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ABSTRACT 
 
ALS-based inventory methods are replacing traditional field inventories in the production 
of stand-level data for operative and management purposes. Despite the advances made in 
the species-specific inventories of mean stand variables, ALS has not succeeded in 
providing accurate growing stock descriptions for operative wood procurement planning, 
for example, containing information on tree quality, tree size distribution and the 
distribution of the logs in timber assortment classes. The aim of this thesis is to evaluate 
and develop ALS-based methods of predicting tree size distributions and timber assortment 
recoveries. 

The experimental work was carried out in two inventory areas both located in Eastern 
Finland: Matalansalo, representing a typical managed boreal forest, and Koli, located in the 
Koli National Park. The remote sensing material for Matalansalo consisted of low and high 
pulse density ALS data and digital aerial images, and the material for the Koli area of high 
density ALS data only. 

The investigated estimation methods were individual tree delineation (ITD) and area-
based statistical approach (ABSA), which were also compared within the same test areas. 
The performance of ITD in estimating tree size distributions and theoretical timber 
assortment classes was found to be better than that of the compared methods (ABSA and 
field assessments) in cases where individual trees could be discerned from the ALS data. In 
the aggregate, the different ALS methods were comparable when estimating volume and 
basal area, but ITD tended to produce a bias in saw log volumes and tree size distributions 
because of the errors in tree delineation. It was stated that the errors in both of the methods, 
ITD and ABSA, were in correlation with the tree size distribution and the spatial 
distribution of tree locations. 

The estimation of theoretical and actual saw log recoveries was investigated using two 
area-based methods. The results of the linear regression indicated that it is possible to 
obtain accurate saw log recoveries using an area-based ALS method. The second method 
employed k-nearest neighbour imputation and harvester-collected stem data bank. The 
method produced species-specific saw log recoveries although the estimation accuracies 
were not as good as expected. The method could be improved by using a more 
representative stem data bank and additional search variables. 

The harvester data from final cuttings was found to be suitable material for validating 
the diameter distributions and theoretical saw log recoveries estimated from ALS data, 
although there were challenges considering the delineation of the stand, tree positioning 
accuracy and different bucking preferences. The use of stem data bank as an auxiliary data 
source was more challenging because the stem data bank did not include reliable 
information on stand delineation and bucking parameters. 

 
Keywords: Forest inventory; Linear regression; Nearest neighbour; Remote sensing  
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1 INTRODUCTION 
 
 

 
1.1 Airborne laser scanning-based forest inventory methods 
 
Forest inventory methods in the Nordic countries have undergone remarkable changes 
during the last 10-20 years, chiefly due to a technical breakthrough in remote sensing, 
namely in the development of airborne laser scanning (ALS). The earliest reported tests 
concerning the use of airborne LiDAR (Light Detection And Ranging) for forest profiling 
were conducted in the former Soviet Union in the 1970s (Solodukhin et al. 1977), and after 
that several studies were carried out mainly in North America (e.g., Nelson et al. 1984, 
Magnussen et al. 1999) and in Scandinavia (e.g., Nilsson 1996, Næsset 1997, Hyyppä and 
Inkinen 1999) to explore the potential of ALS for forest inventory purposes. By the 
beginning of the 21st century ALS-based forest inventory methods were ready to be 
adopted in practice (Næsset 2002). 

The ALS data considered in this thesis represent what is known as discrete return small 
footprint airborne LiDAR scanning data. Such data are typically captured from an airborne 
vehicle, either a helicopter or a fixed-wing aircraft flying at an altitude of about 500 to 2000 
metres above ground level. The sensors are able to record multiple reflections from each 
emitted pulse, even though typically only the first and last reflections are used. The size of 
the footprint varies from about 20 to 60 centimetres on the ground and the nominal pulse 
density is from 0.5 to just under 10 pulses per square metre. The above ALS data 
specifications are commonly used in forest applications. A more in-depth account of ALS 
theory is given by Wehr and Lohr (1999), for example. 

ALS data can be understood as constituting a 3-dimensional (3D) point description of 
the target object. In forestry this point cloud is regarded as a description of the vegetation 
structure or canopy structure which allows the extraction of various variables that are 
correlated with tree or forest stand attributes. The estimation methods may be divided into 
two approaches depending on the unit to be estimated. In the individual tree delineation 
(ITD) approach the aim is to discern individual trees (Hyyppä and Inkinen 1999, Leckie et 
al. 2003, Popescu et al. 2003, Maltamo et al. 2004a, Holmgren and Persson 2004), or 
groups of trees (Breidenbach et al. 2010) based on 3D ALS data. Once the trees have been 
delineated, tree-level attributes are extracted, or modelled, from the ALS observations 
regarding each tree. In the area-based statistical approach (later ABSA), also referred to as 
the canopy height distribution method (Means et al. 2002, Næsset 2002, Packalén and 
Maltamo 2007, Junttila et al. 2008), the unit is an area of a certain fixed size, typically a 
few hundred square metres. The mean forest stand variables are estimated for this unit 
using statistical correlations between explanatory variables derived from the ALS data and 
forest stand variables. Both approaches can use optical remote sensing material as 
additional information for species-related attributes (Leckie et al. 2003, Packalén and 
Maltamo 2007), and both can be used to produce stand-level diameter-height distributions 
(Gobakken and Næsset 2004, Packalen and Maltamo 2008). 

ABSA methods have been shown to provide reliable, unbiased estimates of growing 
stock. Area-based ALS methods as used in Finland, for example, have achieved stand-level 
estimation accuracies for species-specific attributes that are comparable with those of 
conventional field inventories by compartments (Haara and Korhonen 2004), and ALS-
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based estimates for total characteristics are even more accurate than inventory results based 
on visual assessment and subjective field measurements; the approach that is now being 
superseded by ALS-based inventories. 

The main challenge in ITD methods has been difficulties in discerning individual trees. 
Overlapping tree crowns make the correct delineation of adjacent trees virtually impossible 
in dense, heterogeneous stands, which results in biased stand-level estimates (Maltamo et 
al. 2004a, 2004b, Koch et al. 2006). If tree delineation is successful, however, ITD can 
provide valuable information about the tree crown (Popescu and Zhao 2008, Vauhkonen 
2010), tree quality (Maltamo et al. 2009a) and tree species (Holmgren & Persson 2004, 
Vauhkonen et al. 2009, Ørka et al. 2009). 

 
 

1.2 Estimating stand characteristics for wood procurement planning 
 

1.2.1 Inventory information requirements 
 
ALS-based forest inventories are replacing, or have already replaced, field inventories as 
the primary method for collecting information about the growing stock in many countries, 
including Finland, but operational planning still requires additional measurements for 
checking that the forest management decisions based on the ALS inventory are correct and 
for collecting information on variables that are not directly evaluated in an ALS inventory, 
as these variables may affect resource allocation by the wood procurement company and 
the pricing of the timber. It will be important from the company’s point of view, for 
example, to have precise information on the location of potential stands for final felling, 
their tree size distributions and tree quality, in order to know where and when to harvest in 
order to optimize the flow of raw material. On the other hand, forest owners are able to 
make better decisions on timber sales if they have enough information on the material 
available for sale. 

The information on stand characteristics required for the planning of wood procurement 
includes the volumes and proportions of the potential timber assortments. The main timber 
assortments are saw logs and pulpwood, both specified according to size and quality 
criteria. Species information is also important, since the size and quality criteria are usually 
species-dependent. Saw logs can be further divided into special assortments, which may 
differ significantly in their economic value. In addition to saw logs and pulpwood, timber 
assortments may also include energy wood and some low-value saw timber, e.g. small-
diameter saw logs. The value of the wood as a raw material is mainly dependent on the 
recovery of the most valuable timber assortments, i.e. saw logs. In addition to estimates of 
total volume and the proportions of the main timber assortments, wood procurement 
planning requires information on the distribution of saw logs into special assortments. This 
can be estimated from species-specific tree size distributions, or estimated tree lists. Quality 
reductions due to branchiness, crookedness, etc. and other defects may have a significant 
effect on the actual recovery of the timber assortments. 
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1.2.2 Estimation methods and the content of stand-level forest inventories 
 
The information collected in a stand-level forest inventory in Finland contains details of the 
growing stock and forest site type together with additional information for use in forest 
planning. The growing stock variables consist of the basal area or stem number, age and the 
diameter and height of the basal area median tree for every tree stratum, which is a 
combination of tree species and tree layer (Solmu maastotyöopas… 2003). The stand 
volume and timber assortment data are derived from these mean growing stock variables in 
two steps (Kangas & Maltamo 2002). First, the basal area diameter distribution is estimated 
based on the mean variables that have been assessed. Second, the volume and timber 
assortments are predicted using tree-level height and volume models or taper curve 
functions based on diameters sampled from the predicted diameter distribution. Several 
theoretical constructs, e.g. Weibull distribution models (Kilkki et al. 1989) and percentile-
based diameter distribution models (Kangas & Maltamo 2000a) can be employed for 
describing the tree size distribution. Maltamo et al. (2000) and Kangas & Maltamo (2000b) 
have demonstrated that percentile-based distributions describe the diameter distributions 
slightly more accurately than does the Weibull distribution, especially if the forest structure 
is heterogeneous. Theoretical saw log volumes were also estimated with better accuracy 
using percentile-based diameter distributions. 

Timber assortments can also be estimated without any predicted diameter distribution. 
Nyyssönen & Ojansuu (1982) and Päivinen (1983) have formulated saw log percentage 
models, which can be used for predicting saw log percentages from stand attributes, but 
these models do not take into account the internal structure of the forest stand and they 
cannot use a description of the tree size distribution, whereas tree-level saw log reduction 
models (e.g. Mehtätalo 2002) can be used with estimated diameter distributions to predict 
actual saw log recovery (i.e. a saw log recovery figure which includes reductions due to 
bucking constraints (allowable length and diameter combinations) and external technical 
defects).  
 
