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The forest simulator is a computerized model for predicting forest growth and future devel-
opment as well as effects of forest harvests and treatments. The forest planning system is
a decision support tool, usually including a forest simulator and an optimisation model, for
finding the optimal forest management actions.

The information produced by forest simulators and forest planning systems is used for various
analytical purposes and in support of decision making. However, the quality and reliability of
this information can often be questioned. Natural variation in forest growth and estimation er-
rors in forest inventory, among other things, cause uncertainty in predictions of forest growth
and development. This uncertainty stemming from different sources has various undesirable
effects. In many cases outcomes of decisions based on uncertain information are something
else than desired.

The objective of this thesis was to study various sources of uncertainty and their effects in
forest simulators and forest planning systems. The study focused on three notable sources of
uncertainty: errors in forest growth predictions, errors in forest inventory data, and stochastic
fluctuation of timber assortment prices. Effects of uncertainty were studied using two types
of forest growth models, individual tree-level models and stand-level models, and with var-
ious error simulation methods. New method for simulating more realistic forest inventory
errors was introduced and tested. Also, three notable sources of uncertainty were combined
and their joint effects on stand-level net present value estimates were simulated.

According to the results, the various sources of uncertainty can have distinct effects in dif-
ferent forest growth simulators. The new forest inventory error simulation method proved to
produce more realistic errors. The analysis on the joint effects of various sources of uncer-
tainty provided interesting knowledge about uncertainty in forest simulators.

Keywords: forest planning, growth model, uncertainty, inventory error
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Metsäsimulaattori on tietokoneistettu malli, jolla ennustetaan metsän kasvua ja tulevaa ke-
hitystä, sekä hakkuiden ja käsittelyiden vaikutuksia metsiin. Metsäsuunnittelujärjestelmä
on päätöstukijärjestelmä, joka yleisesti koostuu metsäsimulaattorista ja optimointimallista
ja jonka avulla metsien käsittelyitä voidaan optimoida.

Metsäsimulaattoreilla ja metsäsuunnittelujärjestelmillä tuotettua tietoa käytetään monenlaisiin
analyyseihin sekä metsien käyttöä koskevan päätöksenteon perustaksi. Tiedon laatu ja luotet-
tavuus on kuitenkin usein kyseenalaista. Esimerkiksi metsien kasvun luontainen vaihtelu
sekä virheet metsien nykytilaa koskevissa tiedoissa aiheuttavat metsien tulevan kehityksen
ennusteissa epävarmuutta. Epävarmuudella, tai tiedon puutteella on monia epäedullisia seu-
rauksia. Epävarmalle tiedolle perustuvat päätökset johtavat usein ei-toivottuun lopputulok-
seen.

Tämän väitöskirjan tarkoituksen oli tarkastella erilaisia epävarmuuden lähteitä sekä niiden
vaikutuksia metsäsimulaattoreissa ja metsäsuunnittelujärjestelmissä. Tutkimuksessa tarkas-
teltiin pääasiassa kolmea merkittävää epävarmuuden lähdettä: metsien kasvuennusteiden
virheitä, metsien nykytilaa kuvaavan tiedon virheitä sekä puutavaralajien hintojen satunnais-
vaihtelua. Epävarmuuden seurauksia tarkasteltiin sekä yksittäisten puiden että metsikkötason
kasvumalleilla ja käyttäen erilaisia virheiden simulointimenetelmiä. Tutkimuksessa kehitet-
tiin uusi menetelmä entistä realistisempien metsien inventointivirheiden simulointiin. Lisäksi
työssä tarkasteltiin kolmen merkittävän epävarmuustekijän yhteisvaikutuksia metsikkötason
nettonykyarvojen ennustamisessa.

Tutkimuksen tärkeimmät tulokset osoittivat eri epävarmuuden lähteiden vaikuttavan selvästi
eri tavoin eri metsäsimulaattoreissa. Työssä esitetyllä inventointivirheiden simulointimenetel-
mällä voidaan jatkossa tuottaa selvästi realistisempia virhejakaumia. Eri epävarmuustekijöi-
den yhteisvaikutusten tarkastelu syvensi tietämystä epävarmuuden vaikutuksista metsäsimu-
laattoreissa.

Asiasanat: metsäsuunnittelu, kasvumalli, epävarmuus, inventointivirhe
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INTRODUCTION

Forest simulators and forest planning systems

The forest simulator is a tool for predicting the future development of forests. Forest simula-
tors typically consist of multiple sub-models, or growth equations, that together form a sim-
plified representation, or model, of the forest ecosystem. This model describes the various
processes that take place in a forest, such as growth, mortality and other changes in the forest
structure. Common uses for forest simulators include updating previously measured forest
data and predicting future forest development. Predictions of future development are used for
evaluating silvicultural treatments, management planning and harvest scheduling (Burkhart
1993). Another commonly used term for a forest simulator is a forest growth model. In this
thesis, the term ’forest growth model’ refers to the abstract representation of forest dynamics,
and the term ’forest simulator’ refers to a computerised growth modeling system (e.g. the
implementation of the growth model).

The first, but still widely used, forest growth models, known as yield tables, were already
in use in the late 18th century (Vuokila & Väliaho 1980). A simple yield table could be, for
example, a tabular representation of forest attribute values, such as the total volume or basal
area of the trees, at given ages. Nowadays, the term ’forest growth model’ covers a vast num-
ber of models that vary in complexity as well as in the theoretical framework on which they
are based. Thus forest growth models can be divided into various categories. One common
convention is to divide growth models into empirical models and mechanical process models.
Typically, empirical models are estimated from measured data by using statistical methods
and are usually based on some common growth equations (Zeide 1993). Process models
aim at modeling the detailed eco-physiological processes of individual trees and are based
on ecological theory (Mäkelä et al. 2000, Kokkila et al. 2006). Traditionally, empirical mod-
els have served mostly for prediction, whereas process models have been used to understand
the various natural processes in forest ecosystems. This division is not necessarily so strict,
as most of the models lie somewhere between purely data-driven models and theory-based
models. In fact, good and usable models should combine a solid theoretical background with
parameters estimated from data.

Another commonly used separation is categorising forest simulators by their level of or-
ganisation. According to Munro (1974), forest growth models can be divided into stand-level
models, distance-independent tree-level models and distance-dependent tree-level models.
Tree-level models predict the growth of individual trees, and stand-level models predict the
growth of some aggregate variable. Distance-dependent, or spatial models, incorporate infor-
mation about neighbouring trees and other spatial indices describing, for example, within-
forest competition (Tomé & Burkhart 1989, Vettenranta 1999). The distinction between
stand-level and tree-level models is not so strict as there is rather a continuum of different
model types between the two levels, including, for example, diameter distribution, or size
class, models (Vanclay 1994). Besides the aforementioned forest growth model types, there
is a number of other types, such as succession models (Shugart & West 1980) and transition
matrix models (Buongiorno & Michie 1980, Kolström 1993).

This thesis focuses strictly on empirical forest growth models, as they are more com-
monly used in practical forest planning computations. A notable trend in the development of
empirical forest growth models has been a shift from stand-level models to tree-level mod-
els. Stand-level growth models can have sufficiently good predictive qualities, especially in
even-aged forests, and they are reportedly more accurate than tree-level models in some cases
(Burkhart 2003). Stand-level growth models are usually less complex than tree-level growth
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models, which makes them computationally more efficient (Vanclay 1994, Atta-Boateng &
Moser 2000). On the other hand, stand-level models cannot necessarily describe the complex
dynamics of forests, such as between-tree competition (Porté & Bartelink 2002). Also, a
forest stand is not as easily conceivable a biological entity as a single tree is (Garcia 2001).
Huston et al. (1988) stated that biological processes should be modeled using individual-
based models, such as tree-level models, rather than aggregated models, such as stand-level
models.

The set of trees in a tree-level growth model is either empirical (i.e. trees measured
in the field) or theoretical (i.e. set of trees generated using a distribution model) (Kangas
& Maltamo 2003). Forest dynamics are easier to capture with tree-level models, and for
mixed forest or forests with an otherwise complex structure, tree-level models may be the
only feasible option. Although complex interactions and dynamics between trees can be
incorporated into tree-level growth models, the actual interactions are sometimes so complex
that even tree-level models cannot take them into account (Zeide 1993, Sterba et al. 2002).

Despite the trend of favouring tree-level growth models, stand-level growth models can
provide a good alternative for tree-level models in certain situations (Garcia 2001). And more
important than the level of aggregation is that the model is biologically and logically sound,
its statistical properties are satisfactory, and that the reliability of the predictions is sufficient
(Vanclay & Skovsgaard 1997). The goodness of a model is always dependent on the use
of the model also; if high accuracy and precision are unnecessary, then a less accurate and
precise model will suffice.

