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ABSTRACT 

The aim of this study was to evaluate and test methods which could improve local estimates 
of a general model fitted to a large area. In the first three studies, the intention was to divide 
the study area into sub-areas that were as homogeneous as possible according to the 
residuals of the general model, and in the fourth study, the localization was based on the 
local neighborhood. 
 
According to spatial autocorrelation (SA), points closer together in space are more likely to 
be similar than those that are farther apart. Local indicators of SA (LISAs) test the 
similarity of data clusters. A LISA was calculated for every observation in the dataset, and 
together with the spatial position and residual of the global model, the data were segmented 
using two different methods: classification and regression trees (CART) and the 
multiresolution segmentation algorithm (MS) of the eCognition software. The general 
model was then re-fitted (localized) to the formed sub-areas. 
 
In kriging, the SA is modeled with a variogram, and the spatial correlation is a function of 
the distance (and direction) between the observation and the point of calculation. A general 
trend is corrected with the residual information of the neighborhood, whose size is 
controlled by the number of the nearest neighbors. Nearness is measured as Euclidian 
distance. 
 
With all methods, the root mean square errors (RMSEs) were lower, but with the methods 
that segmented the study area, the deviance in single localized RMSEs was wide. 
Therefore, an element capable of controlling the division or localization should be included 
in the segmentation-localization process. Kriging, on the other hand, provided stable 
estimates when the number of neighbors was sufficient (over 30), thus offering the best 
potential for further studies. Even CART could be combined with kriging or non-parametric 
methods, such as most similar neighbors (MSN). 
 
Keywords: CART (classification and regression tree), Getis statistics, kriging, LISA (local 
indicator of spatial association), recursive partitioning, regression modeling, segmentation, 
spatial autocorrelation 
 



 4

ACKNOWLEDGEMENTS 

 
You now hold in your hand the result of many years of work, and the time has come to 
thank all who have supported me and made this work possible. When I took up this task in 
2003, I had no clue about spatial statistics, so I spent more or less the first few years 
studying the subject. Professor Annika Kangas selected me for this job and has been my 
supervisor from day 1 as well as a co-writer of all four of the articles enclosed with this 
doctoral thesis. I thank her for selecting me for the job, for her patience and understanding 
over the years and for her help in organizing the funding for the work. 

In recent years in particular, I have enjoyed the support of my supervising group. 
University lecturer Markus Holopainen, D.Sc., who works at the Department of Forest 
Sciences at the University of Helsinki, has encouraged me to look upon new areas of 
forestry with an open mind. Senior researcher Juha Heikkinen, Ph.D., of the Finnish Forest 
Research Institute in Vantaa has helped me to krige through the fourth article, and Senior 
assistant Lauri Mehtätalo, D.Sc., was a reliable referee of my texts even before becoming 
my supervisor. 

The role of pre-examiners is vital, as they give you permission to proceed in the process 
towards publicly defending the doctoral thesis. I thank Professor Valerie LeMay and Rafael 
Calama, Ph.D., for their kind words in evaluating and suggesting improvements to the 
manuscript of this extended summary. 

I have studied at the Department of Forest Sciences (formerly the Department of Forest 
Resource Management) at the University of Helsinki since 1998, and I have known the 
people at the department for years. I offer you all my collective thanks, and especially my 
first teachers, emeritus professors Jouko Laasasenaho and Simo Poso. I feel the deepest 
sense of solidarity with all those who have struggled or continue to struggle with their own 
doctoral thesis at the department, including Tuula Kantola, Mervi Talvitie, Mikko Havimo 
and Mikko Vastaranta. Thank you for your peer support! (Our small but vital knitting group 
also deserves honorable mention here!) 

This thesis began as a project of the Academy of Finland: “200775 Improving data use 
efficiency” (2003-2008). Then I became a member of the Graduate School in Forest 
Sciences (2008-2010). The Niemi Foundation later offered me additional financial support. 
Travel grants from the Finnish Society of Forest Science, the Metsämiesten Säätiö 
Foundation and the Graduate School have enabled me to attend several international 
scientific conferences. 

My final thanks go to my family. In many ways, my family has played a significant role 
in this process. They were perhaps more confident than I that I would finish this thesis one 
day. And I cannot forget to mention my dearest ones, Esa, Sanni and Niilo; you surely force 
me to go offline and make my life interesting! 

 
 
Klaukkala, May 2011 
 
Minna Räty 



5 
 

LIST OF ORIGINAL ARTICLES 

 
This dissertation consists of a summary and the four following articles, which are referred 
to by roman numerals I-IV. Articles I-IV are reprints of previously published articles, 
reprinted here with the permission of the publisher. 
 
 

I Räty, M. and Kangas, A. 2007. Localizing general models based on local indices of 
spatial association. European Journal of Forest Research 2/2007: 279-289.  
doi: 10.1007/s10342-006-0147-1 

 
II Räty, M. and Kangas, A. 2008. Localizing global models with classification and 

regression trees (CART). Scandinavian Journal of Forest Research 5/ 23: 419-430. 
doi: 10.1080/02827580802378826 

 
III Räty, M. and Kangas, A. 2010. Segmentation of Model Localization Sub-areas by 

Getis Statistics. Silva Fennica 44(2): 303-317. 
http://www.metla.fi/silvafennica/full/sf44/sf442303.pdf 

 
IV Räty, M., Heikkinen, J. and Kangas, A. 2011. Kriging with External Drift in Model 

Localization. Mathematical and Computational Forestry & Natural-Resource Sciences 
(MCFNS) 3: 1-14. http://mcfns.com/index.php/Journal/article/view/MCFNS.3-1 

 
 
Ms Minna Räty was the corresponding author in all four (I-IV) articles. Räty participated in 
all stages of all articles and wrote the first manuscript versions.



6 

CONTENTS 

 

ABSTRACT ......................................................................................................................... 3 

ACKNOWLEDGEMENTS ................................................................................................ 4 
LIST OF ORIGINAL ARTICLES ..................................................................................... 5 
CONTENTS ......................................................................................................................... 6 
INTRODUCTION ............................................................................................................... 7 

Forest modeling ............................................................................................................... 7 
Spatial autocorrelation and spatial indicators .............................................................. 8 

Spatial association, spatial indicators and variograms ............................................... 8 
Local indicators of spatial association ........................................................................ 8 

Objectives of the thesis ................................................................................................. 10 
MATERIALS ..................................................................................................................... 10 

Field data ....................................................................................................................... 10 
Regression model for the form height of a single tree ................................................ 11 

METHODS ......................................................................................................................... 12 
Localization – process description ............................................................................... 12 
Raw data (Phase I) ........................................................................................................ 13 
Calculation of spatial association (Phase II) ............................................................... 13 

LISA – weighting and selection .................................................................................. 13 
Variograms ................................................................................................................. 14 

Segmentation or division of large area/population (Phase III) ................................. 16 
Classification and regression trees (CART) ............................................................... 16 
Multiresolution segmentation (MS) ............................................................................ 16 
Kriging with the external drift (KED) in the local neighborhood .............................. 17 

Measures for evaluation (Phase IV) ............................................................................ 18 
Classification of the sub-areas ..................................................................................... 19 

RESULTS ........................................................................................................................... 20 
Selection of the LISA .................................................................................................... 20 
Comparison of segmentations: CART, MS and KED with the division of the study 
area into the traditional forestry centers .................................................................... 20 

Single sub-areas ......................................................................................................... 20 
Overall results ............................................................................................................ 21 

The classification of sub-areas ..................................................................................... 21 
DISCUSSION ..................................................................................................................... 25 
CONCLUSIONS ................................................................................................................ 29 
REFERENCES .................................................................................................................. 29 
 



7 

INTRODUCTION 

Forest modeling 

The forest inventory of a large area, such as the National Forest Inventory of Finland (NFI, 
NFI...2010) and similar inventories in other countries, are based on a sample of the growing 
stock (Shiver and Borders 1996, Johnson 2000). In Finland, the tenth inventory round was 
already completed in 2008 (NFI10... 2010). The measured information includes different 
types of variables describing, for example, the locations of sample plots, individual trees, 
whole stands, and growing sites, as well as information about the health of the forest. The 
total values for the entire population under investigation are estimated based on the sample 
measured. The results of the inventory serve various purposes, including governmental 
legislation, forest owner support, and wood supply planning for the forest industry. In 
Finland, the results are published in MetINFO (MetINFO... 2010), Metsätieteen 
aikakauskirja (http://www.metla.fi/aikakauskirja/, available in Finnish only) and the Finnish 
Statistical Yearbook of Forestry (Statistical Yearbook... 2010). 

