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ABSTRACT

A climate-sensitive process-based summary modelused to estimate forest growth and
carbon balance with field inventory and airbornesetascanning data, which are easily
available for practical forest planning purposdse feneralisation of forest carbon balance
estimations for large areas was examined by usikgearest neighbour imputation with
Landsat satellite images. The estimations wereuatadl using several data sets mainly
provided by the National Forest Inventory of Firdamlso, the most common empirical
forest growth models used in Finland were evaluated compared against the process-
based approach.

Reliability of the empirical and process-based samynmodels was at a similar level in
the short run. In longer simulations, the role afrtality and regeneration models becomes
increasingly important, so these models requirecigpattention and further developing
efforts in both approaches. In warming climate étbos or when testing new kind of
management regimes, process-based approaches od Imbdels would be the most
reasonable solution. However, further testing ef @approach is required for a wider range
of site types, tree species, mixed forests, gedigapareas, as well as longer simulation
periods, in order to draw conclusions of theiratliity in larger scale use. There are also
several development needs in the tested approaci as adding nitrogen and water uptake
processes to the simulator, linking it with mottaland regeneration models, as well as
parameterising the model to peat lands.

The developed approach can be expanded to estgnedirbon fluxes for large areas
with LIiDAR data. It could be linked with forest grining frameworks, which would
accommodate for carbon balance issues in pragileahing and optimisation tasks. The
approach contains building blocks for developingsaial tool for examining the effects of
forest management in changing environmental amdatic conditions for decision making,
research, and policy making purposes.

Keywords: empirical growth models; process-based growth nmdblational Forest
Inventory; LIDAR; satellite image nearest neighbour imputation
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1 INTRODUCTION

Forest growth simulators allow the rapid predictadrthe potential growth of a forest and
its response to management over a long time pewbhi;h makes them versatile tools in
both practical forest planning and research, ad wsl for policy making purposes.
Simulators are essential tools for examining andngaring the results of different
treatment scenarios, and they are useful in detémmioptimal management solutions (for
example, Hyytidinen et al. 2006, Hynynen et al. $0®-orest growth simulators have a
long development history, but their use still hagesal drawbacks. The problems are partly
related to insufficient or biased input data, tgflie caused by inaccurate inventory
methods, but also the forest growth prediction pdate itself always contains errors, as
the real-life phenomena affecting growth can neberincluded in the models with
sufficient detail (Schmidt et al. 2006). Therefadttee reliability of forest growth models in
predicting growth varies depending on, for examptegest structure, age, region, tree
species, and soil type (Hynynen et al. 2002). Baflgcregeneration dynamics (Miina et
al. 2006), development of young stands (Huuskonsh Miina, 2007), development of
uneven-aged forests (Pukkala et al. 2009), and rtredality (Aakala et al. 2009) are
episodic phenomena, and thus problematic to madsed, growth estimates for peat land
stands are often less reliable than those for rairsmil stands (Hynynen et al. 2002), due to
higher variation in water and nutrient balancerairmed peat lands (Jutras et al. 2003).

Forest growth models can be classified into emglirimodels, which rely on forest
development data measured in the past (for exarhgleynen et al. 2002), and to process-
based models, which predict the forest growth bagettee vital functions and prevailing
weather conditions (Kortzhukin et al. 1996, Maket&al. 2000). A third category, a mix
between these two, includes hybrid models (Maketl.€000), which are combinations of
empirical and process-based models still functigniith a realistic amount of input data,
but being flexible under changing environmentalditons (for example, Landsberg 2003,
Valentine and Méakela 2005, Peng et al. 2002). Hlylapproaches have been applied in
Finland to estimate forest growth response in é&sl/éemperature and G@oncentration
conditions, for example, in studies by Nuutinenakt(2006) and Matala et al. (2006),
where the core of the simulator was based on theirei@ models of Hynynen et al.
(2002); the physiological effects were taken inteaunt by calculating transfer functions
based on the process-based FinnFor model (Kelloarikivaisdnen 1997).

Summary models are simplified versions of detaifgdcess models, which are
potentially applicable to practical forestry. Fostance, the 3-PG model by Landsberg and
Waring (1997), a simplification of the FOREST-BG®@adel by Running (1994), has been
applied to practical forest management in diffetempical countries (Almeida et al. 2010).
Summary models are advantageous, because thepsed bn tree physiology and climate
input, the model structure remains clear and thaired input data as well as the number of
parameters are at a realistic level. In additionpsvametric models, growth can be
estimated using non-parametric methods, such ag tlearest neighbour imputation (k-
NN) (Sironen 2009), which has been found to be ecessful approach for reducing
regional biases and for extending the plot wisaredions to the regional level (Tomppo
1990, Korhonen and Kangas 1997).

Until now, the empirical growth models have beea thost common model type in
practical forestry, as they are considered to bamnbst accurate ones and the required input
data has been available from basic field invensoriehe most popular models used in
practical forestry in Europe are empirical treeelevnodels, obviously due to their



capability to estimate growth even in heterogenestasids (Makinen et al. 2008). In
Finland, the most commonly used empirical treedlenedels are those of Hynynen et al.
(2002), which are included in the practical forgktnning simulators, such as the MELA
(Siitonen et al. 1996), SIMO (Tokola et &006, Rasinmaki et al. 2009), and MOTTI
(Hynynen et al. 2005) frameworks. European exampfesee level empirical simulators
include SILVA developed in Germany (Pretzsch et 2002), the Austrian PrognAus
(Ledermann, 2006), and the Slovakian SIBYLA (Fafrénd lursky, 2006). In practical
forestry, however, usually only stand level inveptdata is available, which means that
with tree-level models the data must first be dmsealed from the stand level with
distribution models. Another model type, stand-lanedels, would be directly applicable
to the stand-level inventory data, but as thesealsadnore variation inside the stand, they
cannot be properly used for uneven-aged or mixaddst This is one of the reasons for
replacing them by tree-level models in many ca@ssdia, 2001, and Porté and Bartelink,
2002). However, the stand-level models have beeccessfully utilized in many
applications, especially in long-term simulatioMaiiclay, 1995, Atta-Boateng and Moser,
2000, and Garcia, 2001). Examples of empirical dstamel models applicable in Finland
include models by Vuokila and Valiaho (1980) fornifers, and the birch models of
Mielikdinen (1985), Oikarinen (1983), and Saram@e77).