In general, forest planning aims to identify the optimal way to utilise forest resources.
This usually means maximising the forest owner’s utility, limited by a given set of constraints
(Pukkala 2002). Forest planning is generally carried out with the aid of a forest planning
system (FPS). In a broad sense, the term forest planning system can refer to the whole for-
est planning framework, beginning with the collection of field data and covering each step
in the planning process. These steps can include, for example, preprocessing, validation
and storage of inventoried data, interaction between forest planners, forest owners and other
stakeholders, assessment of alternative activities using simulation and optimisation models,
and reporting of the resulting forest plan. In addition, many steps of this process can be
iterative and controlled by various laws and regulations, making the whole forest planning
system very complex. On the other hand, the term forest planning system can also refer to
a simple computerized decision support tool that is often used for small or medium scale
forest planning tasks. The repertory of existing FPSs is vast and diverse, as systems are
available in different countries and regions for different types of forest planning tasks and on
various scales. Examples of FPSs in Finland include MELA (Hynynen et al. 2005), MOTTI
(Salminen et al. 2005), MONSU (Pukkala 2004), and SIMO (Tokola et al. 2006, Rasinmäki
et al. 2009). Commonly used FPSs in the other Nordic countries include Gaya-JLP (Hoen &
Gobakken 1990), Forest Management Planning Package FMPP (Jonsson et al. 1993), Hugin
(Lundström & Söderberg 1996), Avvirk-2000 (Eid & Hobbelstad 2000), Heureka (Lämås &
Eriksson 2003) and T (Gobakken 2008). The core of an FPS is its forest simulator, which is
used for simulating possible future developments. Many FPSs also include an optimisation
model that is used for choosing the optimal management activities from a group of alternative
simulated treatment schedules. The optimisation models in various FPSs have been either ex-
act, such as linear programming algorithms, or heuristic algorithms (Pukkala & Kangas 1993,
Pukkala & Kurttila 2005, Heinonen 2007). FPSs commonly have different types of user in-
terfaces and interfaces with GIS. In this thesis, FPS refers to a computer decision support
system (DSS) that consists of a forest simulator and an optimisation model for selecting opti-
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mal management activities from a set of simulated alternatives. In this thesis, the term ’forest
planning system’ refers to a forest planning software containing simulation and optimisation
models.

Sources of uncertainty in forest planning systems

Forest simulators are often quite complicated systems, as are forest planning systems, which,
in addition to the simulator, include the optimisation model as well. When such a complex
system is used to predict natural processes, such as forest development, the outputs contain a
lot of uncertainty, which stems from many sources. The term uncertainty can be understood
as a lack knowledge. This can mean, for example, unknown probabilities for various events or
unknown distributions of some variables of interest (Pukkala & Kangas 1995). For example,
in the forest planning context we may not know the exact current state of a forest, as the
forest inventory data contain errors. Alternatively, we cannot know the exact states of a
forest stand in the future, as growth predictions contain errors. In forest planning systems,
uncertainty also stems from random variation in timber assortment prices, known market
risk, and the risk of natural hazards. Even if uncertainty precludes the knowledge of exact
values, such uncertainty can be quantified and analysed in many ways. A common way to
quantify uncertainty is to estimate the distributions that are associated with and influenced by
uncertainty. Uncertainty in forest growth predictions, for example, could be described with
bias and variance in the predicted forest attribute values at different points in time. Different
approaches to defining, classifying and managing uncertainty in decision making have been
discussed comprehensively in Kangas & Kangas (2004).

The concept of risk is closely related to uncertainty and, in most cases, bears a negative
connotation to it. In the forest planning context, risk can mean, for example, the risk of a
forest to incur damage in a forest fire or windstorm. The probability of risk can be quantified
if the distributions affiliated with the risk are known. Risk is typically described by the
severity of realised risk, the potency, and the likelihood that the risk will be realized, or the
exposure (Mowrer 2000).

Predictions of forest growth and yield inherently contain some measure of uncertainty,
which stems from: (1) model misspecification, (2) random estimation errors of the model
coefficients, (3) residual variation in the model, and (4) errors in the independent variables
of the models. The errors in the independent variables may result from sampling errors,
measurement errors, grouping errors and prediction errors (Kangas 1999). These sources of
uncertainty apply especially to statistical models. The prediction errors can be either sys-
tematic, which is described with bias, or random, which is described with variance. One of
the difficult things about predicting future developments in natural systems, such as forest
growth, is that natural processes tend to involve a lot of random variation. A large proportion
of the uncertainty related to growth prediction error stems directly from this natural variation.
Even though the predictive properties of a forest growth model can be good, the actual growth
in individual forests is not exactly the same as the prediction because the predicted growths
are based on averages (Mowrer 2000).

Forest inventory provides the input data for forest planning calculations and describes the
current state of the forests. Because forest areas are very large, it is practically impossible
to make accurate and extensive measurements that would provide an exact description of the
forest properties. Instead, the properties of only a small sample are normally measured or es-
timated. In many cases the measurements or estimates are somewhat inaccurate, and contain
both bias and variance, which lead to uncertainty in the forest inventory data. Traditionally,
forest planning data in Finland are collected with a stand-level field inventory in which stand-
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level aggregate attributes are partly visually estimated and partly measured from subjectively
located sample plots (Poso 1983, Laasasenaho & Päivinen 1986, Haara 2003, Kangas et al.
2004, Saari & Kangas 2005). The subjective nature of this method makes it prone to as-
sessment errors, and the quality of the data collected with this method is considered low.
Assessment errors in a forest inventory can result from (1) measurement errors, (2) sampling
errors, (3) prediction errors and (4) classification errors (Gertner 1986, 1991, Haara 2005).

Remote sensing methods have been applied in forest inventory in recent decades, but have
only recently become a feasible alternative to stand-wise field inventory. Estimation meth-
ods utilising airborne laser scanning (ALS) data and digital photogrammetry can now provide
data of comparable reliability to traditional stand-level field inventory data and at competitive
cost (Naesset 1997, Korpela 2004, Naesset 2004, Packalen 2009). The ALS estimation and
digital photogrammetry-based estimation methods can provide accurate estimates of some
stand-level attributes, such as mean height and number of stems, but the accuracies of some
other attributes, such as mean diameter and tree species, are poor. The aforementioned remote
sensing methods can also provide tree-level data, such as the locations and dimensions of in-
dividual trees instead of aggregate attributes (Kaartinen & Hyyppä 2008). Even though these
novel remote sensing methods are quite accurate, their estimates contain both systematic and
random variation, and thus are uncertain.

Besides the uncertainty resulting from errors in forest growth models and forest inventory
data, economic aspects also lead to uncertainty in the forest planning context. One such
source of uncertainty is the random fluctuation in timber assortment prices, also known as
market risk or price risk. Market risk means that, because future prices are unknown, the
forest owner cannot know when is the optimal time to sell timber in order to earn maximal
profits. Thus the exact net present values (NPV) of future income from timber sales cannot
be known. Consequently, the fluctuating timber assortment prices cause uncertainty about
when to harvest and what is the theoretical value of forest when the value estimate is based
on future timber sales. Newman (2002) has extensively reviewed the literature on economic
uncertainty in forestry.

Natural hazards also constitute a source of uncertainty in forest planning. The hazards
are usually events that damage forests and decrease their value. Potential hazards to forests
include wildfires, high winds, heavy snow, flooding, insects and pathogens. Risk and hazards
in forest planning, especially in harvest planning and scenario modelling, have been studied
by, for example, von Gadow (2000).

Additional important source of uncertainty in forest planning process is the preferences
of the forest owner. In many cases, the forest owner may have various objectives, both quan-
titative and qualitative, which can also be conflicting. For forest owners, as well as for forest
planning experts, defining the objectives unambiguously in multi-objective forest planning
can be challenging. This is even more difficult in participatory forest planning, in which
the number of stakeholders with different objectives can be substantive. A number tools
for aiding the decision making process have been developed, such as Analytical Hierarchical
Process (AHP) (Saaty 1980), which has been utilized, along with other similar tools, for some
time in forest planning context (Kangas 1992, Kangas et al. 2002).

Analysing the uncertainty

Uncertainty and its consequences in forest simulators and forest planning systems have been
studied using different approaches. One typical approach has been to study the variance of
a certain variable of interest, such as stand volume, and to see how a given source of uncer-
tainty affects it over a period of time. This type of analysis can be carried out using different
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methods and has especially been used in studying uncertainty due to growth prediction er-
rors. One possibility is to conduct a straightforward empirical simulation study using the MC
method. Kangas (1997, 1999) used this technique for examining growth prediction errors
and (Gertner & Dzialowy 1984) the effects of forest inventory errors. Another option is to
examine the distribution of the variable of interest analytically using the Taylor series approx-
imation or similar error propagation method. Gertner (1987) and Mowrer (1991) adopted this
approach for examining growth prediction errors. Gertner (1987) reported that using an er-
ror propagation method instead of crude the MC simulation reduced computational cost by
a factor of 2000. However, the MC method is straightforward and in many cases easier to
implement than, for example, the Taylor series approximation for complex model systems.
Moreover, according to Gertner (1987), the analytical method underestimated the uncertainty
in the growth predictions. Another type of analytical approach was adopted by Ståhl (1994)
for determining the optimal timings for harvest and inventory actions at stand-level. This ap-
proach used Bayesian theory and the decision variables were probability distributions instead
of point estimates. Yet another approach for evaluating uncertainty in growth predictions is
simply to compare predicted growths to observed growths (Välimäki & Kangas 2009, Haara
& Leskinen 2009). This type of approach is suitable for the validation and comparison of
alternative forest simulators. Studying the variances of various attributes in a simulation sys-
tem can provide confidence intervals for the attributes and thus help to estimate the reliability
of the whole system. Typical measures of uncertainty in these studies include standard error
(SE), root mean square error (RMSE), and coefficient of variation (CV).

