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ABSTRACT 
 

A climate-sensitive process-based summary model was used to estimate forest growth and 
carbon balance with field inventory and airborne laser scanning data, which are easily 
available for practical forest planning purposes. The generalisation of forest carbon balance 
estimations for large areas was examined by using a k nearest neighbour imputation with 
Landsat satellite images. The estimations were evaluated using several data sets mainly 
provided by the National Forest Inventory of Finland. Also, the most common empirical 
forest growth models used in Finland were evaluated and compared against the process-
based approach. 

Reliability of the empirical and process-based summary models was at a similar level in 
the short run. In longer simulations, the role of mortality and regeneration models becomes 
increasingly important, so these models require special attention and further developing 
efforts in both approaches. In warming climate conditions or when testing new kind of 
management regimes, process-based approaches or hybrid models would be the most 
reasonable solution. However, further testing of the approach is required for a wider range 
of site types, tree species, mixed forests, geographical areas, as well as longer simulation 
periods, in order to draw conclusions of their reliability in larger scale use. There are also 
several development needs in the tested approach, such as adding nitrogen and water uptake 
processes to the simulator, linking it with mortality and regeneration models, as well as 
parameterising the model to peat lands. 

The developed approach can be expanded to estimating carbon fluxes for large areas 
with LiDAR data. It could be linked with  forest planning frameworks, which would 
accommodate for carbon balance issues in practical planning and optimisation tasks. The 
approach contains building blocks for developing a visual tool for examining the effects of 
forest management in changing environmental and climatic conditions for decision making, 
research, and policy making purposes.  

 
Keywords: empirical growth models; process-based growth models; National Forest 
Inventory; LiDAR; satellite images; k nearest neighbour imputation 
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1 INTRODUCTION 
 

Forest growth simulators allow the rapid prediction of the potential growth of a forest and 
its response to management over a long time period, which makes them versatile tools in 
both practical forest planning and research, as well as for policy making purposes. 
Simulators are essential tools for examining and comparing the results of different 
treatment scenarios, and they are useful in determining optimal management solutions (for 
example, Hyytiäinen et al. 2006, Hynynen et al. 2005). Forest growth simulators have a 
long development history, but their use still has several drawbacks. The problems are partly 
related to insufficient or biased input data, typically caused by inaccurate inventory 
methods, but also the forest growth prediction procedure itself always contains errors, as 
the real-life phenomena affecting growth can never be included in the models with 
sufficient detail (Schmidt et al. 2006). Therefore, the reliability of forest growth models in 
predicting growth varies depending on, for example, forest structure, age, region, tree 
species, and soil type (Hynynen et al. 2002). Especially, regeneration dynamics (Miina et 
al. 2006), development of young stands (Huuskonen and Miina, 2007), development of 
uneven-aged forests (Pukkala et al. 2009), and tree mortality (Aakala et al. 2009) are 
episodic phenomena, and thus problematic to model. Also, growth estimates for peat land 
stands are often less reliable than those for mineral soil stands (Hynynen et al. 2002), due to 
higher variation in water and nutrient balance in drained peat lands (Jutras et al. 2003).  

Forest growth models can be classified into empirical models, which rely on forest 
development data measured in the past (for example, Hynynen et al. 2002), and to process-
based models, which predict the forest growth based on tree vital functions and prevailing 
weather conditions (Kortzhukin et al. 1996, Mäkelä et al. 2000). A third category, a mix 
between these two, includes hybrid models (Mäkelä et al. 2000), which are combinations of 
empirical and process-based models still functioning with a realistic amount of input data, 
but being flexible under changing environmental conditions (for example, Landsberg 2003, 
Valentine and Mäkelä 2005, Peng et al. 2002). Hybrid approaches have been applied in 
Finland to estimate forest growth response in elevated temperature and CO2 concentration 
conditions, for example, in studies by Nuutinen et al. (2006) and Matala et al. (2006), 
where the core of the simulator was based on the empirical models of Hynynen et al. 
(2002); the physiological effects were taken into account by calculating transfer functions 
based on the process-based FinnFor model (Kellomäki and Väisänen 1997).  

Summary models are simplified versions of detailed process models, which are 
potentially applicable to practical forestry. For instance, the 3-PG model by Landsberg and 
Waring (1997), a simplification of the FOREST-BGC model by Running (1994), has been 
applied to practical forest management in different tropical countries (Almeida et al. 2010). 
Summary models are advantageous, because they are based on tree physiology and climate 
input, the model structure remains clear and the required input data as well as the number of 
parameters are at a realistic level. In addition to parametric models, growth can be 
estimated using non-parametric methods, such as the k nearest neighbour imputation (k-
NN) (Sironen 2009), which has been found to be a successful approach for reducing 
regional biases and for extending the plot wise estimations to the regional level (Tomppo 
1990, Korhonen and Kangas 1997).  

Until now, the empirical growth models have been the most common model type in 
practical forestry, as they are considered to be the most accurate ones and the required input 
data has been available from basic field inventories. The most popular models used in 
practical forestry in Europe are empirical tree-level models, obviously due to their 
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capability to estimate growth even in heterogeneous stands (Mäkinen et al. 2008). In 
Finland, the most commonly used empirical tree-level models are those of Hynynen et al. 
(2002), which are included in the practical forest planning simulators, such as the MELA 
(Siitonen et al. 1996), SIMO (Tokola et al. 2006, Rasinmäki et al. 2009), and MOTTI 
(Hynynen et al. 2005) frameworks. European examples of tree level empirical simulators 
include SILVA developed in Germany (Pretzsch et al. 2002), the Austrian PrognAus 
(Ledermann, 2006), and the Slovakian SIBYLA (Fabrika and Ïurský, 2006). In practical 
forestry, however, usually only stand level inventory data is available, which means that 
with tree-level models the data must first be down-scaled from the stand level with 
distribution models. Another model type, stand-level models, would be directly applicable 
to the stand-level inventory data, but as these models ignore variation inside the stand, they 
cannot be properly used for uneven-aged or mixed stands. This is one of the reasons for 
replacing them by tree-level models in many cases (Garcia, 2001, and Porté and Bartelink, 
2002). However, the stand-level models have been successfully utilized in many 
applications, especially in long-term simulations (Vanclay, 1995, Atta-Boateng and Moser, 
2000, and Garcia, 2001). Examples of empirical stand-level models applicable in Finland 
include models by Vuokila and Väliaho (1980) for conifers, and the birch models of 
Mielikäinen (1985), Oikarinen (1983), and Saramäki (1977). 

The ability to adapt to changes  in our environment and climate is one of the main 
challenges in developing reliable forest growth models. Current changes in the climate as 
well as the demand for multiple use of forests create additional challenges for growth 
simulators. Forest management regimes and softer forest treatments are needed especially 
in areas that are near cities, tourist resorts, or nature conservation areas. Public interest in 
utilizing tree biomass as bioenergy and managing forests as carbon sinks also has grown 
stronger. This means that one should be able to include new kind of optimization goals 
(biodiversity, recreational use, scenery, carbon sequestration etc.) in the simulating 
routines. Most of the current forest planning softwares use empirical models to predict 
growth. These work well while the climatic conditions and management practices stay 
similar as in the past, but when the climate or management changes, the models may 
become less reliable. In this situation, weather-driven process-based forest growth models 
offer a relevant tool for estimating forest growth, in contrast to traditional empirical growth 
models which rely on data measured in the past. Because process-based models are able to 
produce carbon flux estimates, such as gross primary production (GPP), net primary 
production (NPP), and the whole net ecosystem exchange (NEE), they can be utilized for 
defining topical issues, such as which kind of forests tend to be carbon sinks or carbon 
sources, and how the carbon balance changes when either climate or forest management 
regimes change. 

Process-based models have not been common tools in practical forestry, since they have 
been found too complex to use and difficult to parameterize (Mäkelä et al. 2000, Peng et al. 
2002, Matala et al. 2006). The key input variables in the photosynthesis driven models are 
related to crown leaf biomass and crown structure, and since these variables are difficult 
and too laborious to accurately measure in a traditional forestry field inventory, they have 
typically been produced using allometric equations derived from basic field measurements. 
However, recent efforts in developing summarized versions of process-based models and 
increasing availability of relevant input data derived from remote sensing products can 
offer a solution to the problem (Landsberg and Waring, 1997, Mäkelä et al. 2000, Study II) 
and make process-based models applicable to practical forestry.  
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Remote sensing products can be utilized for complementing or producing the input 
variables required in the process-based models (Turner et al. 2004), as tested with the 3-
PGS model based on satellite images by Coops et al. (2007) and Nole et al. (2009). Satellite 
images can also be used for estimating leaf area index (Stenberg et al. 2008), and mean tree 
size (Woodcock et al. 1994). Other examples of remote sensing products applicable to 
process-based models include high resolution AVIRIS images, which have been used for 
estimating canopy nitrogen (Smith et al 2002), and a synthetic aperture radar (SAR) for 
estimating vegetation biomasses (Saatchi and Moghaddam 2000). An especially interesting 
data source is airborne light detection and ranging (LiDAR), which has become commonly 
available for forest management purposes in recent years, at least in Scandinavia. LiDAR 
provides information on the forest crown structure and other relevant input data for growth 
models (Næsset and Okland 2002, Lim et al. 2003, Waring et al. 2009). Thus far, LiDAR 
data has been used for estimating several ecological variables, such as leaf area index or 
light interception (for example, Lefsky et al. 1999, Lefsky et al. 2002, van Aardt et al. 2008, 
Lee et al. 2009). However, there have been only a few studies utilising LiDAR with 
process-based models in the whole growth estimation chain (for example, Taguchi et al. 
2007, Kotchenova et al. 2004).  

At present, applying a simplified process-based growth model to produce traditional and 
carbon flux estimates over large areas has become possible in Finland, owing to the 
availability of the required up-to-date input data from a sample plot network covering the 
whole country (weather data from the Finnish Meteorological Institute and NFI data from 
the Finnish Forest Research Institute). By producing the desired estimates for the sample 
plot network and generalizing them based on satellite images, it is possible to impute the 
estimates for all the forested areas in the country. This kind of methodology has been 
applied to, for example, a multi-source forest inventory to produce estimates for stand 
characteristics (Tomppo 1990, Tomppo et al. 2008), forest biomasses (Labrecque et al. 
2006, Muukkonen and Heiskanen 2007, Tuominen et al. 2010), and forest carbon pools 
(Dong et al. 2003, Stumer et al. 2010).  

 
 

Objectives 
 

The main goal of this study is to evaluate a climate-sensitive process-based summary model 
approach for estimating forest growth and carbon fluxes in the Finnish conditions, using 
input data that is also available for practical management purposes. Further, the 
applicability of the approach with remote sensing products, such as LiDAR data and 
satellite images, is examined. In addition, the reliability of the currently used empirical tree 
and stand-level simulators is examined. The interactions of the data and models applied in 
studies I-IV are visualized in Fig. 1.  

The reliability and accuracy of the process-based approach is examined by comparing 
the simulated results with those obtained by empirical tree-level simulators and field 
observations. Further, the complementation of the process-based simulation approach with 
remote sensing data is investigated in two cases: 1) the input data for the process-based 
summary model is obtained purely from LiDAR measurements, and 2) satellite images are 
utilized for up-scaling the plot level results to regional level with the k-NN imputation. The 
objectives of this thesis include the following: 
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• Evaluation of the traditional Finnish empirical for est growth simulators 
constructed with the SIMO framework using 1) tree-level models (Hynynen et al. 
2002), 2) stand-level models (Vuokila and Väliaho, 1980; Mielikäinen, 1985; 
Oikarinen, 1983; Saramäki 1977), and 3) combinations thereof with the Finnish 
National Forest Inventory (NFI) permanent sample data (from 1985 and 1995) in 
Southern Finland (Study I).  

 
• Development and evaluation of a climate-sensitive process-based summary 

model approach for estimating forest growth by combining existing models: 
pipe theory (Shinozaki 1964a, Shinozaki 1964b, Mäkelä 1997, Ilomäki et al. 2003, 
Kantola and Mäkelä 2006), a light use efficiency model (Mäkelä et al. 2008b), and 
effective extinction coefficient (Duursma and Mäkelä 2007) (Study II). 
Complementing the approach with a dynamic bridging model by Valentine and 
Mäkelä (2005) with capability capable to estimate the development of both 
traditional stand characteristics and carbon balance, and assessing its reliability 
(Study III). Testing the approach for estimating carbon fluxes (GPP, NPP and 
NEE) for NFI data set by complementing the simulator with the Yasso07 soil 
carbon model (Tuomi et al. 2008) (Study IV).  