 

1.2.3 Estimation methods developed for wood procurement purposes 
 
The information provided by a stand-level forest inventory alone is not sufficient for 
optimizing wood procurement. Such information is not usually extensively available, is 
commonly out of date because of deficient updating or is lacking in reliability for some 
other reason. The stand delineation in a stand-level forest inventory may also differ 
considerably from the operative stand delineation, and therefore the information cannot be 
connected with operative planning units very precisely. Moreover, saw log percentage 
models and saw log reduction models cannot take into account changes in the bucking 
constraints. Thus several methods have been developed for providing information for the 
purposes of wood procurement planning.  

The necessary information can be collected using field inventory methods such as the 
PMP system, which was based on measuring the diameter at breast height (DBH) of every 
tree in the stand in question (PMP-ohje 1982). In addition, sample trees with more 
extensive measurements (diameter at 6 metre, tree height, quality information etc.) were 
performed to complete the survey (PMP-ohje 1982). Extensive field measurements can 
provide accurate data on the measured stands, but they are laborious and expensive, and it 
is practically impossible to survey all potential stands. Some sample-based methods have 
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also been proposed in order to reduce the costs of field inventories (e.g. Uusitalo 1995 and 
Hansson 1999), but these are not widely used in practice since they have been found to be 
too expensive and laborious relative to the accuracy achieved. 

 The use of computational methods is one option for obtaining information for wood 
procurement planning without laborious field measurements. Tommola et al. (1999) studied 
non-parametric k-nearest neighbour (k-NN) techniques for estimating the characteristics of 
stands with a potential for harvesting, using stems assessed by means of log measurement 
instruments installed at sawmills as reference data combined with stand data from an 
information system (e.g., geographical location, stand area and density, mean tree size etc.) 
and additional variables that included some accurately measured stem size variables as 
independent variables. Malinen et al. (2001) and Malinen (2003) examined the k-NN 
method as a means of estimating stand characteristics for the purposes of wood 
procurement planning using a harvester-collected stem data bank for calculating the 
independent variables and extracting the other variables used in the modelling (temperature 
sum, location, stand age, forest site type etc.) from a field survey. Neural computing has 
also been examined for its ability to predict stand characteristics in the context of wood 
procurement planning. Neural network methods such as self-organizing maps (SOM) 
(Kohonen 1995) have been successfully applied to numerous estimation problems, but the 
studies of Räsänen et al. (2000) and Lappalainen (2005) indicated that the number of 
measured stands compared with the number of variables used for describing the stand 
properties is inadequate for successful SOM training, and maintained that these methods 
are incapable of competing with NN methods for the estimation of stand characteristics. 
Computational methods based on NN techniques were found in these studies to be efficient 
with respect to the accuracies they achieved and the resources they used, they require at 
least some kind of a-priori information about the potential stands. Common stand-level 
forest inventory information may be suitable for this purpose if it is available and up-to-
date, and if the stand delineation in the stand-level forest inventory does not differ 
significantly from the operative stand delineation. In practice this means that the use of 
computational methods may still require a separate stand level forest inventory, although 
not such a thorough one. 
 
 
1.3 Diameter distribution and timber assortment estimation with ALS 
 
Diameter distributions can be estimated in several ways in the context of an ALS inventory. 
In the case of ITD the principle is simple: the stand-level diameter distribution is a 
composite of the diameters of the individually detected trees in the stand. ITD methods do 
not directly produce the diameters for the detected trees, however, but rather they are 
predicted using tree-level allometric models (Hyyppä & Inkinen 1999, Kalliovirta & 
Tokola 2005), or tree or stand-level variables extracted from ALS data (Vauhkonen et al. 
2010, Maltamo et al. 2009a). Furthermore, discerning individual trees is a challenging task 
and may result in a biased distribution (Maltamo et al. 2004a, Maltamo et al. 2004b, Koch 
et al. 2006). The effect of bias due to omission error can be diminished by using a 
theoretical distribution to estimate the diameter distribution of suppressed trees, as was 
suggested by Maltamo et al. (2004b). As a result, the final distribution is a combination of 
individually detected trees in the dominant layer and a modelled distribution for the smaller 
trees in the sub-dominant layer. Lindberg et al. (2010) used a target distribution estimated 
by an area-based method to calibrate their ITD distributions, and found that this reduced the 
estimation error relative to the not-calibrated distribution. Other ways of overcoming this 
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bias are to use statistical correction methods as proposed by Flewelling (2008 and 2009) or 
to use tree clusters instead of individual trees (Breidenbach et al. 2010). 

The area-based approach offers possibilities for direct imputation of the empirical 
diameter distributions of field reference sample plots and several options for using 
theoretical distributions or percentile-based distributions. One option is to predict mean 
stand variables using ALS and then estimate the theoretical diameter distribution by 
predicting parameters for the assumed theoretical distribution using the predicted mean 
stand variables and existing models for predicting the parameters. This method was tested 
by Maltamo et al. (2006a) and Holopainen et al. (2010), applying a Weibull function and 
existing parameter prediction models. The method is analogous to that used in field-based 
inventories by compartments and differs only in how the mean stand variables are 
estimated. The process can also be executed using the grid approach, by predicting the 
parameters of the theoretical distribution using the ALS estimates for all the estimation 
units (grid cells) separately and treating the stand-level distribution as a combination of the 
grid cell-level distributions of the stand (Packalen and Maltamo 2008). 

Gobakken and Næsset (2004) used regression analysis to relate the parameters of a two-
parameter Weibull distribution and Weibull percentiles to variables derived from the ALS 
data. They modelled both diameter and basal area distributions, and the comparison showed 
that the basal area distribution produced more accurate volume estimates than diameter 
distributions scaled with reference to the number of stems. Furthermore, Gobakken & 
Næsset (2005) compared two approaches for estimating basal area distributions using ALS 
data, a Weibull distribution and a percentile-based distribution, and found no significant 
differences in the volume predictions even when comparing plots with small and large 
diameter variability. Maltamo et al. (2006a) compared two laser scanning-based methods 
and a field inventory-based method for estimating basal area diameter distributions using 
laser scanning-based height metrics. The field inventory method and the first ALS method 
were based on predicting parameters for a Weibull distribution using either field-assessed 
mean stand characteristics or stand characteristics estimated using ALS data. Another ALS 
method was based on modelling percentiles of the basal area diameter distribution. 
Bollandsås & Næsset (2007) studied the estimation of percentile-based basal area 
distributions in an uneven-sized Norway spruce stand using ALS data. 

Maltamo et al. (2007) demonstrated that it is possible to derive diameter distributions 
directly in the form of stem frequencies instead of from basal area distributions if ALS data 
are used, without any loss of accuracy in the volume estimates. They also tested a 
calibration estimation for adjusting the predicted diameter distribution by reference to the 
ALS-based stand volume estimate. 

Mehtätalo et al. (2007) proposed a parameter recovery approach obtaining the 
theoretical diameter distribution. The parameters of an assumed diameter distribution and 
height-diameter curve were recovered using the mathematical relationship between the 
parameters of the theoretical distribution and the stand characteristics as estimated using 
ALS. The method was found useful in laser scanning approaches where accurate 
predictions of forest stand characteristics are obtained. One benefit of the parameter 
recovery approach is that no parameter estimation is needed, since the approach recovers 
the parameter values without the use of tree-level data. 

Breidenbach et al. (2008) presented a one-step procedure for deriving the parameters of 
a Weibull function to describe diameter distributions. Plotwise height metrics derived from 
airborne laser scanner data was used as auxiliary variables in the estimation. The method 
does not require any extensive tree-level observations per sample plot. Thomas et al. (2008) 
examined the ability to predict Weibull parameters from ALS data using multiple 
regression analysis, and found that it was possible to characterize young heterogenous 
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stands using unimodal Weibull distributions if the plots were stratified into structurally 
similar groups based on stem density and canopy top height, whereas the two-parameter 
Weibull models did not correlate well with the ALS metrics without stratification. They 
suggested that a better alternative for irregular distributions would be to predict a two-mode 
Weibull mixture model from the ALS data. 

All the above methods for estimating diameter distributions employed with ABSA are 
based on constructing either theoretical distribution or percentile-based distribution models. 
Packalen and Maltamo (2008) used k-NN imputed trees to form a diameter distribution, so 
that the diameter distribution of the target unit was composed of the trees of the k nearest 
observations. The imputed trees were weighted using the inverse of the most similar 
neighbour (MSN) distance (see Moeur and Stage 1995). The diameter distribution was then 
a set of trees, or tree list, classified and ordered by diameter with class frequencies 
calculated using weights. The method requires the reference plot data to include tree-level 
data, i.e. the reference data must include a tree list for every plot. Maltamo et al. (2009b) 
examined the same method using stratified data and also considered the effect of a reduced 
number of reference plots on estimation accuracies. 

If the diameter distribution and diameter-height curve are estimated, the theoretical 
volumes of timber assortments can be calculated using existing taper curve functions and 
predefined diameter and height dimension limitations for the different timber assortments 
based on sample trees from the diameter distribution. Bucking simulations can be used to 
estimate the length-diameter distributions of timber assortments with different bucking 
parameters in relation to demand and price matrices (Malinen 2003). If a tree list is 
available (as in the case of ITD or k-NN-imputed trees) the volume calculations and 
bucking simulation can be carried out using the trees on the tree list directly. 