Forest inventory data usually include two different kinds of measured trees: tally trees, 
for which only some basic measurements such as diameter at breast height (DBH) and tree 
species have been recorded, and sample trees, which are measured more thoroughly. The 
data may include, for example, height and upper stem diameters in addition to basic 
measurements. Any missing, unmeasured variables for the tally trees are estimated with the 
help of the sample trees. This generalization has many alternatives, however. The easiest 
and therefore most attractive alternative is to use a study area-wide, “global” or “general” 
regression model, but the problem with such a model is that although it may be unbiased in 
general, predictions for local areas may in fact be biased. Removing this spatial (local) bias 
would render estimates of a global model more accurate. The process by which local bias is 
removed is known as localization. 

Several alternatives to implementing localization are also available, provided that 
sample trees are available in the localization. First, a global model fitted to the whole 
sample data in the inventory could be adjusted in different ways: a trend can be added 
which removes the differences between different regions (e.g. Korhonen 1992, 1993), 
correction coefficients/equations could be attached to the global model, or totally different 
models could be used in different regions. Second, the spatial correlation between 
neighboring observations, which is distance dependent, could be used in the localization. 
This method is called kriging (e.g. Webster and Oliver 2007). Mixed-model methods could 
be considered a special case in which the correlation is constant for a stand and zero 
elsewhere (Lappi and Malinen 1994, Kangas and Korhonen 1995, Mehtätalo 2005). Third, 
the k-nearest neighbors (k-nn) could also be employed in the localization (Korhonen and 
Kangas 1997, Sironen et al. 2008). In k-nn, the similarity is measured as a distance in 
feature space, and the values of the most similar neighbors serve to predict the missing 
value (Moeur and Stage 1995). 

The aim of this study was to develop and evaluate methods for localizing a large-area 
model. In this thesis, local estimates were approached according to the first and second 
alternatives indicated above. In all four studies, the global model automatically included the 
trend function, and some experiments were conducted using both correction coefficient and 
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regional re-fitting. This thesis could be divided into two parts. In the first part, different 
methods were tested in order to determine the proper segmentation for the whole study 
area, which would distinguish local biased areas and, with a re-fitting (localizing) of the 
global model, reduce residual errors in local estimates. We used information about the 
similarities of the neighboring observations to divide the study area. In the second part, the 
localization was based purely on the spatial correlation and neighbors, thus requiring no 
segmentation of the area. 
 
 
Spatial autocorrelation and spatial indicators 

Spatial association, spatial indicators and variograms 

Tobler (1970) introduced “the first law of geography: everything is related to everything 
else, but near things are more related than distant things”, which was the first definition of 
spatial autocorrelation, also known as spatial association (SA). Simply put, points closer 
together in space are more likely to have similar characteristics than those that are farther 
apart. This association has served estimation and interpolation purposes in spatial 
applications. Well-known methods which rely on this property include, for example, 
inverse distance weighting (IDW) (Shepard 1968), trend surfaces (Miller 1956), splines 
(Schoenberg 1946a, 1946b), and kriging (Matheron 1963), just to name a few. 

The SA statistics measure the degree of dependency among observations in a 
geographic space. These measures include, among others, spatial indicators which can be 
categorized into global and local according to the extent of their use. If the indicator is 
applied to the entire dataset at once, it is considered global, and if it is applied only for a 
fraction of the data at a time, it is considered local. Most of the indicators feature both 
global and local versions (Anselin 1995, Boots 2002). Global indicators of spatial 
association signal whether clusters of similar values exist in the area, but cannot identify the 
number or location of clusters within the study area. Their use in practice is therefore 
limited (e.g. Cliff and Ord 1981). 

SA between observations can also be defined as a continuous function. In kriging, SA is 
modeled with a variogram. In a variogram, the correlation depends on the Euclidian 
distance and direction between the neighboring observations and calculation point (Cressie 
1991). The empirical sample variogram is estimated based on the empirical data, or more 
precisely, the residuals of the global model, and the combination of both the global model 
as a general trend and the sample variogram as a SA forms the kriging. Kriging enables one 
to predict values for points lacking measurement of the dependent variable within the study 
area. 

 
Local indicators of spatial association 

Local indicators of spatial association (LISA) have two common requirements: 1) every 
LISA should indicate the clusterization around the pivot, which is the centre point of the 
calculation, and 2) the sum of all LISAs calculated over the study area should be 
proportional to the corresponding global indicator (Anselin 1995). In a study area, every 
observation in turn serves as a pivot (i.e. a LISA is calculated for every observation in the 
dataset, and the sum of all these LISAs must be proportional to the global indicator, which 
has been calculated with exactly the same parameters (e.g. neighborhood and weighting)). 
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A LISA can be expressed as a weighted sum of observations in a defined neighborhood 
(I Eq. 3). The weight can be either binary, proportional to the Euclidian distance between 
the pivot and the neighboring observation, or it can be based on some property of the 
observation (Reed and Burkhard 1985). The neighborhood can be limited by the number or 
the distance or both. The definition of the neighborhood depends on the dataset. For an 
irregular point dataset point, the distance limitation avoids the large neighborhoods in the 
gaps and edges of the study area, but ensure that all points have neighbors within the 
selected range is important. 

Four well-known local indicators include Moran’s Ii (I Eq. 5, Anselin 1995), Geary’s ci 
(I Eq. 6, Anselin 1995), Gi and Gi* (I Eq. 7-8, Getis and Ord 1992) (Eq. 1-4): 
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where i is a pivot, j is an observation, x is the variable of interest, x  is the mean of x in the 
study data, s is the standard deviation of x in the whole dataset (no weighting), and wij is the 
weight given to the j:th observation. 

The interpretation of Moran’s Ii follows Pearson’s correlation coefficient: positive 
means clusterization of similar values, negative means a cluster of opposite-signed values 
around the pivot, and zero means there is no cluster and the neighborhood is heterogenic or 
the mean of a cluster is near zero. For Geary’s ci, the interpretation follows 
variance/variogram: all indicator values below one indicate a cluster of similar values, and 
those above one indicate a cluster of dissimilar values. For Gi and Gi*, which also are 
known as Getis statistics, the interpretation is simple: all values differing in either direction 
from the mean of the whole dataset indicate a cluster. Depending on the sign of the 
indicator value, there is a cluster of either positive or negative observations. The only 
difference in the indicators is that in Gi*, the pivot i belongs to the neighborhood also. 

Since the interpretations of LISAs differ from each other, standardizing them helps to 
interpret results. In standardization, indicators are introduced on the same scale, which is 
the Z distribution with a mean of zero and a standard deviation of one, N(0,1), by 
subtracting from the indicator the mean of all indicators and dividing the subtraction by the 
standard deviation of the indicators in the dataset (I Eq. 9) (Eq. 5): 
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where i is a LISA, E[] the expected value, and Var[] the variance. 
 