 
• Investigation of the applicability of remote sensing data with the process-

based approach by examining the applicability of LiDAR data as an input for the 
dynamic model (Study III) and assessing the use of Landsat TM 5 images with k-
NN imputations for generalizing the carbon flux estimations for large regions, and 
comparison of the results with Eddy flux measurements from Sodankylä and 
Hyytiälä (Study IV). 

 
 

2 MATERIAL 
 

2.1 Field sample plots 

 
Finnish National Forest Inventory data (NFI) established by the Finnish Forest Research 
Institute was utilised in studies I, II, and IV, while in Study III, the field data came from  
forest inventory conducted by the University of Eastern Finland in the Heinävesi 
(Matalansalo) region (Fig. 2). The mean stand characteristics are presented in Table 1. For 
the stand-level models (empirical model in Study I, process-based model in studies II-IV), 
the tree data was first aggregated to stand level. The field data was used both as input for 
the models and for comparing reliability of the simulators. Details of the Finnish NFI, 
which has fairly similar history and principles as, for example, the Swedish NFI (Tokola 
2006), can be found in Tomppo (2006). 
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Figure 1. Framework of the data and growth estimation procedures applied in the studies I-
IV. 
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In Study I, the main material was based on the permanent NFI sample plots located in 
Southern Finland and established by the Finnish Forest Research Institute (Fig 2., Table 1). 
The NFI sample plot network was based on systematic sampling of field tracts, where each 
tract in Southern Finland included four plots located 400 metres apart (from north to south), 
the tracts themselves being 16 km apart (from north to south, and from east to west). The 
plot size varied according to the tree diameter at breast height, being 100 m2 when the 
diameter was under 10.5 cm, and otherwise 300 m2. The trees with diameter smaller than 
4.5 cm were measured only if they were considered to survive alive until the next 
measuring round. The decision was done based on the tree species, site type, regeneration 
type and tree position. All the Southern Finland NFI plots (below latitude of around 65°) 
measured both in 1985 and in 1995 were included, with the exception of plots located on 
waste or scrub land, plots which consisted of two or more stands either in 1985 or in 1995, 
plots where there had been cutting during the simulation period, and some plots with easily 
detectable coding errors, such as a large number of missing trees according to the data 
without cutting. Also, all dead trees were excluded. Data measured in 1990 was also 
utilised, because it contained information about the thinnings between 1985-1990. A total 
of 597 sample plots were included in the study (the original Study I had 837 sample plots, 
but recently it turned out that some of them had been subject to thinning in 1985-1990. The 
results presented in this summary have been calculated using only the unthinned plots 
(n=597). The NFI material contained the following tree data: diameters at breast height for 
all the trees and heights for the sample trees, from which mean and total values per hectare 
were aggregated for each plot. The tree volumes were estimated using volume functions of 
Laasasenaho (1982) based on the tree diameter and height. Tree heights for the non-sample 
trees were estimated from tree diameter and other stand data using the tree height models of 
Veltheim (1987). Models for Scots pine (Pinus sylvestris L.), Norway spruce (Picea abies 
(L.) Karst.) and silver birch (Betula pendula Roth., applied to all deciduous trees) were 
used. The modelled heights were scaled to follow the level of the sample tree heights by 
multiplying the modelled heights by the stand-wise ratio of the measured to modelled mean 
height of the sample trees. The reference data for 1995 contained only the trees that already 
existed in 1985 and were still alive in 1995. The trees were identified by measuring their 
distance and angle from the sample plot identification point.  Scots pine was the main tree 
species (in terms of basal area) on 54.1% of the plots (n=597), Norway spruce on 36.7%, 
and birches on 8.9% of the plots. 

In Study II, a subset of the same NFI data set used in Study I was utilised for testing the 
model (Fig 2, Table 1). A total of 137 sample plots were included in the analysis using the 
following criteria: (1) the sample plot was located on mineral soil, (2)  it consisted of only 
one management unit, (3) the plot had not been subject to thinning, cuttings or mortality 
during the period from 1985 and 1995, (4) the plot data contained all the required sample 
tree measurements for the Scots pine, Norway spruce, and deciduous strata that existed in 
the plot, (5) the plot site type was Oxalis-Myrtillus, Myrtillus, Vaccinium, or Calluna 
(Cajander 1925), and (6) the plot data were free of obvious measuring/coding errors. All 
dead trees and trees born between 1985 and 1995 were excluded from the material. The 
stand-level mean and sum attributes were calculated similarly as in the Study I and  using 
only those trees alive during both the 1st and the 2nd NFI rounds.  

In Study III, data from Heinävesi (Matalansalo), Eastern Finland, around latitude 62° N, 
from 2004 and 2009 was used (Fig 2, Table 1). A total of 52 sample plots were included in 
the analysis, selected with criteria that the main tree species in the plot was Scots pine (> 
75% of the basal area). The sample plots were circular plots with a radius of 9 m. Diameter 
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and tree species were collected of all the trees in the plot (tally trees), and tree height and 
crown base height were measured for the sample trees (crown base was measured only in 
2009). The drilled growth samples (5 years growth in radius at 1.3 m height) taken from all 
the sample trees representing the dominant layer in 2009 were used for generalising the 
basal area growth for all the tally trees from 2004, which is presented in detail in Study III. 
Using the growth samples was assumed to produce more reliable ground truth values for 
basal area growth, than using simply the increment in the field measured basal area, 
because the inventories in 2004 and 2009 were not conducted in the same time during the 
growing season. Therefore, the field-observed difference in the basal area between the 
years 2004 and 2009 would have not actually represented the full 5-year growth. In 
addition, some of the tally trees might have died or fallen down since 2004, and there might 
have been also slight differences in the sample plot locations between the years 2004 and 
2009 due to GPS. 

In Study IV, the field data was retrieved from the Finnish National Forest Inventory 
(NFI) data from Central Finland and Lapland from 2004-2008 (Fig 2., Table 1). A total of 
1072 sample plots from Central Finland and 365 plots from Lapland were included in the 
analysis, selected with criteria that the whole plot consisted of only one stand, the plot was 
on mineral soil, and the plot was located in the selected Landsat images. The sample plots 
were circular plots with maximum radius of 12.52 m in Southern Finland (Central Finland 
data) and 12.45 in Northern Finland (Lapland data). The tally trees were selected with a 
relascope coefficient of 2 in Southern Finland and 1.5 in Lapland. Every 7th tree over the 
whole inventory area was measured as a sample tree. Tree diameter and tree species were 
collected of the tally trees and tree height and crown base height were measured only for 
the sample trees. The heights and crown base heights for the rest of the trees were estimated 
using models of Eerikäinen (2009).  

 
Table 1. Mean stand characteristics of the sample plots included in the analysis. 

 

 NFI permanent 
plots, 1985 and 
1995  (Study I) 8) 

NFI permanent 
plots, 1985 
(Study II) 

Sample plots 
Matalansalo, 

2004 (Study III) 

NFI plots, 
2004-2009  
(Study IV) 

Mean tree height, 
basal area weighted 
(m) 

12.42), 14.83) 12.64), 13.65), 
11.56) 

16.4 15.77), 11.88) 

Mean tree diameter, 
basal area weighted 
(cm) 

16.72), 19.33) 17.54), 18.35), 
4.66) 

19.2 20.37), 19.38) 

Mean stand basal 
area (m2 ha-1) 

16.42), 21.63) - 21.6 18.77), 11.98) 

Mean number of 
trees per hectare 

13982), 13123) 1071 1270 - 

Number of sample 
plots 

597 137 52 10727), 3658) 

Share of peat lands 
(%) 

24.8 0 0 0 

1) Contains only the un-thinned plots used in the summary of the thesis, selected out of the plots in the 
original Study I 2) NFI 1985, 3) NFI 1995, 4)Scots pine strata, 5) Norway spruce strata, 6) deciduous strata, 
7) Central-Finland plots, 8) Lapland plots  
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Figure 2. Left: Location of the NFI sites included in Study I (crosses + black dots), in Study 
II (black dots), and the weather stations used in Study I (grey triangles). Right: Location of 
the Matalansalo Study area (Study III) and the NFI sites (black dots) and eddy flux sites in 
Sodankylä and Hyytiälä included in Study IV.  

 
 
 
 
 
 
 

2.2 Remote sensing data 

 
LiDAR data 

 
The laser scanning data used in Study III was gathered at night on 4 August 2004 using 
Optech ALTM 2033 laser scanning system at an altitude of 1,500 m above ground level 
with a half angle of 15° from Heinävesi (Matalansalo), Eastern Finland. The width of each 
laser strip was 800 m and the pulse density was 0.7 pulses per m2. The footprint was 45 cm. 
All together seven strips were scanned with a 35% overlap, yielding about 20 km2 in total 
area.  
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Landsat TM 5 Satellite Images 
 

In Study IV, two study areas, covering parts of Forest Centres of Central Finland and 
Lapland provinces, were selected for the analysis. Landsat 5 TM images from 2007 and a 
digital elevation model (DEM) of the corresponding area were used as independent 
variables in the k-NN imputation. The image for the western part of Central Finland (path 
190, row 16-17) was taken on 2.6.2007. For Lapland, two images taken on 2.6.2007 and 
4.7.2007 (path 190, row 13) were used. Images were georeferenced to the Finnish uniform 
coordinate system. The resolution of the Central Finland image was re-sampled to 25 m. 
For Lapland, the resolution was 30 m. Georeferencing and re-sampling were carried out 
using the ArcGIS 9.3 software.  

 
 

2.3 Weather data 

 
The weather data used in the process-based model (Studies II-IV) was received from the 
Finnish Meterorological Institute (FMI), and it consisted of daily measurements of global 
radiation (W m-2), relative humidity (%), rainfall (mm), and temperature (°C) for all the 
years between 1961 and 2008, in the form of a 10 km x 10 km grid across Finland 
(Venäläinen et al. 2005).  
 
 

2.4 Data from Eddy flux sites 

 
Eddy covariance data containing GPP and NEE data for 2004-2008 from Hyytiälä 
(61°50’N, 24°17’E) and Sodankylä (67°21’, 26°38’) (Fig. 2) were used for examining the 
accuracy of simulations and imputations in Study IV. The eddy flux measurements were 
compared with 1) the average of imputed pixel values around the eddy towers within a 
circle of radius of 100 m, and 2) GPP and NEE values obtained by simulating forest growth 
with the stand input data from the eddy flux sites. In the latter case, the simulations in 
Hyytiälä were conducted for all the years between 2004 and 2008 with the site and weather 
data from the corresponding years. In contrast, for Sodankylä site data was only available 
from 2000, which was then used as the input in all the simulations meaning that only the 
weather data varied (2004-2008).  The Hyytiälä data was from measurements by University 
of Helsinki (Dr. Pasi Kolari), see Ilvesniemi et al. (2009) for description of the field 
measurements. The Sodankylä data was from measurements by the Finnish Meteorological 
Institute (Dr. Mika Aurela).  
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3 METHODS 
 

3.1 Empirical growth models 

 
For Study I, three alternative simulators based on empirical models were constructed in the 
SIMO simulation framework, which offers an open source platform for building simulation 
chains: 1) a tree-level simulator based on tree-level growth models, 2) a stand-level 
simulator based on stand-level growth models, and 3) a combined simulator, where the first 
5 years are simulated using tree-level models and the remaining years using stand-level 
models. The growth models were run with 5 years’ time step, but the simulator reported 
annually the stand- and stratum level mean diameters, mean heights, basal areas, and 
volumes, based on average annual growth in 5 years. 

In Study I, the growth and yield models used in the tree-level simulator were those of 
Hynynen et al. (2002), which are also used in the MELA simulator. These included 
individual growth models for estimating the growth of tree height and basal area of Scots 
pine (Pinus sylvestris), Norway spruce (Picea abies), silver birch (Betula pendula), and 
white birch (Betula pubescens). Models for self-thinning and mortality were used, but the 
ingrowth model was not applied to these simulations. The trees measured in the field were 
used to construct tree lists for the simulator. The input variables included e.g. tree diameters 
for all the tally trees and heights for the sample trees, number of trees per hectare 
represented by each tree, stand coordinates and site type. Crown base heights were 
estimated using a crown ratio model by Hynynen et al. (2002). Several new variables were 
calculated further by the simulator, such as dominant diameter of the stand, growth in 
dominant height, crown ratio, dominant growth ratio, relative density factor, and site index. 
These were used  as independent variables in the growth models, where the dependent 
variables were increment of tree height and basal area. Stand volumes were estimated using 
the volume equations of Laasasenaho (1982). The same empirical tree-level models were 
used also in studies II and III for comparing with the process-based model results, but 
without the mortality and self-thinning models. 

