased estimates, since the squaring ensures that negative values do 
not cancel out positive ones. The root mean squared error was calculated as 
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where n denotes the number of observations, y  the observed growth for observation i and 
ŷ  denotes the growth estimate for observation i . The bias was calculated as   
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The relative RMSE and relative bias of the growth estimates were calculated by dividing 
the absolute values by the observed mean growth of the observations. The imputations were 
performed at the tree level, but then summarized to the stand level, and the evaluations 
were made both at tree and stand level. The evaluation concerned either individual tree 
diameter or height increment at the tree level, and volume growth at the stand level. The 
stand-level volume growth estimates were calculated by subtracting the true volume of a 
stand at the beginning of the growth period from the estimated volume at the end of the 
growth period. The stand volumes were obtained by summing the volumes of the trees in a 
particular stand. The volumes of the trees were calculated with volume functions based on 
the tree diameter and tree height developed by Laasasenaho (1982). 

4.7 Comparisons with parametric growth predictions 

Local nearest neighbour methods (I) were compared with a regression growth model 
constructed from the same study data as the non-parametric methods. The regression model 
was built with mixed model technique, because the observations were correlated due to the 
hierarchical structure of the study data (e.g. Lappi 1993). Furthermore, the stand-level 
volume growth estimates were compared to the volume growths produced within the 
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Monsu-forest planning programme (Pukkala 2000), which  used single-tree regression 
growth models developed by Nyyssönen and  Mielikäinen (1978). 

In papers III, IV and V, parametric growth predictions calculated within the SIMO 
(simulation and optimization for next-generation forest planning) simulation framework 
(Tokola et al. 2006, Rasinmäki et al. 2007) applying MELA2002 models (Hynynen et al. 
2002) were used for comparison purposes. The MELA models are developed to be 
applicable to management planning tools throughout the whole Finland, and special 
attention has been paid to the ability to predict the responses to silvicultural practices 
(Hynynen et al. 2002). MELA2002 models are developed from the permanent inventory 
growth plot data (INKA) and are applicable to all the tree species and forest site types 
occurring throughout Finland. The growth of trees, in particular, is predicted with distance-
independent models for basal-area growth and height growth. The MELA models were 
applied with and without the self-thinning model (Hynynen 1993). Volumes for the trees 
were calculated similarly, since the SIMO framework utilizes the volume functions of 
Laasasenaho (1982) as well.  

5 RESULTS 

5.1 Variable selection and size of the neighbourhood (I-VI) 

The choice of independent variables depended on the information that was available for 
every tree and how these variables were related to diameter increment, and also to the 
height increment when simultaneous estimation of them both was considered. The 
candidate independent variables were chosen from among the easily measured or traced 
tree and stand characteristics that describe tree size, phase of stand development, 
competitive situation of a tree in terms of distance-independent competition measures and 
the growing site. The tested tree-level variables included DBH, tree height, drel and BAL. In 
papers IV and V tree crown ratio (CR) was also included in the group of tested tree-level 
variables. The stand-level variables tested were stand age, Hdom, BA, DgM, altitude, 
temperature sum and forest site type. Correlations between the dependent and independent 
variables varied from low to moderately high (Table 3 of III and Table 3 of IV). Stand age, 
BAL, CR, drel and BA mainly correlated well with diameter increment, depending 
somewhat on the data used in each paper. Height increment had the highest correlations 
with stand age and CR.  

Transformations of the independent variables for linearizing the relationship between 
diameter increment and independent variables were tested in all of the papers, utilizing k-
NN method based on distance measures derived either from linear regression or canonical 
correlation. Linear correlation is assumed between the variables in these methods, and the 
method is more efficient the more linear the relationship is (e.g. Maltamo et al. 2003). The 
tested transformations included second powers, square roots, natural logarithms and 
inversions of the variables, together with various ratios between the independent variables. 
Maltamo et al. (2003), for example, noted that their results were considerably improved 
when second powers of the dependent and independent variables were used. However, the 
non-linear relationships between the variables could not be described with these 
transformations. The only transformation that improved the results was the use of the 
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inverse of the stand age in the k-NN methods for spruces in papers III–VI, otherwise the 
effect of transformations was minor.  

The performance of the nearest neighbour methods was greatly affected by the number 
of neighbours used in performing the imputations. This effect was tested in all of the papers 
by varying this value (k) from 1 to 20. The number of neighbours affected the accuracy 
more than the optimal variables in the distance function, if the most critical variables were 
included in the imputations. These variables included, for example, stand age or crown 
ratio, Hdom and BAL (III, IV, V and VI). The number of the nearest neighbours used had a 
fairly similarly effect on the relative RMSE of all the different k-NN methods applied in 
this thesis (I–VI). The relative RMSE of the k-NN estimates diminished markedly, i.e., by 
about 20%, when the number of the neighbours was increased from one to about ten, after 
which it remained relatively stable. The impact of neighbourhood size on relative bias of 
the growth estimates was not so straightforward. Usually the relative bias was largest with 
few neighbours. Otherwise the bias was either virtually stable, irrespective of the number of 
neighbours, or varied randomly. The number of the nearest neighbours used in the final 
imputations was set to be the value of k where the decrease in RMSE% was stabilized and 
the relative bias was at its lowest or as low as possible. The neighbourhood size is 
substantially larger in the generalized additive models than in the nearest neighbour 
methods. The span size is a percentage of all the observations in the space of independent 
variables. While GAMs were applied (II and VI), span sizes from 0.05 to 0.5 were tested. 
The smaller the span, the smaller the RMSE and the bias; however, the model did not fully 
converge with the smallest span sizes. Moreover, the accuracy of the GAM estimates was 
not as considerably affected by the size of the neighbourhood as the accuracy of the nearest 
neighbour methods.  

5.2 Local non-parametric growth estimates (I and II) 

The performance of different non-parametric methods in estimating diameter increment 
under bark for local conditions was tested and compared in papers I and II. These papers 
differed in that data-splitting was applied in the second paper (II) in order to be able to 
compare generalized additive models to the nearest neighbour methods under similar 
conditions. The procedure used in GAM analysis did not allow restrictions to the pool of 
possible nearest neighbours, thus the GAM would have given overly optimistic results 
without data-splitting. The distance functions applied in the nearest neighbour methods 
included Manhattan distance (k-NN Manhattan) and distance function based on canonical 
correlation (k-MSN). The grid search applied to the k-NN Manhattan restricted the number 
of independent variables included; however, the results showed that the best accuracy was 
achieved with just a few independent variables included in the other methods as well, these 
variables being tree diameter, tree height, stand age and BAL. Furthermore, when the data 
were divided into separate target and reference data, the best accuracy was achieved 
without BAL in the k-MSN and GAM, since the relative RMSE increased by 20% if the 
BAL was included in the k-MSN, for example.  