The ability to adapt to changes in our environmamd climate is one of the main
challenges in developing reliable forest growth eledCurrent changes in the climate as
well as the demand for multiple use of forests tereadditional challenges for growth
simulators. Forest management regimes and softestfireatments are needed especially
in areas that are near cities, tourist resortsyabure conservation areas. Public interest in
utilizing tree biomass as bioenergy and managimgsfs as carbon sinks also has grown
stronger. This means that one should be able todacnew kind of optimization goals
(biodiversity, recreational use, scenery, carboquestration etc.) in the simulating
routines. Most of the current forest planning seftes use empirical models to predict
growth. These work well while the climatic condit® and management practices stay
similar as in the past, but when the climate or agmment changes, the models may
become less reliable. In this situation, weathéredr process-based forest growth models
offer a relevant tool for estimating forest growith contrast to traditional empirical growth
models which rely on data measured in the pastal®r process-based models are able to
produce carbon flux estimates, such as gross pyirpanduction (GPP), net primary
production (NPP), and the whole net ecosystem exgthdNEE), they can be utilized for
defining topical issues, such as which kind of &tsetend to be carbon sinks or carbon
sources, and how the carbon balance changes wtier elimate or forest management
regimes change.

Process-based models have not been common toatadtical forestry, since they have
been found too complex to use and difficult to paeterize (Makela et al. 2000, Peng et al.
2002, Matala et al. 2006). The key input varialiethe photosynthesis driven models are
related to crown leaf biomass and crown structare] since these variables are difficult
and too laborious to accurately measure in a toadit forestry field inventory, they have
typically been produced using allometric equatidasved from basic field measurements.
However, recent efforts in developing summarizetsioms of process-based models and
increasing availability of relevant input data d¢ed from remote sensing products can
offer a solution to the problem (Landsberg and W@riLl997, Méakela et al. 2000, Study II)
and make process-based models applicable to pabfdiestry.



Remote sensing products can be utilized for comefgimg or producing the input
variables required in the process-based modelsnéFat al. 2004), as tested with the 3-
PGS model based on satellite images by Coops @Gil7) and Nole et al. (2009). Satellite
images can also be used for estimating leaf adaxi(Stenberg et al. 2008), and mean tree
size (Woodcock et al. 1994). Other examples of tens@nsing products applicable to
process-based models include high resolution AVIRISges, which have been used for
estimating canopy nitrogen (Smith et al 2002), anslynthetic aperture radar (SAR) for
estimating vegetation biomasses (Saatchi and Matgrad®000). An especially interesting
data source is airborne light detection and ran@ifigAR), which has become commonly
available for forest management purposes in regeaits, at least in Scandinavia. LIDAR
provides information on the forest crown structanel other relevant input data for growth
models (Naesset and Okland 2002, Lim et al. 2003inyat al. 2009). Thus far, LIDAR
data has been used for estimating several ecologicibles, such as leaf area index or
light interception (for example, Lefsky et al. 192@fsky et al. 2002, van Aardt et al. 2008,
Lee et al. 2009). However, there have been onlgwa $tudies utilising LIDAR with
process-based models in the whole growth estimatf@in (for example, Taguchi et al.
2007, Kotchenova et al. 2004).

At present, applying a simplified process-baseawtjianodel to produce traditional and
carbon flux estimates over large areas has becamssiljfe in Finland, owing to the
availability of the required up-to-date input détam a sample plot network covering the
whole country (weather data from the Finnish Metéaggical Institute and NFI data from
the Finnish Forest Research Institute). By prodythe desired estimates for the sample
plot network and generalizing them based on stalnages, it is possible to impute the
estimates for all the forested areas in the counfthis kind of methodology has been
applied to, for example, a multi-source forest meey to produce estimates for stand
characteristics (Tomppo 1990, Tomppo et al. 20@@est biomasses (Labrecque et al.
2006, Muukkonen and Heiskanen 2007, Tuominen e2@l0), and forest carbon pools
(Dong et al. 2003, Stumer et al. 2010).

Objectives

The main goal of this study is to evaluate a clersgnsitive process-based summary model
approach for estimating forest growth and carbomes$ in the Finnish conditions, using
input data that is also available for practical agement purposes. Further, the
applicability of the approach with remote sensimgduocts, such as LIDAR data and
satellite images, is examined. In addition, thélglity of the currently used empirical tree
and stand-level simulators is examined. The int&ras of the data and models applied in
studies I-1V are visualized in Fig. 1.

The reliability and accuracy of the process-baggut@ach is examined by comparing
the simulated results with those obtained by erglirtree-level simulators and field
observations. Further, the complementation of tteegss-based simulation approach with
remote sensing data is investigated in two caseghelinput data for the process-based
summary model is obtained purely from LIDAR measeats, and 2) satellite images are
utilized for up-scaling the plot level results tgional level with the k-NN imputation. The
objectives of this thesis include the following:
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e Evaluation of the traditional Finnish empirical forest growth simulators
constructed with the SIMO framework using 1) treeel models (Hynynen et al.
2002), 2) stand-level models (Vuokila and Valial®80; Mielikdinen, 1985;
Oikarinen, 1983; Saramaki 1977), and 3) combinatithereof with the Finnish
National Forest Inventory (NFI) permanent sampled&om 1985 and 1995) in
Southern Finland (Study I).

» Development and evaluation of a climate-sensitiverpcess-based summary
model approach for estimating forest growth by combining existing models:
pipe theory (Shinozaki 1964a, Shinozaki 1964b, N&&S97, llomaki et al. 2003,
Kantola and Makela 2006), a light use efficiencydeloMéakela et al. 2008b), and
effective extinction coefficient (Duursma and Mé&kel2007) (Study II).
Complementing the approach with a dynamic bridgimgdel by Valentine and
Makeld (2005) with capability capable to estimabe tdevelopment of both
traditional stand characteristics and carbon ba&laand assessing its reliability
(Study III). Testing the approach for estimatingbzan fluxes (GPP, NPP and
NEE) for NFI data set by complementing the simulatith the Yasso07 soll
carbon model (Tuomi et al. 2008) (Study V).

» Investigation of the applicability of remote sensig data with the process-
based approachby examining the applicability of LIDAR data as iaput for the
dynamic model (Study IIl) and assessing the udeaofisat TM 5 images with k-
NN imputations for generalizing the carbon fluxiesttions for large regions, and
comparison of the results with Eddy flux measuremenom Sodankyla and
Hyytiala (Study V).