The stand-level growth models for pine and spruce used in study I were those of 
Vuokila and Väliaho (1980) and the growth models for birches those of Mielikäinen 
(1985), Oikarinen (1983), and Saramäki (1977). These included a number of individual 
regional models, as growth conditions vary across Finland. The independent variables of 
the stand-level models included e.g. stand basal area, stand age, dominant height and site 
index. These were calculated based on the input variables of the simulator, which included 
e.g. tree diameters for all the tally trees, heights for the sample trees, number of trees per 
hectare represented by each tree, stand age, stand coordinates and site type. Site index was 
determined based on site type. The dependent variables of the stand-level models included 
e.g. increment in basal area, volume and dominant height. Other output variables were 
calculated based on model results, e.g. stand mean height was predicted from dominant 
height and stand mean diameter from mean height, mean age, temperature sum, and site 
class. The stand-level simulator does not include mortality models as such, but the growth 
models include the effect of tree removal, due to modelling data is from normally thinned 
forests. 
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3.2 Process-based summary model 

 
In studies II-IV, the process-based model was used with different compositions. In the 
studies II and IV, a static version, later referred to as static process-based model, was 
applied to estimate one-year gross primary production (GPP), net primary production 
(NPP), and growth of stem biomass in the stand. In Study III, the static approach was 
complemented by a dynamic growth component based on the bridging model by Valentine 
and Mäkelä (2005), later referred to as dynamic process-based model, which is capable of 
simulating dynamic growth of the tree dimensions and development of the carbon balance 
over several years. In Study IV, the soil carbon model Yasso07 (Tuomi et al. 2008, Tuomi 
et al. 2009) was also applied with the static version to estimate net ecosystem exchange 
(NEE). The main principles of the approach are explained shortly below, and the 
framework of the model interactions is demonstrated in Fig. 3. The data used in developing 
of the above-mentioned models is fully independent from the test data used in the studies 
II-IV. A detailed explanation of the approach is provided in Appendix 1.  

In the process-based summary approach, tree growth is estimated at stand level, based 
on carbon production and respiration in different components of trees. Annual forest growth 
PN (kg C ha-1 yr-1), i.e. NPP, can be expressed as 

 
PN = P – RM - RG,                                                            (1) 
 

where P is GPP, RM is the maintenance respiration, and RG is the growth respiration of the 
trees. NPP can also be expressed as PN = rNPP P, where rNPP is the NPP:GPP ratio depending 
on the respective rates of maintenance and growth respiration of the stand. Annual biomass 
production Gt (kg DW ha-1 yr-1) (DW=dry weight) is proportional to NPP as follows: 

 

NCt PcG 1−= ,                     (2) 

 
where cC is the carbon content of biomass dry weight (cC ≈ 0.5). GPP depends on 
environmental driving variables and forest stand data as follows: 

 
P = fAPAR P0,                            (3) 
 

where fAPAR is the (effective annual) mean fraction of photosynthetically active radiation 
(PAR) absorbed by the canopy, and P0 (kg C ha-1 year-1) is the annual canopy 
photosynthesis in a (hypothetical) canopy that absorbs all PAR radiation. This means that 
fAPAR represents the effect of forest structure on growth, while P0 describes climatic effects. 
In studies II-IV, fAPAR was estimated using the Lambert-Beer formula based on effective 
extinction coefficient keff, as introduced by Duursma and Mäkelä (2007), and leaf area index 
(LAI). Effective extinction coefficient was calculated based on a homogenous extinction 
coefficient, KH, crown surface area, SA (m

2), and mean leaf area per tree, LA (m
2). Leaf area 

index was derived from the leaf biomass, WF (kg DW ha-1), and the assumed specific leaf 
area (SLA, m2 (kg DW)-1) of the tree species (Luoma 1997). P0 was estimated based on the 
LUE model (Monteith 1977, Mäkelä et al. 2008b). Biomasses for different tree components 
Wi (WF=foliage, WB=branches, WS=stem, WCR=coarse roots, and WFR=fine roots) were 
estimated based on pipe-theory based equations for Scots pine (Mäkelä and Vanninen 2001, 
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Vanninen and Mäkelä 2005), for Norways spruce (Kantola and Mäkelä 2006), and for 
birches (Ilomäki et al. 2003) (see Appendix 1, table A.2). 

Net ecosystem exchange (NEE), EN, can be derived from NPP (PN) and heterotrophic 
respiration from the soil, RH, as follows: 

 
EN = - (PN - RH).                    (4) 
 

RH (Study IV) was estimated using the Yasso07 soil carbon model (Tuomi et al. 2008, 
Tuomi et al. 2009) based on litter fall data derived from biomass estimates (Liski et al. 
2006). The growth of stem and crown dimensions (Study III) was estimated using the 
bridging approach introduced by Valentine and Mäkelä (2005), which is based on the pipe 
theory.  

The static version of the process-based approach (Study II and IV) is applicable to Scots 
pine, Norway spruce, and deciduous stands, or a mixture thereof, in the Finnish conditions. 
The dynamic version used in Study III was applied to Scots pine stands only, but it could 
easily be extended to Norway spruce and birch.   

 

3.3 Deriving stand characteristics from LiDAR data 

 
In Study III, the process-based model was tested with input variables derived from LiDAR 
data. First, a digital terrain model (DTM) was generated from the LiDAR data as explained 
in Study III. The canopy height model was built using an interpolation procedure 
introduced in the Study by Packalen et al. (2008). The LiDAR based canopy height model 
was segmented into trees (or tree groups) using a watershed segmentation algorithm, which 
was then processed in an alpha shape program (Edelsbrunner and Mücke 1994; 
http://www.cgal.org). Estimates for plot wise mean height and total crown volume were 
obtained as an area weighted average of the height values and sum of the triangulation 
based volumes, respectively, of the segments located in the plot. Mean crown base height 
was also an area weighted average calculated from segments for which the crown base 
height values had been produced by the alpha shape approach (Vauhkonen 2010). 

Several LiDAR metrics were calculated separately for the first (F) and last (L) returns. 
The number of trees per hectare, N, was estimated using the equation by Suvanto et al. 
(2005) fitted with the data from the same area as used in Study III. The mean tree crown 
volume was defined as the total crown volume divided by the estimated number of trees per 
plot, and it was used for determining the mean tree’s leaf biomass. Leaf biomass and crown 
dimension data of Scots pine measured in Southern Finland (Vanninen and Mäkelä 2000, 
Vanninen and Mäkelä 2005) were used for plotting an equation between tree crown volume 
and leaf biomass. The equation was used to convert the mean crown volume to mean leaf 
biomass per tree (see Study III for details). Further, the stand leaf biomass was determined 
as the mean tree’s leaf biomass multiplied by the number of trees per hectare estimated 
from LiDAR. The mean crown width was determined from the LiDAR based mean tree 
crown length and the estimated crown volume of the mean tree assuming the crowns as 
ellipsoids. 
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Figure 3. Description of the process-based approach. See Appendix 1 for the referred 
parameters and equations.  
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3.4 Generalisation of carbon flux estimates to regional level based on satellite 
images 

 
In Study IV, the GPP, NPP, and NEE estimates for the years 2004-2008 were produced for 
the NFI sample plots in Central Finland and Lapland. The obtained results were then 
generalized for all the forested areas around the selected sample plots using the k-NN 
imputation based on Landsat 5 TM satellite images. In addition, the corresponding values 
were imputed for the Hyytiälä research area, located close to the Central Finland area, using 
the Central Finland training set.  

Two different sets of independent variables were tested separately for the Central 
Finland and Lapland areas: 1) only channels 2-4 (green, red, and near infrared) as 
independent variables, and 2) all the channels (1-5, 7) as independent variables. Further, the 
usage of two images from the same growing season as well as of DEM as an independent 
variable were investigated in Lapland. The additional test runs for Lapland contained the 
following independent variables: 1) channels 2-4 from two different images, and 2) 
channels 2-4 from two different images and the digital elevation model. In Lapland, the 
imputations were tested with varying k’s (k=3, 5,..,11, 13); in contrast, in Central Finland 
k=5 was used. The nearest neighbours were defined using the Euclidian distance d as a 
measure, and the estimated Y value was defined as the distance weighted mean of the 
nearest neighbours’ Y values, the weighting being 1/(1+d). The k-NN imputations were 
done using the yaImpute package in R Statistics (Crookston and Finley 2008). 

 
 

3.5 Evaluation of estimates 

 
In Study I, the reliability of the different empirical simulators (tree-level, stand-level, and 
combination thereof) was evaluated by examining their estimates of stand-level and 
stratum-level basal area weighted values of mean height, H (m), mean diameter, D (cm), 
stem volume, V (m3 ha-1), and basal area, BA (m2 ha-1), and comparing them with the field 
observations from NFI (1995).  

In Study II, the reliability of the static process-based summary model was examined by 
comparing its estimates against the NFI field observations (1985-1995) and estimates 
obtained with the empirical tree-level model of Hynynen et al. (2002). The examined 
variables consisted of mean annual stand level stem biomass growth, WS,G (kg DW ha-1 
year-1), and stem volume growth, VG (m3 ha-1 year-1).  

In Study III, the reliability of the dynamic process-based summary model was 
investigated in two cases: 1) the input data was yielded by a traditional field inventory, and 
2) the input data was from LiDAR. The examined variable was the total basal area after the 
5-year growth period, which was compared with the basal area from the field observations 
(2004-2009) and the estimates obtained with the empirical tree-level model (Hynynen et al. 
2002).  
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Table 2. Statistical equations used in the analysis. iy  is the reference value in a plot i, iŷ is 
the estimated value in a plot i, y  is the arithmetic average of the y values, and n is the total 
number of plots. 
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In Study IV, the accuracy of the GPP, NPP, and NEE estimates based on k-NN 

imputations, obtained by the static process-based summary model and Landsat 5 TM 
satellite images, was investigated with a leave-one-out cross-validation. This was done by 
imputing new values for each reference data pixel (the NFI plot pixels) based on the rest of 
the reference data values. Reliability of the simulator itself was assessed by comparing the 
GPP (g C m-2) and NEE (g C m-2) estimates with those measured by the two Eddy 
Covariance stations in Finland (Hyytiälä and Sodankylä) during 2004-2008. 

The performance of the applied models was assessed using the root mean squared error 
(RMSE), the relative root mean squared error (RMSE%), the absolute model bias, the 
relative model bias (BIAS%), and the coefficient of determination (R2) by comparing the 
estimated values with the observed ones (Table 2). Also the leave-one-out cross-validation 
of the k-NN imputations (Study IV) was assessed with the above mentioned measures. The 
calculations were conducted using R Statistics (http://www.r-project.org/).  

 
 

4 RESULTS 
 

In Study I, the goal was to examine differences in mean height, diameter, basal area, and 
volume estimations obtained by different empirical simulators. Growth rates of these 
variables were simulated over 10 years using three different simulation chains: tree-level 
models, stand-level models, and a combination of these two. In Study II, the process-based 
static model was tested against the empirical model and the results were compared with the 
field observed annual growth of stem biomass. In Study III, the process-based dynamic 
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model was run with both LiDAR and field input. The results were compared with empirical 
tree level simulations and field observed values. The tested variable was basal area growth. 
Attention was also paid to examining the reliability of the LiDAR derived input data. In 
Study IV, only the process-based model was utilized, since the examined variables 
contained annual carbon production. The accuracy of imputations with different number of 
nearest neighbours was compared. GPP and NEE estimations were compared with 
measured fluxes from the Eddy covariance towers in Hyytiälä and Sodankylä.  

 
 

Comparison of different type of simulators 
 

There were not any large differences between the tree- and stand-level empirical simulators 
(Study I). The mean height and diameter were predicted with a RMSE% of 11.7-12.4% and 
5.3-8.1 % in all the simulators. The RMSE% values of the basal area and volume 
estimations were moderately higher (12.5-19.8% and 17.6-24.4 %, respectively), than those 
for mean height and diameter. The relative bias when predicting mean tree height and 
diameter was small and also at a similar level among all the empirical simulators (for 
height, 4.4-5.4%, and for diameter, 0.1-1.7 %.), indicating a slight underestimation. The 
basal area and volume were also slightly underestimated in all the empirical simulators 
(basal area bias 0.6% to 4.5%, volume bias 1.0% to 4.4%). When examining the increment 
in the basal area during the simulation period, the tree-level empirical model proved to be 
notably less biased (bias of 2.5%) than the other simulators (bias 12.9-18.1%) (Table 3).   
All the  reliability results (with n=597) for Study I can be found in Appendix 2. 