In the first paper, the accuracy of both of the nearest neighbour methods was at the same 
magnitude at the tree level, the relative RMSEs being about 50% for Scots pine diameter 
increment estimates and slightly under 70% for Norway spruce diameter increment 
estimates (Table 3 of paper I). Both methods produced fairly unbiased growth estimates at 
tree level for Scots pine, the biases being somewhat larger for spruces. In the second paper 
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(II), which included only Scots pines, the results were similar, although the RMSE% in 
general was slightly larger. Data-splitting increases the estimated error, since the target 
observations will be paired with a more remote reference observation, the withheld 
reference observations could have supplied imputations for nearby target observations 
without data-splitting (e.g. Stage and Crookston 2007). However, when the stand-level 
volume growths were compared in paper I, the accuracy of the growth estimates obtained 
with the k-MSN method was remarkably poorer. The relative RMSE was 67% for the k-
MSN method, while it was 39% for the k-NN Manhattan (Table 4 of paper I). Stand age 
had relatively more weight than, for example, tree diameter in the k-MSN method. The 
effect of this was that the k-MSN method tended more often to produce growth estimates 
on the basis of different sized trees situated in the same stand, while k-NN Manhattan 
produced growth estimates on the basis of same-sized trees situated on different stands. The 
k-MSN method included stand-level bias, notably it underestimated the five-year stand-
level volume growth. Additionally, the reliability of the bark thickness estimates was worse 
in the k-MSN method; however, the k-MSN method slightly overestimated the bark 
thickness, thus they did not increasingly cause stand-level underestimations of the method.  

Locally weighted regression was found to be the most reliable smoother while fitting 
GAMs. The same independent variables were chosen for the growth model as in the k-MSN 
method. The accuracy of the diameter increment estimates obtained with generalized 
additive models was notably poorer than the accuracy of other applied methods. The 
relative RMSE was as high as 118.2%. In contrast to the nearest neighbour methods, 
generalized additive models gave notable underestimations for small trees, of which 40% of 
the target data consisted.  

The parametric models that were constructed for comparison purposes gave better 
results for Norway spruce than the non-parametric methods, but the accuracy of Scots pine 
diameter increment estimates was much lower (Table 3 of I). In addition, the method was 
less accurate at the stand level than the non-parametric methods, as were the stand-level 
volume growth estimates produced by the Monsu forest planning programme (Pukkala 
2000) applying regression models developed by Nyyssönen and  Mielikäinen (1978) as 
well (Table 4 of I). Especially the stand-level volume growth estimates of the k-NN method 
were more reliable than those of the parametric methods.  

5.3 Localization of the non-parametric growth estimates (III) 

The results achieved with the basic non-spatial k-NN method for Scots pine were most 
accurate when DBH, stand age, Hdom, BAL, BA and temperature sum were used as 
independent variables, while those for Norway spruce were most accurate when the inverse 
of stand age was used instead of stand age as such. All the localized methods had mainly 
the same independent variables, except that the temperature sum was not included, since the 
accuracy diminished notably by including too many variables. Separate local k-NN 
estimates were constructed with three different ways in order to examine whether optimal 
regional variables would be found and improve the results. However, search for the 
regionally optimal values and dependent variables did not improve the accuracy of the 
regional growth estimates.  In the localizing method, applying moving circular areas around 
the target tree, the radius of the circle was determined to be 125 km for Scots pine and 150 
km for Norway spruce.  



 30 

Both basic non-spatial k-NN and all local and localized methods applied produced fairly 
similar accuracy for the diameter increment estimates at the country level, the relative 
RMSEs being nearly 60% for Scots pine and 68% for Norway spruce and the relative biases 
nearly zero for all the methods (Table 1 below, Table 4 of paper III). Furthermore, the 
accuracies of the stand-level volume growth estimates were similar, the relative RMSE 
being 20% and the bias 2% for the whole of Finland (Table 1 below, Table 5 of paper 
III).The results of the different non-parametric methods in terms of relative RMSE of the 
diameter increment estimates were closely similar when viewed regionally as well; only in 
southern Ostrobothnia and Forest Lapland did separate local k-NN method perform 
somewhat better. The relative RMSEs of the different methods varied across the regions 
from 43% to 68% for Scots pine and from 49% to 83% for Norway spruce (Table 4 of III). 
The local k-NN method produced less biased estimates at the tree level than the basic and 
localized k-NN. The local k-NN method was almost unbiased in most of the vegetation 
zones as well. However, at the stand-level the biases of volume growth estimates produced 
by all the methods were at the same magnitude in almost every vegetation zone. The 
relative RMSEs of the five-year stand-level volume growth varied in the range of 10–20% 
across the regions, except that all methods performed much poorer in the hemi-boreal zone 
(Table 1, Table 5 of III).  

Table 1. Accuracy of the diameter increment estimates obtained by the different methods, 
by vegetation zones (Paper III). 

Scots pine Bias, % RMSE, %  
  Local Basic Coords Circular Local Basic Coords Circular Obs. 
Hemi-boreal 2.8 11.9 9 12.8 65.6 62.8 63.2 63.7 1646 
South-western -0.1 -3.5 -2.7 -1.8 65.3 64.7 64 62.8 5767 
Lake District 0 3.7 2.9 3.1 56.1 56.7 56.5 55.8 9904 
S. Ostrobothnia 2.2 -13.1 -8 -16.2 42.7 47.2 46.2 49.9 767 
Ostrobothnia 0.2 -11.3 -10.4 -7.5 66.2 68.4 67.3 66.7 22056 
Kainuu 0.2 7.4 4.7 9.2 54.6 55.9 55.4 54.2 10677 
S.Lapland -0.3 4.6 6.3 1.1 63.6 64 63.1 61.8 21415 
Forest Lapland 0 9.4 14.1 0.1 46.6 50.5 50.6 47.2 3556 
Whole Finland 0.1 0.5 0.9 0.3 61.3 62.3 61.6 60.6 75788 
Norway spruce Bias, % RMSE, %  
  Local Basic Coords Circular Local Basic Coords Circular Obs. 
Hemi-boreal 3.6 3.3 4.3 7.8 71.6 71 71 75.5 1248 
South-western 0 -2.7 -1.3 -1.2 67.2 67.7 68.7 68.8 8375 
Lake District -1.7 5.6 4.4 -0.4 60.8 57.8 59.3 59.7 8021 
S. Ostrobothnia -0.8 17.4 19.3 21.1 55.1 71.3 73.5 72 598 
Ostrobothnia 0.1 -4.4 -3.2 -1.5 68.2 69.5 70.4 68.6 9501 
Kainuu -0.1 -1.2 -4.2 -0.8 68.3 67.3 70.3 66.5 4589 
S.Lapland 0 -0.1 -1.6 2.3 79.4 81.4 83 78.8 4899 
Forest Lapland -0.2 -1.5 -0.4 -2.5 49.1 57 57.3 53.4 168 
Whole Finland -0.4 0.5 0.4 0.1 68.1 67.8 69.2 68.7 37399 
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All the non-parametric k-NN methods produced less biased stand-level volume growth 
estimates than the parametric models. The parametric models produced more biased results 
especially in Forest Lapland, Ostrobothnia, the hemi-boreal zone and in southern Finland, 
while the bias of the k-NN estimates did not vary notably across the regions (Fig. 4). The 
relative RMSEs of the parametric model varied from 35.6% to 66.1% across the regions, 
and were therefore larger than those for the k-NN methods (Table 2 below, Table 5 of paper 
III). The k-NN methods were also tested without stand age as an independent variable, and 
even then they produced smaller RMSEs and biases in the various regions than the 
parametric models.  

Table 2. Accuracy of the stand-level volume growth estimates obtained by the different 
methods, by vegetation zones (Paper III). 

Stand-level IV5 Bias, %    
  Local Basic Coords Circular Parametric Obs. 