Timber assortments can also be predicted using direct estimation models. Rooker 
Jensen et al. (2006) formulated area-based ALS regression models for the volumes of small 
saw logs, large saw logs and poles, while Maltamo et al. (2009a) estimated the saw log 
proportion using ITD and k-MSN imputation. The use of direct estimation allows the 
estimation of actual volumes for timber assortments if the reference data include actual 
measured volumes, i.e. with the minimum dimensions and quality requirements of timber 
assortments taken into account in the reference measurements. In Maltamo et al. (2009a), 
for example, the part of the stem that qualified for saw logs was determined on the basis of 
field measurements. 

Since estimated diameter distributions or tree lists do not necessarily contain 
information about the technical quality of the timber, estimated saw log volumes do not 
include the effect of quality reductions and are therefore only theoretical. Average actual 
saw log recovery can be estimated using saw log reduction models (Mehtätalo 2002), but 
these models cannot be used with bucking simulations to produce actual length-diameter 
distributions for timber assortments, since the models do not estimate the position of the 
defect affecting the quality of the stem.  

No previous studies are extensively available that include comprehensive tree quality 
information in the area-based ALS estimation process. Crown height is possibly the most 
intensively studied quality-related variable (excluding stem dimensions) in an ALS forest 
inventory context. ABSA-based estimation of crown height has been studied by Næsset & 
Økland (2002) Maltamo et al. (2006b), Dean et al. (2008) and Maltamo et al. (2010), 
whereas vertical crown dimension studies based on individually detected trees are 
numerous (e.g. Næsset & Økland 2002, Roberts et al. 2005, Maltamo et al. 2006b, Popescu 
& Zhao 2008, Vauhkonen 2010). Maltamo et al. (2009a) demonstrated that it is also 
possible to estimate other tree quality attributes such as the height of the lowest dead 
branch for individually detected trees using ITD. The estimation of some tree crown 



 15 

variables such as crown height is also possible without field calibration (Maltamo et al. 
2010). Perhaps the most ambitious research has been the study by Bollandsås et al (2010a). 
They modeled actual saw log volumes, saw log proportions, mean decrease in millimetres 
between diameter at 6 metres (D6) and DBH, mean ratio of height and DBH and mean 
crown height by using ALS data and harvester measured field plots in mature stands. 
 
 
1.4 Fusion of harvester and remote sensing data 
 
Harvesters equipped with an on-board merchandising or bucking computer are able to 
collect and record information about the trees that have been felled and processed. In 
Europe the Standard for Forestry Data and Communication (StanForD) maintained by 
Skogforsk has become a de-facto standard for the management of merchandising computers 
and forest communications. This is both a data standard and a file structure standard, and it 
also includes a Kermit-based communications protocol for connecting a data recorder to the 
merchandising computer on the harvester (What is StanForD… 2010). StanForD data files 
are divided into numerous types according to the application concerned, each data file for a 
specified application being defined by a file name extension. It is the stm files that are the 
most interesting for forest inventory purposes, as these include individual tree measurement 
information, i.e. the measured lengths and diameters of the trees that have been felled and 
processed (Standard for… 2007). By combining stm file data for a certain geographically 
defined area it is possible to extract information about the tree size distributions, total 
volumes, tree species proportions etc. of that area. In the case of final fellings, the 
information provided can be used as a wall-to-wall timber inventory of that area carried out 
by measuring every single tree larger than a given minimum size. There are certain features 
of the measurement techniques, however, that make interpretation of the recorded values a 
somewhat challenging procedure. Firstly, the data apply to trees which fulfil certain 
minimum dimensions related to the timber assortment classifications used, i.e. trees that do 
not fulfil certain minimum dimensions or quality attributes are not included. Secondly, 
there is no explicit information on stump height, so that the first diameter measurement 
height can differ between machine-software combinations, and the last diameter and height 
measurement applies to the last cutting point (i.e. information on the top of the tree is 
missing) (Räsänen et al. 2000). Besides the challenges mentioned above, one element 
which increases the uncertainty is the spatial delineation of the stand, or the absence of this, 
for in their absence the area-related variables cannot be used without carrying out a separate 
stand delineation operation. If the stm file includes recorded coordinates, the stand can be 
delineated based on this information, but because of the features of the positioning (which 
are discussed later), separate stand delineation is preferred. The measurement accuracy of 
the tree dimensions is not in itself the main concern, for in the case of new harvesters about 
68 % of all diameter measurements are within error limits of +/- 4 mm (Möller and Arlinger 
2007). According to the same study, 84% of the length measurements are within error 
limits of +/-2 cm and volume is measured with less than a 1.5% error when manual control 
measurements are used as a reference. 

Based on previous studies, fusion of the harvester data remote sensing data can be 
divided into two applications. The first is to use harvester data for training purposes instead 
of manually collected field plot data (see Rasinmäki and Melkas 2005, Melkas et al. 2009, 
Bollandsås et al. 2010a) or as tree-level reference data in the ITD approach (Larsson 2009), 
although this is problematic in a laser inventory because of the positioning method. The 
positioning of the field plots used in modelling is an essential part of any area-based 
inventory method, and it has been demonstrated that a positioning error of up to 2-5 metres 
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in xy location with a plot area of 200-400 square metres will not significantly affect the 
ALS estimates for mean height, basal area and total volume (Gobakken and Næsset 2009), 
but the effect of the plot positioning error is dependent on the plot size and forest strata 
(Gobakken & Næsset 2009) and, presumably, also on the structure of the forest mosaic. It is 
possible to record x, y and z coordinates on an stm file for every felled tree, but these will 
be taken from the GPS antenna installed in the cabin of the harvester machine and will not 
be the coordinates of the harvested tree but those of the machine at the time of felling the 
tree. Moreover, harvesting operations are rarely optimized for GPS positioning and it is 
difficult to validate the quality of the recorded coordinates. According to Rasinmäki and 
Melkas (2005) the location of the harvester is recorded at an accuracy of about 3.2 metres, 
and without additional information on the harvesting techniques used in a particular stand 
we can add the harvester’s boom length (up to 10 metres) to the positioning error. 
Bollandsås et al. (2010a) suggested that the limited positioning accuracy of harvester data 
could be compensated for by using a larger plot size. Furthermore, the correct positioning 
of reference trees is an even more crucial issue in the ITD approach, since the trees 
measured in the field must be linked to the trees detected individually in the ALS data. To 
make this possible, the positions of individual trees should be determined to an accuracy of 
about 1 metre. At the current state of harvester positioning technology this means that the 
coordinates of the reference trees would have to be collected with separate GPS 
measurements before harvesting, the trees numbered and the operator of the harvester 
machine instructed to record the tree number when processing the tree (Larsson 2009).  

The second application is to use harvester data for validation purposes (Maltamo et al. 
2010, Holopainen et al. 2010, Bollandsås et al 2010b). Harvester data for a clear-cut stand 
will provide stand-level wall-to-wall control measurements in an economically feasible 
way. However, if the harvester data are used for plot or tree-level validation the same 
positioning challenges apply as in the previous paragraph. 

 
  

 
1.5 Objectives 

 
The overall aim of this thesis was to study the use of ALS-based forest inventory methods 
for retrieving the information needed for wood procurement planning. The information to 
be considered here comprised diameter distributions and saw log recoveries in addition to 
the more commonly produced inventory results, i.e. mean stand characteristics. A further 
aim was to study and develop methods for using harvester-collected data as reference and 
auxiliary data in ALS-based forest inventory projects. The specific objectives of the thesis  
were: 
 
1. To investigate the possibility of using an ALS-based individual tree delineation 
procedure and area based statistical approach to produce pre-harvest measurement 
information on stands marked for final felling and to compare these with alternative pre-
harvest measuring methods (paper I). 
 
2. To investigate the possibility of using ALS-based methods to estimate stand-level 
diameter distributions (papers I, III and IV). 
 
3. To develop and test ALS-based methods for estimating theoretical and factual saw log 
recoveries (papers II and III). 
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4. To examine the possibilities of using harvester-collected data as a validation data (papers 
I, II and III) and as an auxiliary data source (paper III) in an ALS-based forest inventory. 
 
5. To investigate the estimation accuracies of individual tree delineation and an area-based 
statistical approach within the same test area (papers I and IV). 
 

 
 

2 MATERIALS 
 
 

The two data sets used in this work applied to the Matalansalo and Koli inventory areas. 
The Matalansalo data set was used for papers I, II and III and the Koli data set only for 
paper IV. Both refer to boreal forests, although these are markedly different in many 
respects with regard to their forest characteristics, field measurements and remote sensing 
material, so that they will be described separately in the following sections. 

 
 

2.1 Matalansalo data set 
 

2.1.1 Inventory area and field data 

 
The Matalansalo inventory area is located in the municipality of Varkaus in Eastern Finland 
(about 28° 29’ E, 62° 18’ N). The total area is approximately 1,200 hectares and it is 
dominated by coniferous species (Norway spruce (Picea abies (L.) Karst) and Scots pine 
(Pinus sylvestris L.). Deciduous species are found mainly as a minority in mixed species 
stands. The Matalansalo area can be considered representative of a typical managed boreal 
forest area in Finland. 