Though the variance of the various attributes of a forest simulator tells something about
the uncertainty, it does not necessarily provide an accurate impression of the practical im-
plications of the uncertainty. One approach for elucidating these practical implications has
been calculating so-called inoptimality losses. The idea of inoptimality losses is based on
the assumption that if we can determine the optimal way to manage a forest, then every other
management option that differs from the optimal one is either equal or inferior to it. When the
decision-making process, such as the scheduling of harvests, involves sources of uncertainty,
the decision may end up being something other than optimal. If an inoptimal management
option is chosen, the maximum utility, in many cases quantified as the NPV of the forest
stand or holding, cannot be attained. Thus, inoptimality loss is simply the difference between
the utilities of inoptimal and optimal management options. Inoptimality loss can be used to
estimate the value of information (VOI) or the expected value of perfect information (EVPI),
the theoretical value that a decision-maker would be willing to pay for such information be-
fore making a decision. Such an approach has especially been used in studying the effects
of forest inventory errors in forest planning. Alternative forest inventory methods have been
compared using cost-plus-loss (CPL) analysis, where both the inoptimality losses and the
costs of the alternative inventory methods are considered (Burkhart et al. 1978, Hamilton
1978). The use of CPL analysis in the forest planning context has been covered extensively
by Duvemo & Lämås (2006). In management science context, uncertainty and it’s effects
on decision analysis have been studied using an approach called Robust Portfolio Modeling
(RPM) (Liesiö et al. 2007). In RPM approach, robust portfolios are formed from subsets of
decision alternatives, which in forest planning context could be alternative treatment sched-
ules. The aim is to find such combinations, or portfolios, that are not likely to change even if
the uncertainty would decrease, i.e. more accurate forest inventory data would be available.

Forest inventory errors used for studying inoptimality losses and in CPL analysis have
been either real errors observed in an actual forest inventory in case-study fashion or simu-
lated random errors. Real observed errors have been used, for example, by Eid et al. (2004),
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Duvemo et al. (2007), Juntunen (2006), Väisänen (2008) and simulated errors by Eid (2000),
Holmström et al. (2003), Holopainen & Talvitie (2006), Borders et al. (2008), Islam et al.
(2009). One of the strengths of the case-study approach is that the observed errors are real-
istic and can be used as such. However, using observed errors requires a lot of data and is
restricted to existing inventory methods. Using simulated errors gives more flexibility as the
errors are not restricted to existing inventory methods, and real inventory data is not needed.
On the other hand, in order to simulate realistic errors, the distributions and correlation struc-
tures of the errors must be known and taken into account. Most of these studies assume the
errors are normally distributed. This, however may, according to Canavan & Hann (2004)
and Westfall & Patterson (2007), be an invalid assumption. Moreover, many previous studies
have disregarded the possibility that the errors can be correlated, although Sprängare (1978)
and Eid (1993), for example, suggest that the errors are in fact correlated.

Existing studies on economic uncertainty have concentrated mostly on optimal harvest
scheduling. Traditionally optimal harvest schedules have been determined using Faustmann’s
rule, which maximises the NPVs of future harvest income. This rule assumes constant tim-
ber prices, but in reality prices fluctuate, which affects optimal harvest scheduling. Random
fluctuation in timber prices reportedly increases rotation ages and forest NPVs (Brazee &
Mendelsohn 1988, Haight & Holmes 1991, Thomson 1992, Tahvonen & Kallio 2006). Var-
ious models for stochastic timber assortment prices appear in the existing literature (Yoshi-
moto & Shoji 1998, 2002, Insley & Rollins 2005). In most cases, economic risks in the
forest planning context have been studied separately from other sources of uncertainty, but
exceptions do exist. The effects of economic uncertainty have been studied concurrently
with growth prediction errors (Pukkala & Kangas 1995, Pukkala & Miina 1997) and natural
hazards (Valsta 1992). Reed & Haight (1996) took both growth prediction uncertainty and
natural hazards into account when determining NPV distributions for forest stands.

Due to the multifaceted and complex nature of the uncertainty in forest simulators and
FPS, various simplifications have been made in existing studies. Most existing studies, such
as those on growth prediction errors and CPL analysis of forest inventory errors, consider
only one source of uncertainty at a time. One of the reasons behind CPL analysis is that it
produces a more tangible and realistic measure of uncertainty. However, including only a
single source of uncertainty inevitably decreases the realism of the CPL analysis. The effects
of growth prediction errors and economic uncertainty have been studied concurrently, but no
studies to date have studied uncertainty due to forest inventory errors at the same time with
growth prediction errors and economic uncertainty.
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OBJECTIVES OF THE THESIS

The general objective of this thesis was to study different sources of uncertainty and their ef-
fects in forest simulators and forest planning systems. The sources of uncertainty considered
in this thesis were: 1. uncertainty due to forest inventory errors, 2. uncertainty stemming
from growth prediction errors, and 3. economic uncertainty resulting from stochastic timber
assortment prices. Different forest growth models presumably respond to uncertainty in dif-
ferent ways, thus two alternative forest growth models were used in the various simulations
of this thesis. In addition, different forest inventory methods were considered when studying
the effects of forest inventory errors.

One of the main objectives was to study whether notable differences related to uncertainty
exist between tree-level and stand-level growth models (Papers I and II). Other, more specific
questions in this study were: "Can quantile regression provide more information about the
growth prediction error distributions than standard regression analysis?" (Paper I) and "How
are forest inventory errors propagated in different forest simulators?" (Paper II).

In order to understand the practical implications of uncertainty, Paper III explored eco-
nomic inoptimality losses resulting from forest inventory errors. One objective was to ex-
amine the detailed properties of forest inventory errors and to determine how the different
properties of simulated errors affect inoptimality losses. A related objective was to outline
and to test a method for simulating realistic forest inventory errors (Paper III).

One aim was to acquire an understanding of the proportions and joint effects of various
sources of uncertainty in a fairly complex forest simulator by examining the distributions of
predicted stand-level NPVs. Another objective was to obtain an understanding of the level of
accuracy in stand-level NPV predictions (Paper IV).

MATERIALS

Tree increment sample plot measurements (I)

The dataset used as the reference for forest growth predictions in Paper I consisted of 60
sample plots located in 30 forest stands. The stands were located in central Finland, and
the field measurements were conducted in summer 2005. Because one of the aims was to
evaluate the performance of growth models in extreme conditions, the selected stands had
been unmanaged over the past 20 years and were denser than typical commercially managed
forests in Finland. A wide repertoire of different site and age classes was represented in stands
dominated by both Norway spruce (Picea abies L. Karst.) and Scots pine (Pinus sylvestris
L.).

The sample trees were measured from two types of circular sample plots: sample tree
plots and tally tree plots, both of which had a radius relative to the stand density. The sample
tree plots and tally tree plots overlapped with a joint centre point, but the radius of a sample
tree plot was half that of a tally tree plot. In all, 1580 tally trees and 490 sample trees were
measured from the sample plots.

The diameter at breast height (dbh) of the tally trees was measured with a caliber, and the
species was recorded. For the sample trees, tree height (h), height of crown, thickness of bark
and the health of the tree were also recorded. Additionally, each pine and spruce sample tree
was also cored at breast height in order to determine the age and dbh growth over the past 20
years by analysing the annual rings.

The sample trees were used to construct linear mixed effects models for predicting dbh,
h and age of the tally trees at the present moment and over the past 20 years. This way the
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reference data included a total of 2070 trees with either measured or predicted dbh, h and age
both at present and 5, 10, 15 and 20 years ago. Also, stand level aggregate attributes were
calculated from the tree-level values for basal area (G), mean diameter (DgM ), mean height
(HgM ), total volume (V ), number of stems per hectare (N ) and mean age (Age).

Stand-level field inventory estimates, ALS inventory estimates and reference sample plot
measurements (III, IV)

One of the aims of Papers III and IV was to study the detailed properties of assessment
errors in different forest inventory methods. The two inventory methods were traditional
stand-level field inventory and area-level ALS estimation. The stand-level field inventory
dataset (hereafter, FIELD) included estimates by experienced forest planners for 1158 stands
and accurate reference measurements from sample plots located within these stands. The
aggregate attributes estimated for the stands and measured from the sample plots, stratified
by tree species in both cases, were: DgM , HgM , G, V , and N . A more detailed description
of the field data collection appears in Haara & Korhonen (2004).

The area-level ALS estimation reference data were collected from two areas in north-
eastern Finland, with the first dataset (hereafter ALS1) comprising 89 stands and the second
(hereafter, ALS2) 57 stands. Both datasets contain the ALS estimates and accurate reference
measurements from the sample plots for aggregate attributes DgM , HgM , G, V , and N ,
again at tree species stratum-level. The ALS estimation process used in the data collection is
described extensively in Packalen & Maltamo (2007).