 
Objectives of the thesis 

The main goal is to obtain more accurate local estimates for the form height of a tree by 
localizing the global model of the form height of a tree fitted over the entire study area. The 
form height is measured as the ratio of the volume of a tree to its diameter at breast height 
(DBH) (i.e. the height of a pole whose diameter equals the DBH). Though the global model 
may be generally unbiased and trendless on a global level, local biases could be found and 
removed. 

The first task was to determine whether LISA could distinguish areas of low/high 
residuals from the study area (I). If so, the LISA calculated from the residuals of the global 
model could serve as an indicator in segmentation. The latter three papers examine the 
following three methods in order to obtain local estimates for the form height model: 
classification and regression trees (CART) (II), multiresolution segmentation (MS) in 
eCognition Professional 4.0 software (III), and kriging with external drift (KED) (IV). 

The target in the first three articles was to divide the study area into sub-areas that were 
as homogeneous as possible in terms of the residual of the form height of the tree. The 
localization is a two-phase process in which the localization of sub-areas is first delineated, 
and then the model is re-fitted to the sub-areas. In the last method (KED), the localization is 
not limited to a certain sub-area and no indicators are used. Instead, the neighborhood of the 
localization point serves to adjust the estimate. The global model is localized using the 
given inventory data without external data sources. Success was measured as a change in 
the residual error. The shared target of all papers was to improve accuracy of the local 
estimates. 

Finally, the formed sub-areas in II and III were grouped according to the classification 
introduced in III (Table 3). In this extended summary, these results were further elaborated 
in order to determine whether the value of a LISA in a sub-areas could be used directly to 
divide the sub-areas into those requiring localization and those requiring no localization, or 
even those where a level-correction equal to the local bias is sufficient. 

MATERIALS 

Field data 

The data came from the ninth National Forest Inventory of Finland (NFI9) (no repeated 
measures data) covering the southern part of Finland. The data included all sample trees 
measured on both private and state forest land and in managed and unmanaged forests from 
11 administrative forestry centers in 12 regions (Fig. 1). The study area belonged to the 
boreal zone, and the forests were mixed, with Scots pine (Pinus sylvestris L.), Norway 
spruce (Picea abies L.) and Silver Birch (Betula pendula L.) as the dominant species. 
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Figure 1. The study area and the forestry centers. 
 
 

The NFI9 used systematic cluster sampling, where plots were arranged in clusters and 
trees were measured from these angle gauge plots (also known as variable radius or unequal 
probability sample plots) using a basal area factor (BAF) of 2 m2/ha. Trees belonging to the 
plot were selected with an angle gauge, and every seventh tallied tree was measured as a 
sample tree. Of all the trees measured, we selected the healthy Scots pines whose heights 
and diameters were measured at breast height (DBH) (i.e. sample trees). In the inventory, 
every seventh tree selected was a sample tree. With these limitations, the dataset consisted 
of 19 175 trees (I Table 1). The DBH of an average tree was 20.6 cm, the volume 331 l, the 
height 15 m and the form height 7 m. 

The sampling design in the inventory varied according to the study area (NFI9… 2010). 
The sample plots were arranged into clusters, and the shape of the clusters, the number of 
plots in the clusters, the plot-to-plot distances, and the cluster-to-cluster distances differed 
depending on the forestry centre (IV Table 2). Some descriptions about the real distances 
between trees can be found in Table 3 (IV), which lists by forestry center the distances to 
the 40, 60 and 100 closest neighbors. The sample trees selected in the dataset were from   
14 782 plots in 3 536 clusters. 

 
 

Regression model for the form height of a single tree 

The variable, form height and model selected for the study were used in two previous 
studies (Korhonen 1993, Kangas and Korhonen 1995) (I Eq. 12). The shape of a tree 
significantly impacts the estimates predicted with the model, and any local variation in it 
could lead to biases in volume and other variables whose estimation is based on the form 
height (Eq. 6): 

2
0 1 2 32

2 2
1 2 3 4 5 6

lnv d d BA
d

XC XC XC YC YC YC RDIST
  (6) 
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where the  and  are regression coefficients; v is the volume; DBH is the diameter of the 
tree at breast height; BA is the total basal area; and XC, YC, and RDIST are variables related 
to the spatial position calculated as (Eq. 7-9): 
 

60
1000
XXC         (7) 

 
6620

1000
YYC        (8) 

 
1 , 20

0.05
0, 20

RDIST DIST
DIST

RDIST DIST
     (9) 

where X and Y are the geographical co-ordinates. X is the distance from the Greenwich 
meridian, and Y is the distance from the Equator in kilometers. DIST is the Euclidian 
distance from the coastline. All variables are expressed in kilometers. To be precise, the 
dependent variable was proportional only to the form height, since the volume (v) and the 
diameter of the tree at breast height (DBH) were in different units, and the dependent 
variable rather than the square of DBH should have been divided by the basal area of the 
tree. Despite these differences, the variable is called form height (fh) later in this doctoral 
thesis. 

The form height regression model can be divided into two parts. The first part consisted 
of the tree variables (DBH and the square of DBH) and stand variable (total basal area of 
the plot including all tree species, BA). The latter part was the spatial trend, which included 
spatial co-ordinates XC and YC, and the distance from the coastline, RDIST, which was 
added to the model to remove the global trend in the residuals of the first part (I Fig. 3). The 
RDIST variable models the effect of the sea (e.g. wind load) on the tree stems in the coastal 
regions of Finland. The coastal regions are the result of land rising from the sea, so the 
ecological conditions on growing sites are exceptional (Karlsson 1997, 2000). 

METHODS 

Localization – process description 

Localization can be illustrated as a four phase process: fitting the original model, 
calculating the spatial association, segmentation/kriging, and localization or 
results/evaluation (Fig. 2). The starting point is fitting the global model (i.e. the regression 
model) (Eq. 6) to the entire inventory data. The residuals of the global model are transferred 
to the next phase, where they are used either in calculating the local index (LISA) or in 
kriging to estimate an empirical sample variogram. In the third phase, the study area is 
segmented or kriged with the help of the variables calculated in the second phase. The 
resulting segments are called sub-areas. In the final phase, the actual results are obtained 
either after re-fitting the regression model to the segments or by cross-validating the kriging 
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and then comparing the residuals and prediction errors to the initial situation (phase I). The 
re-fitting process is also known as localization. 

All the above-mentioned methods are introduced in following sub-chapters. Although 
the introduction already briefly defined LISAs (Eq. 1-4), they are reviewed here, and 
selections related to them, introduced. In addition to the LISAs, variograms modeling the 
spatial correlation in the data are also reviewed, and the methods in the third phase, 
explained. Finally, the measures used to evaluate the segmentations and to compare the 
methods are introduced, and the last sub-chapter of this section presents the methods used 
to group the segments. 

 
Raw data (Phase I) 

At the starting point are the fitted global model (Eq. 6) and the residuals for every 
observation in the dataset (Fig. 2). The studies then follow two different study lines: one 
where the LISAs are utilized in the localization, and another where kriging is applied. 

 
 

Calculation of spatial association (Phase II) 

LISA – weighting and selection 

The variable (x in Eq. 1-4) for which the LISAs are calculated is the residual of the global 
regression model,  (Eq. 6). The residual of a regression model is the difference between 
the true measured value, fh, and the model estimated value, ˆfh  (I Eq. 13): 
 
 

 
Figure 2. The actual phases of the localization process with three different methods: CART 
(classification and regression trees), MS (multiresolution segmentation), and KED (kriging 
with external drift). 
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ˆ
i ifh fh         (10) 

In all LISAs (Eq. 1-4), the weighting is binary. If the observation belongs to the 
neighborhood, it is assigned a unit weight. Otherwise, the weight is zero (Eq. 11): 
 

1, 20

0, 20
ij ij

ij ij

w r
w r

,        (11) 

where rij is the Euclidian distance in kilometers between pivot i and observation j. All 
LISAs were assumed to follow normal distribution (more in discussion) and were 
normalized according to Eq. 5. The LISAs and their suitability for use as an indicator in the 
segmentation were tested in article I. The evaluation is based on the visual contemplation of 
the LISAs over map, in addition to the changes in RMSE (introduced later). A LISA should 
enhance division of the study area into homogeneous sub-regions of reasonable size (large 
enough to permit re-fitting of the regression model). 
 