Hemi-boreal -5.4 -4.7 -7 -6.5 -29.6 28 
South-western 3 3.1 4.5 3.8 -29.2 134 
Lake District 3.2 6.5 6.1 4.3 7.1 188 
S. Ostrobothnia 2.4 -2.1 1.6 -1.7 21 16 
Ostrobothnia 1.8 -4.1 -2.9 -1.7 14.5 337 
Kainuu 2 4.8 3.2 6 11 163 
S. Lapland 0.9 3.6 6.1 -0.1 23.5 280 
Forest Lapland -3 3.2 8.2 -4.1 33.2 40 
Whole Finland 2 1.9 2.3 1.9 4.4 1186 
  RMSE, %   
  Local Basic Coords Circular Parametric   

Hemi-boreal 40.4 42.3 45 44.6 66.1  

South-western 18.7 18 18.2 18.2 61.5  

Lake District 14.1 13.9 14.3 13.8 36.7  
S. Ostrobothnia 9.8 10.6 12.5 13.4 35.6  
Ostrobothnia 21.2 21.3 20.7 20.4 56.8  
Kainuu 20 21.5 21.6 21.5 38.2  
S. Lapland 19.8 20 21.1 20 48.7  
Forest Lapland 18.4 14.5 16.3 19.1 44.9  
Whole Finland 21.5 21.6 22 21.6 53.8   
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Figure 4. Biases of the stand-level growth estimates (m3ha-1 in 5 yrs) produced by the 
different k-NN methods (basis non-spatial k-NN, separate local k-NN method, localized k-NN 
with coordinates and localized k-NN with neighbours selected from circular areas around the 
target tree). Green colour represents overestimation and red underestimation. 
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5.4 Simultaneous estimation of individual tree diameter and height increment (IV) 

The simultaneous estimation was performed using k-NN method with distance function 
based on canonical correlation analysis. Best accuracy for both Scots pine and Norway 
spruce was achieved with the same independent variables used in the imputations, including 
DBH, tree crown ratio, BAL, Hdom, BA, temperature sum, and forest site type. The relative 
RMSE of the Scots pine diameter increment estimates was 49.77% and height increment 
estimates 50.69%, the corresponding measures for Norway spruce being 50.69% and 
68.39% (Table 3 below, Table 3 of paper IV). Diameter and height increment estimates 
were almost unbiased for both of the tree species.  

The results of the k-NN method were compared with the parametric method both at 
tree- and stand-level. The parametric models produced larger biases for the diameter and 
height increment estimates, especially for Scots pine. The relative biases were about 30% 
for the parametric estimates, while those for the non-parametric method were nearly zero. 
For Norway spruce, the bias obtained with the parametric models was 6% for the diameter 
increment estimates and 20% for the height increment estimates. In addition, the RMSEs 
were somewhat larger for the parametric growth estimates, except that the RMSE of height 
increment estimates of Norway spruce was somewhat lower than what was achieved with 
the k-NN method. The distributions of the growth estimates were calculated as well; and 
the results showed that the distributions of the k-NN estimates were more similar to the 
observed ones than the distributions of the parametric growth estimates (Fig. 1 of IV). 
Moreover, the parametric method seemed to average the results more than the k-NN 
method.  

Table 3. Accuracy of the five-year tree-level and stand-level growth estimates obtained by 
the simultaneous k-NN method and parametric method with the INKA (IV) data and 
Kuusamo data (V). 

INKA Kuusamo 
 Pine Spruce Stand Pine Spruce Stand 

  id5,cm ih5,m id5,cm ih5,m IV5,m3 ha-1 id5,cm ih5,m id5,cm ih5,m IV5,m3 ha-1

k-NN  method   

Bias 0 0 0 0 0.3 -0.1 -0.1 -0.3 -0.3 -3.6 

Bias,% 0 0 0.1 -0.3 1 -12.5 -12 -57 -76.8 -27.9 

RMSE 0.6 0.5 0.6 0.6 11.2 0.7 0.4 0.6 0.6 6.9 

RMSE,% 49.8 50.7 56.9 68.4 34.7 70.7 52.2 100.3 125.7 54 

Parametric models  

Bias 0.4 0.3 0.1 0.2 8.7 -0.3 -0.2 -0.4 -0.3 -5 

Bias,% 31.8 28.3 6.1 20.3 26.8 -31.3 -20 -67 -60.8 -39.1 

RMSE 0.8 0.6 0.7 0.6 15.3 0.7 0.5 0.6 0.4 7.5 

RMSE,% 60.4 56.2 61.9 62.5 47.3 67.5 55.4 102.1 98.5 58.7 
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 The relative RMSE of the five-year stand-level volume growth estimates obtained with 
the k-NN method was 34.7% (Table 3 above, Table 3 of IV). The relative RMSE produced 
by the parametric models was about 12% larger. In addition, the parametric models 
underestimated the volume growth at the stand level considerably. The relative bias of the 
non-parametric estimates was 0.95%, while it was nearly 27% for the parametric estimates. 
Similarly to the tree-level results, the parametric volume growth estimates concentrated 
notably to the smallest volume growth classes, while the k-NN method produced 
distribution more similar to the observed one and was capable of producing larger volume 
growths as well (Fig. 1 of  IV).  

5.5 Effects of reference data selection on the accuracy of non-parametric growth 
estimation (V) 

The methods developed and results obtained in papers III and IV were combined in the fifth 
paper (V). The simultaneous k-NN estimation method was evaluated against independent 
test data. This evaluation was carried out by using Kuusamo data as the target data for 
which the diameter and height increment estimates were imputed, and the INKA data as the 
reference data. The accuracy of the k-NN method was noticeably poorer than the results 
obtained merely with the constructing data from INKA. In particular, the RMSE and bias of 
the diameter and height increment estimates of Norway spruce were notably larger (Table 3 
above, Table 3 of paper V). The diameter and height increments of the spruce trees were 
highly overestimated and the relative RMSEs of the estimates were over 100%, while they 
were almost unbiased with the INKA data, and the relative RMSEs were 56.9% and 68.4%, 
respectively (Table 3 above, Table 3 of IV). The results were not as poor for Scots pine, 
although the RMSE of the diameter increment estimates was noticeable and the method 
overestimated both diameter and height increment in Kuusamo. Furthermore, the stand-
level volume growth was overestimated by nearly 28% and the relative RMSE was 54% 
(Table 3 above, Table 3 of V). These results were further compared with parametric 
estimates constructed within the SIMO system for the same data. Although the difference in 
accuracy between the non-parametric and parametric methods were generally smaller than 
with the INKA data, the parametric models still produced somewhat more biased estimates 
both at tree and stand level, except for the height increment of Norway spruce (Table 3 
above, Table 3 of V). In addition, the RMSEs were of the same magnitude for both 
methods, except that the RMSE of the five-year height increment estimates of Norway 
spruce were markedly larger for the k-NN method.  

Local and localized k-NN methods, as well as the effects of local observations, were 
further tested in Paper V. The target data in this analysis was the Kuusamo data and the 
reference data was either INKA, with increasing amount of local observations included, or 
merely the local observations from the Kuusamo data. First, the basic non-spatial k-NN 
method developed in paper IV was applied and an increasing amount of local observations 
were added amongst the INKA data. The accuracy of the growth estimates improved, 
especially for Norway spruce, by incorporating local observations from just ten stands into 
INKA data (Table 4 of V). However, the accuracy did not improve notably after including 
local observations from the first 40 stands. The number of local observations among the 
selected nearest neighbours did not markedly increase with increasing amount of local 
observations in the reference data (Table 5 of V). The results were markedly better when 
only local observations were used as the reference data, even with a low number of 



 35 

measurements. In particular, the biases of the growth estimates decreased both at tree and 
stand level (Table 4 of V).  