In both the traditional stand-level field inventory and area-level ALS estimation, the es-
timates x̂ represent the typical accuracy of the corresponding inventory technique. The ac-
curate reference measurements x from the sample plots represent the true values of the at-
tributes. Thus, the estimation error vector ek for attribute k in a given dataset was

ek = x̂k − xk (1)

where x̂k and xk are the estimate and true value vectors for attribute k, and element eijk

is the value for attribute k in tree species stratum j of stand i, where i = 1, 2, ...,number of
stands; j = 1, 2, ...,number of strata in stand i; k = DgM , HgM , G,N, V . The reference
measurements x also contain some measure of error due to sampling errors and assessment
errors. However, the amount of error in the reference measurements was assumed insignifi-
cant.

METHODS

The forest planning framework

All of the Papers I to IV involve some type of forest growth simulation. The simulators used
in these studies were all implemented on the SIMO (SIMulation and Optimisation) frame-
work, except for the MOTTI simulator Used in Paper I. SIMO is simulation and optimisation
software for various types of forest planning computations originally developed at the Depart-
ment of Forest Resource Management, University of Helsinki (Tokola et al. 2006, Rasinmäki
et al. 2009). SIMO provides a flexible and easily adaptable and extendable framework for
implementing different types of forest simulators. The MOTTI simulator, used in Paper I, is
a well-established stand-level forest DSS for Finland which uses distance-independent tree-
level models for growth prediction (Hynynen et al. 2002, 2005, Salminen et al. 2005).
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Two growth and yield simulators, one using tree-level models and the other using stand-
level models for growth prediction, were implemented on the SIMO framework. Both simu-
lators were designed to be used for stand-level growth and yield simulations, and both sim-
ulators shared some common models for simulating different types of harvests in detail and
for calculating various ecological and economic indices. The key difference between these
two simulators was the level of organisation in the growth prediction.

The distance-independent tree-level growth models used in the tree-level simulator were
largely the same as those used in the MOTTI and MELA systems (Hynynen et al. 2002).
These models covered all of Finland’s main tree species and forest types with separate model
groups for mineral and peat soils. The dependent variables in the tree-level growth equations
were the increment of tree height h and the increment of tree basal area g. The independent
variables included various attributes describing tree dimensions, site and location indices,
within-stand competition measures, and others. The tree-sets used in the simulations were
either measured in the field, as in Papers I and II, or generated with a diameter or height
distribution model, as in Paper III.

The stand-level simulator included growth models that predicted the increments of stand-
level aggregate attributes stratified by tree species. The growth models used for Scots pine
and Norway spruce were adopted from Vuokila & Väliaho (1980). The growth models used
for birches and other deciduous species were adopted from Saramäki (1977) and Oikarinen
(1983). The stand-level simulator included separate submodels for different geographical re-
gions and site types in Finland. The dependent variables in these models were the increments
of G, V , basal area under bark Gu and dominant height Hdom, depending on the tree species
and soil type. The independent variables in the stand-level growth models were, for example,
G, Gu, Age, Hdom and site class. Although the growth was predicted strictly at stand-level,
theoretical tree sets were generated in order to predict N . In addition, the harvest models
used in both tree-level and stand-level simulators required tree-level inputs, as each stem of a
stand was tapered, and stem cutting was optimised (Papers III and IV).

In Papers I, II and IV, the SIMO system was used only for simulations, but in Paper III, the
optimisation module was used for harvest scheduling. Optimisation required multiple alter-
native harvest schedules for each stand. In the SIMO simulator, this could be achieved so that
each simulated harvest created a new "branch" to the set of alternative future developments.
By varying the timings of thinnings and clearcuts, and the thinning intensities, the simulator
module generated multiple alternative harvest scenarios for each stand. Thus, the alternative
developments of a single stand formed a type of tree structure, where the current state is the
root and possible future states are the branches.

The optimisation task in Paper III simply maximised the total estate-level NPV with no
constraints. In practice, this was equal to maximising separately the NPVi of each stand i.
The optimisation task can be defined formally as

NPV =
100∑
i=1

[
30∑

t=1

(
Hit

(1 + r)t

)
+
PVi30 ×AREAi

(1 + r)30
+ PV LANDi

]
(2)

where Hit was the discounted net income from harvests for stand i at year t, and PVi30

and PV LANDi were the productive value of the stand and the productive value of land at
the end of the 30-year planning period. The total number of stands was 100 and the discount
rate was 3% (r = 0.03). The PVi30 and PV LANDi values were predicted using models for
stand-level productive values by Pukkala (2005). As the optimisation task was very simple, a
straightforward heuristic search algorithm was used to find the optimal harvest schedule for
each stand. In principle, the algorithm was an adaptation of the HERO algorithm, which was
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developed specifically for tactical-level forest planning (Kangas & Pukkala 1998, Kangas
et al. 2001). In this case, the HERO algorithm searched through all possible schedules of
each stand and was therefore able to determine the optimal solution after a single iteration.

Stochastic simulation methods

The simulation studies described in Papers II, III and IV utilised the MC method to estimate
the distributions of the different responses of the SIMO system. In Paper II, the responses
were various stand-level aggregate attributes. In Paper III, the response was the stand-level
inoptimality loss, or EVPI, due to forest inventory errors. And in Paper IV, the response was
stand-level NPV. Another option would have been to use some analytical error propagation
method, such as the Taylor series approximation. The MC method was preferred over the
analytical methods as it is more straightforward and easier to implement for complex model
systems (Kangas 1999).

Simulation of forest inventory errors (II, III, IV)

In Papers II, III and IV, different types of forest inventory errors were generated into the input
datasets. These errors were either classification errors of discrete attribute values, omission
errors of individual trees or random estimation errors for continuous attributes. In Paper II,
the classification errors were introduced to the tree species labels of individual trees. A tree
with true species p was classified as species q with a conditional probability Ppq using a
symmetrical classification error matrix. The classification error probabilities were based on
the EuroSDR report by Kaartinen & Hyyppä (2008).

Missing trees in individual tree detection with remote sensing, known as omission er-
rors, were simulated in Paper II. Relatively smaller trees have a lower probability of being
detected, as the relatively larger trees occlude the smaller ones. The detection probability
P (detectedtree) was modelled as a sigmoid function

P (detectedtree) = 1− e−60h5
rel (3)

where hrel is the tree’s relative height in the sample plot-level height distribution. The
function shape and parameters were adopted from Korpela (2004). The simulation study in
Paper II used a tree set as input data, and a proportion of the trees were removed according to
probability P (detectedtree). The trees were removed so that for each tree in a sample plot,
a uniformly distributed random number between 0 and 1 was drawn, and if the number was
lower than the detection probability, the tree was removed.

In Papers II and III, random errors were generated in the continuous attribute values in
the input data. A simple method for generating random estimation errors, which had also
been used in many previous studies, was to generate a normally distributed error term ε with
mean mean and standard deviation SD for each input variable x. Thus the erroneous value
for attribute x was obtained by

x̂ = x+ ε (4)

One of the aims was to examine the properties of forest inventory errors and to evaluate
methods for generating realistic errors (Paper III). The estimation error vector ek for variable
k in the studied datasets showed trends such that large values were underestimated and small
values overestimated. To remove this trend, linear regression models of shape
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ek = βk0 + βk1xk + εk (5)

were fitted to datasets ALS1 and ALS2, and polynomial regression model of shape

ek = βk0 + βk1xk + βk2x2
k + εk (6)

was fitted to dataset FIELD. The residual vectors ε̂k of these models were used in the
following analysis as they were the estimation errors without the error trend. Computing a
5 × 5 correlation matrix Corr(ε̂.ij), where ε̂.ij = (ε̂ij,DgM

, ε̂ij,HgM
, ε̂ij,G, ε̂ij,N , ε̂ij,V )T ,

indicated that there were significant correlations between the various attributes. In addition,
according to the Shapiro-Wilk test of normality, the errors were unlikely to have been pro-
duced by a normal distribution.

In order to simulate such non-normal correlated random errors with strong trends, we first
fitted various distributions into the error trend model residuals ε̂k using the Maximum Like-
lihood (ML) method. The most suitable distribution shape was the logit-logistic distribution,
which is a flexible distribution with minimum and maximum values ψ and λ, as well as shape
and scale parameters φ and σ (Tadikamalla & Johnson 1982, Wang & Rennolls 2005).

As the distributions of ε̂k in the various datasets were something other than normal, a
multinormal distribution could not be used to simulate correlated random vectors. Instead,
we had to adopt what is known as the Copula approach (Kolev et al. 2006, Mehtätalo et al.
2008). First, the ε̂k values were transformed into normally distributed random variables yk

through

yijk = Φ−1(F (ε̂ijk|ψ̂k, λ̂k, φ̂k, σ̂k)) (7)

using the ML fitted logit-logistic distribution parameters. Next, a variance-covariance ma-
trix Cov(y.ij), where y.ij = (yij,DgM

, yij,HgM
, yij,G, yij,N , yij,V )T , was constructed from

the transformed residuals. With y.ij known, a required number of correlated multinormal
random vectors ỹ.ij were generated for each stratum and stand j and i using the Cholesky
decomposition (Rubinstein 1981). After that, the simulated vectors ỹk were transformed into
logit-logistic random variable vectors ε̃k through

ε̃ijk = F−1(Φ(ỹijk|ψ̂k, λ̂k, φ̂k, σ̂k)) (8)

To obtain the simulated errors ẽk, the error trend was added to the ε̃k vector. The simu-
lated estimates x̃est were then obtained with

x̃k est = xk + ẽk (9)

In addition to the correlated logit-logistic random errors, errors were also generated from
logit-logistic distributions without maintaining the correlation structures between the various
attributes. In addition, random errors were generated from multinormal distributions such that
the correlations were maintained, but the random values were distributed normally (Paper III).