 
Comparison of volume growth predictions obtained by the empirical and process-based 

simulators showed (Study II) that the precision of both approaches is at a similar level 
(RMSE of 33.4%-39.6% and s of 33.2-34.9%). (Table 3). The empirical model 
underestimated the growth with 18.8%, and the process-based model with 3.2%. In Study 
III, the basal area growth was overestimated in both the process-based simulators (bias% -
1.5 to -11.4%); the least biased results were yielded by the empirical model (bias 0.4%). 

 
 

Effect of   different stand characteristics on growth estimations 
 

When examining the annual stem biomass growth (kg DW ha-1 yr-1) in Study II, the 
process-based model seemed to work best with Scots pine (bias 0.1%, RMSE% 32.1%) and 
Norway spruce (bias 1.9%, RMSE% 39.1%), respectively, indicating a slight 
underestimation, whereas for deciduous trees the results were worse (RMSE% 62.7 %, bias 
13.7%). Species specific examination of the results (Study I) shows that also the empirical 
tree-level models produce more accurate results for Scots pine and Norway spruce strata 
than for deciduous strata (Table 4). 
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Table 3. RMSE% and BIAS% of stand volume, stem growth, and stand basal area obtained 
with different simulators. 

 

Variable Model RMSE% BIAS% s% Unit Data N. of 
plots 

Study 

Basal 
area 
growth  

Empirical, 
tree-level 

59.5 2.5 59.4 m2ha-110-yrs -1 NFI 597 I 

Empirical, 
stand-level 

50.0 12.9 48.3 m2ha-110-yrs -1 NFI 597 I 

Empirical, 
combined 

79.2 18.1 77.1 m2ha-110-yrs -1 NFI 597 I 

Stem 
volume 
growth  

Empirical, 
tree-level 

39.61) 18.81) 34.91) m3ha-11-yr-1 NFI 1261) II 

Process,  
stand-level 

33.42) 
3.22) 

 
33.22) 

 
m3ha-1yr-1 

 
NFI 1382) II 

Basal 
area 
growth  

Empirical, 
tree-level 

28.6 0.4 28.6 m2ha-15-yrs-1 
Matalan-

salo 
52 III 

Process, 
field input, 
stand-level 

38.1 -11.4 36.4 m2ha-15-yrs-1 
Matalan-

salo 
52 III 

Process, 
LiDAR input, 
stand-level 

39.3 -1.5 39.3 m2ha-15-yrs-1 
Matalan-

salo 
52 III 

1) n=126, which includes the plots used both in Study I (empirical simulations available) and Study II. 
Empirical volume growth estimate is annual average of the first 5-year growing period. In Study II the 
empirical volume growth estimate used in the comparison was the annual average of the whole 
simulation period . 2) n=138, which includes all the plots used in Study II. Volume growth refers to the 
first year’s growth estimate. 
 
 
Table 4. The accuracy of estimated species specific basal area growth (m3 ha-1 10-years-1) 
estimations obtained by the empirical tree-level model (Study I) and species specific stem 
growth (kg DW ha-1 yr-1) estimations obtained by the process-based static model (Study II). 
 

 
Empirical model (Study I) (n=597) Process-based model (Study II) 

(n=138) 

Stratum n RMSE% BIAS% s% n RMSE% BIAS% s% 

Scots pine 477 72.1 5.7 71.9 99 32.1 0.1 32.1 

Norway spruce 389 77.7 -21.6 74.6 76 39.1 1.9 39.1 

Deciduous 3221) 131.7 43.0 124.5 48 62.7 13.7 61.2 

1) Only White birch strata included 
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When examining the results in terms of soil types, one can see that the tree-level empirical 
model was the most stabile one in different soil types, while in the stand-level empirical 
models the variables were underestimated to a greater extent on fertile sites than on dryer 
sites (Study I) (Fig. 4). In Study II the tree-level empirical model produced underestimates  
of volume growth for all the site types, while in the process-based simulations the bias 
indicated underestimation for the most fertile site, OMT, and overestimation for the other 
site types (Fig. 5).  

With all the empirical simulators, the height estimates seemed to be least biased in the 
stands with small trees, the underestimation apparently increasing with tree height (Study 
I). The diameters and basal areas were overestimated with the smallest diameter classes and 
slightly underestimated in the larger trees. A similar trend was found in Study III using the 
process-based model, where a tendency to overestimate the growth of small trees and to 
underestimate the growth of bigger trees was detected with both field and LiDAR data. 
Using the process-based static approach (Study II), no strong age related trends were 
detected, but a slight tendency to underestimate growth most in the young stands was 
detected, especially at the stratum level.  

 
 

 
Figure 4. The soil type specific* mean and 
standard deviation of stand basal area 
growth estimation error (measured-
modelled stand basal area growth, m2 ha-1 
10-years-1) in Study I as obtained using 
the tree-level simulator (black), stand-level 
simulator (grey), and combined simulator 
(white). *1 = herb-rich forest, 2 = herb-rich 
heath forest, 3 = fresh heath forest, 
4 = dryish heath forest, 5 = dry heath 
forest, 6 = barren heath forest, 7 = rocks 
and sands. 

 

 
Figure 5. The soil type specific* mean and 
standard deviation of stand volume growth 
estimation error (measured-modelled stand 
volume growth, m3 ha−1 year-1) as obtained 
using the process-based model (grey) and 
empirical tree-level simulator (black), including 
the plots that were present in both studies I 
and II (n=126). *1 = herb-rich forest, 2 = herb-
rich heath forest, 3 = fresh heath forest, 
4 = dryish heath forest, 5 = dry heath forest, 
6 = barren heath forest, 7 = rocks and sands. 
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Accuracy of LiDAR-derived input data 
 

In Study III, the process-based model was tested both with field and LiDAR input data. The 
LiDAR derived input data seemed to be well in line with the field input data for mean tree 
height. Instead, the crown base height estimations in the LiDAR data differed considerably 
from the corresponding field measurements. In general, the crown volume and leaf biomass 
estimates based on the LiDAR data were higher than those derived from the basic field 
measurements (Figure 6).  
 

 
Reliability of the k-NN Imputation 

 
In Study IV, the stand level annual growth was simulated in the static process-based model 
complemented with the soil carbon estimation model Yasso07 using the NFI data from 
2004-2008. Weather data was available from the corresponding years. The estimations were 
imputed for two large areas in Finland based on Landsat 5 TM images. Accuracy of the k-
NN imputations was slightly better in the Central Finland than in the Lapland data set 
(Table 5). There were no remarkable differences between the imputations with different 
band sets. The bias of GPP and NPP was lowest with imputations using all of the bands. In 
contrast, RMSE was at its lowest in the imputations based on 2 different images and DEM. 
When examining the distribution of imputed values, one can see that the imputations tend 
to average the results compared to the original reference distribution (Fig. 7) and that the 
results taper with an increasing k (Fig. 8). The overall bias decreased with an increasing k, 
though in Lapland the GPP bias started to increase for MT and CT site types when k>9. The 
relative bias and RMSE of GPP imputations were notably higher (bias% -30.5%, RMSE% 
49.3%) for CT site types than for the other site types in Central Finland. In Lapland, the site 
fertility did not affect accuracy. In Central Finland, GPP was notably underestimated (bias% 
8.2%) in deciduous dominated stands, while in the Scots pine and Norway spruce stands it 
was slightly overestimated (bias% from -0.5 to -2.0%).  
 

                
 
Figure 6. Stand crown volume (m3 ha-1) (R2=0.35) (on the left) and mean leaf biomass (kg 
DW) (R2=0.25) (on the right) as estimated from the LiDAR data and plotted against the field 
estimates. All the values are from 2004. 
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In Lapland, the Scots pine dominated stands were the least biased ones (bias% of 1.4%), 
GPP being overestimated with Norway spruce (bias% -16.5%) and underestimated with 
deciduous trees (bias% of 14.9%). According to simulations, the stands with a low basal 
area were more often carbon sources than those with a high basal area. The simulated GPP 
estimates increased more with increasing basal area than those obtained with imputations. 
The imputations seemed to more likely produce overestimations for stands with a low basal 
area and underestimations on the stands with a higher basal area. 
 
 
 
 
 
Table 5. Cross-validation of carbon flux imputations (g C m-2 –yr) in Lapland and Central 
Finland in 2007 based on different independent variables. 

 

 
Central Finland 

(n=1072) 
 Lapland  

(n=365) 

 

Bands  
1-5 & 7,  
1 image 

 
Bands  

1-5 & 7,  
1 image 

Bands  
2-4,  

1 image 

Bands  
2-4,  

2 images 

Bands 
 2-4, 

2 images, 
DEM 

GPP (g C m-2 –yr)       

Bias 5.6  0.8 3.9 1.7 -1.3 

Bias% 0.6  0.2 1.0 0.4 -0.3 
Rmse 240.1  136.8 144.2 146.4 135.7 

Rmse% 27.0  35.6 37.5 38.0 35.3 
Average k-NN 883.3  384.0 380.9 386.1 383.2 

Average reference 888.9  384.8 384.8 384.8 384.8 

       

NPP (g C m-2 –yr)       

Bias 0.2  0.2 1.6 0.7 -0.8 

Bias% 0.1  0.1 0.9 0.4 -0.4 
Rmse 111.1  64.5 67.2 68.3 63.7 

Rmse% 29.7  35.9 37.4 38.0 35.5 
Average k-NN 374.4  179.4 178.0 180.4 178.9 

Average reference  374.6  179.6 179.6 179.6 179.6 

       

NEE (g C m-2 –yr)       

Bias 1.3  0.6 -1.0 0.7 3.0 

Rmse 94.1  52.0 53.3 53.8 49.2 

Average k-NN -156.0  4.9 6.5 2.5 4.8 

Average reference  -154.8  5.5 5.5 5.5 5.5 
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Figure 7. Distribution of GPP (left) and -NEE (right) in Central Finland. The black bars 
denote the reference values and the black line the imputation with k=5, bands 1-5 & 7 were 
used as independent variables. The black dots denote the k-NN imputations (with k=5) on 
the Hyytiälä site for 2007. 

 

 
 
Figure 8. Distribution of reference and imputed values of GPP (left) and -NEE (right) in 
Lapland for 2007. The black bars denote observed values, the thick black line denotes 
imputations with k=3, the thin black line denotes imputation with k=5, the thick grey line 
denotes imputation with k=7 and the thin grey line imputation with k=11. Bands 1-5 & 7 were 
used as independent variables. The dots denote the k-NN estimates (k=5) on the Sodankylä 
site for 2007. 
 
 
The imputed GPP values around the Sodankylä and Hyytiälä eddy flux towers were 
remarkably lower than the GPPs from the eddy measurements (Figure 9). The simulated 
GPP estimations followed a similar annual trend as the GPPs from the eddy covariance 
measurements, but in Sodankylä there was a remarkable decrease in the measured GPP in 
2007, which was not found in the simulations. Also, the simulated NEE values were in line 
with the corresponding Eddy flux values in Hyytiälä, except for 2008, where in contrast to 
simulations, the observed NEE remained at the same level as during the previous year 
(Figure 10). The imputed NEE values, instead, were significantly smaller than the measured 
ones. In Sodankylä, the imputations were well in line with the EC measurements (Figure 
10), while the simulations were biased but followed a similar trend as the measured NEE. 
According to both the simulations and imputation, the Hyytiälä plot was a carbon sink 
during 2004-2008. In Sodankylä, the plot is a carbon source according to the eddy flux 
measurements and imputations, but a sink according to the simulations. 
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Fig. 9. Imputations and eddy flux measurements of annual GPP (g C m-2 year-1) in Hyytiälä 
(left) and Sodankylä (right) during 2004-2008. 

 

  
  

Fig. 10. Imputations and EC measurements of annual NEE (g C m-2 year-1) in Hyytiälä (left) 
and Sodankylä (right) during 2004-2008. 

 

5 DISCUSSION 
 

This study demonstrates a new approach to growth estimation, where climate-sensitive 
process-based models are applied with easily available input data from field or LiDAR 
sources. The approach was connected with Landsat TM 5 satellite images, which allow 
producing of maps e.g. of forest carbon balance estimations for large areas in Northern 
Europe. Several data sets, mainly from the National Forest Inventory in Finland, were used 
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to evaluate different forest growth simulators, both empirical and process-based, each 
containing a full set of models for estimating the entire growth process. 