Variograms 

In kriging, the global trend is “adjusted” with the residual information (Eq. 10) from the 
points predicted with the same model in the neighborhood of the calculation point. This 
method can take into account both the distance and the direction between points. The 
spatial autocorrelation between neighboring observations s1 and s2 is modeled using a 
variogram (IV Eq. 4, e.g. Isaaks and Srivastava 1989, Cressie 1991, Webster and Oliver 
2007): 
 

22 var1 2 1s s s s ,     (12) 

where s1 and s2 are the positions,  is the variogram and  is the residual of the global 
model (Eq. 6). Typically, the variogram features three main characteristics: a nugget effect, 
a sill and a range. The nugget effect is the height of the jump of the semivariogram at the 
discontinuity at the origin, the sill is the limit of the variogram tending to infinite lag 
distance, and the range is the distance at which the difference of the variogram from the sill 
becomes negligible. In addition, a partial sill is sometimes used, which is the sill minus the 
nugget effect. 

The process is considered intrinsically stationary if the expected value of the difference 
in residuals ( ) remains constant (inside the brackets in Eq. 12) at all distances h. In 
addition, if the variogram is not direction dependent, the process is isotropic, and Eq. 12 
can be estimated using a sample variogram. In the sample variogram for all possible data 
pairs in the data, the difference and the distance between them is calculated, and lastly, the 
point pairs are classified into distance classes (Eq. 13): 
 

21ˆ2 i j
N h

h
N h

s s      (13) 
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where h is a distance class and N h  is the number of observations belonging to this 
distance class, to a lag. The width of the lag is the only parameter that the modeler can 
change. The averaging of the sample variogram can be controlled by changing the width. 
With narrow lags, the number of observations falling in a lag is low, and a single deviating 
observation can significantly impact the class average. On the other hand, with wide lags, 
the averaging conceals the actual trends. To these data, the width of a lag was set to 200 m, 
or little less than the plot-to-plot distance in clusters, which depended on the region at   
250-300 m (NFI9... 2010, IV Table 1). Therefore, the first lag in the sample variogram 
shows the correlation within the same plot, where the target tree is located. 

A variogram model is fitted to a resultant empirical sample variogram. Exponential, 
Gaussian, circular, Bessel, and spherical models were tested (Bailey and Gatrell 1995). 
Since the models have their limitations in form and bending to the point cloud, it is possible 
to split the model into two different parts where the first part models the short-range nugget 
effect and the second part, the actual trend. These kinds of models are known as nested 
variogram models. Although the parts could be of different model types, here the models 
were always the same for both the short-range and long-range parts. The variogram models 
for the actual kriging and evaluation were selected based on visual inspection. Since the 
fitted variogram models formed two groups (Fig. 3, IV Table 5), one of each was selected, 
namely spherical and Bessel variogram models. 
 
 

 

Figure 3. Sample variogram (points) and fitted variogram models (lines). 
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Segmentation or division of large area/population (Phase III) 

Classification and regression trees (CART) 

This method is known as either CART or recursive partitioning. The version developed by 
Breiman et al. (1984) has been followed, and since the dependent (the form height) is a 
continuous variable, the type of CART is the regression tree. The basic idea in CART is to 
divide the whole population (data) into smaller units which are homogeneous with respect 
to the dependent variable, but has served various purposes, such as variable selection and 
the prediction of the absence or presence of some tree properties (e.g. cavity, defoliation) 
(Fan et al. 2003a, b, Candau and Fleming 2005) or the crown class of trees (Nigh and Love 
2004). Negron (1997) and Dobbertin and Binging (1998) replaced logistic regression 
models with CART in the estimation of tree mortality. 

The algorithm identifies the most profitable variable from the independent variables (in 
regression model Eq. 6), thus minimizing deviance in the dependence, which is either the 
residual (Eq. 10) or LISA. The profitability of the division is measured as a decrease in the 
coefficient of determination, R2. The variable for which the decrease is the largest is 
selected, and the population is divided with respect to its certain value. The divided parts of 
the population are then studied separately, and the dividing process continues. The process 
can be illustrated as a “tree” where each division in a node forms two branches, and the 
results of all the splits are in the end nodes, or “leaves”. If the result of division is purely 
spatial (i.e. all divisions in the tree are based on the co-ordinate variables of model Eq. 6), 
the leaves of the regression tree form sub-areas of the study area. 

Without any limitations, the partitioning process would result in a regression tree with 
single observations in its leaves. This process would lead to the over-explanation of 
problems, or over-fitting, where the system finds single noisy events instead of actual 
trends in the data, but this would be inappropriate. The sizes of the regression trees or the 
number of observations in the leaves have therefore been limited in four different ways, 
both directly and indirectly: 1) the minimum number of observations in a leaf has been set 
to 50, and 2) the minimum number of observations needed in a node for a split has been set 
to 100. Besides, 3) the value of the complexity parameter (cp), which denotes the minimum 
required change in the coefficient of the determination (R2) in a division, was set to           
cp = 0.001, and 4) the regression trees already created could be pruned to match a larger cp 
than was used in the creation of the original regression tree. The pruning cuts the least 
profitable branches from a regression tree according to the change in R2 to correspond to 
the set value of cp. 

MVPART (multivariate partitioning) is the version of CART in which two dependent 
variables, the residuals and the LISA, could concurrently exist in the regression tree 
(Therneau and Atkinson 1997). The algorithm is very similar to the CART with two 
exceptions: the size of the regression tree (the number of end nodes) could be set directly, 
but the sizes of the end nodes (the number of observations) could not be controlled. Both 
these properties could also have been implemented in the CART. 
 
Multiresolution segmentation (MS) 

An alternative to the previous CART method is to use image segmentation to divide the 
study area. eCognition Pro 4.0 software (Definiens Imaging, later versions Definiens Pro) 
can segment any kind of rasters passed to it (eCognition... 2009). The residuals (Eq. 10) and 
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LISAs constitute a point dataset and can be converted to images in which the pixels 
correspond to the value of the indicators. These images can be analyzed using the 
algorithms of the software. The software uses general object-oriented image analysis in 
which the initial segmentation is based on primary features, such as the digital value of 
pixels (Benz et al. 2004). 

In segmentation, merging pixels form the objects (sub-areas). This process employs a 
bottom-up region-merging technique. The merging is controlled by a heterogeneity 
parameter of which the threshold value is given through the scale parameter (Benz et al. 
2004). The heterogeneity parameter combines the color and shape variables. Color 
information is carried in the pixels as a digital value, and the shape is a compromise 
between the smoothness of the borderline and the compactness of the delineated sub-area. 
Therefore, the final segmentation is the result of an optimization process which combines 
both the variables and their preferences. The larger the value of the scale parameter, the 
larger the sub-areas in the segmentation (i.e. the increase in the scale parameter value 
allows more heterogeneity in the sub-areas). 

If the similarity information from the neighboring observations is provided to the 
program as a raster image, would the resulting segmentations improve the estimates of the 
global model when the model is localized for these segmented sub-areas? The residuals and 
LISAs were converted to rasters with IDW (Longley et al. 2005), and the raster images 
were passed to the eCognition software. The multiresolution segmentation algorithm in the 
eCognition software, and the initial segmentation procedure in particular, was employed to 
divide the area into sub-areas. The settings in the segmentation were made to favor the 
information in the pixels at the expense of the shape variables, since one intention is to 
utilize the digital value as fully as possible. This means that the parameters of the initial 
segmentation remained at their default values. 