The field data were collected in summer 2004. A total of 474 circular plots of radius 9 
metres were systematically distributed over the 67 forest stands and positioned with a 
Global Positioning System (GPS) using differential correction. DBH, species, tree storey 
and tree class (dead, alive) were recorded for every tree with a DBH of at least 5 cm within 
each plot. In addition, one tree from every tree storey by species per plot was chosen as a 
height sample tree. The heights of the rest of the trees were then calculated using the 
species-specific height models of Veltheim (1987), which were calibrated by plots by 
means of sample tree measurements. The volumes of individual trees were calculated using 
the species-specific volume functions of Laasasenaho (1982). Finally, mean stand 
characteristics, i.e. basal area (G, m2/ha), number of stems (N, n/ha), volume (V, m3/ha) and 
diameter (Dgm, cm), and the height (Hgm, m) of the basal area median tree, were 
calculated for each plot.  
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2.1.2 Remote sensing material 

 
The airborne laser scanning (ALS) data, acquired on 3 and 4 August 2004 with an Optech 
ALTM 2033 laser scanner, arose from two flights at altitudes of 1500 and 380 metres above 
ground level. The second scan covered only part of the area. The field of view was 30 
degrees in both cases. This yielded a swath width of approximately 800 metres for the first 
scan and 200 metres for the second. The first scan resulted in a nominal sampling density of 
about 0.7 measurements per square metre and a footprint of 45 cm at ground level. These 
data was used in papers II and III, and for ABSA (method 6) in paper I. To achieve an 
adequate density of laser pulses for individual tree detection, the second flight was carried 
out by scanning the same line of flight four times and combining the data sets from both 
flights. This produced an overall first pulse density of approximately 6.4 per square metre 
for the final data set in the ITD methods as used in paper I. A digital terrain model (DTM) 
for both scans was processed from last pulse data of the first scan with TerraScan software 
(see www.terrasolid.fi). For this the ground points were first separated from the other points 
using the method explained by Axelsson (2000) and then a raster DTM was created from 
the classified ground points by calculating their mean values within each one-metre raster 
cell. Values for raster cells with no data were derived by Delaunay triangulation and the 
bilinear interpolation method. The ALS data were further processed by subtracting the 
DTM from the laser pulses to produce a point cloud with x, y and dz coordinates, where dz 
is the height above the ground. Only the first pulse data were used to obtain the forest 
characteristics.  

In addition to the ALS data, colour-infrared photographs at a scale of 1:30,000 were 
acquired on 22nd August 2004 with a Leica RC30 camera having a UAGA-F 13158 
objective of focal length 163.18 mm and an anti-vignetting filter (AV525 nm). The films 
were digitized at a resolution of 14 µm, orthorectified using the DTM generated from the 
ALS data and re-sampled to a pixel size of 50 cm. Since three aerial photographs were 
required to cover the area, radiometric calibration was performed in order to make the 
images comparable. The correction was done by the method presented by Tuominen and 
Pekkarinen (2004), using a Landsat 7 ETM satellite image of the same area taken in June 
2002. The radiometric resolution of the final images was 8 bits. 

 

2.1.3 Harvester-collected data 

 
A total of 14 marked stands located in the Matalansalo inventory area were clear-cut after 
acquisition of the remote sensing material. These stands were delineated using GPS and 
differential correction. To avoid the effect of trees left in the clear-cut area, retention tree 
groups of more than 2 trees were also delineated from the stand polygons. The harvester 
data on the stands consisted of stm files which included the position of the harvester at the 
time of felling, diameters of the stem as measured by the harvester in 10 cm intervals from 
the felling point to the last cutting point, the length of the usable part of the trunk, species, 
bucking parameters and bucking results for every harvested tree according to the StanForD 
(Standard for… 2007). The denser scan area (second scan) covered two of the stands, 
whereas all the stands were inside the area of the first scan. The harvester data were 
collected independently of the circular sample plot data. Eight out of the 14 stands were 
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such that they contained sample plots or portions of sample plots. A total of 45 complete 
plots were located inside the test stands. 

In addition to the harvester-acquired data, the Matalansalo data set also included stem 
data bank data on 35 mainly spruce-dominated clear-cut stands originally collected for the 
Finnish Forest Research Institutes’ research project “Value formation of timber stand when 
targeting for alternative end-products in timber harvesting”. The stem data bank stands 
were located outside the scanned area at distances of up to 250 kilometres north-east, south 
and west of Matalansalo. The stem data bank included tree data extracted from stm files 
(species and bucking results for every harvested tree). Unlike the marked stands covered by 
ALS, the stem data bank stands were not delineated on the ground. 

 
 

2.2 Koli data set 

2.2.1 Inventory area and field data 

 
The Koli inventory area is located in the southern part of the Koli National Park in Eastern 
Finland (about 29° 55’ E, 63° 2’ N). Until the foundation of the national park in 1991 the 
area had been subject to normal forestry management practices. Even though the Koli area 
cannot be considered representative of managed forests in the region, in view of the long 
rotation age required in the poor soils of the area, the state of the forests there is close to 
that in managed semi-natural forests in the boreal zone except for some over-dense young 
or developing stands. 

The field data apply to 14 square plots (30 m by 30 m) located randomly over the Scots 
pine stands of the area. The plots were further divided into 127 square subplots of 10 by 10 
metres. The plots were measured in the field during May and June 2006 and their corners 
were positioned using differential GPS. DBH, D6, height, species, and xy coordinates were 
recorded for every tree of DBH over 5 cm. In addition to these characteristics the canopy 
cover percentage was measured using a Cajanus tube. Stem volumes were calculated using 
the species-specific stem volume models of Laasasenaho (1982), which employed DBH, 
D6 and height as independent variables.  G, N, V, Dgm and Hgm were calculated for each 
plot and each subplot. In addition, dominant height (Hdom, m), arithmetic mean of DBH, 
arithmetic mean of height, standard deviation of DBH, standard deviation of height, the 
coefficients of variation in DBH and height, and the index of dispersion of counts (Cox and 
Lewis 1966) were calculated for the plots but not for the subplots. 

 

2.2.2 Remote sensing material 

 
The ALS data were collected on 17th June 2005 with an Optech ALTM 3100 laser scanner. 
The divergence of the laser beam was 0.26 mrad, scanning angle ±11 degrees and mean 
operation altitude 900 m above ground level. This resulted in a swath width of 
approximately 350 m, a nominal pulse density of 4 pulse/m2 and a footprint of size about 23 
cm. The equipment is able to collect up to 4 range measurements: the first, last and two 
intermediate returns, although only the last and first returns were used here. Any original 
instances of only returns were duplicated to both the first and last categories. The DTM was 
generated using same methods as in the case of the Matalansalo data set. Both, the first and 
last pulse data were used for estimating the forest characteristics. 
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3 METHODS 
 
 

Two interpretation approaches were employed here for estimating the stand-level timber 
variables: ITD and ABSA. The ABSA approach was employed in all the papers, whereas 
ITD was used only in papers I and IV. The use of both approaches within the same test 
area, with the same test data set and for the same inventory task enabled comparisons to be 
made between the methods. 

 
 

3.1 Area-based statistical approach 
 

ABSA is an empirical method for investigating the relations between forest attributes and 
ALS height distributions. Estimation methods can be divided into parametric regression 
methods and non-parametric nearest neighbour methods. Parametric linear regression was 
used in papers II and IV, and the existing ABSA models used as a reference in paper I were 
also of the linear regression kind. The non-parametric k-NN method was used in paper III. 

 

3.1.1 Extracting independent variables from remote sensing data 

 
The ABSA methods employed in all the papers used independent variables extracted from 
the canopy height distribution. The theoretical background to the relationship between ALS 
observations and canopy height distributions generated from data on individual trees has 
been elaborated by Magnussen et al. (1999) and Mehtätalo and Nyblom (2009). In theory, 
assuming that the trees are solid objects, the canopy height distribution of the ALS 
observations and the actual height distribution of the trees are not completely congruent, 
since i) trees are sampled in ALS observations with a probability proportional to their 
crown size as observed from above, ii) if crowns overlap at a given point, only the higher 
one will be observable, and iii) observed canopy height equals true tree height only at the 
tip of the tree (Mehtätalo and Nyblom 2009). Thus, large trees are usually overrepresented 
in an ALS canopy height distribution and its maximum canopy height will underestimate 
the true maximum height of the canopy (Mehtätalo and Nyblom 2009). Furthermore, the 
trees are not actually solid objects, and therefore the laser pulses penetrate in the canopy 
before the discrete return is triggered. This will increase the underestimation of the tree 
heights, again. 

In papers I, II, and IV the canopy height distribution was used in calculating the 
percentiles (H1, H5, H10, H20, H30, …, H90, H95, and H99) and the cumulative proportional 
canopy densities (P1, P5, P10, P20, P30, …, P90, P95, and P99) for 1, 5, 10, 20, 30, …, 90, 95, 
and 99% heights. The set of independent variables also included the proportion of 
vegetation hits versus ground hits, and linearizing transformations of all the variables, i.e. 
logarithmic, second power, square root and inverse transformations. The independent 
variables were calculated at plot level and for the last and first returns separately. 

In paper III the canopy height distributions were used as height histograms, in which the 
frequency was the proportion of laser returns in that dz class. Histograms were derived only 
for the first returns. False colour aerial image spectral histograms were also used as 
independent variables in paper III. Again all the independent variables were calculated 
separately for each plot. 



 21 

3.1.2 Estimating mean stand variables 

 
The mean stand variables were estimated using either parametric ordinary least squares 
linear regression or non-parametric k-NN. Since the data in paper II were hierarchical in 
nature, the parameters of the model were estimated using the lme function of the R 
statistical analysis software (R Development… 2010), which fits a linear mixed-effects 
model allowing for nested random effects. In paper IV the model coefficients were 
estimated using the lm function. The hierarchical nature was not considered, but instead the 
observations for the plot to which the model applied were excluded from the modelling data 
when estimating the coefficients. The predictor variables were initially selected from the 
total set of independent variables using the stepwise and regsubsets functions of the SPSS 
and R statistical software, the final selection being based on residual plots and r-squared 
values for the alternative models. 