Localizing by including coordinates as auxiliary independent variables and sub-setting 
the reference data by selecting the neighbours from a circular area around the target tree 
were tested. Proportions of the local nearest neighbours used in forming the estimates were 
calculated in order to find out which of the methods selected the most local observations as 
nearest neighbours. The k-NN method with coordinates produced better results than the 
basic k-NN method. The accuracy of diameter and height increment estimates for Norway 
spruce especially were improved (Table 4 of V). In addition, the bias of the stand-level 
volume growth estimates was notably smaller. The increase in local observations in the 
reference data did not have any marked effect on the accuracy of this method, but the 
accuracy increased somewhat more than with the basic k-NN method. The proportion of the 
cases where no local observations were used in forming the estimates was, on average, 
lower than in the basic k-NN method. However, the proportion of the local observations 
used as nearest neighbours seemed not to depend greatly on the amount of local data.  

The accuracy of the k-NN method localized by sub-setting the reference data into 
circular areas around the target tree was in most cases at the same magnitude as the 
accuracy of the local k-NN method based on local reference data in terms of the RMSE of 
the growth estimates. Local k-NN method produced smaller relative RMSEs for the 
diameter increment estimates of Scots pine and height increment estimates of Norway 
spruce.  The k-NN method localized by sub-setting the reference data produced less biased 
estimates for Scots pine than the local k-NN method, but more biased estimates for Norway 
spruce. The localized method overestimated the diameter and height increment of spruces 
markedly at first, and small biases of these increment estimates were not achieved until 
local observations from 60 stands were included in the reference data. The stand-level 
volume growth was also overestimated at first. The proportion of local neighbours used in 
forming the estimates with this localized method increased notably the more local data was 
available. When the reference data included local observations from 71 measured stands, all 
of the estimates were constructed using seven local nearest neighbours.  

The results of the local k-NN and localized k-NN by sub-setting the reference data 
showed that the RMSE and bias diminished rapidly at first, but after including measured 
observations from 40 stands, no marked improvements to the results were achieved. The 
variances of the variables in the reference data stabilized to the same magnitude as they 
were in the target data. Furthermore, the composition of the rarest age classes did not 
change notably after including local observations from 40 stands. However, the order of the 
local observations included might have effects on the accuracy as well. The latter method 
was therefore tested by including the stands by starting from the oldest ones instead of 
randomly including them. The relative RMSE were smaller at first, but the bias somewhat 
larger. It would have been appropriate to examine the target and reference datasets in more 
detail, and include observations from the stands that affect the accuracy most. Thus, 
observations from the sparse age and site type classes should have been included evenly. 
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5.6 Comparison of different non-parametric growth imputation methods in the 
presence of correlated observations (VI) 

The performance of two different nearest neighbour methods employing either Euclidean 
distance function (k-EUC) or distance function based on canonical correlation (k-MSN) and 
generalized additive models in the presence of correlated observations were analysed in the 
sixth paper (VI). The analysis was carried out by restricting the pool of possible nearest 
neighbours. Otherwise, the independent variables used in this analysis for all the different 
non-parametric methods were the same as in the nearest neighbour method in the paper III. 
Most accurate tree-level growth estimates were obtained without restrictions in all of the 
non-parametric methods (Table 4 below, Table 4 of paper VI). The results were very 
similar for both tree species, although the accuracy in general was poorer for Norway 
spruce. The intraclass correlations at different levels were similar for both tree species. The 
restrictions had most effect on the nearest neighbour imputation with non-weighted 
Euclidean distance function, especially when Scots pines were considered. The k-EUC 
method had equal weights for all of the variables hence the nearest neighbours were mainly 
selected on the basis of stand-level variables.  

Table 4. Accuracy of the five-year tree-level diameter increment and stand-level volume 
growth estimates obtained by the different non-parametric method and restriction 
alternatives (Paper VI). 

  Scots pine Norway spruce Stand-level IV5

  Bias,% RMSE,% Bias,% RMSE,% Bias,% RMSE,% 

k-MSN       
NoRestrictions -0.45 60.45 -0.53 65.73 1.8 16.2 
PlotRestriction 0.04 67.77 -0.17 71.96 2.5 18.9 
StandRestriction 0.12 69.04 0.1 72.84 2.7 19.8 
OnePerPlot -9.86 69.88 -13.99 79.36 -2.2 20.2 
OnePerStand -8.69 69.52 -17.02 80.64 -2.5 20.4 
k-EUC       
NoRestrictions 0.22 53.53 -0.1 61.25 1 2.8 
PlotRestriction 0.27 56.88 -0.39 64.36 0.8 4.3 
StandRestriction -2.89 72.57 0.51 76.9 0.7 23 
OnePerPlot -6.82 66.29 -11.09 76.42 -4.3 21.6 
OnePerStand -8.95 65.8 -13.09 76.34 -5.5 21.3 
GAM       
NoRestrictions 0 56.11 -0.02 62 1.6 12.1 
PlotRestriction -0.12 58.17 -0.4 64.45 1.4 13.8 
StandRestriction -1.11 65.38 -0.8 72.12 1 21.9 
OnePerPlot -2.42 60.87 -7.47 70.8 -0.6 19.2 
OnePerStand -2.31 61.3 -9.35 71.94 -1.1 19 
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While applying the k-EUC method without restrictions, only for 1% of the target trees 
were none of the nearest neighbours selected from the same stand as where the target tree 
was situated. This was about 15% for the k-MSN method without restrictions. Hence, the k-
EUC method tended to produce growth estimates on the basis of different sized trees in the 
same stand, while k-MSN method more often selected trees of the same size from different 
stands. This was also the case with the stand restriction alternative, the k-EUC method 
tended to select the neighbours from one particular stand, which caused the poorest 
accuracy for the k-EUC method with stand restriction. Although the relative weights of 
stand-level and tree-level variables were fairly similar in both of these methods, the k-MSN 
method placed greater weight on tree diameter in the distance function of Scots pines and 
on BAL in the distance function of Norway spruce. The effected of this was that even 
without restrictions, the nearest neighbours were more often selected from different stands 
in the k-MSN method.  

The biases of the diameter increment estimates were considerably larger when only one 
tree from one stand or plot was allowed to be included in the group of nearest neighbours. 
This was mainly due to large overestimations of diameter increments in stands with zero or 
very low five-year diameter increments for all trees. The estimates were more likely to be 
formed on the basis of neighbouring observations having larger five-year diameter 
increment when this kind of restriction was applied, and thus growth was heavily 
overestimated. In general, supposing that the least restricted alternatives, i.e., no restrictions 
or plot restriction, were ignored, the generalized additive models performed most accurately 
and produced the smallest RMSEs and biases of the tree-level growth estimates.  

The k-EUC method performed least accurately at the stand level supposing that the 
neighbours from the same stand were excluded. The k-EUC method with stand restriction 
tended to select all the neighbours from one particular stand, and if that stand is situated, for 
example, in a different forest site type than the target tree stand, the errors of the individual 
trees might all point in the same direction, thus diminishing the accuracy of the growth 
predictions at the stand level. The best accuracy at the stand level was achieved with the 
GAMs and with one per stand restriction, the relative RMSE being then 19%. However, the 
differences in accuracy between the methods were fairly minor with these restricted 
options. In the k-MSN method the biases with plot and stand restrictions were larger than 
the biases of the one per plot and one per stand restrictions, although the former alternatives 
were almost unbiased at the tree level and the latter overestimated the individual tree 
growth markedly.  