With the two variables, residuals and LISA, four combinations served as raster layers: 
1) residuals of the global model, 2) LISA, 3) residuals and LISA, and 4) residuals weighted 
by the inverse of the layer variances and LISA. Several segmentations were made for each 
of these four layers by changing the value of the scale parameter. Each of the segmentations 
featured more than one segment (i.e. sub-areas into which the regression model could be re-
fitted). 

 
Kriging with the external drift (KED) in the local neighborhood 

Instead of dividing the study area, the localization could be continuous so that for every 
point in the dataset, the neighborhood is defined and used to localize the function. The basic 
model, which the variable under consideration (Z) is assumed to follow, in universal 
kriging (UK) is: 
 

Z X ,         (14) 

where the X matrix contains the covariates of the model (Eq. 6),  is the parameter vector, 
and  is the residuals of a zero-mean intrinsically stationary random process with a 
variogram (2 ). Then the predictor of Z for point sB is Z* (Eq. 15): 
 

ˆˆ ˆ* EGLS
1 1

BZ s c' Z x X' c ' ,      (15) 
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where c is a vector of the correlations between the prediction point and the surrounding 
observations, ˆ  is an estimated variance-covariance matrix where the defined variogram 
model for observations estimates all elements, the covariates for point sB are in the x vector, 
and the estimated generalized least-squares estimator for  in Eq. 15 is (Eq. 16): 
 

1
1ˆ ˆ ˆ

EGLS
1X' X X' Z       (16) 

Kriging with external drift (KED) (Hengl et al. 2003) or kriging with distinction or 
residual kriging (Schabenberger and Gotway 2005) is near universal kriging (UK), but in 
KED, the global mean or the global trend (Eq. 14) includes at least one variable unrelated 
to the spatial position. In this case, both the diameter and the basal area are indeed such 
variables. 

The neighborhood of an observation could cover the entire study area or could be 
limited by the number of or distance to neighbors or by any combination of these two 
criteria. If the data pattern is irregular, the limitation by the number of neighbors is more 
secure, since it precludes situations in which an observation has no or only a few neighbors. 
The calculation capacity is also a practical limitation, since the process includes inverting 
large matrices. Given the above-mentioned limitations, the evaluation was carried out with 
10-fold cross-validation or leave-one-out cross-validation for the model, where the dataset 
is either randomly divided into 10 equal-sized folds or only the one observation, for which 
the prediction is made, is extracted (Pebesma and Wesseling 1998, Pebesma 2004). The 
model is estimated for a fold with the rest of the dataset, and as a result, generates an 
estimation/prediction error for every observation in the dataset. 

 
 

Measures for evaluation (Phase IV) 

All four articles (I-IV) include some common measures for comparing and evaluating the 
results after either re-fitting the regression model (i.e. localization) or cross-validating the 
KED (Eq. 17-21): 

1) The sum of the residuals (Eq. 10) over a region is an estimate of the bias (II Eq. 6): 
 

1bias

n

i
i

n
        (17) 

2) The root mean square error (RMSE) combines the bias and the standard deviation 
(SD) in the residuals (I Eq. 11): 
 

2 2RMSE bias SD       (18) 

3) The aggregate estimate of the standard error is the weighted sum of the regional 
mean squared errors, or MSEs (II Eq. 10): 
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where MSE is the square of RMSE, m is the total number of sub-areas, and n is the number 
of observations within the sub-area i (Eq. 18). 

4) The relative change in RMSE in the localization of sub-area i when the RMSE of 
the localized model is compared to the global model RMSE for the entire study area (i.e. 
RMSEglo = 0.1027 dm3 cm-2) (II Eq. 8): 
 

, ,RMSE RMSE RMSE 0.1027
RMSE 100% 100%

RMSE 0.1027
i loc glo i loc

i
glo

 (20) 

5) The relative change in RMSE in the localization of sub-area i when the RMSE of 
the localized model is compared to the global model RMSE in the same sub-area before 
localization, RMSEi,glo (II Eq. 9): 
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,
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i loc
i glo

    (21) 

The individual residuals as such do not reveal the entire situation in the localization, and 
are therefore combined as either regional RMSE or study area-wide in aggregate standard 
error (Eqs. 19-21, above). The regression model localized (re-fitted) regionally by forestry 
center (Fig. 1) serves as a reference. 

 
 

Classification of the sub-areas 

By definition, the LISA that differs from zero indicates that the pivot or its surroundings or 
both (depending on the indicator, the pivot either does or does not belong to the 
neighborhood of the pivot, Eqs. 1-4) also differ from zero (Getis and Ord 1992), which 
indicates a bias in the residuals of the global model, since the LISAs were calculated from 
the residuals. This bias could be removed by localizing (re-fitting) the model or by simply 
adding a level correction constant which equalizes the local bias to the global model. Here I 
tested whether the sub-areas could be classified into groups according to the LISA in the 
sub-area and whether localization of the global model (re-fitting) could be replaced with a 
level correction equalizing the local bias. These calculations are a new contribution to 
evaluation of the results from articles II and III. 

The assumption was that the benefits of localization are the greatest in the sub-areas 
where the mean of LISA differs significantly from zero. This improvement was measured 
by the absolute value of the localized RMSEi,loc. For this comparison, the classification 
introduced in article III (Table 3) was also applied to CART. The sub-areas were classified 
into three different classes: positive, negative, and neutral. If both the mean of the        
LISA + 1  (standard deviation) and the mean of the LISA - 1  in the sub-area were 
positive, the sub-area was classified as positive. If both were negative, the sub-area was 
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classified as negative. If the sub-area fit neither of the previous classes, it was classified as 
neutral. This classification was also applied with a standard deviation value of 1.5 . 

The possibility of replacing the re-fitting with the level correction was also tested for 
every sub-area. In practice, this involved a comparison between the resulting RMSEi,bias, in 
which the local bias was removed from the RMSEi,glo value in that sub-area i in question 
and the actual localized RMSEi,loc (the RMSE of the re-fitted model). This is the easiest 
way to remove the local bias, so this kind of level correction would be an attractive 
alternative to localization. 

RESULTS 

Selection of the LISA 

Comparison of the different LISAs (Moran’s Ii, Geary’s ci,  Gi and  Gi*) revealed that the 
first two indicators could show only a couple of small-sized areas in which the standardized 
indicator value differed significantly from zero (I Fig. 4a, b). On the contrary, both Getis 
statistics could reveal a cluster of both negative and positive values as well as neutral areas 
(I Fig. 4c, d). 

From the two Getis statistics, which were equally suitable for the task, Gi* was selected 
for future study, because this index also included the pivot in the neighborhood, thus 
revealing at the same time the uniformity of the pivot in its neighborhood (Getis and Ord 
1996). The first localization trial based on Gi* actually lowered the RMSEs in all sub-areas 
selected (I Fig. 5, Table 5). 

 
 

Comparison of segmentations: CART, MS and KED with the division of the study 
area into the traditional forestry centers 

Single sub-areas 

At a global level, the original regression model of form height had an RMSE of          
0.1027 dm3 cm-2. When the study area was segmented for localization purposes, the 
resultant segmentations included various numbers of sub-areas (II Table II, III Table 2). 
The traditional forestry centers divide the southern part of the country into 12 regions, a 
division that was adapted to the results of kriging also, though the kriging was applied to 
the entire study area (IV Table 7). In kriging, the SA between observations ranged from   
5.2 km (Bessel) to 6.8 km (spherical variogram model) (IV Table 4). The Bessel model 
approaches its sill asymptotically, so the range reported is only about one-fourth of an 
effective range (Webster and Oliver 2007), whereas the range reported for the spherical 
model is equal to the effective range. Since the proportion of the nugget effect of the sill is 
larger than that of the partial sill, the observation beyond the effective range may also bear 
a weight (e.g. Webster and Oliver 2007, p. 168). 