Study I evaluates the most commonly used Finnish empirical growth models at tree and 
stand level. In the other studies (II-IV), the process-based approach is applied in order to 
obtain growth predictions. In the most important role is a new process-based approach, 
which was developed for estimating forest growth by means of summary models. The 
method accounts for the site specific climate and its effect on tree growth at stand level 
through photosynthesis, respiration, and carbon allocation. Three versions of the 
summarized process-based approach were tested in this thesis: 1) a simple static approach 
(Study II) suitable for one-year carbon production estimation, and 2) a dynamic version 
complemented with a bridging model by Valentine and Mäkelä (2005) (Study III), which 
enables growth estimations of tree dimensions over longer periods of time, and 3) a static 
version complemented with the Yasso07 soil carbon dynamics model (Tuomi et al. 2008, 
Tuomi et al. 2009) (Study IV). In studies I and II, the input data was from the field (NFI), 
whereas, in the other studies, remote sensing data was also used. In Study III, the process-
based simulator was tested with LiDAR data as input, and in Study IV the process-based 
estimations were extended to regional level by using the k-NN imputation with Landsat TM 
5 satellite images. 

Previously, the empirical simulators have had advantage over process-based models, 
because they are more accurate, if the climatic conditions and management schedules stay 
similar as those, which prevailed in the past. Further, the process-based models have been 
found to be impractical due to their complex structure and due to their need for difficult 
parameterisation. The advantage of the summarised forest growth estimation approach over 
the more complex process-based approaches is that its parameters and inputs are readily 
available for forest stands across the country. Therefore, they can be applied as easily as the 
empirical models, if climate data or corresponding estimates are available. In Finland, such 
data is available for the whole country since the 1960’s from the Finnish Meteorological 
Institute in form of a 10 x 10 km grid. In the current approach, almost all of the parameter 
values of the models were available from previous studies on the individual summary 
models (for example, Mäkelä et al. 2008b, Duursma and Mäkelä 2007). Some of the 
parameters were readily available through model simulations. Based on the findings in 
studies II-IV, the summary model approach seems to be a potential tool at least for short-
term forest growth predictions in Finland and nearby areas. However, there are several 
drawbacks and development needs in the current process-based approach, which are 
discussed in the following sections.  

 
 

Comparing the accuracy of the simulators 
 
Estimations by the empirical simulators were compared with the field data from NFI 
permanent sample plots (Study I), the focus being on the forest attributes at the end of the 
10-year simulation period. The final state was selected as a baseline for the comparisons, as 
updating of the forest resource data is in important role in forest management planning. For 
comparison, the increment in the stand basal area during the simulation period (calculated 
using the data from the Study I) was included in the summary of this thesis.   

All the empirical simulators provided fairly good estimates for tree diameter and height, 
while the estimates for basal area and volume were on average slightly poorer. Overall, the 
differences between the simulators were small. The combined simulator was the least 



30 
 

 

biased of the tested simulators in the diameter estimations and the volume was estimated 
least biased with the stand simulator, while the basal area and height were estimated least 
biased with the tree simulator. When examining estimates of the basal area growth the least 
biased was clearly the tree simulator. The biases of mean height, diameter and stand basal 
area were similar to those obtained by Mäkinen et al. (2008). The empirical model 
predictions for the birches were notably less reliable than those for Scots pine or Norway 
spruce. It should be noted, that the regeneration of the new trees was not included either in 
the simulations or when calculating the field reference data, as the data for the smallest 
trees (D1.3<4.5cm) was available only for the trees, which were considered as qualified by 
the measuring person. This means, that some of the smallest trees have falsely excluded 
from the data, which can have increased uncertainty in the results of the young stands with 
lot of trees around that size (Studies I and II). 

Geographically, the tree and stand level empirical simulators behaved similarly, the 
volume error varying between different parts of Finland. The highest overestimations in the 
stand volume were found in certain areas in Southern and North-Eastern Finland. In the 
northern part, the forests were exceptionally old (>150 years) in the areas where the 
overestimations were the highest. This can be linked to problems in predicting stand-level 
mortality reliably. The findings were in line with a study by Sironen et al. (2008) in 
Southern Finland, where a non-parametric estimation method was compared with the tree-
level models of Hynynen et al. (2002). In their study, the tree-level models overestimated 
the basal area growth in Southern Finland, while in the north the basal area growth was 
mainly underestimated. When examining the results of Study IV, one can see that the 
process-based GPP estimations are mainly in line with the EC measurements both in 
Hyytiälä and Sodankylä, but the NEE estimations for the Hyytiälä (Southern Finland) site 
are much closer to those measured by EC than in the Sodankylä site (Lapland). Even 
though there were only two EC sites from Finland available, the results indicate that 
applying the approach to Northern Finland requires further model development and 
parameterisation. 

The growth estimates produced by the different process-based versions, including the 
static and dynamic versions (Study II and III), were generally in line with the field 
observations. When comparing the process-based volume growth (Study II) and basal area 
growth (Study III) estimations to those of the empirical growth models commonly used in 
forest planning in Finland, one may conclude that the reliability of the volume estimations 
of the static process-based approach is at the same level in the given data set. In Study II, 
the growth estimates were generally in line with the stem biomass growth derived from the 
NFI volume development, but the precision of the predictions was not very high (RMSE 
34.3 %). The bias of the process-based estimates varied with tree species, stand age, and 
site fertility. The stem biomass growth was underestimated for the young stands; a potential 
explanation for this is the fact that mean annual growth was determined using the stand 
characteristics in the first measuring year (1985) but compared against field observed mean 
annual growth during a 10-year period. In the young stands, the leaf biomass is increasing 
rapidly, while in the older stands leaf mass is more stable (Sprugel 1984). There were also 
differences in the reliability of the model for different site types. The model highly 
underestimated growth in the most fertile sites (OMT), but for the other site types the biases 
were much lower. One reason could be that the scaling parameters estimated using the 
PipeQual model may not be sufficiently accurate for the OMT sites. Also, the study 
material contained only a few OMT sample plots.  
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In Study II the accuracy of the process-based model predictions was even slightly better 
than that provided by the empirical tree-level models (Hynynen et al. 2002). Instead, in 
Study III the empirical model was the more accurate one. In both cases the process-based 
model produced higher growth estimates than the empirical model. In Study II the selected 
sample plot set remained rather small due to high requirements for the stand characteristics 
and data availability. Only the mineral soil plots, which contained all the required sample 
tree measurements for all the existing strata, and which were free of mortality and 
thinnings, were selected to the study. Therefore, the sample plot set might not represent 
Finnish forests very comprehensively, which might be the reason for the biased empirical 
model estimates. It should also be noted, that there were differences between the 
initialisation procedures of the different model types, which caused variation in the initial 
status of the stands. The process-based model utilised the measured crown base height data, 
whereas in the empirical SIMO simulator the crown base heights were estimated using a 
crown ratio model (Hynynen et al. 2002). Further, different tree height calibration routines 
were used in the SIMO (stratum-wise calibration) and in processing of the NFI reference 
data (stand-wise calibration), which caused slight differences in the estimated initial stand 
volumes. This might have added some uncertainty to the empirical volume growth 
comparison presented in Study II, because the empirical mean annual growth was 
calculated based on the final volume simulated by the SIMO and the initial volume 
estimated based on the NFI data. It would be more appropriate to compare them with the 
empirical model’s mean annual volume growth estimated directly by the SIMO simulator 
for the first 5-year period (see Fig. 11). In that case the empirical volume growth estimate 
decreased 0.2% on average from the mean annual 10-year growth estimate used in the 
Study II, the RMSE and bias staying around the similar level (bias% of 18.8%, RMSE% of 
39.6%, s% of 34.9%).  

In Study III, the RMSE% and s% of basal area growth estimates remained rather high in 
all the tested approaches (28.6-39.3%). The bias was low in the empirical model (0.4%) and 
the process-based approach with the LiDAR data (-1.5%), while the results of process-
based model with field input were overestimated by 11.4%. Overall, the accuracy of the 
growth estimates was similar to those from previous studies conducted in Finland. In Study 
I the reliability of empirical model  (Hynynen et al. 2002) estimations was examined using 
a large data set from the national forest inventory plots in Finland. The basal area growth 
estimates calculated using the data set of Study I (Table 4) show, that the estimations were 
the least biased with the tree level model (2.5% overestimation), while the combined model 
estimates were the most biased (18.1% underestimation). The RMSE% of the basal area 
growth (50.0-79.2%) estimates was remarkably higher, than that obtained in the study III 
(28.6-39.3%).  However, one should keep in mind that the growth results of study I contain 
extra estimation error caused by natural mortality, while in the studies II and III tree 
mortality did not occur in the sample plots. This explains the higher RMSE% of the basal 
area growth estimates in the study I.  In Study II, the process-based model estimates were 
compared with NFI data, resulting in a RMSE% of 34.3% and a bias% of 2.1% for stem 
volume growth. The growth estimates obtained using the most similar neighbour method 
with the Finnish data have been at a similar level (Sironen et al. 2008). 
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Fig. 11. Comparison of the stem volume growth estimations of the process-based model 
(black line, y = 1.0865x – 0.3066, R2=0.55) and the tree-level growth model included in the 
SIMO simulator (dotted line, y=1.0239 x + 0.992, R2=0.51). The SIMO growth estimate is 
here the mean annual volume growth during the first 5-year simulation period (based on the 
initial stand status determined by the SIMO simulator). 

 
In earlier studies, the pipe model based foliage biomass estimations have been tested, for 
example, by Berninger et al. (2005), who did not find any clear trends with respect to stand 
age, density, or site type with Scots pine, and by Lehtonen (2005), who reports the pipe 
model being the least biased for spruce stands in Finland, when tested with several 
empirical models. However, it would be worthwhile to test the pipe theory derived biomass 
predictions against more recent empirical biomass models for individual trees that are now 
available for Finland (Repola et al. 2007). Comparison of the reliability of the process-
based approach with other related studies in Finland, for example, the hybrid model by 
Nuutinen et al. (2006) and Matala et al. (2006), is rather difficult, because those studies 
focus on the long-term simulation results in elevated temperatures and CO2 concentrations, 
rather than on evaluation of the model results with measured data.  

 
 

Overall improvement needs of current growth simulators 
 
Forest growth simulators typically consist of applying several models starting from input 
data processing and ending up to a collection of sub-models used in the growth prediction. 
Therefore, problems in some part of the data processing and simulation chain can have a 
strong impact on the results. For the current empirical models, the changing climate and 
different management regimes can raise problems in the future. It is evident that purely 
empirical-based models need to be combined with hybrid solutions containing mechanistic 
processes in order to produce reliable estimations with varying climate scenarios. Empirical 
and process-based approaches have common problems especially when simulating far to 
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the future. The longer the simulating periods are, the more important role the used mortality 
and regeneration models will get. These components exist in the tested tree-level empirical 
models, but they require still further development. The tree-level models (Hynynen et al. 
2002) consider natural mortality caused by competition or age. Even though these models 
implicitly include average mortality caused by diseases, insects, snow damage, or storms, 
they were build based on data only from even-aged and single-species stands from mineral 
soils. Therefore, these mortality and self-thinning models can be assumed to function rather 
unreliably in the case of stands of irregular structure (numerous tree species, uneven spatial 
structure, and/or uneven size distribution) (Hynynen et al. 2002).  In addition, while these 
above-mentioned phenomena occur, the consequences for the individual plot or stand can 
be destructive, which causes also high prediction errors in growth estimations in such plots.  
Instead, the stand-level models in their original form assume that natural mortality does not 
occur at all. Removal of trees by cutting is assumed to take place, however, and thus the 
basal area and volume estimates can be considered reliable only in the case of “normally” 
thinned forests. 

There are also several development needs in the used process-based approach. The 
current approach did not include any mortality or regeneration models, due to the short 
simulation period. One of the aims for future research is to link the summary approach with 
mortality and regeneration models, which would allow simulating the stand growth over 
longer time periods. Additionally, special attention should be paid to modelling 
development of young trees, as well as deciduous trees (Study II). Another goal is to 
include nitrogen and water uptake processes in the simulator (Mäkelä et al. 2008a, Duursma 
et al. 2008), which would improve reliability of the allocation procedure and, obviously, 
reduce differences in model errors between site types, as stated in Study II. In the current 
version, nutrient availability was present only through site fertility parameters, which 
affected carbon allocation to fine roots, and implicitly through the leaf area, which was 
derived from the NFI data. As photosynthetic production rate has been reported to increase 
with N content of leaves (Ågren 1996, Smith et al. 2002), this response should be improved 
in the model. As the soil properties and topography especially affect the water and nutrient 
balance of the forests, it would be worthwhile to test soil maps and a digital elevation 
model as model inputs, since these are available for the whole of Finland 
(http://www.geo.fi/). 