The k-NN method of estimation as used in paper IV is a non-parametric nearest 
neighbour method in which the estimates for target objects are produced as weighted 
averages of nearest neighbours chosen from a set of reference objects. The nearest 
neighbours are searched for within a multidimensional feature space of independent 
variables using a chosen set of distance metrics. The distance metrics commonly used in the 
field of remote sensing for forestry purposes are the MSN distance derived from canonical 
correlation analysis (see Packalén and Maltamo 2006) and squared euclidean distance (see 
Tuominen et al. 2003). Since the independent variables in paper III were histograms, a 
suitable distance metric for defining nearest neighbours was the Minkowski distance of 
order one applied to the histograms.  This was calculated as the sum of the class-wise 
absolute differences between the proportions of the target and reference histograms: 

 

i
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,                                                                                                         (1) 

 
where Dpq is the calculated distance between objects compared, p and q, pi is the 

proportion of observations of class i in the target object’s histogram, qi is the proportion of 
observations of class i in the reference object’s histogram, and n is the number of histogram 
classes. The distance metric may have values from 0 (the histograms of the target and 
reference objects are the same) to 2 (the histograms have no observations in the same 
classes). After computing the distances, the neighbours were sorted and nearest neighbours 
were assigned for every target object. The final estimates for the target object p were then 
calculated as weighted averages of nearest neighbours, where the weight for the neighbour 
q is 2 minus the distance measure Dpq. 

  

3.1.3 Estimating diameter distributions 
 
In the case of ABSA, the diameter distributions were estimated by direct k-NN imputation, 
or alternatively using a theoretical Weibull distribution for which the parameters were 
predicted on the basis of the mean stand variables. The diameter distribution of the target 
objects in k-NN imputation is an aggregate of the diameter distributions of the nearest 
neighbour. Every tree in the nearest neighbour plot is weighted by the inverse of the 
distance measure and the final distribution is the sum of the weighted trees. The height 
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distribution can be produced in a similar manner. If the distributions and mean stand 
variables are estimated simultaneously, the resulting distributions are realizations of the 
estimated mean stand variables. 

The second approach, which employed a theoretical Weibull function, was the 
parameter recovery method, in which a pre-specified functional form is assumed to model 
the diameter distribution and height-diameter (H-D) curve. This approach searches for 
parameters for these models that result in given values for the mean stand variables. The 
method is based on setting the predicted values for certain stand characteristics to be equal 
to the corresponding values computed using the diameter distribution and H-D curve. This 
leads to a system of equations that need to be solved numerically (Mehtätalo et al 2007).  
The variables used in the recovery were V, N, G, Dgm and Hgm. The assumed diameter 
distribution was a left-truncated two-parameter Weibull(α,β) distribution with a fixed 
truncation point at the minimum measured diameter. The stand-specific H-D relationship 
was described by the models of Mehtätalo (2005). 

In paper I the parameters of a three-parameter Weibull distribution were estimated using 
the models presented by Kilkki et al. (1989), which employ G and Dgm as independent 
variables. Tree heights were predicted using the height curve of Näslund (1936), the 
parameters for which were predicted with the model presented by Siipilehto (1999).  

 

3.1.4 Estimating saw log recoveries 
 
In paper II the saw log recoveries, both theoretical and actual, were estimated directly using 
regression models. The theoretical saw log recoveries for the field plots were calculated 
using the tree-level taper curve models of Laasasenaho (1982) and species-specific 
predefined minimum dimensions for saw logs, and the actual saw log recoveries were 
obtained by multiplying the tree-level theoretical saw log volumes by a saw log reduction 
factor (Mehtätalo 2002). Separate regression models were then formulated for the 
theoretical and actual saw log recoveries based on ALS-derived independent variables. 

Only actual saw log recovery was investigated in paper III, this being estimated by the 
k-NN method using a stem data bank as a source of reference data. The estimated species-
specific stand-level H-D distributions were employed as search variables to find the nearest 
neighbour stands in the stem data bank, the distance metric used being the same as when 
estimating the H-D distributions (equation 1). The estimate for the actual saw log volume 
was then a distance-weighted average of the actual saw log volumes of the nearest 
neighbours scaled to the target stand by reference to the absolute stand-level species-
specific volumes. 

The theoretical saw log recovery was calculated in paper I by means of a bucking 
simulation, the input data for which consisted of the set of individual stems extracted from 
the estimated diameter distribution, with each stem described in terms of species, DBH, 
height and the taper curve function of Laasasenaho (1982). The result of the bucking 
simulation was then an optimal, or near optimal recovery of timber assortments from the 
input data according to predefined price and demand matrices. 

Actual saw log recovery was not considered in paper IV, but instead the potential saw 
log volume was described as the volume of trees with a DBH over the minimum limit of 15 
cm, i.e. the volume of saw log-sized trees. This was estimated using the diameter 
distribution and a height-diameter curve obtained from the ALS-based estimates for the 
mean stand variables and the volume models of Laasasenaho (1982).      
 



 23 

3.1.5 Estimation unit 
 
The estimation unit was a rectangular grid with a cell size of the same area as the reference 
plot, except in paper I, in which the mean stand variables were predicted using existing 
ABSA models in a manner similar to that employed in the original paper by Suvanto et al. 
(2005), i.e. the models were applied at stand level by calculating the independent variables 
from the laser returns for the whole stand. In the other papers the stand-level estimates 
aggregations of the grid cell-level estimates for the stand in question.  

 
 

3.2 Individual tree detection 
 

The ITD approach is a process which consists of consecutive steps from pre-processing of 
the ALS observations to delineation of the trees and finally estimation of the tree and stand-
level attributes. The following process was used in this thesis to implement the ITD 
approach: first, a canopy height model (CHM) was created from the ALS data and 
individual trees were identified from the CHM and segmented.  Next, various variables 
related to the individual trees were derived from the ALS and tree segment data, and the 
ground-measured height and DBH modelled on the basis of these derived variables. The 
last step was to predict the heights, DBHs and stem volumes of the individually detected 
trees and finally to calculate the total volumes, numbers of trees and other stand-level 
variables in order to form an aggregate of the tree-level information. 

3.2.1 Canopy height model 
 
The CHM was obtained by interpolating a raster from the dz values of the first returns by 
taking the maximum dz value within a circle of a certain radius from the centre of each cell 
of a rectangular grid laid over the target area. The optimal cell size of the grid and optimal 
radius of the search circle depended on the pulse density, in that the cell size and search 
radius were required to be as small as possible to maintain the data from individual laser 
returns, but large enough to avoid introducing too many gaps into the CHM. The cell sizes 
and search radii were chosen so that they were both the same and approximated to the 
nominal spacing of the first returns (40 cm in paper I and 50 cm in paper IV). As the pulse 
pattern was irregular, the process did not produce a value for every grid cell, so that missing 
values had to be interpolated by taking the average of a 3 x 3 grid cell window. This 
interpolation was performed successively until every grid cell had a value. 

The resulting raster images were further processed using the height-based filtering 
(HBF) and segmentation methods introduced by Pitkänen et al. (2004) and Pitkänen (2005). 
The HBF method takes advantage of a priori information regarding the positive correlation 
between tree height and the size of the canopy and uses Gaussian filtering, so that the filter 
size increases with the value of the raster cell being processed. The height ranges and 
corresponding values for the standard deviations (ơ) were 0-8 m ơ 0.4, 8-16 m ơ 0.6, 16-24 
m ơ 0.8, 24-32 m ơ 1.0 and 32-40 m ơ 1.2. 
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3.2.2 Detection of individual trees 
 
The actual detection of individual trees starts with a search for local maxima which can be 
considered candidates for treetop locations from the filtered raster image. After that, the 
image is subjected to watershed segmentation using a drainage direction-following 
algorithm (Gauch 1999, Pitkänen 2005). A threshold value can be set to mask out raster 
cells which are probably objects other than tree canopies (e.g. low vegetation or stones). 
The segmentation results in candidate tree segments with a number of attributes describing 
them: the maximum dz value of the segment (MaxDz), area of the segment (ASeg), 
maximum diameter of the segment (MaxDSeg), diameter perpendicular to the maximum 
diameter (PerDSeg), the average of these diameters (AvgDSeg) and the xy-coordinates of 
MaxDz (XySeg). 

 

3.2.3 Modelling height and DBH for individually detected trees  
 
The candidate tree segment attributes are not themselves useful for practical forestry, 
except for MaxDz, which can be related to tree height. MaxDz is not always an observation 
of the exact tree top, however, as it may be affected by a combination of factors such as 
pulse density, size of the footprint, scanning angle and the structure of the tree canopy so 
that it may underestimate the real tree height. Thus, if ground truth measurements of 
individual trees exist that can be linked to the candidate tree segments, the relation between 
the actual tree attributes and the candidate tree segment attributes can be modelled. In 
addition to the candidate tree segment attributes, area-level variables derived from the 
canopy height distribution or from aerial images can be used to estimate individual tree 
attributes. Since no ground reference based on individual trees was used in paper I, MaxDz 
was taken to represent the tree height and DBH was estimated using a local DBH-height 
regression model formulated from plot-level tree measurements. Individual tree 
measurements for the area concerned were available for paper IV, however, and therefore 
local regression models were constructed for tree height and DBH separately. Different 
local models were employed for estimation purposes, using candidate tree segment 
attributes and/or area-level variables as independent variables. As an alternative approach 
to estimating DBH, use was made of the existing species-specific regional models as 
presented by Kalliovirta and Tokola (2005). These models were formulated using National 
Forest Inventory (NFI) field data, with tree height and maximum tree crown diameter used 
as independent variables. The regional models were calibrated for the area concerned in 
paper IV by reference to local individual tree measurements. 

 

3.2.4 Predicting tree-level and stand-level variables 
 
Tree heights for the candidate tree segments were estimated using either a local model 
(paper IV) or MaxDz (paper I). DBH was then estimated by means of a regional model or 
local model. Stem volumes were predicted using the species-specific stem volume models 
of Laasasenaho (1982), which employ DBH and height as independent variables. Finally, 
the stand-level mean stand characteristics were formed as aggregates of the individual tree 
attributes. The saw log recoveries in paper I were estimated using bucking simulation in 
which the input data consisted of the set of individually detected trees, each described in 
terms of species, DBH, height and the taper curve function of Laasasenaho. In paper IV the 



 25 

volume of saw log-sized trees was the sum of the volumes of the trees with a DBH over 15 
cm.   