5.7 Performance of the non-parametric methods under different growing conditions 
(I–VI) 

The behaviour of the non-parametric methods was analysed under different conditions 
including the performance at the data ranges and within stands. In particular, the residuals 
of the non-parametric five-year diameter increment estimates were plotted as a function of 
the predicted value, and the relative biases in various diameter classes were calculated. The 
residuals of the tree-level growth estimates were mainly homogeneous and no obvious 
dependences between them and the predicted values were found. The relative biases were 
found to be somewhat notable at the boundaries of the data range, especially for large trees, 
which were presented by small amount in the data (e.g. Fig. 4 in paper I, Figs 3 and 4 in 
paper III). In order to reduce the bias at the boundaries of the data, different numbers of 
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nearest neighbours for small and large trees were tested in papers II and III while 
performing the k-MSN imputations; however, no improvements were achieved.  

When the behaviour of the methods within stands was analysed (IV and VI), the results 
indicated that the different non-parametric methods produced fairly logical growth 
estimates for both tree species in relation to the position of a tree in a stand. Diameter 
increments produced by the k-NN methods were smaller for the suppressed trees than for 
the dominating trees, and in many cases the growth reached the maximum at some point 
and diminished after that (Fig. 2 of paper IV and Figs 1 and 2 of paper VI). The GAMs 
produced more averaged results owing to the substantially larger number of nearest 
neighbours included in the calculations. The GAMs in many cases seemed to overestimate 
growth either for the suppressed or dominated trees, while underestimating it at another 
extreme of the data. Height increment estimates produced by the k-NN method were fairly 
consistent irrespective of the position of tree in a stand, although mainly smaller for the 
suppressed spruce trees than for the dominating spruces. However, the true relationship 
between height growth and relative tree size varied quite considerably. In addition, height 
growth differentiation among trees was higher in younger stands, which can be seen 
especially in the spruce-dominated stands.  

The behaviour of the non-parametric methods at stands of various ages and densities 
were also compared in each paper by plotting the residuals of the stand-level volume 
growth against stand age and stand basal area. The residuals of the non-parametric 
estimates were mainly evenly scattered and showed no obvious trends (e.g. Fig 5 of paper I 
and Fig. 5 of paper III). In paper III, the residuals of the stand-level volume growth 
estimates produced by the k-NN method were homoscedastic in every vegetation zone, 
while those for the parametric method were heteroscedastic in most of the regions.   

The performance of the k-NN method and parametric models were analysed in various 
site types in paper IV by calculating the averages and standard deviations of the growth 
estimates within each forest site type group. In general, the standard deviations of the 
growth estimates were smaller for the k-NN method only in those site type classes which 
included very small numbers of observations (Fig. 3 of paper IV). Thus, the estimates had 
to be formed on the basis of nearest neighbours from another site type than the type in 
which the target tree was situated.  

The accuracy of the growth estimates in various site type groups was also calculated. In 
addition, these were calculated by excluding temperature sum (TS) and forest site type 
group (FST) from the set of independent variables while performing the imputations. The 
accuracy of the k-NN method was low in those classes where the data was sparse (Figs 4 
and 5 of paper IV). Considering Scots pines, these were mainly the most fertile classes. For 
Norway spruce, these were very rich and barren sites, as well as drained peatlands. 
Otherwise, the k-NN produced more accurate results in various site types than the 
parametric method. The biases of the parametric models especially were larger than those 
of the k-NN method. At the stand level, the k-NN produced larger RMSE only in the most 
fertile class; however, the bias was still slightly smaller than the bias of the parametric 
models. Furthermore, the accuracies were calculated by excluding temperature sum and 
forest site type from the set of independent variables while performing the imputations.  In 
general, forest site type had more notable effect on the accuracy than temperature sum. 
Both of them had similar effects on the accuracy of the growth estimates. Excluding either 
of them diminished the accuracy at some forest site types, but increased it at other site 
types.  
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Future forecasts obtained with the k-NN method and parametric models were compared 
in the fourth paper (IV). The analysis was carried out in four different forest site types. Two 
stands situated in the damp forest site were selected. One of these stands was dominated by 
Scots pine, the other by Norway spruce. The rich site was dominated by Norway spruce and 
the dry sites by Scots pine. The tree-level results showed that reasonable long-term 
diameter and height increment estimates could be obtained with the k-NN method, although 
some differences between the k-NN method and parametric models were achieved. 
Furthermore, the lack of real data for longer growing periods restricted the analysis to 
merely comparing the methods in question to each other and at different forest site types. In 
addition, mortality of the trees or self-thinning was not taken into account while performing 
the imputations. For the first growing periods, there was more variation among the different 
sites within the k-NN method than within the parametric method (Fig. 6 of IV). After 30 
years growing period, the diameter increments became the same for all of the methods. The 
k-NN and parametric methods differed mostly in that the parametric models produced 
larger diameter increments for the pines in damp sites than the k-NN. The results indicated 
also that the k-NN method was capable of taking the effect of thinning into account both 
implicitly and explicitly. In general, the diameter increments increased immediately after 
thinning (Fig. 7 of IV). Responses to thinnings were largest in damp sites. The responses 
were somewhat smaller when an additional thinning dummy was included. The height 
increment increased owing to thinning; however, not immediately after thinning (Fig. 8 of 
IV). The increase in height increment was most noticeable in fertile, spruce-dominated 
stands. 

The variation in accumulated volume among the test sites increased markedly, and more 
in the parametric method than in the k-NN method. The inclusion of self-thinning models in 
the parametric method influenced the accumulating volume markedly in Scots pine- 
dominated stands producing noticeably smaller volumes than the k-NN method. In addition, 
the development of rich sites ended up at a higher level with the parametric models than 
was achieved with the k-NN method (Fig. 9 of IV). Moreover, the production capacities of 
the different sites ended up in a different order. The results of the k-NN imputation with 
simulated thinnings were calculated at the stand level as well (Fig. 10 of IV). The response 
to one thinning at the stand-level was largest in the rich and damp spruce-dominated stand. 
The response was larger without the explicit thinning variable, while it was opposite in the 
Scots pine-dominated stands. The responses to the second thinning were not noticeable. 
The level of growth was smaller after the second thinning in every stand for the rest of the 
forecasting period.  

6 DISCUSSION 

6.1 Different non-parametric methods  

The purpose of this thesis was to test and compare different non-parametric methods in 
estimating individual tree growth. The different methods were compared to each other as 
well to parametric models both at tree and stand level. Additionally, regional level 
comparisons were made, since one of the main objectives was to reduce the regional level 
bias associated in the growth estimates and obtain regionally unbiased estimates. Two 
different approaches were applied, namely, k-nearest neighbour methods and generalized 
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additive models. Both of these approaches could produce accurate growth estimates, 
although no method was superior in every condition, thus the question about the most 
accurate non-parametric method still depends on the purpose and the data used in the 
imputations. The generalized additive models require enough variation in the data to 
perform well, in small datasets with independent variables having low variation, the method 
performed poorly (paper II). However, the performance of all the non-parametric methods 
is greatly dependent on the data used, since the idea of the non-parametric methods is to 
associate the previously measured information to the estimation of the chosen 
characteristics for the target tree (e.g. Malinen 2003). If the reference data does not contain 
similar trees, then the estimates for the target trees may be inaccurate as was the situation 
when the Kuusamo data was used as target data and the INKA data as reference data (paper 
IV). However, the difference in measurement methods applied to collecting the INKA data 
and Kuusamo data may have caused differences in the datasets that caused the poor results 
and require the use of local observations.  