2 MATERIAL

2.1 Field sample plots

Finnish National Forest Inventory data (NFI) estidd by the Finnish Forest Research
Institute was utilised in studies |, I, and IV, ehin Study Ill, the field data came from
forest inventory conducted by the University of teas Finland in the Heinavesi
(Matalansalo) region (Fig. 2). The mean stand aharestics are presented in Table 1. For
the stand-level models (empirical model in Studgrhcess-based model in studies II-1V),
the tree data was first aggregated to stand I@Vel. field data was used both as input for
the models and for comparing reliability of the slators. Details of the Finnish NFI,
which has fairly similar history and principles &gt example, the Swedish NFI (Tokola
2006), can be found in Tomppo (2006).
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In Study |, the main material was based on the paent NFI sample plots located in
Southern Finland and established by the FinnislestdResearch Institute (Fig 2., Table 1).
The NFI sample plot network was based on systersatitpling of field tracts, where each
tract in Southern Finland included four plots l@ch800 metres apart (from north to south),
the tracts themselves being 16 km apart (from nimrtbouth, and from east to west). The
plot size varied according to the tree diametebratst height, being 100?mvhen the
diameter was under 10.5 cm, and otherwise 380Time trees with diameter smaller than
4.5 cm were measured only if they were considedurvive alive until the next
measuring round. The decision was done based omabespecies, site type, regeneration
type and tree position. All the Southern Finlandl lts (below latitude of around 65°)
measured both in 1985 and in 1995 were includeth thie exception of plots located on
waste or scrub land, plots which consisted of twonore stands either in 1985 or in 1995,
plots where there had been cutting during the sitran period, and some plots with easily
detectable coding errors, such as a large numbenisding trees according to the data
without cutting. Also, all dead trees were exclud®hta measured in 1990 was also
utilised, because it contained information aboet tthinnings between 1985-1990. A total
of 597 sample plots were included in the study @hginal Study | had 837 sample plots,
but recently it turned out that some of them haghbg&ubject to thinning in 1985-1990. The
results presented in this summary have been c#dclulasing only the unthinned plots
(n=597). The NFI material contained the followimge data: diameters at breast height for
all the trees and heights for the sample trees) fadich mean and total values per hectare
were aggregated for each plot. The tree volumes wstimated using volume functions of
Laasasenaho (1982) based on the tree diameteredgiat.hTree heights for the non-sample
trees were estimated from tree diameter and othadslata using the tree height models of
Veltheim (1987). Models for Scots pinBifus sylvestrid..), Norway spruceRicea abies
(L.) Karst.) and silver birchBetula pendulaRoth., applied to all deciduous trees) were
used. The modelled heights were scaled to follosvldivel of the sample tree heights by
multiplying the modelled heights by the stand-wiaio of the measured to modelled mean
height of the sample trees. The reference datad®b contained only the trees that already
existed in 1985 and were still alive in 1995. Thees were identified by measuring their
distance and angle from the sample plot identificapoint. Scots pine was the main tree
species (in terms of basal area) on 54.1% of tbts th=597), Norway spruce on 36.7%,
and birches on 8.9% of the plots.

In Study II, a subset of the same NFI data set irs&ludy | was utilised for testing the
model (Fig 2, Table 1). A total of 137 sample plaire included in the analysis using the
following criteria: (1) the sample plot was located mineral soil, (2) it consisted of only
one management unit, (3) the plot had not beerestlp thinning, cuttings or mortality
during the period from 1985 and 1995, (4) the plata contained all the required sample
tree measurements for the Scots pine, Norway speua deciduous strata that existed in
the plot, (5) the plot site type waBxalis-Myrtillus Myrtillus, Vaccinium, or Calluna
(Cajander 1925), and (6) the plot data were freelnfious measuring/coding errors. All
dead trees and trees born between 1985 and 19%5exeluded from the material. The
stand-level mean and sum attributes were calcukitadarly as in the Study | and using
only those trees alive during both the 1st and2tiieNFI rounds.

In Study lll, data from Heinavesi (Matalansalo) stean Finland, around latitude 62° N,
from 2004 and 2009 was used (Fig 2, Table 1). Altot 52 sample plots were included in
the analysis, selected with criteria that the mege species in the plot was Scots pine (>
75% of the basal area). The sample plots werelair@lots with a radius of 9 m. Diameter
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and tree species were collected of all the tredherplot (tally trees), and tree height and
crown base height were measured for the sample {oeewn base was measured only in
2009). The drilled growth samples (5 years growthaidius at 1.3 m height) taken from all
the sample trees representing the dominant lay@00® were used for generalising the
basal area growth for all the tally trees from 200Hich is presented in detail in Study Il
Using the growth samples was assumed to produce ratiable ground truth values for
basal area growth, than using simply the incrementhe field measured basal area,
because the inventories in 2004 and 2009 were ontducted in the same time during the
growing season. Therefore, the field-observed uiffee in the basal area between the
years 2004 and 2009 would have not actually reptedethe full 5-year growth. In
addition, some of the tally trees might have diefaien down since 2004, and there might
have been also slight differences in the samplelptmtions between the years 2004 and
2009 due to GPS.

In Study IV, the field data was retrieved from thmnish National Forest Inventory
(NFI) data from Central Finland and Lapland fronD2€008 (Fig 2., Table 1). A total of
1072 sample plots from Central Finland and 365spfaim Lapland were included in the
analysis, selected with criteria that the wholéd plansisted of only one stand, the plot was
on mineral soil, and the plot was located in thected Landsat images. The sample plots
were circular plots with maximum radius of 12.52mSouthern Finland (Central Finland
data) and 12.45 in Northern Finland (Lapland datde tally trees were selected with a
relascope coefficient of 2 in Southern Finland arfsl in Lapland. Every "7 tree over the
whole inventory area was measured as a sampleTree.diameter and tree species were
collected of the tally trees and tree height armver base height were measured only for
the sample trees. The heights and crown base bdmhthe rest of the trees were estimated
using models of Eerikdinen (2009).

Table 1. Mean stand characteristics of the sample plots included in the analysis.