 
 

3.3 Accuracy assessment 
 

The final accuracy assessment was performed at the stand level in all the papers (the “plot” 
in paper IV corresponds to a stand and “subplot” to a plot). This was possible since the 
ground reference was measured using wall-to-wall methods, i.e. the whole tree population 
was measured in the field. The field method concerned in papers I-III was harvester 
measurement, and that in paper IV a manual field inventory in which all the trees in each 
stand were tallied. In the case of the ABSA models the estimation accuracy was also 
assessed at the plot level, this plot-level assessment being performed in papers III and IV by 
leave-one-out cross-validation with the plots within the same stand as the target plot 
excluded from the modelling data in each instance. In paper II the parameters of the models 
were estimated using mixed modelling with the stand as a random parameter. 

The estimation accuracies of the mean stand characteristics (V, G, N, Hgm, and Dgm), 
Hdom and saw log recoveries were assessed by calculating the root mean squared error 
(RMSE): 
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where n is the number of plots, yi is the observed value for the stand characteristic y, and ŷi 
is the predicted value. RMSE and bias were also calculated as relative values, i.e. the 
RMSE and bias values were divided by the observed mean values for stand character y. 
RMSE and bias were also used to evaluate the tree height and DBH models in paper IV. 

The goodness-of-fit of the diameter distribution was investigated using the 
Kolmogorov-Smirnov goodness-of-fit test and the error index proposed by Reynolds et al. 
(1988). The equation for the latter is: 
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where k is the number of diameter classes, if  is the observed number of stems, if̂  is the 
predicted number of trees in diameter class i, and wi is the weight of class i (Reynolds et al. 
1988). Basal area was used in weighting. 
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4 RESULTS 
 
 

This summary will concentrate on presenting the main results of this work, namely the 
accuracies achieved in estimating diameter distributions and saw log recoveries. 

 
 

4.1 Diameter distributions 
 

Diameter distributions were estimated either using ITD, where the diameter distribution is 
an aggregate of the results for individually detected trees, or by ABSA, where it is formed 
from k-NN imputed trees or where a theoretical distribution is fitted to estimated mean 
values (parameter recovery method or parameter prediction method). In paper I the 
diameter distributions were estimated using field measurement-based techniques as a 
reference. A summary of the estimation errors observed in the various papers is presented 
in Table 1. 

In paper I the ITD method produced a very well fitting diameter distribution in terms of 
the calculated Reynolds’ error indices, although the inventory by compartments method, 
which is based on field assessments and is traditionally used for stand-level inventories in 
Finland, combined with a theoretical Weibull function, produced almost as good a result in 
this particular case. The largest difference between the two methods appeared in the smaller 
diameter classes. The ITD method was also able to find smaller trees, whereas fitting a 
theoretical Weibull function to the estimated mean values produced a diameter distribution 
function which described the number of large trees exceptionally well but failed to describe 
the small trees. 

The stand in question in paper I was also included in the test stands for paper III. The 
diameter distribution estimated for that stand using k-NN had of Reynolds’ error index 
value of 8.4, which is almost double that achieved with ITD. This particular stand could be 
considered as an easy case for ITD; it had a low number of stems/ha (< 500) and had been 
thinned few years previously, so that the trees were not spatially clustered. The diameter 
distributions were also estimated by species in paper III, yielding results that were not as 
accurate as the total distributions. 

In paper IV all the stands were assessed using ITD and ABSA, and the basal area-
weighted Reynolds’ error index values for the diameter distribution estimates indicate that 
there was no difference in accuracy between the two methods in this data set. It was 
noticed, however, that several stand-level variables correlate with the estimation accuracy 
and that some variables have the opposite effects with the two methods. The most notable 
difference was found in the effect of tree size variation, since a large variation in tree size 
increased the estimation error attached to the diameter distributions when ITD was used, 
whereas in the case of ABSA tree size variation had no effect on the estimated diameter 
distribution. Other variables that decreased the estimation accuracy of the diameter 
distributions or the overall estimation accuracy with the ITD approach were a large number 
of trees, a high canopy coverage and a clustered spatial distribution of trees. In the case of 
ABSA a large mean tree size, small number of trees and more regular distribution of tree 
locations, which are all typical features of old, managed forests, reduced the accuracy of the 
diameter distribution estimates when evaluated in terms of the basal area-weighted 
Reynolds’ error index. 
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Table 1. Basal area-weighted Reynolds’ error indices for the estimated diameter 
distributions. All values are calculated using 2 cm diameter classes, the smallest class being 
7-9 cm. The values in parentheses are from species-specific diameter distributions. 
 
Paper   Method of estimation Mean stand size, 

ha 
Reynolds’ error index 
Average Stdev 

I ITD 5.9 4.6 - 
I Inventory by compartments, parameter 

prediction method 
5.9 7.2 - 

III ABSA, k-NN 3.1 7.2 
(12.0) 

2.3 
(3.4) 

IV ITD 0.09 17.8 6.8 
IV ABSA, parameter recovery method 0.09 19.2 5.8 
 
 
Sample diameter distributions for two stands that differ in their attributes are presented in 
Figures 1 and 2. The stand in Figure 1 is a mature one with a low number of trees and a 
large average tree size, while that in Figure 2 is a younger stand with large number of trees 
of a small average size. 
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Table 2. Accuracy of saw log recovery estimate. 
 
Paper  Method of estimation Number of 

stands 
Mean 
stand size, 
ha 

RMSE% of estimate 

   Total 
theoretical 

Total 
actual 

Pine 
actual 

Spruce 
actual 

I* ITD 1 5.9 0.4** 
10.6*** 

   

I* ABSA, regression + 
parameter prediction  

1 5.9 18.6    

I* Field assessment + 
parameter prediction 

 5.9 4.4    

II ABSA, direct 
regression models  

14 3.1 9.1 18.0   

III ABSA, k-NN 14 3.1  18.6 61.8 31.5 
IV**** ITD 14 0.09 36.2** 

42.1*** 
   

IV**** ABSA, regression + 
parameter recovery 

14 0.09 26.4-27.1    

*estimation error calculated as |field measured value – estimated value| x 100. **local 
height-dhb model. ***regional height-DBH model. ****estimate is volume of trees with 
DBH>15cm. 
 
In paper II, where both theoretical and actual saw log recoveries were estimated, the 
RMSEs in the test data were 19.2 m3 (9.1%) and 30.6 m3 (18.0%) at the stand level for the 
theoretical and actual saw log recovery values, respectively, and the corresponding biases 
were -10.2 m3 (-4.8%) and -7.2 m3 (-4.3%). The actual saw log volume estimation errors 
were much higher than theoretical ones, but the estimation methods (direct regression 
modelling in paper II, and k-NN and stem data bank in paper III) resulted in approximately 
the same accuracies for the total actual saw log volume estimates. The k-NN estimates were 
slightly less biased than those based on regression models: 1.1% vs. -4.3%. The species-
specific saw log recoveries were estimated with a rather poor level of accuracy, the RMSE 
of the total volume estimate in paper III being less than 10% and that for the saw log 
estimate about 10 percentage points higher (18.6%). The RMSEs for the species-specific 
total volumes were 47.7% and 20.3% for pine and spruce, respectively. The RMSEs of the 
saw log volumes were also about 10 percentage points higher here (61.8% and 31.5 % for 
pine and spruce respectively), and the biases of the saw log volume estimates were higher 
than those of the total volumes in all cases. 
 

 

5 DISCUSSION 
 

Airborne laser scanning-based forest inventories are usually considered an alternative to 
field inventories. In some sense this is correct, since the timber variables involved are 
usually the same. Nevertheless, operational ALS-based inventories still lack information on 
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minor species, forest site types, forest habitats, biodiversity issues and forest age, for 
example, although some attempts have been made to estimate these variables (Breidenbach 
et al. 2010, Vehmas et al. 2008, Pesonen et al. 2008, Weber & Boss 2009, Maltamo et al. 
2009c). One group of variables that are also missing from operational ALS inventories are 
tree quality characteristics. On the other hand, ALS-based forest inventories have some 
features that field inventories usually do not have. They measure the forest canopy structure 
directly, for instance, which provides excellent material for modelling related variables 
such as spatial, height and diameter distributions. ALS inventories can also be carried out 
on a wall-to-wall basis for areas of considerable size. Thus both approaches (ABSA and 
ITD) also allow the examination of forest attributes in terms of spatial xy coordinates, i.e. 
in a horizontal direction, in addition to inspection of the local (stand or plot-level) forest 
structure. 