The aim in Paper IV was to study simultaneously the effects of multiple sources of uncer-
tainty. The uncertainty resulting from forest inventory errors was taken into account, not by
generating random errors, but by generating true values. First, the difference vector

δk = xk − x̂k (10)

between the true values and the estimates of attribute k, separately for datasets FIELD and
ALS1, was generated using exactly the same procedure as for the errors ek in Paper III. After
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generating the differences δ̃k, the simulated true x̃k true vectors were obtained by adding the
simulated differences to the estimate vectors as in

x̃k true = δ̃k + x̂k (11)

In this way, a distribution of simulated true values, instead of simulated estimates, was ob-
tained, as in Papers II and III. The former values were classical variables where V ar(true) <
V ar(estimate), and the latter were Berkson variables where V ar(true) > V ar(estimate).

Random variation in stand-level growth projections (IV)

The uncertainty in growth prediction was simulated by introducing a random error component
u into the growth models. Stand-level growth models were used instead of tree-level models
as the error models were easier to introduce into the simpler stand-level growth simulator.
The random error u consisted of two individual error components: between-stand error uB

and within-stand error uW . The error was divided into two components to keep stand-level
biases at the same level throughout the simulation. The total random error at time t was then

ut = uB + uWt (12)

The between-stand error uB was generated for each tree species stratum of each stand,
once at the beginning of the simulation and again if the stand was regenerated. The within-
stand error was simulated as an autoregressive process where uWt+1 depended on uWt such
that

uWt+1 = α× uWt + bt (13)

where α was the autocorrelation coefficient and bt was a random coefficient at time t.
The value for bt was generated from a normal distribution at each simulation time step. The
simulated random error components were added to the increments of Hdom and G. This type
of growth prediction error simulation was used for all non-seedling stands and for Scots pine-
dominated seedling stands. The total variation of u, based on results by Haara & Leskinen
(2009), was divided into uB and uW by applying the results of Kangas (1999). The value
for the correlation coefficient α was calculated also from the models by Haara & Leskinen
(2009).

The growth in spruce and birch seedling stands was based on a simple model that predicts
the number of years for the stand HgM to reach 1.3 meters. The prediction error was intro-
duced into these stands by adding a normally distributed random error term uB to variables
Agespruce and Agebirch. The between -tand errors uB of the variables Hdom, G, Agespruce

and Agebirch were presumed to be correlated. Thus, the values for these variables were
generated from a multinormal distribution (Rubinstein 1981).

When the growth prediction error models were active in the SIMO stand simulator, the
root mean square errors (RMSE) and biases in the predicted values of various attributes were
of the same magnitude as those in the results of Haara & Leskinen (2009). If the distribution
errors in Haara & Leskinen (2009) are normal, or close to normal, the simulated random
variance in the growth predictions can be considered realistic.

Stochastic timber assortment price models (IV)

The economic uncertainty in stand-level NPV estimates was simulated using a stochastic
timber assortment price model. The model was based on real monthly stumpage prices be-
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tween January 1986 and August 2008 (Finnish Statistical Yearbook of Forestry, 2008). Sep-
arate prices were given for saw logs and pulpwood for Finland’s three main commercial tree
species: Scots pine, Norway spruce, and birch. The fluctuation of the prices was modelled
as a geometric mean-reverting (GMR) process, which is not analytically solvable, but has
been used in various studies. Another widely used option would have been geometric brow-
nian motion (GBM), which can be solved analytically. The stochastic model for the timber
assortment prices was

dp = η(p− p)dt+ σpdz (14)

with p being the long-term mean price, parameters η and σ denoting the speed of reversion
and the level of annual variation, and dz representing the increment of the Wiener Process
(Dixit & Pindyck 1994). For a detailed description of the estimation of the parameters, refer
to Paper IV. Because strong correlations were observed in previous timber assortment prices,
future predictions were generated from multinormal distribution by multiplying the Cholesky
decomposition of the timber assortment price variation covariance matrix with a matrix of
normally distributed N(0,1) random variables (Rubinstein 1981).

Description of the simulation setups

Paper I

The objective in Paper I was to evaluate the growth prediction accuracies of tree-level and
stand-level simulators implemented in the SIMO system, as well as the MOTTI tree-level
simulator by comparing the predicted developments to observed developments at sample-plot
level. The reference sample plot data of Paper I served as the input data for the simulations.
The simulators used in the study took the measured sample tree and predicted tally tree values
as input. The growth of each sample plot was predicted for a 20-year period using 1-year time
steps in the SIMO simulators and 5-year time steps in the MOTTI simulator. Harvests or any
kind of treatments were not simulated as the sample plots had been unmanaged during the past
20 years. The simulations were completely deterministic with no randomness whatsoever,
and the three simulators used are referred to as

TREE SIMO tree-level simulator,

STAND SIMO stand-level simulator,

MOTTI MOTTI tree-level simulator.

Paper II

In Paper II, the propagation of two types of forest inventory errors was studied in tree-level
and stand-level forest simulators. The two types of errors were those observed in stand-level
field inventory and those observed in single tree-level ALS estimation. Input data consisted of
240 tree-wise sample plots measured in 2006 from the Evo area in southern Finland. Sample
tree d and h were measured, and tree species recorded on circular sample plots with a 9.77
metre radius. A number of sample plot-level attributes describing plot location, site and soil
quality were obtained from an existing forest planning database available for the study area.
The simulation period was 30 years in 5-year time steps. The harvest models of SIMO were
disabled. With two forest inventory error types and two types of forest simulators, there were
four separate simulation setups:
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FIELD-TREE stand-level field estimation errors, simulation with tree-level simulator (Sim-
ulation setup I in Paper II);

FIELD-STAND stand-level field estimation errors, simulation with stand-level simulator
(Simulation setup II in Paper II);

ALS-TREE tree-level ALS estimation errors, simulations with tree-level simulator (Simu-
lation setup III in Paper II);

ALS-STAND tree-level ALS estimation errors, simulation with stand-level simulator (Sim-
ulation setup IV in Paper II).

The MC method was applied in the simulations so that each stand was simulated 100
times for each simulation setup, and at the beginning of each iteration, random errors were
introduced into the input data. In simulation setups FIELD-TREE and FIELD-STAND, the
inventory errors were generated from univariate normal distributions for tree species stratum-
level attributes G, DgM , HgM , N and Age, both separately for each attribute and simulta-
neously for all attributes. The inventory error means and SDs for the stand-level aggregate
attributes were based on the existing literature (Poso 1983, Laasasenaho & Päivinen 1986,
Kangas et al. 2004).

In simulation setups ALS-TREE and ALS-STAND, the inventory errors were introduced
into the single tree-level attributes dbh and h. A portion of the trees were removed with
probability P (detectedtree) in order to simulate omission errors. In addition, a tree species
classification error was simulated for some of the trees. All these errors were also generated
separately and simultaneously. The tree-level estimation error properties were based on the
EuroSDR report by Kaartinen & Hyyppä (2008).

In addition to the MC simulations, a reference simulation with no input data errors was
carried out for each stand. The reference simulation was considered to represent the forest
development with no uncertainty.

Paper III

Also in Paper III, different types of forest inventory errors were introduced into the input data
values using the MC method. However, the whole simulation setup was a bit more complex
than that in Paper II. Only the tree-level simulator was used, but instead of simulating a single
future development for each stand, multiple alternative developments, or harvest schedules,
were simulated. Also, an optimisation module was used for selecting the optimal harvest
schedule for each stand. The simulation time period was again 30 years in 5-year time steps.
Input data consisted of 100 randomly selected stands from a forest estate located in southern
Finland. The data had been collected previously with stand-level field inventory. The values
describing stand location and site quality were at stand-level, and the data describing the
standing stock with aggregate attributes were stratified by tree species.

The reference simulation was carried out once for each stand as in Paper II, but this
time with the harvests and the optimisation of harvest schedules. The generation of random
errors in the MC simulations also took place at the beginning of each iteration, but the error
generation methods were different from those in Paper II. Random errors were generated for
attributes G, DgM , HgM , V and N using four alternative simulation methods:

MLLTr errors simulated from multivariate logit-logistic (MLL) distributions with both the
correlations and error trends (Tr);
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UN errors simulated from univariate normal (UN) distributions without the correlations or
error trends;

ULLTr errors simulated from univariate logit-logistic (ULL) without the correlations, but
with error trends;

MNTr errors simulated from multinormal (MN) distributions with the correlations and error
trends.

The above four methods were used to simulate errors similar to those observed in datasets
FIELD and ALS2. The errors observed in dataset ALS1 were simulated only with methods
MLLTr and UN. Thus, altogether 10 different simulation setups were repeated 100 times for
each stand in the input data using the MC method.