In addition, the number of the neighbours used in the non-parametric methods is of 
critical importance. The choice of the optimal number can be somewhat problematic and 
the data-driven methods used in the decision may not provide an unambiguous solution for 
the neighbourhood size. In general, using several neighbours may improve the estimation 
accuracy, but the results are more averaged, and especially the bias of the extreme 
observations may increase (e.g. McRoberts 2002). Concerning growth estimation, one 
nearest neighbour was not enough, and on the other hand, a large number of neighbours did 
not improve the results. The number of the neighbours in the final k-NN imputations was 
set to be the number where the decrease in relative RMSE stabilized, and the bias was as 
low as possible. The neighbourhood size was more critical to the k-nearest neighbour 
methods, while it did not notably affect the accuracy of generalized additive models. The 
neighbourhood size is substantially larger while applying GAMs in any case. Thus the 
generalized additive models gave estimates that were precise in average, while being more 
likely biased at the extremes of the data range. Nearest neighbour imputations seemed to 
retain more of the natural variance in the growth estimates. Furthermore, the generalized 
additive models may be more difficult to understand and to implement than the nearest 
neighbour methods.  

There are several functions to be applied in the search for the nearest neighbours in both 
approaches. Locally weighted regression was found to be a more suitable smoothing 
function than splines in GAMs. Other possibilities exist as well, although they are not yet 
implemented in statistical software packages. Semi-parametric methods could also be 
applied. An appropriate parametric model could be used for the terms that have a clear 
relationship with the dependent variable, while modelling the other terms non-
parametrically (e.g. Opsomer 2000a). Non-weighted distance functions or functions with 
weights for the variables obtained using grid search are more robust. The weights are 
acquired by minimizing the error one is interested in, not by maximizing the overall 
correlation. The weighting based on linear regression or canonical correlation, on the other 
hand, is based on assumed linearity between the variables. Compared with grid search, the 
linear regression and canonical correlation are computationally fast. Linear regression and 
canonical correlation give equivalent weighting, when there is only one dependent variable, 
as was in the most cases of the papers. However, when simultaneous estimation of several 
variables, for example, diameter and height increment and thickness of the bark, is 
considered, the distance measure based on canonical correlation might be a more 
appropriate alternative. The use of Mahalanobis distance with weights derived from linear 
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regression for more than one dependent variable, when these are correlated, is probably not 
a good choice. There are other possibilities to obtain weights, and especially non-linear or 
genetic optimization algorithms, as applied by Haara et al. (2002) and Tomppo and Halme 
(2004), would be worth testing in the context of growth estimation as well. In addition to 
barely implementing the optimization algorithm, other non-parametric methods could be 
tested. Artificial neural networks or random forests could be implemented in growth 
estimation for Finnish conditions as well. The results of Liao et al. (1998) indicated that 
applying Neurogenetic Algorithm System it is possible to simulate individual tree growth 
effectively and to improve markedly the quality of growth predictions. The method was 
also expected to perform better for future data. 

6.2 Dependent and independent variables 

The non-parametric methods, in most cases, were constructed by using tree diameter 
increment as a dependent variable. However, the simultaneous estimation of diameter and 
height increment with the k-NN method proved to be suitable growth estimation method as 
well. The simultaneous estimation did not produce more accurate results than a separate 
estimation of diameter and height increment, however, it did not diminish the accuracy 
either. The same independent variables were required in both diameter and height 
increment estimation, therefore no marked difference was achieved. The estimation of 
height increment of spruces seemed to be somewhat more problematic, thus producing the 
most inaccurate results. The correlations between height increment of Norway spruce and 
possible independent variables were quite low. It correlated moderately well only with 
crown ratio and stand age, the latter of which was not included in the imputations. The 
variation in height increment was large, since it was calculated as difference between two 
successive height measurements. Measurement error in re-measured heights on standing 
trees may be so large that the underlying height increment signal is nearly hidden (e.g. 
Hasenauer 2006). The results would have been better if the stand age was included; 
however, it was decided to apply only those variables that are allowed to be used in 
practical situations. In other papers, the stand age was included as an independent variable, 
and therefore the methods developed have certain limitations in practical situations where 
the methods should also be applicable in uneven-aged stands. Furthermore, the measured 
age includes large error, and growth models are sensitive to erroneous age (e.g. Haara and 
Korhonen 2004). However, the measured stand age was determined to be more suitable as 
an independent variable – especially in papers III and VI, in which the methods were 
applied to the whole tree tally instead of sample trees –, than crown ratio, for which a 
predicted value would have been needed. Moreover, the reference data included trees only 
from even-aged stands. Otherwise, the crown ratio might be more suitable as an 
independent variable, also giving more relative weight for the tree-level variables in the 
distance function.  

Furthermore, forest site types were tested as independent variables in every paper, but 
were employed only in papers IV and V, since it diminished the accuracy of the non-
parametric method in most cases. The variation in these kinds of stand-level variables 
might be too low in small local or regional data. Correlation between diameter increment 
and forest site type is low, hence it may not contain much weight in the distance function, if 
the weights are obtained through linear regression or canonical correlation analysis. 
Furthermore, unrelated variables included in the subset of covariates used to calculate 
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distances may not only fail to improve the objective criterion, but actually may have 
adverse effects (McRoberts et al. 2002). Thus inclusion of additional independent variables 
does not necessarily improve the results of non-parametric methods, and may cause that 
nearest neighbours are even more difficult to find especially in small datasets (e.g. 
McRoberts et al. 2002, LeMay and Temesgen 2005).  

However, even though the site factors account for a small percentage of the variation, 
they are important, and serve to localize a particular prediction (Monserud and Sterba 
1995). It is necessary to include variables describing the fertility in order to guarantee that 
the non-parametric methods do not produce similar growths for trees under different 
growing conditions and average the estimates over different fertility classes, although the 
overall accuracy may diminish as well as the accuracy at some extremes of the data. Site 
index might be a more appropriate independent variable than forest site type and should be 
tested. However, site index measurement errors have also created some of the largest 
variations in predicted values (e.g. Gertner and Dzialowy 1984, Mowrer and Frayer 1986, 
Gertner 2002).  

More accurate temperature sum information and variables describing slope and 
moistness, for example, could be tested in order to describe the local growing conditions 
more accurately. As remote sensing techniques are nowadays playing a more important role 
in forest inventories, these variables could be obtained from remotely sensed data. Remote 
sensing techniques might introduce new variables to be used in non-parametric growth 
estimation as well. Moistness could be derived from radar, and slope from a digital terrain 
model (DTM) produced by airborne laser scanning (ALS) data. Furthermore, a variable 
describing crown condition derived from the vertical point cloud of ALS data could yield 
some new information. 

6.3 Effects of correlated observations 

The effects of correlated observations should be taken into account and carefully analysed 
while applying non-parametric methods. The results showed that the dependency of 
observations did not have any marked effect on the selection of the best possible 
neighbourhood size in any method. Otherwise, the papers I and VI revealed similar effects 
of correlated observations, although the study data, the dependent variables and the distance 
functions used were somewhat different. The correlated observations from one particular 
stand, excluding the stand where the target tree is situated, may have the result that the tree-
level errors are also correlated, and thus diminish the accuracy at the stand level. Stand-
level bias may result from selecting the neighbours from a stand that has different kinds of 
stand-level factors, for example, is situation in a different forest site type than the target tree 
stand. 