The current version has been parameterised only for mineral soils, and its 
parameterisation for peat lands would be required in order to expand its usage to all boreal 
forests. Further, as stated previously, the model performance especially in relation to soil 
processes was not very good in the Sodankylä sample plots, which suggests that the model 
parameters should be adjusted for northern areas. The current version of the model was 
only tested under prevailing climatic conditions, and in the case of applying it with raised 
temperatures, the model response to elevated CO2 concentration in the air should be further 
adjusted. Also, generalisations of the relationship of, for example, temperature sum and P0 
are only valid in climates similar to Finland. It should be noted, that the P0 estimation based 
on temperature sum (Study II) gives only rough estimates based on average weather 
conditions. Further, as the hierarchical structure of the modelling data (different sites 
containing data from different years) was not taken into account when building the 
temperature-sum-based P0 model, it can not properly differentiate the variation between the 
different years. Therefore, if local annual weather data is available, P0 should be calculated 
based on that. 
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Needs to improve the LiDAR based version 
 
Based on the findings of Study III, the LiDAR based approach produced reasonable results 
despite of a tendency to overestimate crown volumes. However, there were several 
drawbacks and inaccuracies in the current approach, which should be addressed in future 
development. The most crucial need is improvement in the crown volume estimation and its 
conversion to leaf biomass. In Study III, the crown volume estimation employed a 
triangulation and alpha-shape based approach that has earlier been successfully applied to 
species recognition (Vauhkonen et al. 2009), predictions of stem attributes (Vauhkonen et 
al. 2008), and crown base height estimation (Vauhkonen 2010). Here, this methodology led 
to overestimated crown volumes, and thus to overestimated leaf biomasses. Estimating the 
number of trees per plot could actually be ignored by estimating the tree level crown 
volumes directly for all the trees in the plot either by using single tree detection methods or 
by the k nearest neighbour imputation (for example, Packalén and Maltamo 2008) and 
applying them with the tree level leaf biomass equations.  

One obvious reason for the inaccuracy in the crown volume estimation was the low 
pulse density (0.7 m-2) of the LiDAR data used. Even though findings in several studies 
show that the accuracy of stand-level estimations of, for example, stem volume based on 
distribution of the ALS based height values does not remarkably decrease with a decreasing 
pulse density (for example, Maltamo et al. 2006, Gobakken and Næsset 2007), according to 
Vauhkonen et al. (2008), a density of at least 3 pulses m-2 would be required when 
attempting to predict the species and stem diameter of individual trees using crown 
structural attributes. Despite of a low pulse density, the estimated mean crown volumes 
were fairly well in relation with the reference values, at least when compared with the 
crown base height estimation. It should be noted that the estimations obtained by the 
LiDAR based version contain both under and overestimations in the sub-models, which has 
to be considered when examining the accuracy of the final results. Because the stand total 
crown volume and number of trees per hectare were overestimated in the LiDAR version, 
the reliability of the mean tree crown volume estimates also is exaggerated.  

 As the estimates based on the field data also contained some uncertainty, it is rather 
difficult to verify the real origin of the estimation error. Some inaccuracy is related to the 
field measured growth, which was based on drilled samples, which were only from the 
dominant tree class. Therefore, the generalised plot-level field growth might have been 
overestimated. Because the field reference of  the tree growth was determined based on the 
generalisation model using only one calibration tree per stratum,  the plot-level field growth 
values contain also remarkable random variation. It should be noted, that the model for 
generalising the field growth ignored the bark growth, but this effect was assumed to be 
very small during such a short growth period. However, according to Ilvessalo (1965) the 
bark growth of Scots pine can be 5-20% of the diameter growth, depending on the tree 
shape and diameter, the share being highest with the smallest trees. 

Only a few of the countless possibilities that LiDAR data would offer for determining 
the canopy conditions were utilised in this study. For example, as the 3D LiDAR point 
cloud is available, shading properties in the canopy could be derived directly from it. This 
could be applied, for example, to the effective extinction coefficient used in the process-
based approach (Duursma and Mäkelä, 2007), which was derived here from the estimated 
mean tree crown dimensions. When applying the approach to mixed forests, species 
specific input data should be derived from the LiDAR data. This could be done by applying 
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the area based approach with the nearest neighbour procedure as introduced by Packalén 
and Maltamo (2007). Alternatively, one could incorporate tree species recognition into the 
procedure either by combining the LiDAR data with multispectral aerial images as 
suggested by Holmgren et al. (2008), or in case the LiDAR data is dense enough, using 
only the LiDAR data (Vauhkonen et al. 2008). The alpha shapes should also be compared 
with alternative methods of estimating the crown structure, such as the voxel based 
approach as introduced by Popescu and Zhao (2008). Further, the process of deriving the 
required input data should be tested with more versatile forest stands in the future. Now, the 
sample plots were only from Scots pine dominated forests. Problems may arise when 
applying the approach to young stands, where LiDAR based detection of crown dimensions 
may face challenges (Naesset and Bjerknes 2001). Conducting field based and LiDAR 
based forest inventory with leaf biomass and crown dimension measurements based on 
versatile sample plot data would be useful for future development purposes. In addition to 
improving the crown volume estimation method, further studies with more accurate LiDAR 
data and more versatile forest area would be required in order to make reliable conclusions 
on its applicability with the process-based model. 
 
 
Generalisation with k-NN method  
 
The nearest neighbour method (k-NN) can be used with satellite images either for 
producing missing input data for the areas to be simulated or for generalizing the already 
simulated results to the surrounding pixels. In this thesis, k-NN was used for generalizing 
the plot wise simulated results of annual carbon balance to the larger areas based on 
Landsat 5 TM satellite images. When examining reliability of the k-NN itself, the method 
seems to work well (Study IV). However, the tendency of the k-NN method to average the 
results is apparent in the results of Study IV, where the highest carbon sinks and sources 
were lacking among the imputed values. Further, the GPP imputations for the stands with a 
low basal area were remarkably unreliable, and with high basal areas, the imputed GPP 
started to saturate. Study IV showed also that the reliability of the imputations varied 
according to the site fertility and the main tree species in the stand, which indicates that the 
spatial variation in carbon production caused by these factors was not sufficiently detected 
based on Landsat images only. Employing other data sources in addition to Landsat bands, 
for example, soil maps or DEM-derived products, should be considered in order to improve 
the reliability of the imputations. Furthermore, aggregating the data from different years 
was found problematic. It is likely that the land use map from 2007 and the Landsat image 
from 2007 do not match with the NFI observations from 2004-2008 in all the areas due to 
thinnings, cuttings, or land use changes. 

The timing of a satellite image is an important element which largely affects the 
reliability of the imputations. Several studies (for example, Rautiainen et al. 2009) have 
reported seasonal differences in reflectance of forests due to changes in biochemical 
properties, such as chlorophyll and water concentration in the vegetation. With satellite 
images, for example, MODIS (Moderate Resolution Imaging Spectroradiometer), earlier 
greening of the understory vegetation can be mixed with canopy greening (Wang et al. 
2005, Rautiainen et al. 2009). Therefore, if the imputations are done with images taken at 
the very beginning or end of the summer in an area with long distances between the 
southern and northern borders, the reliability of imputations might differ remarkably 
between different parts of the area. In addition, the Landsat images represented the forests 
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on only 1-2 days per year, while the simulated values of GPP, NPP, and NEE represented 
accumulations over the whole year, which is likely to cause uncertainty in the results. One 
solution to tackle the issue would be to base the imputation on longer time series of satellite 
images taken during the growing season. However, at least in Finland, it seems difficult to 
find such a good time series covering large areas with an acceptable level of cloud cover. 
The k-NN procedure used in Study IV could be improved in the future by adding weighting 
procedures (Tomppo and Halme, 2004) or by applying several images from the growing 
season. MODIS maps or EC measurements from the neighbouring countries could be 
utilized in the future to validate this approach.  

The k-NN approach used in Study IV allows extending the estimations of, for example, 
carbon fluxes for all the boreal areas with similar climatic conditions as in Finland, for 
example, in Sweden, Norway, and northern parts of Russia, provided that the required 
weather data and NFI or equivalent data are available. As previously mentioned, the used 
process-based model has been parameterised only for mineral soils and for few tree species, 
and parameterisation for peat lands and additional tree species would be required to reliably 
extend estimations to all the boreal forests. As MODIS maps provide thematic maps on 
numerous different environmental variables, such as leaf area index, land cover, and land 
surface temperature, they could also be utilized with this approach, if such data is not 
otherwise available. MODIS maps have been utilized widely in recent studies both as input 
data for growth models or for evaluation purposes (Zhao et al. 2005, White et al. 2006, 
Coops et al. 2007). MODIS also offers NPP maps, which have been developed by utilizing 
an eddy covariance (EC) network and process-based models (Running et al. 2004). The 
disadvantage of the MODIS product, however, is its coarse resolution (1 km) and limited 
network of ground data, i.e. a sparse eddy flux network (Turner et al. 2006). Landsat 5 TM 
images (Study IV) enable a significant improvement of the output resolution. When using 
k-NN methods, the localization of the estimates has an important role (Sironen et al. 2008). 
Variation in vegetation and climate zones can vary within a satellite image (image size 170 
x 185 km in Landsat 5 TM), and in order to reduce the effects of, for example, variation in 
rainfall to the carbon flux imputations, both the reference and target pixels should be from 
the same, relatively small area. Sub-areas included in the k-NN method could be defined 
based on the distance from the target pixel or by using segmentation methods, such as local 
indicators of spatial association (LISA), as introduced, for example, by Räty and Kangas 
(2010).  

However, even though the reliability of the k-NN generalization seemed to be at an 
acceptable level, the reliability of the actual estimations for the sample plots still remains 
questionable. If the estimation method fails to predict the carbon balance of the sample 
population, the generalization will also fail. It is rather difficult to estimate the accuracy of 
the carbon balance estimations, as only two Eddy covariance measurement stations exist in 
the study area. Based on the comparisons of the simulated and observed carbon production 
in the Eddy sites, the Yasso07 soil carbon model seemed to work better in Southern Finland 
than in Northern Finland. The soil model simulations rely on several rough assumptions, 
which can have a considerable effect on the NEE estimates. The steady state simulation (for 
10,000 years in this case) was conducted with assumed mean litter fall and weather 
conditions, which definitely can vary during such a long time span. The annual plot wise 
litter fall and weather conditions were assumed to remain similar during the whole 
simulation period, except for in the last few years, for which stand wise estimates based on 
NFI data were available. This simplification may have caused both under- and 
overestimation of annual litter fall, depending, for example, on stand age, site fertility and 
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main tree species of the forest, as well as the prevailing weather conditions. Secondly, the 
possible cutting removals in the recent decades were ignored, as the data was not available. 
The mean steady state values obtained in Study IV (6.0 kg C m-2 for Central Finland) were 
in line with those reported by Liski and Westman (2005) and Peltoniemi et al. (2004), who 
observed average soil carbon pools of 5.8-9.6 kg C m-2 and 6.8 kg C m-2, respectively, in 
Southern Finland. However, weather conditions and litter fall, especially during the latest 
simulation years, can cause large variations in the estimated carbon pool, and inaccuracies 
in these estimates are reflected in the NEE values. Therefore, estimating NEE with this 
approach is rather uncertain, especially if recent local weather data is not available. This is 
of particular concern when the uncertainty range lies at about zero, i.e., the stand may either 
be a sink or a source of carbon. Further investigation is required in order to assess the 
reliability of the method. Comparisons could be extended, for example, to Eddy covariance 
stations in Sweden. Additionally, other soil carbon models, such as ROMUL (Chertov et al. 
2001), are available and could be applied instead of the Yasso07 model. 

 
 

6 CONCLUSIONS 
 

It is evident that there is a need for 1) developing forest growth estimation methods 
adaptable to both climatic and environmental changes, 2) developing methods capable of 
estimating the development of other than traditional stand characteristics, 3) improving the 
methods of utilizing remote sensing data with the new types of growth simulators, and 4) 
shifting towards open-source simulation frameworks that can be easily modified, updated 
with new models and linked with other systems in order to adapt them to the changing 
needs of the users. The climate-sensitive forest growth estimation approach introduced in 
this thesis (studies II-IV), as well as the open-source simulation frameworks, such as SIMO 
(Tokola et al. 2006) utilized in Study I, can be seen as promising efforts towards these 
goals. 

The reliability of the empirical and process-based summary models tested in this thesis 
was at a similar level in the short run (Studies II and III). However, the process-based 
simulations were carried out using rather small data sets, which included mainly well-
managed forests without natural mortality. Therefore, further testing of the process-based 
approach with a wider range of site types, tree species, mixed forests, as well as 
geographical areas is required in order to draw conclusions of their reliability in larger scale 
use. In longer simulations, the role of mortality and regeneration models becomes more 
important; this would require special attention and further developing efforts in both 
empirical and process-based approaches. As a conclusion, which model to use depends on 
the input data, simulation time, and the needs of the model user. As shown in Study I, there 
are not big differences between the empirical tree and stand-level models, and they remain 
the mostly used ones due to their long empirical background. However, in the case of 
warming climate or when testing new kind of management regimes, process-based 
approaches or hybrid models would obviously offer a more reasonable solution (see e.g. 
Miehle et al. 2009), given that they contain proper mechanisms to respond the changes in 
the environment and that they have been adequately tested. Based on the evaluations done 
in studies II-IV, the current summary approach seems to have potential for short-term 
predictions in even-aged mineral soil forests in the southern part of Finland. However, in 
order to apply the process-based approach to new kind of thinning schedules, for example, 
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uneven-aged forest management, proper regeneration and mortality models should be 
applied and the estimation procedure should be conducted on tree level. Developing a 
mechanistic model system with a reliable regeneration and mortality system that responds 
to changing light, nutrient, and water conditions remains a future challenge.  