Paper IV

The simulation in Paper IV incorporated three sources of uncertainty: forest inventory errors,
growth prediction errors and stochastic timber prices. The sources of uncertainty are here-
after referred to as UPRICE for price uncertainty, UGROWTH for growth uncertainty and
UFIELD and UALS for inventory uncertainties in stand-level field inventory and area-level
ALS estimation, respectively. The various combinations of these sources of uncertainty are
listed in table 5. A stand-level simulator was used to predict growth, and different harvests,
such as thinnings and clearcuts, were activated. The simulation time period depended on
the maturity of each stand, as the stands were simulated until the next regeneration harvest.
Harvest scheduling was based on silvicultural recommendations in Finland (Hyvän Metsän-
hoidon Suositukset, 2006) and regeneration harvests were done after the relative value growth
dropped below the chosen interest rate. Input data of the simulations was a synthetic dataset
consisting of 40 stands. The data contents were similar to those in the input data of Paper III.
The sample plots and stands used as input data in Papers II to IV represented a wide variety
of different forest types, tree species compositions and site and age classes typical in Finland.
The three sources of uncertainty were simulated separately, in pairs and simultaneously, and
all these combinations were simulated at interest rates of 3%, 4% and 5%. Simulations were
performed using the MC method with 100 iterations for each combination, yielding a dis-
tribution of NPV values for each stand. The NPV for all realisations of each stand i were
calculated with Equation 15, where PV LANDiT is the productive value of land after the
next regeneration. The timing Ti of the next regeneration harvest of stand i depended on the
maturity of the stand.

NPVi =
Ti∑

t=1

Hit

(1 + r)t
+
PV LANDiT ×AREAi

(1 + r)Ti
(15)

Statistical analysis of the effects of uncertainty

The effects of various sources of uncertainty were analysed using basic statistics, such as
arithmetic mean (16), SD (17) and the RMSE (18) of the variable of interest X , which in
many cases was the assessment error of some attribute of stand i. The RMSE is defined here
as the square root of the sum of the variance and squared bias B2 of variable X .

X =
1
n

n∑
i=1

Xi (16)
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SD(X) =

√√√√ 1
n

n∑
i=1

(Xi −X)2 (17)

RMSE(X) =
√
SD(X)2 +B2 (18)

The distributions of the growth prediction errors in Paper I were examined using quantile
regression instead of traditional regression analysis. Quantile regression is an extension of
linear regression and is used for estimating the conditional quantiles of the dependent vari-
able distribution. It is used in situations in which the variance is heterogenous as it often
suggests that no predictive relationships exist between the dependent and independent vari-
ables. Even if a relationship did exist in certain parts of the dependent variable distribution,
basic regression provides only models for the conditional mean function of the dependent
variable distribution. Quantile regression can provide models for the whole range of condi-
tional quantile functions (Koenker & Bassett 1978, Koenker & Hallock 2001). Conditional
quantile regression functions for the variable Y can be written as

QY (τ |X) = β0(τ)X0 + β1(τ)X1 + β2(τ)X2 + ...+ βp(τ)Xp (19)

where τ refers to the τ ’th percentile of the distribution of Y , conditional to X (Cade &
Noon 2003).

Analysis of the inoptimality losses

In Paper III, the effects of forest inventory errors were studied by calculating the inoptimality
loss, also known as the EVPI, for each realisation of each optimised harvest schedule. First,
a number of alternative harvest schedules were simulated for each stand using input data
devoid of errors. Then the optimal schedule was selected for each stand using the HERO
heuristic search and optimisation task definition (Eq. 2). Based on the income from harvests
and stand-level productive value estimates at the end of the planning period, optimal NPVi

was calculated for each stand i applying the same principles as in Equation 2, but without the
aggregation to the estate-level.

After determining the true optimal NPVi values, each stand was simulated using an iter-
ative MC approach. The number of realisations for each stand was 100, and at the beginning
of each iteration, random errors were generated into simulation input data. After repeatedly
simulating and optimising each stand, 100 optimised harvest schedules were obtained for
each stand.

The next step was to simulate each stand and realisation again, but this time without
generating errors in the input data values and using the harvest schedules determined in the
previous step. Discounted net present value npvil was then calculated for each stand i and
realisation l. If the harvest schedule of realisation l of stand i was equal to the optimal
schedule of the stand, thenNPVi and npvil were also equal. After this, the inoptimality loss,
or EV PI , and relative loss EV PI% could be calculated respectively as

EV PIil = NPVi − npvil (20)

EV PI%il = ((NPVi − npvil)/NPVi)× 100 (21)
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RESULTS

In Paper I, the growth prediction accuracies of different forest simulators were compared
against real observed growths. The compared simulators were two tree-level growth simula-
tors and one stand-level growth simulator, and the growth period was 20 years.

Table 1. The mean of relative prediction error in 5-year intervals (%) for attributesHgM ,DgM ,
G, and N , from simulators TREE, STAND and MOTTI (Paper I).

simulator year HgM DgM G N
TREE 5 -4.5 -2.3 -4.6 -6.1

10 -6.2 -2.3 -6.3 -9.6
15 -6.7 -1.6 -4.3 -8.7
20 -6.6 -0.6 -0.3 -6.1

STAND 5 -4.0 -0.2 0.4 -3.0
10 -4.9 -0.3 -3.8 -3.9
15 -5.2 0.0 -3.4 -0.3
20 -5.2 0.3 -0.2 -6.3

MOTTI 5 -3.2 0.1 -4.8 -9.0
10 -5.3 -0.8 -9.5 -12.6
15 -6.1 -0.1 -8.7 -12.2
20 -6.4 1.2 -5.3 -10.3

The mean of the prediction error at different years for four sample plot-level aggregate
attributes appears in Table 1. During the 20-year simulation, the values of all four attributes
were underestimated. The predictions of DgM were the most accurate as the means were
close to zero. Interestingly, for attributes HgM , G, and N , the underestimation grew ini-
tially, but decreased toward the end of the simulation period. The mean prediction errors
of the stand-level simulator were on average more accurate than those of the two tree-level
simulators.

The relative SDs of the prediction errors appears in Table 2. The variation in the prediction
errors grew steadily during the simulation period for all attributes.Predictions of the develop-
ment of HgM were more precise with the tree-level simulators, but the stand-level simulator
predicted the development of DgM and G with greater precision. During the first 15-year
period, the precision of predicted N was similar in both tree- and stand-level simulators, and
thereafter the variation in the stand-level simulator prediction increased notably.

The prediction errors were also modelled using quantile regression as the variance of the
errors was heterogenous. This was the case when the errors, for example, were modelled as
a function of simulation time. In Figure , the relative error in predicted G after a 20-year
simulation was, using quantile regression, modelled as a function of initial Age. The figure
clearly depicts the differences between the SIMO tree and stand simulators in the relationship
of predicted G and initial Age. In the SIMO tree simulator, the variance of the prediction
error was quite homogenous, whereas in the stand simulator, the variance was high for young
stands and notably lower for older stands. Also, the SIMO tree simulator had quite a strong
negative bias in the predicted G of younger stands but the SIMO stand simulator did not.

Uncertainty resulting from forest inventory errors was examined first by analysing the
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Table 2. The SD of relative prediction error in 5-year intervals (%) for attributes HgM , DgM ,
G, and N , from simulators TREE, STAND and MOTTI (Paper I).

simulator year HgM DgM G N
TREE 5 6.0 4.4 11.1 7.5

10 8.6 5.2 14.0 10.4
15 10.3 5.4 16.4 13.7
20 11.6 5.5 17.9 14.3

STAND 5 8.9 3.4 19.4 7.1
10 11.2 4.4 13.3 9.6
15 12.9 4.9 12.0 12.8
20 14.3 5.2 12.8 17.8

MOTTI 5 5.9 4.6 14.1 11.8
10 8.5 5.3 15.5 13.6
15 10.1 6.5 17.4 15.9
20 11.4 9.6 19.4 16.7

Figure 1. Quantile regression models of the relative error of predicted G for SIMO tree and
stand simulators. The independent variable was the initial Age at the beginning of the simula-
tion.

distributions of errors in predicted stand-level aggregate attribute values (Paper II). Table 3
shows the relative SDs of the errors of various stand-level aggregate attributes after a 30-year
simulation. The errors in the predictions stem from simultaneously generated random errors
in the values of various input attributes. In general, the single tree-level ALS estimation in-
ventory errors (ALS-TREE and ALS-STAND) caused less variation in the values of attributes
Age, G, V andN , but more in the values ofDgM andHgM . Also, in most cases using a tree-
level simulator resulted in lower variation in the stand-level aggregate attributes. Systematic
errors, or biases in the predicted values were insubstantial.
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Table 3. The SDs of the relative errors (%) in stand-level aggregate attributes due to forest
inventory errors after a 30-year growth simulation, using four different forest inventory method
and growth simulation combinations (Paper II).

Simulation setup Age G V N DgM HgM

FIELD-TREE 20.8 20.7 21.2 38.5 8.6 11.7
FIELD-STAND 16.2 26.3 43.3 53.4 17.7 16.9
ALS-TREE 15.6 19.7 17.9 19.2 12.4 15.9
ALS-STAND 7.6 26.4 29.1 19.3 14.8 12.9

Table 4. Absolute (euros) and relative (%) inoptimality losses due to forest inventory errors
using four alternative error simulation methods (Paper III).