Including many reference trees from the same stand was an inefficient strategy. It did 
not improve the stand-level and regional results if it was not the same stand in which the 
target tree was situated. Furthermore, the k-MSN method with the optimal allocation of 
weight based on canonical correlations seemed to be safer from the effects of dependency, 
while the k-NN method of applying non-weighted Euclidean distance seemed to be more 
sensitive to the tree-level dependency. Additionally, the generalized additive models were 
not affected by the restrictions as much as the other methods. The generalized additive 
models, like linear models in general, perform better if there is enough variation in the data, 
and the restrictions ensure the variation.  
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The results of paper VI indicated that allowing only one tree per plot or stand to be 
included in the set of nearest neighbours would be appropriate when considering the 
accuracy of stand-level or regional growth estimates. However, the data used with these 
kinds of restrictions should be extensive enough, so that the restrictions do not make the 
search for the nearest neighbours even more difficult.  This result is similar to the 
recommendations of McRoberts et al. (2007). They suggested that only one nearest 
neighbour should be permitted within the range of spatial correlation of other neighbours 
when obtaining areal estimates of forest attributes using k-NN approach and the ranges of 
spatial correlation are small and the reference set is relatively large. Another option, 
concerning mainly distance functions that do not guarantee optimal solutions for weights, 
would be to include more tree-level variables in the distance functions or to give more 
weight to the tree-level variables. The inclusion of variables describing fertility and local 
growing conditions to the search for the nearest neighbours may also diminish the amount 
and effect of correlated tree-level errors on the accuracy of stand-level volume growth, at 
least in those situations where the neighbours are selected from one stand in a different site. 
Furthermore, the dependency of the observations could have been taken account by giving 
less weight to the observations that are situated in the same stand (Altman 1990). Two 
neighbours from one stand would attract less weight per observation than two observations 
from different stands. Obviously, this method only works if there are neighbours from more 
than one stand, and the number of neighbours per stand varies. 

6.4 Localization of the non-parametric growth estimates 

The difference between the basic k-NN method and the localized methods was very small 
in paper III, and they were in general quite similar in terms of their performance in different 
vegetation zones. Localization by including physical space in the k-NN method did not 
notably reduce the regional biases relative to the basic k-NN method, which was in any 
case able to find nearest neighbours similar enough. The basic k-NN method had the 
temperature sum as an independent variable, which may be seen as a form of localization 
and may reduce the difference. Furthermore, it utilizes the whole data, and better matches 
may usually be found with increasing sample size. It might be hard to find neighbours, at 
least for the exceptional observations, if the number of possible candidates is reduced, as 
could happen in localized methods owing to a larger number of variables involved in the 
search for neighbouring observations or a reduction in the search area. Both of the applied 
localized k-NN methods produced somewhat larger biases than the basic k-NN in dense 
stands in most of the regions, and the biases for the exceptional observations in the hemi-
boreal zone, Kainuu and Lapland were also larger for the localized methods. 

The most promising alternative to the means of localization was the sub-setting of the 
reference data by selecting the neighbours from a circle around the target tree, as the results 
obtained with this method were better than those achieved with the basic k-NN method in 
most cases, even though there were no major differences. Both Tokola (2000) and Katila 
and Tomppo (2001) applied similar geographical reference areas. The former studied the 
maximum geographical distances of training areas to be used in obtaining accurate point 
and small-area estimates, the latter studied a similar method to be used in Finnish National 
Forest Inventories. According to both studies, the bias of the estimates could be reduced by 
restricting the neighbourhood. The inclusion of data beyond the optimal area introduced 
bias to the estimates. The results of paper III showed that this method produced the largest 
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biases of the diameter increment estimates in the coastal zones, where the data in a circle 
around the target tree was usually locally distorted and possessed gaps, in addition to which 
the number of possible neighbours was smaller, because in most cases only half of the 
circle included possible neighbours. Neighbouring observations had to be selected from 
further inland and the difference in diameter increment among the trees of the same size in 
coastal and inland areas could be considerable. This is a problem affecting the method at 
every border, but the difference in growth is not so large in eastern Finland or Lapland. 
More accurate results might be obtained if geographical areas of different size and shape 
were used in inland sites and at borders rather than average-sized circles everywhere.  

In addition to using plot centre coordinates and sub-setting reference data in circular 
neighbourhoods, separate local k-NN imputations for each region were performed in three 
ways from a regional database. Searching for the regionally optimal values and dependent 
variables did not improve the accuracy of the regional growth estimates and was therefore 
unnecessary. All the critical variables were already included in the basic k-NN and the 
effects of the other variables were minor. Furthermore, the lack of any marked differences 
between the local estimates with a regional or whole data weighting matrix indicates that 
the correlations between the variables used are quite similar over the whole of Finland and 
in the individual regions. At the tree level all the separate local k-NN methods produced 
almost unbiased estimates for the diameter increment in the various regions, while the bias 
of the estimates of the basic and localized k-NN based on the whole data varied quite 
considerably across the regions. However, when comparing the accuracy of the estimates of 
stand-level volume growth regionally, the differences in the biases among different 
methods were small. The variation within stands might be larger than between stands when 
viewed regionally. Nevertheless, it seemed to be unnecessary to construct local k-NN 
estimates from regional data. This result is similar to the observation of Maltamo et al. 
(2003), who predicted diameter distribution with regional MSN models and found that the 
local variation could not be described any more accurately with regional models. In any 
case, running the k-NN estimates separately from local data might be too laborious a 
process. Moreover, separate local estimation may produce unnaturally large differences 
among predictions for nearby regions, i.e., the growth estimates for stands on two sides of a 
border might be too dissimilar, given that the stands are physically located close to one 
another. There could also be gaps in the coverage of the models, as in the case of southern 
Ostrobothnia. 

All the k-NN methods produced promising results in terms of reducing regional biases 
compared with parametric models. At least, the regional biases in northern Finland and 
south-western Finland were reduced substantially with the k-NN methods. The biases of the 
k-NN estimates in all the regions were close to each other, while the differences in bias 
across the regions with respect to the growth estimates obtained with the parametric model 
were over 25%. However, the regional biases associated with the parametric method could 
have been reduced by calibrating the models, for example, by constructing models for the 
bias and then calculating the calibrated prediction by adding the predicted bias to the initial 
prediction (Hynynen et al. 2002, Talvitie 2005). One option might also be to take the 
hierarchy of the data into account more properly in the modelling.  The model predictions 
might be calibrated by producing random parameters for Forestry Centres or provinces, for 
example. So far the models include random parameters for stands, which usually cannot be 
used for calibration, since the models are not applied in the stands of the modelling data. 

Local and localized k-NN methods were further tested in the fifth paper (V), since the 
basic non-spatial k-NN method performed poorly when tested against independent 
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Kuusamo data. All the localized methods performed better than the basic k-NN method. 
When conditions are rather exceptional as was in this case, the need for local observations 
seemed to be obvious, although the different measurement methods concerning the 
reference and target data may have created the need for local observations. Firstly, the basic 
k-NN method was tested, but measured local data was added amongst the INKA data, 
which was used as reference. This improved the results of the basic k-NN especially with 
respect to Norway spruce. However, the results were not substantially improved by 
increasing the amount of local observations among the reference data. The variables that 
had most weight in the distance function did not contain any information about the location 
or low growing rate. Although the temperature sum contained quite notable weight in the 
distance function and the site types were also included, the local observations were not 
selected as nearest neighbours. Therefore some auxiliary variables, like geographical 
location, might be useful in this kind of situation. Localization by including coordinates as 
auxiliary variables was thus tested, and this method produced better results than the basic k-
NN method. However, the increase in local observations in the reference data did not have 
any marked effect on the accuracy of this method either, but the accuracy increased 
somewhat more than the accuracy of the estimates constructed with the basic k-NN method.  