In general, the approach seems to be a promising starting point and there is a wide range 
of possibilities to expand its usage. For example, estimating carbon fluxes for large areas 
based on LiDAR data would be a very interesting application and could be immediately 
tested, as the model contains components for estimating gross and net primary production 
as well as the soil respiration, which enables the estimation of the whole net ecosystem 
production. The approach presented in the thesis contains building blocks for developing an 
easily applicable visual tool in order to examine the effects forest management in changing 
environmental and climatic conditions for environmental and industry related decision 
making and policy making purposes. It could be easily integrated, for example, in the forest 
planning framework SIMO, which would allow accommodating for carbon balance issues 
in practical forest planning and optimisation tasks. It would also offer an interesting 
platform for future research purposes. 
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Appendix 1. 
 

Static process-based summary model 
 

Tree growth is estimated at the stand level, based on carbon production and respiration in 
different components of the trees. Annual forest growth can be expressed as 

 
PN = r NPP  P,                                            (A.1) 

 
where PN is net primary production (NPP), P is gross primary production (GPP), and rNPP is 
the ratio of the two, depending on the respective rates of maintenance and growth 
respiration of the stand. In studies II-IV, rNPP was assumed to be proportional to mean stand 
height in accordance with the equation rNPP = 0.6 – 0.0113 Hmean, based on the findings by 
Mäkelä and Valentine (2001) (see Study II). Annual biomass production, Gt (kg DW ha-1 
yr-1) (DW=dry weight), is proportional to PN as follows: 

 

NCt PcG 1−= ,                        (A.2) 

 
where cC is the carbon content of biomass dry weight (cC ≈ 0.5). P depends on 
environmental driving variables and forest stand data as follows: 

 
P = fAPAR P0,                        (A.3) 
 

where fAPAR is the (effective annual) mean fraction of photosynthetically active radiation 
(PAR) absorbed by the canopy, and P0 is annual canopy photosynthesis in a (hypothetical) 
canopy that absorbs all PAR radiation.  

 
According to the LUE based model (Mäkelä et al. 2008b), annual canopy GPP (P) can 

be expressed as 
 

)(
365

1
DkSkLkk

k
APAR ffffP Φ= ∑

=

β ,                                                                                        (A.4) 

where fAPAR is as above, β is potential daily LUE (kg C / mol), kΦ  (mol m-2) is PAR above 
the canopy during the day k, and fL, fS and fD are modifying functions of daily PAR, daily 
average temperature, and daily average vapour pressure deficit (VPD), respectively, that 
take values between 0 and 1 (see Härkönen et al. 2010 for details). Further, P0, the 
(hypothetical) maximum canopy GPP, can be obtained with the eqn. A.4 when fAPAR =1.  
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Table A.1. Model parameters and their values. Version “D” denotes the dynamic version 
parameters used in Study III and version “S” the static version used in studies II and IV. 

 Explanation Unit Scots pine 
 

γb Coefficient of allometric eqn. for branch length  0.386 

b Allometric exp. for mean branch length  0.8268 

φB Form coefficient   1.3 

φC Form coefficient of stem inside the crown  0.55 

φS Form coefficient of stem below the crown  0.5(rC+ 1)/rC,  
where rC= LC/H 

ηB Foliage mass:basal area of branches  kg DW m-2 350 

ηS Foliage mass:cross-sectional area at crown base 1) kg DW m2 Tmean x 16 +440 

αR2 Fine root biomass:needle biomass on OMT 2) kg DW (kg DW)-1 0.2 

αR3 Fine root biomass:needle biomass on MT  kg DW (kg DW)-1 0.36 

αR4 Fine root biomass:needle biomass on VT  kg DW (kg DW)-1 0.51 

αR5 Fine root biomass:needle biomass on CT  kg DW (kg DW)-1 0.7 

ρS Wood density of stem  kg DW m-3 400 

ρB Wood density of branches  kg DW m-3 400 

φ Empirical parameter  0.4 

kH Extinction coefficient for homogeneous stands  0.3 

SLA Specific leaf area m2 (kg DW )-1 11 
 

mF,0 Maintenance respiration rate of foliage kg C (kg C)-1 yr-1 0.7 

mR,0 Maintenance respiration rate of fine roots kg C (kg C)-1 yr-1 0.3 

mW,0 Maintenance respiration rate of sapwood kg C (kg C)-1 yr-1 0.075 

z Sapwood area:crown length m2 m-1 2 

c Carbon used for growth respiration:NPP kg C (kg C)-1 0.3 

vF Leaf longevity years 3.5 

vR Feeder root longevity  years 1 

αT Coarse root biomass:stem biomass kg DW (kg DW)-1 0.22 

βS Mean pipe length in main stem of crown:crown 
length 

m m-1 0.5 

1)
ηS is a linear function of annual mean temperature fitted with the results for Scots pine by Palmroth et 

al. (1999).  2)Site types classified according to the classification system of Cajander (1925). CT=Calluna 
type (dry heath forest), VT=Vaccinium type (dryish heath forest, MT=Myrtillus type (fresh heath forest), 
and OMT=Oxalis-Myrtillus type (herb-rich heath forest). αR for Scots pine was adjusted using the pine 
fine root:needle ratios of MT and CT presented by Vanninen & Mäkelä (2005) and Helmisaari et al. 
(2007). 
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Norway spruce Birch and other 
deciduous trees 

Source Version 

0.4614 0.2689 Mäkelä (1986), Mäkelä & Vanninen 
(2001), Vanninen & Mäkelä (2005) 

 

S,D 

0.5198 1 S,D 

0.63 0.5 S,D 

0.5 0.5 S,D 

0.5(rC+ 1)/rC,  
where rC= LC/H 

7.5946 LC 0.658 S,D 

400 216  S,D 

Tmean x 16 +540 Tmean x 16 +245 Palmroth et al. (1999) S,D 

0.18 1 Vanninen & Mäkelä (2005), 
 Helmisaari et al. (2007) 2) 

S,D 

0.3 1.5 S,D 

0.42 2 S,D 

0.54 2.5 S,D 

376 480 Kärkkäinen (2003) S,D 

590 550  S,D 

0.4 0.4 Duursma & Mäkelä (2007) S,D 

0.3 0.3 S,D 

10 12 Luoma (1997), Stenberg et al. (1999), 
Parviainen (1999) 

S,D 

0.7 0.7 Valentine & Mäkelä (2005) D 

0.3 0.3 D 

0.075 0.075 D 

2 2 D 

0.3 0.3 D 

- -  D 

- -  D 

- -  D 

- -  D 
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In Eqns (A.3) and (A.4), we assume that fAPAR incorporates the effects of canopy structure 
on GPP and P0 describes the effects of driving variables. Here, canopy structure is defined 
as the combination of LAI, its spatial distribution, and its shading properties. fAPAR can be 
approximated using the Lambert-Beer law with an (effective annual mean) extinction 
coefficient, kH (Table A.1). Duursma and Mäkelä (2007) showed that the same exponential 
equation can be applied more generally to non-homogeneous canopies, provided that kH is 
replaced by an effective extinction coefficient, keff (i denotes tree species strata):   

  )1(
)(

1
,∑

−= =

−
n

i
iieff Lk

APAR ef
,
                                       (A.5) 

 
where keff depends on leaf area per tree, LA (m

2), mean crown surface area, SA (m2), a 
homogenous extinction coefficient, kH, and an empirical parameter, φ (Table A.1). The (all 
sided) leaf area per tree can be calculated as LA=aLSWF/N, where aLS is specific leaf area 
(SLA) (m2 (kg DW)-1), and N is stocking density (ha-1). The specific leaf areas for different 
tree species were assumed constant (Table A.1). Mean crown surface area was calculated 
based on the measured (basal area weighted) mean crown length, LC (m), and width, CW 

(m), assuming the pine and deciduous crowns as ellipsoids and the spruce crowns as cones. 
In the field input version (studies II-IV), the stand leaf biomass, WF, was estimated based 
on the empirical ratio of foliage mass to the stem cross-sectional area at the crown base AC 
(m2), which can be expressed as AC =B (LC / (H-1.3)), where B is basal area (m2). The 
biomasses of other tree components, Wi (kg DW ha-1), were estimated using allometric 
equations (see Table A.2). Site fertility was included in the estimation through site type 
specific foliage:fine root ratios using the site type classification according to Cajander 
(1925). 

As each stratum contributes to canopy GPP (Pi) in the proportion of its effective leaf 
area, Leff,i, defined as Leff,i = keff,i L / kH, stratum’s GPP can be expressed as 

 
Pi = si  fAPAR_M P0,                 (A.6) 

 
where si is the ratio of the stratum specific effective leaf area, Leff,i, to the sum of the 
effective leaf areas of all strata. 

 
 

Dynamic process-based summary model 
 

Annual carbon production (GPP and NPP) was estimated similarly as in the static version 
explained in the previous section. The growth of stem and crown dimensions (Study III) 
was estimated utilising the “bridging model” introduced by Valentine and Mäkelä (2005), 
which is based on the pipe theory. The growth rate of tree height was estimated as 
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,              (A.7) 

 
where HC is crown base height (m), and gi:s are empirical parameters defined in Table A.3.  
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The crown rise rate was assumed to be 
 

dt

dH
CS

dt

dHC )(= ,                                                                                                 (A.8) 

 
where S(C) = 0, if LC < 7 meters and otherwise S(C) = 0.7.     

Crown width was assumed to stay proportional to crown length. Basal area growth at 
breast height (1.3 m) was determined on the basis of basal area growth at crown base. First, 
the total cross-sectional area at the living crown base, A (m2 ha-1), after one year growth can 
be expressed as 
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Further, the new basal area at the height of 1.3 m, Bt2, can be estimated based on At2, 

new height, and crown base height using the relationship in eqn. 11. The values of the 
structural parameters used in the estimation chain were obtained from empirical studies 
testing the above relationships (Table A.1). The LiDAR input and the field input versions 
of the process-based dynamic approach were the same, excluding the estimation of the 
initial leaf biomass (WF), which was derived directly from the crown volume estimations in 
the LiDAR method (see Study III). 

 
 

Estimating soil respiration and NEE 
 

In Study IV, the soil respiration was estimated based on the annual litter fall data using the 
Yasso07 soil model (Tuomi et al. 2008, Tuomi et al. 2009). In Yasso07, the total litter fall 
is divided into non-woody and woody litter, which are further divided into four compound 
groups: 1) compounds soluble in a non-polar solvent, ethanol, or dichloromethane (E), 2) 
compounds soluble in water (W), 3) compounds hydrolysable in acid (A), and 4) 
compounds neither soluble nor hydrolysable at all (N). Each group has different 
decomposition rates, which depend on temperature and precipitation. Decomposition results 
in mass loss from the system and inside the system, as well as formation of more 
recalcitrant humus (H). The parameters used in the model are described in Study IV. The 
annual carbon change of soil, ∆CS (g C m-2 year-1), can be expressed as  

 
∆CS=CS,1-CS,0,                 (A.10) 
 

where CS,1 (g C m-2 year-1) is soil carbon at the end of the simulation year, and CS,0 (g C m-2 
year-1) is soil carbon at the beginning of the simulation year. Net ecosystem exchange 
(NEE), EN (g C m-2 year-1), can be expressed based on NPP (PN), the annual soil carbon 
change, ∆CS , and carbon in the annual litter fall, LT (g C m-2 year-1), as follows: 

 
EN = - ( PN - LT + ∆CS),                                      (A.11) 
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a negative NEE denoting that the forest is a carbon sink and positive that it is a carbon 
source. The model was first driven to steady state by simulating soil processes for 10,000 
years for each plot before starting the actual simulation. The simulation to steady state was 
done in two parts. First, the Yasso07 model was run for t=10 000-tS (years), where tS is the 
stand age in the NFI plot data. The total annual litter fall in this first simulation part 
consisted of 1) average litter fall, LL (kg DW ha-1), from all the living trees in the NFI plots 
in the study area (Lapland and Central Finland areas separately) from 2004-2008, and 2) the 
average litter fall from dead trees and ground vegetation, LNG (kg DW ha-1), estimated as a 
function of the effective temperature sum in the plot (mean ETS during 1961-1990). The 
linear functions describing the relationship between ETS and LNG were constructed based 
on average litter fall data from Southern and Northern Finland (see Study IV). The second 
part included running the Yasso07 model for tS years with annual litter fall, which was 
interpolated between the mean annual litter fall LL at moment t and NFI-based plot wise 
litter fall, LLS, at moment tS, assuming a linear relationship. The plot wise weather 
conditions were assumed to be the same as the mean weather during 1961-1990 of the 
nearest point in the FMI 10 x 10 km data grid, except for the last 10 years of the steady 
state simulation, which were run with the annual weather data. 