NFI permanent NFI permanent Sample plots NFI plots,
plots, 1985 and plots, 1985 Matalansalo, 2004-2009
1995 (Study 1)® (Study 1) 2004 (Study 111 (Study V)
Mean tree height, 12.4?, 14.8° 12.6", 13.6”, 16.4 15.77, 11.8°
basal area weighted 11.5%
(m)
Mean tree diameter, 16.7%, 19.3% 17.5%, 18.3%, 19.2 20.3",19.3%
basal area weighted 4.6°
(cm)
Mean stand basal 16.4%, 21.6° - 21.6 18.7", 11.9%
area (m*ha™)
Mean number of 1398?, 1312% 1071 1270 -
trees per hectare
Number of sample 597 137 52 10727, 365%
plots
Share of peat lands 24.8 0 0 0

(%)

" Contains only the un-thinned plots used in the summary of the thesis, selected out of the plots in the
original Study | ? NFI 1985, ¥ NFI 1995, “Scots pine strata, ® Norway spruce strata, ® deciduous strata,
 Central-Finland plots, ® Lapland plots
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Figure 2. Left: Location of the NFI sites included in Study | (crosses + black dots), in Study
Il (black dots), and the weather stations used in Study | (grey triangles). Right: Location of
the Matalansalo Study area (Study Ill) and the NFI sites (black dots) and eddy flux sites in
Sodankyla and Hyytidla included in Study IV.

2.2 Remote sensing data

LiDAR data

The laser scanning data used in Study Ill was gathat night on 4 August 2004 using
Optech ALTM 2033 laser scanning system at an dkitaf 1,500 m above ground level
with a half angle of 15° from Heinavesi (MatalamgaEastern Finland. The width of each
laser strip was 800 m and the pulse density wapulses per fa The footprint was 45 cm.
All together seven strips were scanned with a 35%lap, yielding about 20 khin total
area.
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Landsat TM 5 Satellite Images

In Study IV, two study areas, covering parts of sdrCentres of Central Finland and
Lapland provinces, were selected for the analysisdsat 5 TM images from 2007 and a
digital elevation model (DEM) of the correspondiagea were used as independent
variables in the k-NN imputation. The image for thestern part of Central Finland (path
190, row 16-17) was taken on 2.6.2007. For Laplawd, images taken on 2.6.2007 and
4.7.2007 (path 190, row 13) were used. Images geoeeferenced to the Finnish uniform
coordinate system. The resolution of the Centralafid image was re-sampled to 25 m.
For Lapland, the resolution was 30 m. Georefergneaind re-sampling were carried out
using the ArcGIS 9.3 software.

2.3 Weather data

The weather data used in the process-based motleli€S 11-1V) was received from the
Finnish Meterorological Institute (FMI), and it cisted of daily measurements of global
radiation (W nif), relative humidity (%), rainfall (mm), and tempaure (°C) for all the
years between 1961 and 2008, in the form of a 10xkd0 km grid across Finland
(Venalainen et al. 2005).

2.4  Data from Eddy flux sites

Eddy covariance data containing GPP and NEE data2694-2008 from Hyytiala
(61°50°’N, 24°17°'E) and Sodankyla (67°21’, 26°38hid. 2) were used for examining the
accuracy of simulations and imputations in Study T¥ie eddy flux measurements were
compared with 1) the average of imputed pixel valaeound the eddy towers within a
circle of radius of 100 m, and 2) GPP and NEE &higtained by simulating forest growth
with the stand input data from the eddy flux sitesthe latter case, the simulations in
Hyytiala were conducted for all the years betwe@d42and 2008 with the site and weather
data from the corresponding years. In contrastSimdankyld site data was only available
from 2000, which was then used as the input irthel simulations meaning that only the
weather data varied (2004-2008). The Hyytiala data from measurements by University
of Helsinki (Dr. Pasi Kolari), see llvesniemi et P009) for description of the field
measurements. The Sodankyla data was from measuteinethe Finnish Meteorological
Institute (Dr. Mika Aurela).
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3 METHODS

3.1 Empirical growth models

For Study I, three alternative simulators baseeémpirical models were constructed in the
SIMO simulation framework, which offers an open meuplatform for building simulation
chains: 1) a tree-level simulator based on treellggrowth models, 2) a stand-level
simulator based on stand-level growth models, gral®mbined simulator, where the first
5 years are simulated using tree-level models aedrémaining years using stand-level
models. The growth models were run with 5 yearsketistep, but the simulator reported
annually the stand- and stratum level mean diametmean heights, basal areas, and
volumes, based on average annual growth in 5 years.

In Study I, the growth and yield models used in tilee-level simulator were those of
Hynynen et al. (2002), which are also used in thELK simulator. These included
individual growth models for estimating the grovahtree height and basal area of Scots
pine Pinus sylvestrls Norway spruceRicea abiey silver birch Betula pendulg and
white birch Betula pubescehsModels for self-thinning and mortality were usédt the
ingrowth model was not applied to these simulatidiie trees measured in the field were
used to construct tree lists for the simulator. Hpeit variables included e.g. tree diameters
for all the tally trees and heights for the sampiees, number of trees per hectare
represented by each tree, stand coordinates aedtygie. Crown base heights were
estimated using a crown ratio model by Hynynenl.ef2802). Several new variables were
calculated further by the simulator, such as domntirdiameter of the stand, growth in
dominant height, crown ratio, dominant growth ratelative density factor, and site index.
These were used as independent variables in thetlyrmodels, where the dependent
variables were increment of tree height and bagal. &5tand volumes were estimated using
the volume equations of Laasasenaho (1982). The sanpirical tree-level models were
used also in studies Il and Ill for comparing witie process-based model results, but
without the mortality and self-thinning models.