MLLTr UN ULLTr MNTr
FIELD Abs. mean 375 450 353 352

SD 459 542 492 481
Rel. mean 5.6 6.1 5.4 5.0

SD 6.1 7.0 6.8 6.5
ALS1 Abs. mean 505 308 - -

SD 743 400 - -
Rel. mean 6.2 4.5 - -

SD 8.2 5.7 - -
ALS2 Abs. mean 515 309 505 510

SD 782 466 769 767
Rel. mean 6.4 4.6 6.2 6.4

SD 8.6 6.2 8.4 8.6

The effects of the uncertainty due to forest inventory errors were also analysed by calculat-
ing the inoptimality losses caused by inoptimal harvest scheduling (Paper III). The input data
errors were generated with four alternative error simulation methods. The mean of the ab-
solute inoptimality losses varied between 308 and 515 euros, and the relative losses between
4.5% and 6.4% of the stands NPV, depending on the error simulation method. Uncorrelated
normally distributed errors resulted in notably larger losses than correlated logit-logistic er-
rors with trends, when the generated errors were based on the errors observed in dataset
FIELD, but were the other way around when the errors were based on datasets ALS1 and
ALS2. Uncorrelated logit-logistic errors with trends and correlated normal errors with trends
caused similar inoptimality losses to correlated logit-logistic errors with trends, when sim-
ulating ALS2 errors. Uncorrelated logit-logistic and correlated normal FIELD errors, both
with trends, resulted in a bit smaller losses than correlated logit-logistic errors with trends.

A strong trend in the NPV losses was that the highest losses occurred in mature stands
close to their optimal rotation age. The average inoptimality losses in seedling stands and
in young stands were smaller than in the mature stands. This trend was especially strong
when the simulated errors were based on datasets ALS1 and ALS2. In seedling stands, the
average inoptimality losses due to input data errors ranged from 1.3% to 3.1%, whereas in
mature stands, the average losses were between 5.4% and 9.8%. These figures excluded
seedtree stands in which the relative inoptimality losses were notably higher. The absolute
inoptimality losses in the seedtree stands were also quite high, even though the NPV of a
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seedtree stand is normally small, as the only valuable timber is in the few seedtrees.

Table 5. Average relative biases and SDs (%) of discounted stand NPVs due to three indi-
vidual sources of uncertainty, calculated separately, paired and simultaneously, and for three
separate interest rates (Paper IV).

3% 4% 5%
UPRICE UFIELD UALS UGROWTH bias SD bias SD bias SD

o -6.1 8.2 -1.5 7.3 -0.9 6.9
o -6.8 28.8 -5.4 29.2 -5.7 32.6

o 1.7 26.5 4.8 26.4 7.3 28.7
o -9.5 33.2 -6.7 33.4 -5.8 33.2

o o -9.1 29.0 -3.8 32.1 -0.8 33.8
o o -1.0 27.4 7.1 28.6 10.2 30.9
o o -5.7 34.9 -1.5 35.3 -2.9 34.9

o o -12.5 46.9 -7.9 48.2 -6.4 50.0
o o -2.1 46.5 4.3 46.6 7.0 47.1

o o o -9.2 47.4 -3.6 48.3 -1.8 51.3
o o o 0.1 46.5 7.5 46.8 10.0 47.6

To understand the practical implications of different sources of uncertainty, the effects
of economic uncertainty, growth prediction errors, and forest inventory errors on stand-level
NPV predictions were examined (Paper IV). Average relative biases (%) SDs in NPV pre-
dictions were calculated relative to reference NPV simulations, i.e. similar simulations, but
without any random variation or uncertainty. The averages of these biases and SDs due to
different source of uncertainty and interest rate combinations appear in Table 5. From the
individual sources of uncertainty, the economic uncertainty UPRICE caused markedly less
variation in the NPV predictions than did the growth prediction errors UGROWTH or forest
inventory errors UFIELD and UALS . The variation caused by UPRICE decreased from 8.3%
to 6.9% as the interest rate grew from 3% to 5%. The relationship between the variation
caused by forest inventory uncertainty, UFIELD and UALS , on the contrary, increased with
the interest rate. Variation in NPV due to UGROWTH was essentially unaffected by the in-
terest rate, but the average NPV values naturally were markedly affected by the interest rate.
Increasing interest rate led to lower NPV values. As expected, the greatest variation in NPV
predictions, from 46.5% to 51.3%, was observed when all sources of uncertainty were active
simultaneously. In addition, when all sources of uncertainty were considered simultaneously,
the variation increased along with the interest rate. The average relative biases were mainly
negative, except when UALS affected the NPVs, in which case the bias was positive. The
biases ranged from -12.5% to 10.2%.

DISCUSSION AND CONCLUSIONS

Forest simulators are often complex systems of models used to predict future developments
in forest ecosystems in which natural variation can be prominent. The time periods for which
the forest growth and yield are predicted can be long, and the input data for the computations
are often inaccurate. In addition, a number of other future developments that cannot easily
be foreseen may diminish the reliability of forest simulator outputs. These sources of un-
certainty should be understood and accounted for when forest simulators, or FPSs, serve as
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decision support tools. The main purpose of this thesis was to examine the various sources
of uncertainty in forest simulators and FPSs and to increase our understanding of the impli-
cations of uncertainty.

First, the precision of growth prediction and the accuracy of tree-level and stand-level
forest simulators were compared (Paper I). Both simulators underestimated the four sample
plot-level aggregate attributes of interest: DgM , HgM , BA and N . This relative negative
bias seemed not to increase during the simulation time period, but rather to decrease. A
relative bias can, however, decrease even though the absolute does not because the absolute
reference values increase as the forest grows. These results suggest that the rate of growth
in dense forests is actually higher than the growth projections which might affect the for-
est management guidelines that are based on growth models, as was noted by Välimäki &
Kangas (2009). The accuracy of the growth predictions decreased, or the variation of the
predictions increased as a function of the simulation time period, which is in line with the
results of Kangas (1999). The biases and variances of the predicted values were only slightly
higher than the RMSEs reported by Haara & Leskinen (2009), even though the stands were
denser than typical commercially managed forests in Finland. In general, both tree-level and
stand-level forest simulators can provide fairly reliable projections about forest development.
According to Paper I, the stand-level simulator is a bit more robust in dense forests. On the
other hand, the tree-level simulator provides more detailed description of forest properties,
which is important in, for example, evaluating the effects of management activities, such as
thinnings.

The variances of the growth prediction errors were heterogenous and consequently, quan-
tile regression was used for analysing the errors. Quantile regression better described the
dependencies between the prediction errors and the various independent variables, such as
initial stand Age. The variance of the prediction errors of G was very homogenous in stands
of different ages when the tree simulator was used. When the stand simulator was used, the
variance was notable in young stands, but not in older stands. Stand Age was an independent
variable in stand-level growth models, but not in tree-level models, which was the main rea-
son for this difference. Another option instead of quantile regression would have been to use
variance functions.

Next, two types of simulated forest inventory errors were propagated through the tree-
level and stand-level forest simulators using the MC method (Paper II). The responses to the
input data errors were studied by analysing the variances of the errors in the predicted val-
ues of the stand-level aggregate attribute. The variances of the absolute errors decreased, but
the variances of the relative errors increased during the simulation time period. The greatest
variances were observed in the errors of N , G and V , and the smallest in DgM and HgM .
Simulated tree-level ALS estimation errors led to notably higher accuracy in the predicted
values ofN . In general, the tree-level simulator was more accurate than the stand-level simu-
lator, and especially when the errors were simulated stand-level field inventory errors. Many
of the differences between the two simulators resulted from the various interactions between
the sub-models of the growth simulators. Errors in stand age, for example, caused substantial
error in the stand-level simulator growth projections, but almost none in the tree-level simu-
lator. The reason for this difference is that the tree-level growth models are age-independent,
whereas the stand-level growth models are not. In general, interactions in the tree-level simu-
lator are much more difficult to analyse as the tree-level simulator is much more complex than
the stand-level simulator and contains many more interactions and different feedback-loops.

One of the objectives in this thesis was to examine the properties of forest inventory
errors in detail. The errors observed in stand-level field inventory and area-level ALS estima-



30

tion were characterised using three error properties: error trend, error distribution shape and
correlations between the errors. In most previous studies, the errors have been assumed to
be normally distributed and uncorrelated (Eid 2000, Holopainen & Talvitie 2006). Accord-
ing to Paper III, this assumption may be invalid. The error distributions in both stand-level
field inventory and area-level ALS estimation were not gaussian, and the correlations be-
tween the errors of various attributes were in many cases notable. Moreover, the error trends
were strong, especially in datasets ALS1 and ALS2. In these two datasets, the values of the
various attributes were underestimated in stands with large trees and overestimated in stands
with smaller trees. Similar averaging effect could be observed also in dataset FIELD, but it
was not as distinct. Paper III described an error simulation method for generating correlated
non-normal random errors, which can also serve in further simulation studies for generating
more realistic forest inventory errors.