Annual litter fall, LLS, was estimated on the basis of turnover rates defined in Study IV 
by Liski et al. (2006) using the biomass estimations of the NFI plots obtained with the 
process-based model. For Southern Finland, the annual foliage turnover rates for Scots 
pine, Norway spruce, and deciduous trees were 0.22 (0.1), 0.1 (0.05), and 0.78, respectively 
(values for Northern Finland in brackets). The annual branch turnover rates for Scots pine, 
Norway spruce, and deciduous trees were 0.02, 0.0125, and 0.0135, respectively. The 
corresponding turnover rates for coarse roots were 0.0184, 0.0125, and 0.0135. For fine 
roots, the turnover rates were 0.868, 0.811, and 1.0, respectively. The estimated average 
soil carbon in the steady state in 2007 in the Lapland plots was 6.6 kg C m -2 and in Central 
Finland 6.0 kg C m-2. The average of the total annual litter fall in Lapland was 159 g C m-2 

and in Central Finland 203 g C m-2. 
 
 

Table A.2. Biomass equations based on the pipe theory (Mäkelä 1986, Kantola and Mäkelä 
2006, Ilomäki et al. 2003). 
 

Variable Equation Unit 

Leaf biomass WF = ηS AC kg DW ha-1 

Branch biomass
 

CBSWBBB ACW ηηρϕ /)2/(=
  

kg DW ha-1 

Stem biomass
 

)( CCCCCSSS ALAHW ϕϕρ +=  kg DW ha-1 

Fine root biomass FRFR WW α=  kg DW ha-1 

Coarse root biomass
 STCR WW α=  kg DW ha-1 
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Table A.3. Equations used in height growth estimations in the dynamic version. 
 

Equation Explanation 

))1(/(/()1/(1 101 cgzg W ++= ρβ   Parameter 
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10 βρ WW mg =   Parameter 1) 

ρW = ρS /2 Wood density as carbon (kg C m-3) 

β1= β0(βB+ βS ) 
Parameter 

β2= β0 – β1 
Parameter 

β0=WSAP,T / WSAP,A 

The ratio of total sapwood WSAP,T to 
above-ground sapwood WSAP,A (kg kg-

1) 2) 

βB=hB/LC Parameter, where hB is mean branch 
length (CW/2) 

ρF= WF/AC Ratio of foliage mass to cross-
sectional area of sapwood (kg C m-2) 

ρR= WFR/AC 
Ratio of fine root mass to cross-
sectional area of sapwood, kg C m-2 

s0= GPP/WF 
Specific rate of photosynthesis kg C 
(kg C)-1 year-1 

1) The maintenance respiration rates, mi (Study III), for different biomass components (i=F,R,W, where 
F=foliage, R=fine roots, and W=sapwood in stem, branches, and roots) were needed in the gi equations. 
The total maintenance respiration, RM (kg C ha-1 yr-1), was estimated based on the NPP:GPP ratio, rNPP, 
as RM = RT - RG, where RG is proportional to NPP with fraction c (see Table A.1) as RG = c rNPP GPP. The 
NPP:GPP ratio was estimated as rNPP = 0.6 – 0.0113 Hmean (see Study II). As the rates for different 
components were unknown, the mi:s were derived based on the relationships of rates mi,0 introduced by 
Valentine and Mäkelä (2005) (see Table A.1) by scaling the maintenance respiration RM = mF WF + mR 
WFR + mW (WS + WB + 0.5 WCR) to match the maintenance respiration estimated based on the NPP:GPP 
ratio. 2) The proportion of sapwood was assumed to be 100% in branches and 50% in the coarse roots. 
Stem sapwood was calculated as WSAP=ρS (HC AC +(φC LC AC).  
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Appendix 2.  
 

Appendix 2 contains the updated tables (A.4-A.8) of the RMSE, bias and standard 
deviation (absolute and relative values) of the estimation error (Study I) of stand basal area 
(m2 ha-1),  basal-area-weighted mean diameter (cm), basal-area-weighted mean height (m), 
stand volume (m3 ha-1) in the end of the simulation period (1995), and growth of the stand 
basal area (m2 ha-1 10-years-1) with n=597. These tables replace the Table 2 in Study I, as it 
included erroneously sample plots which had been thinned. Mark “**” indicate that the bias 
is significant (p<0.01) (based on the two-tailed paired samples t-test). 
 

 
Table A.4. RMSE, bias and standard deviation (absolute and relative values) of the 
estimation error in plot level (n=597). 
 

  Tree     Stand     Combined   

All (n=597) Abs %   Abs %   Abs %   

RMSE (abs. and %)          

Basal area (m2 ha-1) 3.2 14.9  2.7 12.5  4.3 19.8  

Diameter (cm) 1.0 5.3  1.1 5.9  1.6 8.1  

Height (m) 1.7 11.7  1.8 12.1  1.8 12.4  

Volume (m3 ha-1) 29.4 17.6  36.2 21.7  40.9 24.4  

Basal area growth (m2 ha-1 10-years-1) 3.2 59.5  2.7 50.0  4.3 79.2  

 

Bias (abs. and %) 
         

Basal area (m2 ha-1) 0.1 0.6  0.7 3.2 ** 1.0 4.5 ** 

Diameter (cm) 0.2 0.8 ** 0.3 1.7 ** 0.0 0.1  

Height (m) 0.7 4.4 ** 0.8 5.4 ** 0.7 4.6 ** 

Volume (m3 ha-1) 7.3 4.4 ** 1.7 1.0  3.9 2.3  

Basal area growth  (m2 ha-1 10-years-1) 0.1 2.5  0.7 12.9 ** 1.0 18.1 ** 

          

s (abs. and %)          

Basal area (m2 ha-1) 3.2 14.9  2.6 12.1  4.2 19.3  

Diameter (cm) 1.0 5.3  1.1 5.6  1.6 8.1  

Height (m) 1.6 10.8  1.6 10.8  1.7 11.4  

Volume (m3 ha-1) 28.4 17.0  36.2 21.6  40.7 24.3  

Basal area growth (m2 ha-1 10-years-1) 3.2 59.4   2.6 48.3   4.2 77.1   

** The bias is significant (p<0.01), based on the two-tailed paired samples t-test. 

 
 
 
 
 
 
 
 
 
 



55 
 

 

 
Table A.5. RMSE, bias and standard deviation (absolute and relative values) of the 
estimation error in Scots pine strata. 
 

 Tree     Stand     Combined   
Scots pine (n=477) Abs %   Abs %   Abs %   

RMSE (abs. and %)          

Basal area (m2 ha-1) 2.3 19.5  2.1 17.3  2.3 19.3  

Diameter (cm) 1.7 8.5  1.8 9.0  1.7 8.6  

Height (m) 2.0 14.2  2.1 14.6  2.0 14.3  

Volume (m3 ha-1) 20.1 23.2  22.0 25.4  22.6 26.0  

 

Bias (abs. and %) 
         

Basal area (m2 ha-1) 0.2 1.5  0.8 6.5 ** 0.4 3.6 ** 

Diameter (cm) 0.3 1.7 ** 0.6 2.8 ** 0.4 2.0 ** 

Height (m) 0.0 0.3  0.4 2.7 ** 0.2 1.5  

Volume (m3 ha-1) 2.7 3.1 ** 6.2 7.2 ** 4.4 5.1 ** 

          

s (abs. and %)          

Basal area (m2 ha-1) 2.3 19.5  1.9 16.0  2.3 19.0  

Diameter (cm) 1.6 8.3  1.7 8.5  1.7 8.4  

Height (m) 2.0 14.2  2.0 14.3  2.0 14.2  

Volume (m3 ha-1) 19.9 23.0   21.1 24.3   22.2 25.5  
 

 
 
Table A.6. RMSE, bias and standard deviation (absolute and relative values) of the 
estimation error in Norway spruce strata. 
 

 Tree     Stand     Combined   
Norway spruce (n=389) Abs %   Abs %   Abs %   

RMSE (abs. and %)          

Basal area (m2 ha-1) 2.4 17.9  1.8 13.7  2.1 15.4  

Diameter (cm) 1.6 8.5  1.3 6.7  1.5 7.8  

Height (m) 2.3 15.2  2.5 16.4  2.4 15.7  

Volume (m3 ha-1) 22.3 20.1  29.9 26.9  29.5 26.6  

 

Bias (abs. and %) 
         

Basal area (m2 ha-1) -0.7 -5.0 ** 0.0 0.2  -0.4 -3.2 ** 

Diameter (cm) -0.2 -1.0  0.0 -0.1  -0.2 -0.8  

Height (m) 1.1 7.5 ** 1.5 9.6 ** 1.3 8.6 ** 

Volume (m3 ha-1) 1.9 1.7  -5.9 -5.3 ** -9.7 -8.7 ** 

          

s (abs. and %)          

Basal area (m2 ha-1) 2.3 17.2  1.8 13.7  2.0 15.1  

Diameter (cm) 1.6 8.4  1.3 6.7  1.5 7.8  

Height (m) 2.0 13.1  2.0 13.2  2.0 13.1  

Volume (m3 ha-1) 22.3 20.1   29.3 26.4   27.8 25.1   
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Table A.7. RMSE, bias and standard deviation (absolute and relative values) of the 
estimation error in Silver birch strata. 
 

 Tree     Stand     Combined   
Silver birch (n=110) Abs %   Abs %   Abs %   

RMSE (abs. and %)          

Basal area (m2 ha-1) 0.8 24.0  0.9 28.3  0.9 26.4  

Diameter (cm) 3.5 18.4  4.1 21.0  3.7 19.0  

Height (m) 4.0 22.2  4.0 22.1  3.9 22.1  

Volume (m3 ha-1) 11.5 37.2  13.0 42.2  10.0 32.6  

 

Bias (abs. and %) 
         

Basal area (m2 ha-1) 0.2 6.4 ** -0.3 -9.7 ** 0.0 0.6  

Diameter (cm) 0.1 0.5  -1.4 -7.3 ** -0.7 -3.5  

Height (m) 0.8 4.7  0.8 4.4  0.8 4.5  

Volume (m3 ha-1) 1.7 5.5  0.1 0.3  2.7 8.7 ** 

          

s (abs. and %)          

Basal area (m2 ha-1) 0.8 23.2  0.9 26.6  0.9 26.4  

Diameter (cm) 3.5 18.4  3.8 19.7  3.6 18.7  

Height (m) 3.9 21.7  3.9 21.6  3.9 21.6  

Volume (m3 ha-1) 11.3 36.8   13.0 42.1   9.7 31.4   

 
 

Table A.8. RMSE, bias and standard deviation (absolute and relative values) of the 
estimation error in White birch strata. 
 

 Tree     Stand     Combined   
White birch (n=322) Abs %   Abs %   Abs %   

RMSE (abs. and %)          

Basal area (m2 ha-1) 1.6 35.3  1.2 26.7  4.3 96.3  

Diameter (cm) 1.6 11.9  1.5 10.9  1.5 10.9  

Height (m) 2.2 16.2  2.2 16.0  2.2 15.9  

Volume (m3 ha-1) 11.7 38.6  10.1 33.6  29.9 99.0  

 

Bias (abs. and %) 
         

Basal area (m2 ha-1) 0.5 11.5 ** 0.2 3.7  1.4 30.9 ** 

Diameter (cm) -0.4 -3.1 ** 0.1 0.9  -0.2 -1.6 ** 

Height (m) 1.0 7.5 ** 0.9 6.4 ** 0.9 6.8 ** 

Volume (m3 ha-1) 4.7 15.7 ** 0.8 2.7  9.1 30.1 ** 

          

s (abs. and %)          

Basal area (m2 ha-1) 1.5 33.3  1.2 26.4  4.1 91.1  

Diameter (cm) 1.5 11.5  1.4 10.8  1.4 10.8  

Height (m) 1.9 14.4  2.0 14.7  2.0 14.4  

Volume (m3 ha-1) 10.7 35.3   10.1 33.5   28.5 94.3  
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