When all single results from articles II-IV were brought together in a table, it was 
evident that the mean values for all four different methods were near each other (Table 1). 
In particular the RMSEs for the division of the forestry centers and kriging were similar. 
The segmentations with multiresolution segmentation (MS) yielded the most extreme 
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RMSEs (both the highest and the lowest RMSEs), whereas the mean RMSEs for CART 
were higher than for MS, but lower than for the first two methods (kriging and division of 
the forestry centers). 

 
Overall results 

An aggregate estimate of the standard error sums up the RMSEs of the single sub-areas in 
the segmentations, which renders the segmentations comparable as a whole (Eq. 19). The 
above-mentioned RMSE of the global model serves as a reference. These results for 
different methods appear in following tables of the individual articles: Table VII (II) for 
CART, Table 7 (III) for segmentation with eCognition, and Table 7 (IV) for KED, with all 
collected here in Table 2. The aggregate estimate of the standard error for the forestry 
centers was 0.1016 dm3 cm-2 (II Table VIII). 

For both of the area segmentation methods, CART and multiresolution segmentation, 
the level of the global model’s standard error was exceeded only once in both methods. The 
averages for the errors in the division methods lay near 0.1 dm3 cm-2, which was 
considerably lower than the RMSE for the global model or forestry centre division. This 
was also the level which the KED approached when the number of neighbors increased. 

When the localized RMSEs of single sub-areas in segmentations were compared to the 
RMSE of the global model (0.1027 dm3 cm-2), the localized RMSE was smaller than the 
global one in 60% (range 40-100%) of cases (Table 3). When the localized RMSEs were 
compared to the global model RMSE in the same sub-area before localization, the 
percentage was 75% (range 58-100%). When the number of sub-areas decreased in the 
segmentation, the localized RMSE was more likely to be smaller than the original one in 
the sub-area. 
 
 
The classification of sub-areas 

Before classifying the CART-based sub-areas, two regression trees were rejected from 
calculation, Trees 2 and 3 (II Table II), because they were not spatial in nature. Those trees 
used non-spatial dividers, namely diameter at breast height and basal area. Also, sub-areas 
with fewer than 30 observations were excluded from future studies because for normality, 
assumptions regarding the re-fitting (localization) of a regression model recommended a 
minimum of 30 objects. This limitation will affect only those segmentations that used 
eCognition software (Compare Table 3 to Table 2 in III). 

Given the above-mentioned limitations, classification of the sub-areas into three classes 
according to the mean Gi* value and its deviance from zero yielded the distribution shown 
in Fig. 4. The numbers of positive and negative sub-areas were almost exactly the same, 
and the number of neutral sub-areas was 14% smaller than the others. All together there 
were eight more negative sub-areas than positive ones. The resulting classification at the 
segmentation level was also distributed quite evenly (Table 3). In 14 of all the 
segmentations, the majority of sub-areas was classified as positive; in 16 segmentations, the 
majority comprised negative sub-areas, and in 8, neutral. The latter could mean either that 
all the sub-areas were neutral or the numbers of negative or positive sub-areas were equal. 
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Table 1. The RMSEs (dm3 cm-2) for different segmentation methods: administrative forestry 
centers (FC), classification and regression trees (CART), segmentation with the 
multiresolution procedure in eCognition (MS), and kriging with external drift (KED). 
  
 RMSE 
Segmentation Min 1Q Mean 3Q Max 
FC 0.0817 0.0981 0.0999 0.1045 0.1159 
CART 0.0655 0.0910 0.1004 0.1083 0.1514 
MS 0.0057 0.0855 0.0977 0.1096 0.2563 
KED 0.0806 0.0959 0.0988 0.1052 0.1156 
 
 
Table 2. The aggregate estimates of the standard error (dm3 cm-2) (SD) for different 
methods: multiresolution segmentation (MS), classification and regression trees (CART), 
and kriging (KED) for both Spherical (Sph) and Bessel (Bes) variogram models. 
  
MS   CART  KED Sph Bes 
Name Areas SD Areas SD Neighbors SD SD 
G*130 4 0.1010   20 0.3136 15.95 
Weight56 5 0.1018   30 0.1122 0.1126 
G*103 6 0.1006   40 0.1058 0.1061 
Weight36 9 0.0998 11 0.1012 50 0.1032 0.1034 
Res47 10 0.1025 12 0.1001 60 0.1016 0.1011 
Res35 15 0.1023 15 0.1017 70 0.1002 0.1007 
Res;G*60 16 0.0981 16 0.0999 80 0.0996 0.1000 
G*87 17 0.0983   90 0.0993 0.0996 
Res27 22 0.1029 20 0.1003 100 0.0987 0.0987 
Res;G*48 23 0.1019 23 0.0994    
Weight27 24 0.0997 24 0.1008    
G*65 25 0.0994      
G*50 35 0.0986      
Res20 39 0.0988 38 0.1007    
Res;G*35 43 0.1018 44 0.1003    
Weight20 54 0.1004 50 0.0994    
G*38 62 0.0991      
Res14 73 0.0967      
Res;G*26 78 0.0997      
G*29 84 0.0986      
Weight14 89 0.0988      
G*22 120 0.1016 121 0.1028    
Res;G*18 120 0.1016 127 0.1026    
Res10 140 0.1002      
Weight10 150 0.1004      
G*17 177 0.0983      
Res;G*13 192 0.1025      
G*13 265 0.0998      
Res;G*10 291 0.1014      
G*10 366 0.1009      
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Table 3. The sub-areas in the segmentations with eCognition and CART, the classification 
of single sub-areas (SUM), and the percentages of sub-areas where the RMSE of the 
localized model is either lower than that of the global model (Global) or lower than that of the 
global model RMSE in the same sub-area (Global in sub-area). The sub-areas are classified 
according to the mean of Gi* in positive (+1), negative (-1) and neutral (0) ones and, if there 
are more positive than negative sub-areas, the sum is positive, and vice versa. 
  
 Sub-

areas 
SUM Global 

[%] 
Global in 
sub-area [%] 

G*10 248 13 67 79 
G*13 211 3 60 75 
G*17 161 -8 67 75 
G*22 113 -7 58 66 
G*29 80 -3 58 63 
G*38 58 -3 59 66 
G*50 34 -4 59 65 
G*65 25 -2 68 76 
G*87 17 0 59 71 
G*103 6 -3 83 100 
G*130 4 -2 100 100 
     Weight10 133 7 62 65 
Weight14 84 2 63 70 
Weight20 51 4 59 80 
Weight27 23 0 57 91 
Weight36 9 0 44 89 
Weight56 5 0 40 100 
     Res10 130 -8 55 63 
Res14 72 -2 60 76 
Res20 39 -3 64 82 
Res27 22 -2 77 91 
Res35 15 -1 67 93 
Res47 10 0 60 90 
     Res;G*10 224 6 65 67 
Res;G*13 172 -4 60 59 
Res;G*18 112 2 51 58 
Res;G*26 73 -3 60 66 
Res;G*35 41 0 59 68 
Res;G*48 23 3 57 70 
Res;G*60 16 1 63 63 
     
Tree1 11 2 45 82 
     Tree4 127 1 57 68 
T4P1 38 1 61 76 
T4P2 15 1 73 80 
     Tree5 50 2 60 74 
T5P1 24 -1 67 79 
T5P2 20 0 60 75 
T5P3 12 0 67 75 
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Figure 4. The classification of sub-areas in CART and multiresolution segmentations into 
three classes according to the mean of Gi*. 
 