The stand-level growth models for pine and spruseduin study | were those of
Vuokila and Véliaho (1980) and the growth models firches those of Mielikdinen
(1985), Oikarinen (1983), and Saraméaki (1977). €hesluded a number of individual
regional models, as growth conditions vary acraséaRd. The independent variables of
the stand-level models included e.g. stand bagal, &tand age, dominant height and site
index. These were calculated based on the inpidghlas of the simulator, which included
e.g. tree diameters for all the tally trees, height the sample trees, number of trees per
hectare represented by each tree, stand age, @tandinates and site type. Site index was
determined based on site type. The dependent \esialh the stand-level models included
e.g. increment in basal area, volume and dominaighh Other output variables were
calculated based on model results, e.g. stand rhemht was predicted from dominant
height and stand mean diameter from mean heighinhnage, temperature sum, and site
class. The stand-level simulator does not includetadity models as such, but the growth
models include the effect of tree removal, due talelling data is from normally thinned
forests.
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3.2  Process-based summary model

In studies 1I-IV, the process-based model was usgl different compositions. In the
studies Il and IV, a static version, later refertedas static process-based modeVas
applied to estimate one-year gross primary prodaoc{{GPP), net primary production
(NPP), and growth of stem biomass in the standStudy lll, the static approach was
complemented by a dynamic growth component basdtiebridging model by Valentine
and Mékela (2005), later referred todgamic process-based modehich is capable of
simulating dynamic growth of the tree dimensiond davelopment of the carbon balance
over several years. In Study 1V, the soil carbordeidrasso07 (Tuomi et al. 2008, Tuomi
et al. 2009) was also applied with the static werdio estimate net ecosystem exchange
(NEE). The main principles of the approach are a&xed shortly below, and the
framework of the model interactions is demonstratelig. 3. The data used in developing
of the above-mentioned models is fully independesth the test data used in the studies
[I-1V. A detailed explanation of the approach i®gded in Appendix 1.

In the process-based summary approach, tree giisvestimated at stand level, based
on carbon production and respiration in differesmnponents of trees. Annual forest growth
Py (kg C ha yrY), i.e. NPP, can be expressed as

Pn=P-Ru-FRe, @)

whereP is GPP Ry is the maintenance respiration, d@Rglis the growth respiration of the
trees. NPRan also be expressedRg= rypp P, whererypp is the NPP:GPP ratio depending
on the respective rates of maintenance gnogvth respiration of the stand. Annual biomass
productionG; (kg DW ha' yr'') (DW=dry weight) is proportional tNPPas follows:

G, =cZ'P,, )

where cc is the carbon content of biomass dry weigtd € 0.5). GPP depends on
environmental driving variables and forest stant @& follows:

P = fapar Po, €))

where fapar is the (effective annual) mean fraction of photdkgtically active radiation
(PAR) absorbed by the canopy, amy (kg C ha year') is the annual canopy
photosynthesis in a (hypothetical) canopy that dissall PAR radiation. This means that
faparrepresents the effect of forest structure on growttile Py describes climatic effects.
In studies -1V, fapar Was estimated using the Lambert-Beer formula baseéffective
extinction coefficienkyy, as introduced by Duursma and Méakel& (2007), aatidrea index
(LAI). Effective extinction coefficient was calcuéd based on a homogenous extinction
coefficient,Ky;, crown surface are&, (m?), and mean leaf area per treg(m?). Leaf area
index was derived from the leaf bioma¥g; (kg DW ha'), and the assumed specific leaf
area (SLA, (kg DW)?Y) of the tree species (Luoma 199%).was estimated based on the
LUE model (Monteith 1977, Mékela et al. 2008b). lBasses for different tree components
W, (W=foliage, Wg=branches,Ws=stem, Wcg=coarse roots, ani\i.g=fine roots) were
estimated based on pipe-theory based equatior&cfiis pine (Mékela and Vanninen 2001,
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Vanninen and Makela 2005), for Norways spruce (Bntand Makelda 2006), and for
birches (lloméki et al. 2003) (see Appendix 1, ¢adl2).

Net ecosystem exchangNKE), Ey, can be derived fromIPP (R,) and heterotrophic
respiration from the soiRy, as follows:

En=- (Pn- Ry). (4)

Ry (Study 1V) was estimated using the Yasso07 soib@armodel (Tuomi et al. 2008,
Tuomi et al. 2009) based on litter fall data dedifeom biomass estimates (Liski et al.
2006). The growth of stem and crown dimensions dtill) was estimated using the
bridging approach introduced by Valentine and Mak@005), which is based on the pipe
theory.

The static version of the process-based approaadyH and 1V) is applicable to Scots
pine, Norway spruce, and deciduous stands, or tureixhereof, in the Finnish conditions.
The dynamic version used in Study Il was appliedstots pine stands only, but it could
easily be extended to Norway spruce and birch.

3.3  Deriving stand characteristics from LIDAR data

In Study lll, the process-based model was testéld wput variables derived from LIDAR
data. First, a digital terrain model (DTM) was gexted from the LIDAR data as explained
in Study lll. The canopy height model was built ngsian interpolation procedure
introduced in the Study by Packalen et al. (2008 LiDAR based canopy height model
was segmented into trees (or tree groups) usingtarshed segmentation algorithm, which
was then processed in an alpha shape program [(Edeter and Micke 1994,
http://www.cgal.org). Estimates for plot wise meagight and total crown volume were
obtained as an area weighted average of the heajbes and sum of the triangulation
based volumes, respectively, of the segments lddatéhe plot. Mean crown base height
was also an area weighted average calculated fegments for which the crown base
height values had been produced by the alpha sigeach (Vauhkonen 2010).

Several LIDAR metrics were calculated separatetytifie first (F) and last (L) returns.
The number of trees per hectaM, was estimated using the equation by Suvanto.et al
(2005) fitted with the data from the same areasesiun Study Ill. The mean tree crown
volume was defined as the total crown volume diditdg the estimated number of trees per
plot, and it was used for determining the meangriesaf biomass. Leaf biomass and crown
dimension data of Scots pine measured in Southietarféd (Vanninen and Méakela 2000,
Vanninen and Méakela 2005) were used for plottingquation between tree crown volume
and leaf biomass. The equation was used to cotiventnean crown volume to mean leaf
biomass per tree (see Study Il for details). Fenmtlthe stand leaf biomass was determined
as the mean tree’s leaf biomass multiplied by thmber of trees per hectare estimated
from LIDAR. The mean crown width was determinednfréhe LiDAR based mean tree
crown length and the estimated crown volume ofrfean tree assuming the crowns as
ellipsoids.
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Figure 3. Description of the process-based approach. See Appendix 1 for the referred
parameters and equations.
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3.4 Generalisation of carbon flux estimates to regionalevel based on satellite
images

In Study 1V, the GPP, NPP, and NEE estimates feryiars 2004-2008 were produced for
the NFI sample plots in Central Finland and Laplaftle obtained results were then
generalized for all the forested areas around #iected sample plots using the k-NN
imputation based on Landsat 5 TM satellite imagres@ddition, the corresponding values
were imputed for the Hyytidla research area, latatese to the Central Finland area, using
the Central Finland training set.