The aim of paper I was to test the individual tree detection method for producing 
information for use in wood procurement planning, validating it against harvester-collected 
stm data. Individual tree detection can be regarded as having been successful with respect 
to the accuracies of the estimates for the number of trees and the saw log volumes 
calculated using bucking simulation. The examination of the diameter distributions and 
diameter-length distributions of logs similarly pointed to the superiority of the ITD method 
used here over the other methods tested, i.e. area-based ALS estimation and two field 
inventories. When the same stand was assessed with k-NN in paper III, ITD again produced 
a better-fitting diameter distribution. The forest stand may have had some features that 
could have favoured ITD in this particular case. Its management history as assessed 
visually, for example, indicated that the stand had been thinned according to the existing 
forest management guidelines, so that the trees were not located in clusters, imply easier 
segmentation of the individual tree crowns. The tree segmentation accuracy as such was not 
examined, however, since the reference data did not include accurate positions for the trees. 
In addition, the ground truth data favoured the ITD approach, as harvester data include only 
those trees that are processed by the harvester, i.e. the ground truth data may not include all 
the small trees in the sub-dominant layer, since they do not fulfil the minimum dimensions 
for harvested timber assortments. These small trees are still assumed to be included in the 
stand characteristics as estimated by the methods used for comparison, however, although 
their effect on the results in this case will be minimal except where the number of trees is 
concerned. Furthermore, plot level ABSA models were employed at the stand level, which 
may detract from the estimation results. Since some of the lidar-derived predictors (height 
percentiles) have non-additive features, lidar-based prediction models are scale-dependent 
(Zhao et al. 2009), which means that an aggregation of predicted values for individual cells 
will not be equal to a single prediction based on stand-level predictors. A better alternative 
would have been to compose stand-level results from the cell-level estimates, as done by 
Packalén & Maltamo (2008). The importance of DBH estimation was ascertained by 
comparing a DBH prediction model constructed using local data with regional models. The 
local model resulted in more accurate estimates for the diameter distributions, saw log 
volumes and diameter-length distributions of logs. The data available did not support any 
consideration of tree quality or species recognition issues in this connection, however. The 
used ALS equipment, Optech ALTM 2033, has two separate electronic circuits receiving 
the return signal, which are known to require separate calibrations frequently. There was no 
exact information about the calibration and the differences of the first and last pulse relative 
heights. The relative difference can be several tens of centimetres (Næsset 2002). Because 
the DTM was produced from the last pulse data and the CHM from the first pulse data, the 
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relative difference between last and first pulse echo heights affects directly to the estimated 
tree heights, and furthermore, the estimated diameters, taper curves and volumes. The effect 
of this was not studied since there were no field observations from individual trees, which 
would have allowed the inspection of tree height estimation accuracy. Flying altitude 
affects the properties of the point cloud, as well. Since the ALS data used in ITD was a 
combination of higher acquired low-density data and lower acquired high-density data, 
there is a risk of bias due the un-uniform properties of the point data. The risk for this was 
considered negligible, since the both ALS campaigns covered the whole analysis area, i.e. 
the data itself was uniform over the whole area.  

The starting point in paper II was to take quality reduction into account when estimating 
stand-level total saw log recoveries. Harvester-collected stm data were employed as ground 
truth data. The field measured theoretical saw log recovery was calculated using diameter 
measurements contained in the stm files and predefined minimum dimensions for saw logs, 
whereas the field measured actual saw log recovery was the sum of the volumes of logs 
given in the stm files. The result can be considered good by comparison with the estimation 
accuracies reported by Rooker Jensen et al. (2006) and Bollandsås et al (2010a), although 
direct comparison is difficult because of differences in the variation in stand characteristics 
between the areas concerned. Rooker Jensen et al. (2006) achieved RMSEs of 57.4 m3 and 
32.4 m3 in their validation data for the theoretical volumes of small saw logs and large saw 
logs, respectively. Bollandsås et al (2010a) reported RMSE of 41.3 m3/ha for actual saw log 
volume. Maltamo et al. (2007) modelled basal area and stem frequency distributions using 
ALS data and estimated the volume of saw-wood-sized trees (trees with dbh > 17 cm) from 
these diameter distributions. The relative RMSEs of the stand-level volume estimates were 
quite high, varying between 17.2 and 23.0 percent. 

The results of paper II are also quite encouraging when compared with the accuracies of 
field inventories by compartments, as according to Haara and Korhonen (2004) the RMSE 
for stand-level saw log volume in an inventory by compartments in Finland was 23.6 m3 
(44.6%). Moreover, the absolute RMSE for mature stands was even higher in absolute 
terms, 36.9 m3 (28.2%). The biases for the estimates of saw log volume and the saw log 
volume of mature stands quoted by Haara and Korhonen (2004) were 1.2 m3 (2.3%) and 3.1 
m3 (2.4%), respectively. Their RMSEs and biases apply to actual saw log volumes 
calculated using the saw log reduction models of Mehtätalo (2002) for both the inventory 
by compartments method and systematic plot sampling, the latter used as validation data, 
whereas the validation data in paper II consisted of the field measured saw wood recovery 
recorded contained in the stm files. 

Estimated saw timber ratios obtained by computational methods have been between 4 
and 26 percent (Tommola et al. 1999, Malinen et al. 2001, Malinen 2003), but the most 
accurate results presented in those paper were achieved using accurately measured stand 
data and not taking into account the effect of the defects. 

The saw log volumes in paper II were estimated using stratification by species, i.e. the 
modelling data were stratified by dominant tree species and separate models were 
constructed for each stratum. In the model application phase the stands were assigned to the 
correct stratum using a-priori information concerning their species composition. The 
estimation of actual saw log recoveries was taken one step further in paper III, where the 
aim was to estimate species-specific diameter distributions and actual saw log recoveries by 
species. The estimation process introduced a new application of the notion of fusing of 
harvester and ALS data: the use of harvester data as a stem data bank with ALS-predicted 
stand variables. The process is analogous to the method proposed by Malinen et al. (2001) 
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and Malinen (2003) with the exception that in paper III the search variables were estimated 
using remote sensing. The stand-level harvester data in paper III were related to remotely 
sensed stand data, and additional information that was not directly estimated using a remote 
sensing-based inventory (i.e. saw log volumes) was derived from the stem data bank. In the 
ideal case a stem data bank should consist of stands delineated and covered by the remote 
sensing data used in an actual remote sensing-based forest inventory. For example, in the 
ideal situation all the stands in a stem data bank should be submitted to airborne laser 
scanning with the same specifications as the stands selected for the inventory. This is rarely 
the case, however, and therefore stem data bank information cannot be related directly to 
remote sensing data. Instead, a two-phase inventory should be used, in which the variables 
which can be related to the stand data bank (e.g. tree species proportions, diameter 
distributions) are estimated for the inventory units in the first phase and then used in the 
second phase to find stands with similar attributes in the stem data bank. 

The two-phase inventory in paper III was carried out using the following process. First 
the diameter distributions were estimated using k-NN imputation based on the ALS data 
and aerial image-derived height and spectral histograms. Next, the estimated diameter 
distributions were used to find the k nearest neighbours in a stem data bank consisting of 
information extracted from stm files for 35 clear-cut stands located within 250 km of the 
target stands, and then the actual saw log recoveries for the target stands were imputed from 
the actual figures for the k nearest stands in the stem data bank.  

The diameter distributions were estimated with an accuracy comparable to those 
reported in earlier ALS studies. The distributions for the dominant species were estimated 
more accurately than those for the minor species, but it was also possible to obtain 
multimodal distributions by this method. Exact comparison of the accuracy of the estimated 
diameter distributions with the results of previous studies is difficult because of differences 
in the variations in stand characteristics between the areas concerned, and more 
importantly, because of non-standard accuracy assessment methods. Goodness-of-fit tests 
such as the KS test, based on Kolmogorov-Smirnov test statistics, and indices such as the 
error index proposed by Reynolds et al. (1988) are well-known and practicable methods for 
this purpose. The problem is that changes in the distribution parameters (diameter class 
width, unit on the y-axis) and weighting of the classes can have considerable effects on the 
resulting test or index value. The accuracy of the actual saw log recovery estimates can be 
compared with the results presented in paper II, since the same validation data were used in 
both papers. The accuracies of the total actual saw log volume estimates were 
approximately similar, with the direct regression models producing slightly more accurate 
results, but the species-specific actual saw log volume estimates were not accurate. Haara 
and Korhonen (2004) reported RMSEs of 16.9 m3 (52.0%) and 27.2 m3 (62.3%), 
respectively, for saw log volumes of pine and spruce, and the accuracy achieved in paper III 
was comparable in the case of spruce, but the estimation error was larger for pine. The 
biases for both species were also significantly larger. One possible reason for the poor 
estimation accuracies could be the low number of reference stands in the stem data bank. 
The inclusion of test stands in the stem data bank and their evaluation by the leave-one-out 
cross-validation technique decreased the estimation errors. Thus it can be assumed that a 
more representative stem data bank consisting of stands located near the inventory area 
would improve the estimation result. Packalén and Maltamo (2008) estimated theoretical 
saw log volumes from k-MSN-imputed tree lists and alternatively from predicted 
theoretical diameter distributions based on ALS data. They did not report total saw log 
volumes, but the stand-level species-specific RMSEs for their saw log volume estimation 
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accuracies using a Weibull distribution were 20.7 m3 (41.0%), 32.4 m3 (61.1%), and 7.0 m3 
(142.9%) for pine, spruce and deciduous species, respectively. The corresponding figures 
obtained from diameter distributions constructed using k-MSN imputation were 20.2 m3 
(40.0%), 23.1 m3 (43.6%), and 5.6 m3 (114.5%). The results were reported to be better than 
those of an inventory by compartments. In their study of the effects of different sources of 
error on predicted timber assortments, Holopainen et al. (2010) generated the stem 
distributions using Weibull distributions and the parameter prediction method and used the 
harvester machine’s stm data for validation. They divided the errors into three parts: 1) 
errors in stem-form prediction and simulated bucking, 2) errors in generation of the stem 
distributions, and 3) inventory error. Out of these it was the inventory error that was most 
significant. When the errors were combined, the RMSEs for ALS-based inventories of pine, 
spruce and birch saw wood, respectively, were 7.0 m3 (79.2%), 35.5 m3 (33.6%), and 6.2 
m3 (78.6%). The field inventory method used for comparison, inventory by compartments, 
resulted in significantly larger errors in the case of pine and birch saw wood, but similar 
errors for spruce saw wood. 