 

If the localization into the sub-areas was replaced with a level correction in which the 
local bias in the sub-area was subtracted from the global model RMSEi,glo in the same sub-
area, the corrected RMSEs (RMSEi,bias, Table 4) were smaller than the original global 
model RMSEs (RMSEi,glo, Table 5). The changes were greatest in the group of negative 
sub-areas, and smallest in the neutral class. The mean RMSE was 3.2% lower than the 
original in the negative class, whereas in the positive class, it was only 1.9% lower. On the 
other hand, with respect to the actual localized RMSEs (RMSEi,loc), the level-corrected 
RMSEs were 3.0-1.1% higher (Table 6). But then, the greatest differences were in the 
extremes of the localized RMSEs. The minimum RMSEs were considerably lower for 
localized models than for the level correction (18-34%), whereas the maximums in the 
negative and positive sub-areas were higher for localized models than for level-adjusted 
ones (12-31%). The change in neutral class with level correction was and should have been 
zero, since the sub-areas in the neutral class by definition have no bias if Gi* is zero. But in 
the case of the heterogenic sub-area with a near-zero mean (Gi* = 0), localization could 
lower the RMSEs (as it did) by 2%. Otherwise, the difference between these two 
localization methods is minor: 1% for positive and 3% for negative classes. 

Then the sub-areas were re-classified so that 1.5  was subtracted from and added to the 
mean of Gi* or, in other words, the neutral class was widened. The mean Gi* in the 
negative and positive classes differed from zero with greater probability (p = 0.033). This 
new classification lowers the mean of the neutral and positive classes (Table 7). The 
negative class remained about the same, whereas for the positive class with increased 
minimum RMSEs and decreased maximum RMSEs (i.e. decreased range of RMSEs), the 
effect of classification on the neutral class was opposite: the range actually increased. 
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Table 4. RMSEs (dm3 cm-2) when a constant level correction that equals the local bias in the 
sub-areas is applied to every sub-area, RMSEi,bias, classified according to the mean Gi* and 
its deviation in the sub-area. 
 
 RMSE 
Class Min 1Q Mean 3Q Max 
Negative 0.0635 0.0888 0.0980 0.1065 0.1419 
Neutral 0.0628 0.0936 0.1028 0.1111 0.1670 
Positive 0.0687 0.0910 0.1026 0.1142 0.1724 
 
 
Table 5. RMSEs (dm3 cm-2) before localization, global RMSEs in sub-areas, RMSEi,glo, 
classified according to the mean Gi* and its deviation in the sub-area. 
 
 RMSE 
Class Min 1Q Mean 3Q Max 
Negative 0.0733 0.0915 0.1012 0.1096 0.1463 
Neutral 0.0633 0.0937 0.1032 0.1115 0.1671 
Positive 0.0699 0.0926 0.1046 0.1161 0.1733 
 
 
Table 6. The localized RMSEs (dm3 cm-2) when the sub-areas are classified into three 
classes according to the mean Gi* and one length of the standard deviation, RMSEi,loc. 
 
 RMSE 
Class Min 1Q Mean 3Q Max 
Negative 0.0537 0.0856 0.0951 0.1036 0.1619 
Neutral 0.0536 0.0914 0.1009 0.1105 0.1414 
Positive 0.0513 0.0897 0.1015 0.1131 0.2504 
 
 
Table 7. The RMSEs (dm3 cm-2) for localized models when the classification of sub-areas is 
based on mean Gi* ± 1.5  (standard deviation of Gi*). 
 
 RMSE 
Class Min 1Q Mean 3Q Max 
Negative 0.0561 0.0860 0.0953 0.1032 0.1619 
Neutral 0.0513 0.0884 0.0998 0.1105 0.2504 
Positive 0.0611 0.0917 0.1006 0.1114 0.1411 

DISCUSSION 

If the measurement data from an inventory of a large area could be generalized to the 
population with a single global (= population-wide) model, it would be easy to implement. 
Unfortunately, the resulting estimates could be locally biased (spatial bias). A method 
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which could indicate the biased sub-regions, delineate them, and remove the bias would 
improve the estimation considerably. In this thesis, local indicators of spatial association 
(LISA) served as the indicator, and the segmentation of the study area was tested with two 
different methods: recursive partitioning (CART) and multiresolution segmentation (MS). 
Both methods used spatial location together with LISA and residual information calculated 
from the global model to determine the homogeneous localization sub-areas. An alternative 
to these methods is to localize every single observation with its neighborhood with no 
intention to divide the study area (KED). The results were compared to the traditional 
forestry centre division of the study area (Fig. 1). To determine the reference, the global 
model was localized to 11 administrative units in 12 regions. 

The spatial indicators were developed to identify “hot” and “cold” spots (i.e. small-scale 
phenomena which differ significantly from their surroundings) (e.g. Getis and Ord 1996). 
The original idea in LISAs has been to test whether the local indicator differed statistically 
significantly from zero. Several articles (e.g. Anselin 1995, Ord and Getis 1995, Boots and 
Tiefelsdorf 2000) have questioned the actual normality of the standardized indicators (Eq. 
5). In these studies, neither normality nor statistical significance are important. Only sub-
areas that were as homogeneous as possible were wanted, and LISA was the measure used. 
Here LISAs were calculated from the residuals of the global model, so any deviation from 
zero could indicate local bias. 

Some have suggested that the LISAs, especially the Getis statistics Gi and  Gi*, are 
suitable for image segmentation (Wulder and Boots 1998). The intention is to delineate 
sub-areas with enough observations for the re-fitting of the regression model. For some of 
the studies, the limit for minimum observations in a sub-area was set to as few as 10 
observations (III), but in study II, the limit was set to 50, and in the kriging analysis, the 
number was from 20 to 100. This summary employed a limit of 30. Compared to the size of 
the dataset (19 175 trees), the sub-areas may have been small in area, even with these 
minimum limits, but in studies II (Fig. 4) and III (Table 2), the largest sub-areas covered 
almost ¾ of the data. 

Another issue was the dependence between neighboring LISAs. Since every LISA was 
calculated from a 20-km circular neighborhood, the neighboring LISAs were correlated if 
their neighborhoods overlapped. This posed no problem because LISAs are not used as 
such, but only as indicators to show the areas of low and high values of the residuals. On 
the other hand, the LISA is treated here as a point datum, bound to a single point when it 
actually represents the area, or neighborhood, from which it was calculated. Each point had 
equal-sized (distance-limited) neighborhoods as well as its own LISA to which the decision 
can be based. A LISA calculated for a certain model (residuals of a model) can represent 
only the features of that particular model. Therefore, any segmentation based on a LISA is 
invalid for another model. So, if the system has more than one model, they all have their 
own segmentations. 

Looking at the RMSEs for single sub-areas, the lowest range from 6% to 80% (Table 1), 
and the first quartile ranges from 83% to 96% of the global model RMSE                  
(0.1027 dm3 cm-2), but the dispersion in localized RMSEs was wide. Kriging seems to be 
close to the forestry centre division results (Table 1), but this result is somewhat 
misleading. The kriging estimates could have been improved if the number of the neighbors 
were increased. But in study IV, the increase stopped when the RMSEs and aggregate 
standard errors were smaller than the references, which were the RMSE of the global model 
and the standard error of the forestry centre division. Therefore, kriging could have 
performance better than presented in article IV. 
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Because LISA was used, Gi* yielded either high positive or negative values if the 
calculation point and its surrounding differed from zero in either the positive or negative 
direction; Gi* yielded zero if the surrounding was either near zero or heterogeneous. The 
relationship between the value of Gi* and the localized RMSE in the segmentations of 
studies II and III were analyzed. The classification was adopted from the article III     
(Table 3) with some changes. Only the sub-areas with at least 30 observations were used in 
the calculations, because only then was the amount of data sufficient to re-fit the regression 
model. When the sub-areas formed with CART and MS were classified according to the 
above-mentioned method, the localization lowered the RMSEs by 2% (neutral class), 3% 
(positive class), and 6% (negative class) (Tables 5 and 6). With level-correction, the change 
was 0%, 2%, and 3%, respectively (Tables 4 and 5). 