Two different sets of independent variables wergtett separately for the Central
Finland and Lapland areas: 1) only channels 2-&efgr red, and near infrared) as
independent variables, and 2) all the channels {)-as independent variables. Further, the
usage of two images from the same growing seasovelhsaas of DEM as an independent
variable were investigated in Lapland. The addalaest runs for Lapland contained the
following independent variables: 1) channels 2-dnfrtwo different images, and 2)
channels 2-4 from two different images and thetdigélevation model. In Lapland, the
imputations were tested with varyitgs (k=3, 5,..,11, 13); in contrast, in Central Firda
k=5 was used. The nearest neighbours were defin@g tise Euclidian distancd as a
measure, and the estimat¥dvalue was defined as the distance weighted meatheof
nearest neighboursy values, the weighting being 1/dt The k-NN imputations were
done using the yalmpute package in R Statisticadkdton and Finley 2008).

3.5 Evaluation of estimates

In Study I, the reliability of the different empigl simulators (tree-level, stand-level, and
combination thereof) was evaluated by examiningr tiestimates of stand-level and
stratum-level basal area weighted values of meaghtjed (m), mean diamete) (cm),
stem volumeyY (m® ha'), and basal are®A (m” ha'), and comparing them with the field
observations from NFI (1995).

In Study I, the reliability of the static procelsased summary model was examined by
comparing its estimates against the NFI field okesons (1985-1995) and estimates
obtained with the empirical tree-level model of Kgen et al. (2002). The examined
variables consisted of mean annual stand level siemass growth\Wsc (kg DW ha'
year’), and stem volume growthg (m® ha' year?).

In Study lll, the reliability of the dynamic prosebased summary model was
investigated in two cases: 1) the input data waklgd by a traditional field inventory, and
2) the input data was from LIiDAR. The examined able was the total basal area after the
5-year growth period, which was compared with thedb area from the field observations
(2004-2009) and the estimates obtained with theirgaptree-level model (Hynynen et al.
2002).
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Table 2. Statistical equations used in the analysis. Y, is the reference value in a plot i, )7, is
the estimated value in a ploti, Y is the arithmetic average of the y values, and n is the total
number of plots.

Statistics Equation

Root mean squared error RMSE= \/i(yi -y)?/n
i=1

Relative root mean squared error RMSE, = RMSE/y x100

Absolute bias BIAS= Zn: (y, —¥.)/n

Relative bias BIAS, =I_|;|AS/ yx100

Relative standard deviation of the

estimation errors s%= \/|:3|\/|SF_‘%)2 - BIAS%?

5 2
Z(yi - yi)
Degree of determination R? =1-12

i(yi - yi)2

In Study IV, the accuracy of the GPP, NPP, and N&sfimates based on k-NN
imputations, obtained by the static process-basednsary model and Landsat 5 TM
satellite images, was investigated with a leave-autecross-validation. This was done by
imputing new values for each reference data pitked NFI plot pixels) based on the rest of
the reference data values. Reliability of the satod itself was assessed by comparing the
GPP (g C nf) and NEE (g C ) estimates with those measured by the two Eddy
Covariance stations in Finland (Hyytiala and Sog#jkduring 2004-2008.

The performance of the applied models was assessed the root mean squared error
(RMSE), the relative root mean squared error (RM)SEhe absolute model bias, the
relative model bias (BIAg), and the coefficient of determination?}Fby comparing the
estimated values with the observed ones (Tabl&l&p the leave-one-out cross-validation
of the k-NN imputations (Study IV) was assessedhwie above mentioned measures. The
calculations were conducted using R Statisticp(ftww.r-project.org/).

4 RESULTS

In Study I, the goal was to examine differencesnan height, diameter, basal area, and
volume estimations obtained by different empirisithulators. Growth rates of these
variables were simulated over 10 years using tdiferent simulation chains: tree-level
models, stand-level models, and a combination eddltwo. In Study Il, the process-based
static model was tested against the empirical madelthe results were compared with the
field observed annual growth of stem biomass. kdtlll, the process-based dynamic
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model was run with both LIDAR and field input. Ttesults were compared with empirical
tree level simulations and field observed valudw Tested variable was basal area growth.
Attention was also paid to examining the reliapilitf the LIDAR derived input data. In
Study 1V, only the process-based model was utilizedice the examined variables
contained annual carbon production. The accuraégpéitations with different number of
nearest neighbours was compared. GPP and NEE @etimiawere compared with
measured fluxes from the Eddy covariance towetsyiytidla and Sodankyla.

Comparison of different type of simulators

There were not any large differences between tee aind stand-level empirical simulators
(Study 1). The mean height and diameter were ptediwith a RMSE, of 11.7-12.4% and
5.3-8.1 % in all the simulators. The RMSE% valudstlee basal area and volume
estimations were moderately higher (12.5-19.8%13h@-24.4 %, respectively), than those
for mean height and diameter. The relative biasnvpeedicting mean tree height and
diameter was small and also at a similar level amalh the empirical simulators (for
height, 4.4-5.4%, and for diameter, 0.1-1.7 %.}lidgating a slight underestimation. The
basal area and volume were also slightly underastichin all the empirical simulators
(basal area bias 0.6% to 4.5%, volume bias 1.0%4%). When examining the increment
in the basal area during the simulation period,ttbe-level empirical model proved to be
notably less biased (bias of 2.5%) than the othmulators (bias 12.9-18.1%) (Table 3).
All the reliability results (with n=597) for Studycan be found in Appendix 2.

Comparison of volume growth predictions obtainedhsy empirical and process-based
simulators showed (Study II) that the precisionboth approaches is at a similar level
(RMSE of 33.4%-39.6% ands of 33.2-34.9%). (Table 3). The empirical model
underestimated the growth with 18.8%, and the m®tmsed model with 3.2%. In Study
[, the basal area growth was overestimated i ltlo¢ process-based simulators (bias% -
1.5 to -11.4%); the least biased results were gikloly the empirical model (bias 0.4%).