In paper IV a different data set was used, one which allowed more thorough 
examination of the performance of the ITD and ABSA methods in retrieving forest stand 
characteristics and a better comparison of these methods. The research framework was 
planned so that neither of the methods was favoured. The main findings were that: 1) the 
ITD method based on segmenting individual trees without calibration underestimates the 
number of trees, and though the effect of unsuccessful segmentation is not necessarily seen 
in the estimates for V and G, it is clearly perceived in the errors in estimating Dgm, Hgm 
and the volume of saw log-sized trees. 2) The tree size distribution and the spatial 
distribution of tree locations correlates with the estimation accuracies with both methods, 
ITD and ABSA. The first finding confirms the results presented by Packalen et al. (2008) 
and Vastaranta et al. (2009a), that both methods provide equally accurate estimates for V 
and G whereas ITD produces a bias in the estimated number of trees. The effect of errors in 
tree delineation on the Dgm and Hgm estimates were nevertheless more clearly perceived 
in paper IV than in earlier studies. Finding 2) confirms earlier observations with regard to 
ITD, but in the case of ABSA this is a new empirical finding and should be investigated 
more thoroughly in further studies. If the tree size distribution and the spatial distribution of 
trees affect the estimation accuracies to a significant extent, and if the predictive variables 
describing the distributional characteristics are not included in the ABSA models, the 
variables of a target unit (forest stand or plot) with spatial and tree size distributions that 
differ from those of a typical plot in the modelling data may be estimated with poor 
accuracy. Thus the modelling plots should also represent the variation in the tree size 
distribution and spatial distribution of trees to be found in the whole inventory area. 
Furthermore, if the inventory area consists of forest stands with varying spatial and size 
distributions, a predictive variable, or set of variables, correlating with the tree size 
distribution and spatial distribution should be included in the prediction model.       

Since the data set used in paper IV included only observations on pine stands, species 
recognition issues were not considered. Nevertheless, there are many previous studies 
dealing with species recognition issues in connection with ALS-based forest inventories. 
The work of Packalén (2009) is concerned with area-based estimation methods and gives a 
thorough description of how species-specific growing stock estimates can be produced by 
combining ALS data with aerial images. Another area-based method for taking species into 
account involves stratifying the data by forest development class, site type and species 
composition so that separate models are constructed for each stratum (see Næsset 2002). 



 34 

The drawback with the stratification method, however, is that it is possible to target only 
the stand estimates for the main tree species. Species recognition has been studied more 
widely in the case of ITD, with investigations into the recognition of commercially 
important species in boreal forests by means of geometrical features derived from laser 
point clouds (Vauhkonen et al. 2009), laser intensity variables (Korpela et al. 2010), a 
combination of intensity and laser height distribution variables (Ørka et al. 2009) and a 
combination of intensity and height distribution variables and geometrical features 
(Holmgren and Persson 2004, Vauhkonen et al. 2010), for example. Furthermore, 
Holmgren et al. (2008) identified species by combining predictors derived from ALS data 
and aerial images. The overall classification accuracies have varied from 70% to over 90% 
(classification into three classes: pine, spruce and deciduous). The most promising results 
have been achieved using very dense ALS data and a combination of several predictor 
variables. 

One interesting issue for further research could be to study the ALS-based estimation of 
tree quality by means of bucking simulation. The estimates of quality characteristics could 
be produced by either ITD or ABSA using the k-NN method, and the result of the ALS 
estimation would then be a tree list with information on quality parameters which affect 
saw log recovery. Applications of this kind would place high requirements on the ground 
truth data, however, as the quality information would have to be measured for numerous 
trees that fulfilled the minimum saw log dimensions. Also, it would probably not be 
realistic to attempt to estimate all the defects affecting the tree quality from ALS data, 
although it would be theoretically possible using nearest neighbour imputation methods, 
given that the height of the lowest dead branch, for example, was estimated successfully by 
Maltamo et al. (2009a). 

The estimation of additional variables would place higher requirements on the field plot 
sample, as well. Several attempts have been made recent to determine what is a sufficient 
number of field plots. Packalén and Maltamo (2006) suggested that the adequate number of 
reference plots for predicting species-specific variables in Nordic boreal forests may be as 
high as several hundred, whereas less than 50 plots might be enough for estimating total 
variables, e.g. total volume or mean height (Næsset 2002, Lim et al. 2003, Holmgren 2004, 
Maltamo et al. 2011.). Næsset and Gobakken (2008) reported that the standard deviations 
of the differences of estimated and field measured biophysical stand properties increased 
when the number of field plots reduced from 100 to 75 percents, and the increase was even 
larger when the reduction was from 75 to 50 percents. Total number of plots in their study 
was 132 and the plots were divided in three strata. They also noted that there was a trade of 
between plot size and number of plots; larger plot size could to a certain extent compensate 
for reducing the number of field plots. Maltamo et al. (2009b) noted that less than 100 plots 
could be sufficient for estimating total diameter distributions (but not species-specific ones) 
under boreal conditions if the plot sample were to be well representative of different forest 
types. A representative sample can be obtained using ALS as a priori information in 
sampling, and an adequate field plot sample can be obtained with a lower number of plots 
when using ALS-derived height and density than when using random sampling (Hawbaker 
et al. 2009, Maltamo et al. 2011). The estimation of quality characteristics and the 
proportions of timber assortments, however, is likely to require several hundred carefully 
sampled field observations rather than less than one hundred to be accurate enough to give 
additional information for operative wood procurement. 

One possibility for obtaining field plot data could be terrestrial laser scanning (TLS). 
This can be used for estimating accurate tree-level stem profiles (Thies et al. 2004, Murphy 
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2008) and branch heights (Henning and Radtke 2006). Thus TLS could be employed for 
collecting ground truth data on timber assortments and tree quality, replacing laborious 
manual field measurements. The canopy structure, vegetation density and understorey 
vegetation all have an effect on the success of detecting trees in TLS data, however (Liang 
et al. 2009), and terrestrial laser scanners are expensive compared with more traditional 
field equipment and are not suitable for use under difficult field conditions (Vastaranta et 
al. 2009b). These factors have prevented the use of TLS for operative field plot surveys, 
although there has been a great deal of active research into this issue. 

A stem data bank offers an opportunity to obtain information on the recovery of timber 
assortments without significant changes in the field plot measurements. The timber 
assortments for the target stand can be estimated by searching the stem data bank for stands 
with similar variables. This approach was tested in paper III without any notable success, 
for several possible reasons. It is clear that a more representative stem data bank, the 
inclusion of stand variables such as site index and soil class, and the use of forest density 
variables (basal area/ha, stem count/ha) could have improved the results. Site index and soil 
class information are not collected during harvesting, and it is therefore unlikely that such 
information will exist, or at least be reliable enough, in the near future. Forest density, 
though, can be estimated from the stem data bank information based on the coordinates 
recorded for the individual trees, provided these coordinates are recorded. Positional 
inaccuracy, or missing coordinates for some trees, will not prevent the use of coordinates 
for delineating rough borders for the stand. For example, if the average stand size is 3 ha, 
which was the mean test stand area in paper III, and if we assume that every stand is a 
circle, a 5 metre systematic delineation error (either inward or outward from the real stand 
border) will result in about a 10% error in the stand area. By investigating the harvester 
operator’s working methods and taking into account the parameters of the harvester 
machine (reach and load capacity of the operating boom) it is possible to reduce the 
positioning error (Rasinmäki & Melkas 2005) and probably eliminate any systematic error. 
For large inventory areas it may also be possible to obtain harvester data with ALS 
coverage. If some stands inside the inventory area are “measured” with the harvester just 
after ALS acquisition the harvester and ALS data can be used jointly for making local 
models to predict timber assortments without a two-stage estimation process. Such an 
application would require the time gap between ALS acquisition and harvesting to be short, 
preferably not more than few months, depending on the growth period. 

The timing of ALS acquisition restricts the use of all the methods presented here. Since 
potential stands for final felling are usually small in area and scattered in location, it may 
not be economically feasible to collect ALS data only for producing wood procurement 
planning information every year. In Finland, for example, extensive ALS inventory projects 
are scheduled in periods of many years at a time, so that information may be collected from 
the same area every 5 to 10 years. Tree size distributions and other characteristics of the 
growing stock that are estimated using ALS techniques could be updated by means of 
growth models, but this would in itself introduce error into the estimates.  
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6 CONCLUSIONS 
 

The results obtained in this thesis indicate that diameter distributions and timber assortment 
recoveries can be estimated using either of the ALS approaches, ITD or ABSA. The critical 
part of the ITD process is delineation of the trees. If this is not successful the estimates may 
be badly biased. In ABSA the estimates are unbiased, but the bottleneck could be accuracy. 
The estimation method should be selected according to data needs and inventory area -
specific requirements. However, for estimating species-specific diameter distributions and 
timber assortments for wood procurement planning the field data collected for estimating 
stand-level inventory information may not be sufficient. The field sample data must be 
representative of the whole variation to be found in the inventory area. In case of ABSA 
this means extensive field plot measurements. If a locally representative stem data bank is 
available, the manual fieldwork related to field plot sampling might be reduced 
significantly. In case of ITD the field data should cover individually located and precisely 
measured trees. The amount of fieldwork could then be drastically smaller than in the case 
of ABSA, because it may be enough to measure only 500 trees instead of 500 plots to 
provide information that can be used for estimating the variables of interest. The 
approaches can also be seen as mutually complementary. For example, the basic method 
used in large-area inventories could be ABSA, complemented in some cases (e.g. potential 
areas for final felling) with tree quality estimates provided by ITD. The information 
provided by the ALS-based inventory is of no use if it does not fulfil the quality 
requirements set by the planning system and, more importantly, if the planning systems 
cannot use the new information. 

The information provided by ALS-based forest inventories has certain benefits over the 
field inventories. These are the spatially continuous coverage of the information over the 
area of interest, reliable accuracy estimates and possibility to automate the interpretation 
process.  The information is also always spatial information, i.e. it can be managed and 
analysed in geographical information systems. 
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