For the classification in study III, the mean of Gi* in a sub-area had to differ from zero 
by one standard deviation in order to belong to a class other than neutral. One standard 
deviation corresponds to 0.841 of cumulative probability in normal distribution, whereas 
one and a half standard deviation corresponds to 0.933 of the cumulative probability 
function. Widening the confidence interval should emphasize the impact of localization in 
the sub-areas belonging to the negative and positive classes. The negative class remained 
about the same, and the major changes occurred in the neutral class, which became more 
heterogeneous (i.e. the range of localized RMSEs increased after changes in classification) 
(Table 7). Of course, some changes in the extreme RMSE values of the positive class did 
occur; the minimum increased and the maximum decreased. After all, the classification 
method applied here did not yield the result expected. The expectation was that the negative 
and positive classes would produce lower mean RMSEs and narrower ranges for RMSEs 
than would the neutral class. This expectation did occur for the negative class, but not for 
the positive one. No correlation was found between the LISA and the result of localization 
despite the differences between the classes. 

The two first methods mentioned above aimed to divide the study area into sub-areas 
that were as homogeneous as possible. The sub-areas did not need to be pre-determined; 
rather, the method needed to be flexible in forming the sub-areas. Such segmentation 
needed to be valid only for the data in use, along with the variables and model of interest. 
Localization is two-phase process in which the localization sub-areas are first delineated, 
and then the model is re-fitted to the sub-area. As previously reviewed, even though the 
local RMSEs and study area-wide standard errors could be reduced by using with all three 
of the methods, the RMSEs did increase in localization for some of the sub-areas in the 
segmentation or regions in the study area, and the RMSEs did exceed the level of the 
original global model. No correlation between the size of the sub-area and the localized 
RMSE could be found, as both extremes seemed more probable for the small sub-areas than 
for the larger sub-areas. Some kind of control should therefore be added to the method, 
which could separate those sub-areas in which the localization pays off from those which 
should remain as they were after applying the global model. For control purposes, the 
classification of the sub-areas was attempted according to the values of Gi* in the sub-area, 
but failed to solve the problem. 

Although the basic properties and limitations of the LISAs have been discussed in the 
beginning of the section, the methods employed have their limitations. The 
CART/MVPART selects the most profitable split among all variables one at a time, but 
cannot optimize the whole process. So, all splits are final and cannot be changed later in the 
process, which could be evident for the result, because sometimes an earlier optimal split 
could become unprofitable after subsequent divisions. Smyth et al. (2006a, b) have 
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implemented “factor scores’’ and principal component scores in the MVPART to reduce 
the effect of noise in the data on the clusterization. 

KED suffers from the sparse point pattern the trees create. The strongest correlation 
between neighbors is lost since the minimum plot-to-plot distances have been increased in 
the latest NFI rounds from the seventh inventory (compare to Figs. 4 and 5 in Tomppo et al. 
2001 and Fig. 2 in IV). The strongest correlation is between neighbors on the same plot 
with the pivot; the problem is that usually there are only zero to two neighbors. The point 
pattern could be made denser by introducing other tree species into the model. Numerous 
alternatives remain which could improve the local estimates. Interestingly, the study of 
Miller and Franklin (2002) combines kriging via a local spatial variable, which they call a 
kriged value, to CART, and some studies combine CART and other features of the stand or 
tree, even satellite imagery (Moisen and Frescino 2002, Franklin 2003, McKenney and 
Pedlar 2003). So, KED could help CART or vice versa. One natural option to kriging is 
geographically weighted regression (GWR) (Brunsdon et al. 1996). In GWR, the model 
coefficients are estimated using weighted least-squares regression such that the weight is a 
diagonal matrix, and a single element of the weight matrix is a function of the distance 
between the pivot and the observation. Studies have shown GWR to yield accurate (local) 
predictions (Zhang and Shi 2004, Zhang and Gove 2005). 

In summary, all the methods utilizing LISA, namely CART and MS, and dividing the 
study area into smaller sub-areas were promising. The aggregate standard errors were lower 
than the RMSE of the global model, but compared to the division of the study area into 
forestry centers, the benefits of the segmentations were not obvious. The final “control 
element”, which could turn these methods into a tool, together with the re-fitting of the 
global model, was not attained. There is no guarantee that a delineated sub-area is worth 
localizing with either of the methods. The only relationships found between any property of 
the sub-area and the localized RMSE went contrary to the hypothesis (III Table 5a-b,   
Table 6-7) and proved useless for the evaluation of sub-areas. This surely merits further 
study. The localization pays off if the result always reaches at least the level attained with 
the forestry centers method. If the diagnostic, which could serve for pre-selection of the 
suitable sub-areas (where the localization pays off) and the flexibility in the delineation 
could be combined, the method would prove powerful. CART offers better opportunities 
for such a tailoring. A method of mixed estimation (Korhonen 1993) where, in addition to 
the present inventory data, information from other datasets, such as from previous 
inventories or neighboring areas, could also be utilized in localization, thus improving and 
stabilizing the estimates. Still, almost any spatial segmentation of the sub-areas with LISA 
yielded standard errors lower than the RMSE of the global model and, if the level of the 
division into forestry centers serves as a reference, nearly all segmentations were either 
near or below it (II Table V, III Table 7). 

So, roughly speaking, segmentation of the study area is worthwhile, because it lowers 
the RMSEs, but cannot guarantee on a sub-area level that localization will decrease the 
RMSE of that particular sub-area or the creation of some kind of system to ensure this. 
Such a system could simply separate those sub-areas where localization is used from those 
where no localization at all is applied. Such a system could be designed for the 
segmentation of large areas with large datasets, where the sub-areas are of reasonable size 
and there are sufficient data for localization. One possibility to evaluate segmentation is to 
carry out a statistical F test, which evaluates whether the segmentation is worthwhile. Such 
a test compares the global model and a model that includes classification into sub-areas. 
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Because KED requires no segmentation, the results were compared to a forestry-centre 
level, which are quite large compared to the regions extracted in the two previous studies 
(II, III). However, the results show that increasing the number of neighbors (i.e. increasing 
the size of the neighborhood) lowers the prediction errors in the estimates, but no optimum 
size of the neighborhood was determined. The predictions it provides are the most stable, 
and standard errors are lower than with the reference. Future research could focus on the 
study of spatial correlation in hierarchical data, which was modeled here with a nested 
variogram model. CART has the potential to be more efficient than the traditional forestry 
centre division of the study area, but without the further study suggested earlier in this 
section, the result may vary unpredictably. 

CONCLUSIONS 

All the three methods used proved to lower RMSEs and aggregate standard errors. In the 
segmentations of classification and regression trees (CART) and multiresolution 
segmentation (MS) for some sub-areas, changes in localization were positive (i.e. the 
RMSEs decreased), but on the other hand, leaving some sub-areas without localization 
would have yielded more accurate results because localization increased the RMSEs 
considerably. The lack of explanation for this variation in previous studies warranted a new 
approach. A relationship between Gi*, the decision variable in the delineation of the sub-
areas, and the result of the localization, the local RMSE, was identified by classifying the 
sub-areas into negative, neutral and positive according to the mean Gi* values. The 
negative class did perform little more accurately, but the differences were minor. This leads 
to the conclusion that the final segments are more or less compromises between the 
decision variables: residuals, Gi*, spatial position and method-based restrictions, which in 
MS are shape related, and in CART, node size related. The residuals and Gi* may impact 
the segmentation of the sub-areas less than the others together. On the other hand, both 
methods (MS and CART) lowered the RMSEs by more than a level correction, which 
equaled the regional bias. In kriging (KED), localization was not restricted to a certain sub-
area, but the results were examined at the regional level. Spatial autocorrelation was found 
between observations, but since the point pattern was sparse, the effect of local adjustment 
from the neighbors should be enforced in other ways. One option could be to make the 
point pattern denser by introducing other tree species into the model. 
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