Effect of different stand characteristics on gtilowstimations

When examining the annual stem biomass growth (Mg Be® yr') in Study Il, the
process-based model seemed to work best with omqbias 0.1%, RMSE% 32.1%) and
Norway spruce (bias 1.9%, RMSE% 39.1%), respedtiveihdicating a slight
underestimation, whereas for deciduous trees thdtsewere worse (RMSfE62.7 %, bias
13.7%). Species specific examination of the req@tady I) shows that also the empirical
tree-level models produce more accurate resultsSémts pine and Norway spruce strata
than for deciduous strata (Table 4).
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Table 3. RMSE% and BIAS% of stand volume, stem growth, and stand basal area obtained

with different simulators.

Variable Model RMSE% BIAS% s% Unit Data N.of  Study
plots
Empirical, 59.5 25 5904  m’hal10-yrs ! NFI 597
tree-level
Basal i
area E{;ﬁ’g_'g"el 500 129 483 m’ha'l0yrs®  NFI 597 |
growth
Empirical, 792 181 771  m*hal10yrs NFI 597
combined
Empirical, 1) 1) 1) 3 A1q el 1)
Stem tree-level 39.6 18.8 34.9 m°ha™*1-yr NFI 126 1
volume 2 2 o 4 4
growth ;g’rfﬁ:\’/el 3342 3?2 33.2 mha’yr NFI 1382
Empirical, 286 04 286  mha'sys? Maw@an- o i
tree-level salo
Basal Process, Matalan-
aren field  input, 38.1 -11.4 36.4 m*ha'5-yrs™* calo 52 I
growth stand-level
Process, Matalan-
LIDAR input, 39.3 -1.5 39.3 m*ha'5-yrs™* calo 52 I
stand-level

Y'n=126, which includes the plots used both in Study | (empirical simulations available) and Study II.
Empirical volume growth estimate is annual average of the first 5-year growing period. In Study Il the
empirical volume growth estimate used in the comparison was the annual average of the whole
simulation period . © n=138, which includes all the plots used in Study II. Volume growth refers to the

first year’'s growth estimate.

Table 4. The accuracy of estimated species specif

ic basal area growth (m® ha™* 10-years™)

estimations obtained by the empirical tree-level model (Study 1) and species specific stem
growth (kg DW ha-1 yr-1) estimations obtained by the process-based static model (Study II).

Empirical model (Study I) (n=597) Process-based model (Study 1I)
(n=138)
Stratum N RMSEy BIASy s% N RMSEy; BIASy, s%
Scots pine 477 72.1 5.7 71.9 99 32.1 0.1 32.1
Norway spruce 389 7.7 -21.6 74.6 76 39.1 1.9 39.1
Deciduous 322% 131.7 43.0 124.5 48 62.7 13.7 61.2

2 Only White birch strata included
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When examining the results in terms of soil type® can see that the tree-level empirical
model was the most stabile one in different sqilefy; while in the stand-level empirical
models the variables were underestimated to aagreatent on fertile sites than on dryer
sites (Study 1) (Fig. 4). In Study Il the tree-leeenpirical model produced underestimates
of volume growth for all the site types, while inet process-based simulations the bias
indicated underestimation for the most fertile s@MT, and overestimation for the other
site types (Fig. 5).

With all the empirical simulators, the height esites seemed to be least biased in the
stands with small trees, the underestimation apigrencreasing with tree height (Study
). The diameters and basal areas were overestimath the smallest diameter classes and
slightly underestimated in the larger trees. A Emirend was found in Study Il using the
process-based model, where a tendency to overdstitma growth of small trees and to
underestimate the growth of bigger trees was dedewtith both field and LIDAR data.
Using the process-based static approach (Studyndl)strong age related trends were
detected, but a slight tendency to underestimatevtyr most in the young stands was
detected, especially at the stratum level.
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Figure 4. The soil type specific* mean and  Figure 5. The soil type specific* mean and
standard deviation of stand basal area standard deviation of stand volume growth
growth  estimation error (measured- estimation error (measured-modelled stand
modelled stand basal area growth, m* ha™  volume growth, m®ha™ year') as obtained
10-years™) in Study | as obtained using using the process-based model (grey) and
the tree-level simulator (black), stand-level  empirical tree-level simulator (black), including
simulator (grey), and combined simulator the plots that were present in both studies |
(white). *1 = herb-rich forest, 2 = herb-rich  and Il (h=126). *1 = herb-rich forest, 2 = herb-
heath forest, 3 =fresh heath forest, rich heath forest, 3=fresh heath forest,
4 =dryish heath forest, 5=dry heath 4 =dryish heath forest, 5=dry heath forest,
forest, 6 = barren heath forest, 7 =rocks 6 = barren heath forest, 7 = rocks and sands.
and sands.
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Accuracy of LiDAR-derived input data

In Study Ill, the process-based model was test#id Wwith field and LiDAR input data. The
LiDAR derived input data seemed to be well in limigh the field input data for mean tree
height. Instead, the crown base height estimaiiotise LiDAR data differed considerably
from the corresponding field measurements. In gdntive crown volume and leaf biomass
estimates based on the LIDAR data were higher thase derived from the basic field
measurements (Figure 6).

Reliability of the k-NN Imputation

In Study 1V, the stand level annual growth was dated in the static process-based model
complemented with the soil carbon estimation moda$so07 using the NFI data from
2004-2008. Weather data was available from theesponding years. The estimations were
imputed for two large areas in Finland based orndsah5 TM images. Accuracy of the k-
NN imputations was slightly better in the Centrahl&nd than in the Lapland data set
(Table 5). There were no remarkable differencesvéen the imputations with different
band sets. The bias of GPP and NPP was lowestimjthtations using all of the bands. In
contrast, RMSE was at its lowest in the imputatibased on 2 different images and DEM.
When examining the distribution of imputed valuese can see that the imputations tend
to average the results compared to the origin@reeice distribution (Fig. 7) and that the
results taper with an increasikdFig. 8). The overall bias decreased with an iasimegk,
though in Lapland the GPP bias started to incréaseIT and CT site types whdw9. The
relative bias and RMSE of GPP imputations were bigthigher (biag -30.5%, RMSE,
49.3%) for CT site types than for the other sifgetyin Central Finland. In Lapland, the site
fertility did not affect accuracy. In Central Finld, GPP was notably underestimated @pias
8.2%) in deciduous dominated stands, while in tbetSpine and Norway spruce stands it
was slightly overestimated (bigérom -0.5 to -2.0%).
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Figure 6. Stand crown volume (m® ha™) (R?=0.35) (on the left) and mean leaf biomass (kg
DW) (R2=0.25) (on the right) as estimated from the LiDAR data and plotted against the field
estimates. All the values are from 2004.
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In Lapland, the Scots pine dominated stands werddhst biased ones (bjasf 1.4%),
GPP being overestimated with Norway spruce (bia&®5%) and underestimated with
deciduous trees (bigsof 14.9%). According to simulations, the standshva low basal
area were more often carbon sources than thoseawitbh basal area. The simulated GPP
estimates increased more with increasing basalthesathose obtained with imputations.
The imputations seemed to more likely produce astamations for stands with a low basal
area and underestimations on the stands with &hlggsal area.