When the estimates were formed by applying only the local observations as the 
reference data, the results were substantially improved even with a small amount of local 
observations.  The bias of the tree-level diameter and height increment estimates of Norway 
spruce, especially, diminished markedly. The results of the localized k-NN by sub-setting 
the reference data were mainly as accurate as those obtained with the local data only. The 
method emphasized the local observations in constructing the growth estimates. The more 
local data were available, the more local observations were selected as nearest neighbours, 
and therefore the accuracy of the growth estimates increased. This method was able to take 
advantage of the local observations without losing information from the observations in the 
INKA data. Thus this kind of localization method seems to be a suitable alternative when 
constructing growth estimates for a local area, where comprehensive reference data is 
already available but improved accuracy is can be obtained through local observations. 

The vegetation zones might not have been the optimal areas to study the localization 
methods or to construct local k-NN estimates, since the results were improved in the 
Kuusamo area, but not when the performance was analysed by vegetation zones. The areas 
should be formed in such a way that the within-group variation is as low as possible and the 
between-group sub-area variation is as large as possible (e.g. Tomppo and Halme 2004). 
Some ancillary regional information could help in selecting the localization areas. Tomppo 
and Halme (2004) used large-scale variation of forest variables as ancillary data that were 
added to the variables of the multi-source k-NN estimation. Räty and Kangas (2007), on the 
other hand, tested the local indicators of spatial association in the selection of localization 
areas. Methods of these kinds could be used in selecting more optimal areas to study the 
localization than the vegetation zones used here. 

6.5 Concluding remarks and need for future research 

This thesis focused on nearest neighbour methods and generalized additive models, and 
different issues concerning growth estimation when these kinds of non-parametric methods 
are applied. The thesis responded to the need to reduce the regional biases associated with 
the growth estimates, and showed that non-parametric methods are suitable for estimation 
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of growth. The most accurate results were achieved when the imputations were carried out 
by including sufficiently weighted tree-level variables in the distance functions or by taking 
account of the correlated observations by restrictions. Moreover, geographical location and 
variables describing the site improved the results, especially in extreme conditions. In 
addition to being able to reduce the regional biases, the non-parametric k-NN methods did 
not average the results as much as the parametric methods. The k-NN methods were 
capable of producing distributions of increment estimates rather similar to the observed 
distributions, while the parametric increment estimates both at tree and stand level were 
mainly concentrated on the smallest increment classes. However, sparseness of the data 
caused some averaging. The non-parametric k-NN methods also produced more accurate 
estimates for different forest site types and retained more of the variation in the growth 
estimates, except in those site types were the data was sparse.  

Thus, the non-parametric methods fulfilled the requirement that growth models used in 
practical forest management planning should produce unbiased predictions of the 
development of forest resources (e.g. Hynynen et al. 2002).  The methods applied here are 
also compatible with forest inventory data. The main applications of the growth models 
include inventory updating, evaluation of silvicultural alternatives, management planning 
and harvest scheduling (e.g. Burkhart 1992). As such, the methods applied here are mostly 
applicable to inventory updating and management planning at smaller scale. They could 
provide locally accurate estimates for determining locally correct silvicultural treatments. 
Forest owners could improve their management plans by measuring data from their forests. 
However, inventory updating and especially the evaluation of alternative management 
schedules requires that the growth models are capable of predicting the responses to various 
silvicultural treatments (e.g. Hynynen et al. 2002). The k-NN method applied here was able 
to take the response to thinning into account both implicitly and explicitly. The non-
parametric methods were also capable of predicting the responses to other silvicultural 
treatments; however, these issues require further testing with adequate data as well as more 
consideration of how to incorporate them into non-parametric methods. Growth models 
used for practical applications should be carefully tested in stands with various 
management and thinning conditions. The non-parametric methods performed well in 
stands of various ages and densities, without producing more biased estimates at the 
extremes of the data. In addition, the non-parametric methods produced mainly logical 
diameter and height increment estimates in relation to the position of a tree in stands of 
various ages.  

Models used for management planning and forest policy analysis should behave reliably 
and logically when applied in long-term simulations (e.g. Hynynen et al. 2002). Non-
parametric methods were also a suitable method for forecasting growth over longer periods, 
although testing revealed some differences compared with parametric models. The largest 
differences occurred because self-thinning was not included in the k-NN method. The self-
thinning models had a large effect on the predicted development of pine-dominated stands 
by diminishing the volume growth in these stands. The production capacities of the 
different sites ended up being different as well. There were quite a few stands in the 
reference data representing the very rich site, and fewer older stands with large stand basal 
area. Therefore the neighbours had to be selected from more infertile stands, and thus the 
growth was underestimated. However, the self-thinning models applied may underestimate 
especially the development of dense stands (Välimäki and Kangas 2009). Nevertheless, 
self-thinning, mortality, as well as the effects of thinning in detail were not taken into 
account in this thesis. Long-term planning requires that the models are able to predict the 
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effects of silvicultural practices that may be applied in the future (e.g. Hynynen et al. 2002). 
Thus, while applied in long-term forecasts, it is particularly important that the models 
extrapolate well beyond the calibration range (Hasenauer 2006). Non-parametric methods 
do not extrapolate outside the reference data. Therefore, the use of non-parametric methods 
in this kind of applications might be more limited. Moreover, the error propagation over 
time might prevent the use of non-parametric methods for long-term growth predictions, 
thus the degree of error propagation should be studied with adequate data. 

In addition to testing further the incorporation of the effects of silvicultural treatments, 
some issues still remain to be considered in the context of non-parametric methods. The 
capability of the non-parametric methods in producing growth estimates for trees in sapling 
stands is yet to be studied, since the study data used in this thesis did not include sapling 
stands. Employing non-parametric methods requires reference data that should be extensive 
enough to represent all the possible conditions, and therefore growth measurements are 
needed. However, Mehtätalo (2004) suggested that it might be appropriate to measure 
growth in order to predict the growth more accurately than it is currently predicted while 
applying the parametric methods as well. The optimal number of sample trees used for 
reference data has not yet been studied in detail. In the different papers comprising this 
thesis, all the trees in one plot were used as reference data; however, when collecting data 
for these purposes, another selection method for the sample trees might be more efficient. 
Testing the effect of the size of reference dataset on accuracy showed that non-parametric 
methods do not necessarily require remarkably larger datasets or large amounts of local 
observations to ensure accurate estimates of growth. Usually larger reference data should 
result in better imputation results, because the reference data would better represent the 
variability in the population. Small datasets may also be usable, if the properties of the 
target and reference data are uniform enough (e.g. Malinen et al. 2001). Localized and local 
non-parametric imputation produced sufficiently accurate estimates with a fairly low 
number of measured local observations. However, this concerned only this situation and 
results in other applications might be different. Furthermore, the databases may be updated 
with repeated measures. Related to this, temporal correlation and how repeated 
measurements should be taken into account while applying non-parametric methods is an 
issue that also needs to be studied. The non-parametric methods constructed here might also 
be useful for imputing growth estimates for the tallied trees for which growth is not 
measured. Additionally, the method could be used simultaneously for many variables in 
such a situation.  
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