In addition to studying the errors, the effects of the different error properties when simu-
lating inoptimality losses were also examined. The average inoptimality losses relative to
stand-level NPV ranged from 4.5% to 6.4%, depending on the error simulation method.
Holopainen & Talvitie (2006) reported inoptimality losses ranging from 4.2% to 11.4%, de-
pending on the simulated forest inventory method. The inoptimality losses reported by Eid
(2000) were considerably smaller than in this study (on average 0.92%) but the distributions
of random errors were also narrower. Islam et al. (2009) reported estate-level inoptimality
losses ranging from 0.3% to 3.6% due to inventory errors in G. A notable trend in the in-
optimality losses, which Eid (2000) also observed, was that the losses were larger in mature
stands close to their optimal rotation ages. The error trend had by far the strongest impact
on the inoptimality losses. The shape of the error distribution and the correlation between
the various attributes only slightly affect the inoptimality losses. Based on this observation,
using non-correlated gaussian random values as simulated inventory errors could be enough
in practice, if the error trends are taken into account. Still, it is theoretically more justifiable
to take into account the distribution shape and correlation when simulating errors. According
to these results, the error trend significantly affects the simulated inoptimality losses, but has
largely been overlooked in previous studies.

The differences in the inoptimality losses reported in this thesis and in previous studies
stem from many factors. The input data are one factor affecting the outcome, as are the errors
generated into the input data. Eid (2000), for example, used fixed error levels, and in Paper
III, error properties were derived from real forest inventory results. In addition, the forest
growth model, or the simulation implementation, affects the outcome, even if the models are
intended for use in the same forests, as is the case with tree-level and stand-level growth
models in Finland. The simulation time step affects the resolution for timing the harvests
as well as other forestry operations. Besides the simulator, the optimisation method and
optimisation task definition also affects such simulation studies. Moreover, the length of the
planning period, or in other words, the number of decisions based on the current data, does
affect the inoptimality losses.

The joint effects of three considerable sources of uncertainty were studied by simulating
stand-level NPV distributions using the MC method (Paper IV). To date, no other studies have
aimed to take into account these three sources of uncertainty in a complex forest simulation
system. The uncertainty in the NPV estimates was quantified as the average bias and SD of
NPV, relative to reference NPV estimated without any uncertainty. The simulated NPVs were
compared to NPVs predicted with the NPV models of Pukkala (2005) and were found out to
be very close, if not exactly the same. The total SD, when all three sources of uncertainty
were taken into account simultaneously, was between 46.5% and 51.3%, depending on the



31

simulated forest inventory method and interest rate. When all three sources of uncertainty
were considered simultaneously, the SD of the NPV was only slightly higher than the SD
resulting from input data errors or growth model errors separately. The NPV distributions
affected by UALS were positively biased, which was caused by the averaging effect in the
inventory method, observed also in Paper III (i.e. large values are underestimated and small
ones overestimated). In this case, the simulated true forest attribute values were larger in
forests with big trees than the estimated values. The other sources of uncertainty led to
negative biases. The observations in Paper IV imply that the cumulation of the variation is
not straightforward, as the sum of variances due to individual sources of uncertainty does not
equal the variance of the same source of uncertainty combination. Moreover, these results
suggest that improving the accuracy of forest inventory data can improve the accuracy of
forest NPV predictions only to a certain extent. In other words, uncertainty in forest value
predictions cannot be totally avoided with more precise and accurate data. Previous studies on
the VOI of forest inventory data, many of them applying CPL analysis, have not accounted for
uncertainty caused by growth model errors and natural variation in forest growth. As different
sources of uncertainty cumulate in a non-linear manner, the decrease of uncertainty due to
the use of more accurate data is probably not linear. The results of Papers I and IV suggest
that the uncertainty attributed to growth prediction errors is a major source of uncertainty in
forest simulators.

The results of this thesis illuminated some of the various sources of uncertainty in forest
simulators and FPSs. In addition, the magnitude and the effects of various sources of un-
certainty were examined and reported, and a new methodology was applied. Although the
individual Papers of this thesis included a number of advances in studying sources of uncer-
tainty, some shortcuts were taken to simplify the simulations and the analysis. The dataset
in Paper I was rather small and included only stands that were distinctly denser than typical
commercially managed forests. Because of this, some of the results, such as the average
growth prediction accuracies, cannot be generalised to all finnish forests.

The generation of forest inventory errors in Paper II failed to take into account error
correlations, trends or distribution shapes. Even though the omission errors, i.e. undetected
trees, in single tree-level ALS estimation were modeled, the commission errors, i.e. the
possibility of detecting non-existing trees, were not considered as there was no decent model
available. In Paper III, error correlations, trends and distribution shapes were considered,
and the error trend in particular was found to have a strong effect. If the study presented
in Paper III would have been done before Paper II, the simulation of forest inventory errors
would probably have been similar to that in Paper III. The forest planning simulation in
Paper III was simplified, so the results may not be applicable to practical forestry as such.
However, the aim of Paper III was to gain insight about error properties and to outline an
error simulation method that can be used to increase realism in simulation studies. Duvemo
(2009) has proposed more realistic methods for simulating the whole forest planning process.

The simulation of various sources of uncertainty in Paper IV included the uncertainty
due to growth prediction, forest inventory errors and stochastic timber prices. Uncertainty
resulting from natural hazards and other risks were omitted from the analysis. In Papers
I, III and IV, the reference measurements that were considered to represent the true values
inevitably contained some amount of errors, but were assumed to be so close to the true values
that the errors could be disregarded. Errors in reference measurements and their effects have
been discussed throughly in Välimäki & Kangas (2009).

Uncertainty originating from various sources is an inseparable part of forest simulators
and FPSs. Some parts of uncertainty can be decreased; for example, the uncertainty due to
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errors in the input data can be reduced by acquiring more precise and accurate data. This,
however, is often an unfeasible option as the costs of data acquisition increase rapidly as the
quality of data improves. Some parts of uncertainty, such as natural variation in forest growth
and natural hazards, cannot be eliminated so easily. However, uncertainty can be quantified
and taken into account when using forest simulators and FPSs for decision support. For
example, the NPV distributions in Paper IV can be used to estimate confidence intervals for
stand-level NPV estimates. A forest NPV estimate with confidence intervals is much more
valuable information than an NPV point estimate when forest investments are in question.

In Papers I and II, uncertainty in the predicted values of some of the interesting stand-level
aggregate attributes was reported with figures such as bias, SD, variance and RMSE. These
figures may be informative for researchers, but not so much for practical users. The same
applies to the SD of the NPV distributions of Paper IV. The inoptimality losses reported in
Paper III are simpler to interpretate, as they are presented in monetary units, and thus provide
a more practical measure of uncertainty. There is a pitfall in this quantification also. The
simulated forest planning processes, the simulated sources of uncertainty and the models used
in this and in various related studies are in the end simple abstractions of real world processes.
Consequently, reported inoptimality losses do not necessarily represent the actual losses and
should be used with caution. For some uses, however, such as comparing alternative inventory
methods, this type of approach may be suitable.

A large part of growth prediction errors result from natural variation in forest growth,
which can be difficult to decrease by improving the growth models (Mowrer 2000). Natural
variation in forest growth is a sum of many factors. Some of this variation is due to stand- or
site-specific factors, which could be taken into account to reduce uncertainty. Stand-specific
past growth information, were it available, could perhaps be used to calibrate growth pre-
dictions. In theory, such information could be available in Finland, as large parts of finnish
forests have been inventoried repeatedly. In practice, however, such information may not be
easily available (Rasinmäki et al. 2009). The past growth could be estimated also by cor-
ing sample trees and measuring past growth from annual rings. This, however, can be quite
expensive as it requires a lot of manual work (Holm 1980).

According to the results of Papers I and II, there are differences in how different simulators
response to uncertainty, i.e. how forest inventory errors propagate in the simulator, or what
is the accuracy or growth projections in different types of forests. These type of differences
could be taken into account, for example, by using certain growth models or simulators only
for certain types of simulations.

A number of studies have dealt with various sources of uncertainty in forest planning and
management. Yet many questions remain to be answered. Paper IV described a step forward
in taking uncertainty in forest growth and yield simulations into account comprehensively.
However, the simulation task was only a simplified harvest scheduling, and some sources of
uncertainty were still not taken into consideration. Most of the CPL analysis to date have
considered only uncertainty resulting from forest inventory errors, so the next obvious step
would be to incorporate more sources of uncertainty, namely random variation in growth
and economic risk, into these analysis. In addition, to make the results more applicable into
practice, the forest planning process should be modeled in greater detail, such as suggested
in Duvemo (2009). Taking into account other sources of uncertainty besides inventory er-
rors in the CPL analysis could provide information about how much the inoptimality losses
could really be reduced with more accurate and precise data. If only the inventory errors are
considered, no errors in the data means no inoptimality losses, which is rather unrealistic.
One example of a novel CPL application in forest planning is the calibration of forest growth
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models using data on past growth. As there are methods for increasing growth prediction
accuracy using data on past growth, CPL approach could be used to estimate the profitability
of acquiring such data and calibrating the growth predictions.

As a conclusion, it can be said that a forest planning system as a whole is influenced
by multiple sources of uncertainty. This thesis dealt with some of the obvious sources of
uncertainty, but many were left outside the scope of this study. As forest planning systems
are used for decision support, this uncertainty should be accounted for in the systems and in
decision making process in order to make good decisions, or at least to avoid bad ones.
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