Table 5. Cross-validation of carbon flux imputations (g C m? ™'

Finland in 2007 based on different independent variables.

) in Lapland and Central

Central Finland Lapland
(n=1072) (n=365)
Bands Bands Bands Bands Bgi?s
1-5&7, 1-5&7, 2-4, 2-4, . '
1 image 1image 1 image 2 images 2 images,
DEM
GPP (gCm?™)
Bias 5.6 0.8 3.9 1.7 -1.3
Bias% 0.6 0.2 1.0 0.4 -0.3
Rmse 240.1 136.8 144.2 146.4 135.7
Rmse% 27.0 35.6 375 38.0 35.3
Average k-NN 883.3 384.0 380.9 386.1 383.2
Average reference 888.9 384.8 384.8 384.8 384.8
NPP (g C m?™"
Bias 0.2 0.2 1.6 0.7 -0.8
Bias% 0.1 0.1 0.9 0.4 -04
Rmse 111.1 64.5 67.2 68.3 63.7
Rmse% 29.7 35.9 374 38.0 355
Average k-NN 374.4 179.4 178.0 180.4 178.9
Average reference 374.6 179.6 179.6 179.6 179.6
NEE (gCm? ™)
Bias 1.3 0.6 -1.0 0.7 3.0
Rmse 94.1 52.0 53.3 53.8 49.2
Average k-NN -156.0 4.9 6.5 25 4.8

Average reference -154.8 55 55 5.5 5.5
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Figure 7. Distribution of GPP (left) and -NEE (right) in Central Finland. The black bars
denote the reference values and the black line the imputation with k=5, bands 1-5 & 7 were
used as independent variables. The black dots denote the k-NN imputations (with k=5) on

the Hyytiala site for 2007.
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Figure 8. Distribution of reference and imputed values of GPP (left) and -NEE (right) in
Lapland for 2007. The black bars denote observed values, the thick black line denotes
imputations with k=3, the thin black line denotes imputation with k=5, the thick grey line
denotes imputation with k=7 and the thin grey line imputation with k=11. Bands 1-5 & 7 were
used as independent variables. The dots denote the k-NN estimates (k=5) on the Sodankyla

site for 2007.

The imputed GPP values around the Sodankyla andidfyyeddy flux towers were
remarkably lower than the GPPs from the eddy measents (Figure 9). The simulated
GPP estimations followed a similar annual trendhes GPPs from the eddy covariance
measurements, but in Sodankyla there was a renlarllgbbrease in the measured GPP in
2007, which was not found in the simulations. Ald® simulated NEE values were in line
with the corresponding Eddy flux values in Hyytigécept for 2008, where in contrast to
simulations, the observed NEE remained at the sewed as during the previous year
(Figure 10). The imputed NEE values, instead, vgégrificantly smaller than the measured
ones. In Sodankyla, the imputations were well i@ livith the EC measurements (Figure
10), while the simulations were biased but folloveedimilar trend as the measured NEE.
According to both the simulations and imputatidme Hyytidla plot was a carbon sink
during 2004-2008. In Sodankyla, the plot is a carkource according to the eddy flux
measurements and imputations, but a sink accotditige simulations.
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Fig. 9. Imputations and eddy flux measurements of annual GPP (g C m™ year'l) in Hyytiala
(left) and Sodankyla (right) during 2004-2008.
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Fig. 10. Imputations and EC measurements of annual NEE (g C m year’l) in Hyytiala (left)
and Sodankyléa (right) during 2004-2008.

5 DISCUSSION

This study demonstrates a new approach to growimaon, where climate-sensitive
process-based models are applied with easily dlailenput data from field or LiDAR

sources. The approach was connected with LandsatTddtellite images, which allow
producing of maps e.g. of forest carbon balancenasibns for large areas in Northern
Europe. Several data sets, mainly from the NatiGoaést Inventory in Finland, were used
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to evaluate different forest growth simulators, th@&mpirical and process-based, each
containing a full set of models for estimating drgire growth process.

Study | evaluates the most commonly used Finnispirgcal growth models at tree and
stand level. In the other studies (lI-1V), the prss-based approach is applied in order to
obtain growth predictions. In the most importanieres a new process-based approach,
which was developed for estimating forest growth rbgans of summary models. The
method accounts for the site specific climate @adeffect on tree growth at stand level
through photosynthesis, respiration, and carbomcation. Three versions of the
summarized process-based approach were testedithéisis: 1) a simple static approach
(Study 1) suitable for one-year carbon productastimation, and 2) a dynamic version
complemented with a bridging model by Valentine ahikela (2005) (Study I111), which
enables growth estimations of tree dimensions torger periods of time, and 3) a static
version complemented with the Yasso07 soil carbgmadhics model (Tuomi et al. 2008,
Tuomi et al. 2009) (Study IV). In studies | andthe input data was from the field (NFI),
whereas, in the other studies, remote sensingwiasaalso used. In Study I, the process-
based simulator was tested with LIDAR data as inpotl in Study IV the process-based
estimations were extended to regional level bygiiie k-NN imputation with Landsat TM
5 satellite images.

Previously, the empirical simulators have had athgs over process-based models,
because they are more accurate, if the climaticlitions and management schedules stay
similar as those, which prevailed in the past. lfentthe process-based models have been
found to be impractical due to their complex stnoetand due to their need for difficult
parameterisation. The advantage of the summar@edtfgrowth estimation approach over
the more complex process-based approaches istshpaiiameters and inputs are readily
available for forest stands across the countryréfbee, they can be applied as easily as the
empirical models, if climate data or correspondstimates are available. In Finland, such
data is available for the whole country since t86Qs from the Finnish Meteorological
Institute in form of a 10 x 10 km grid. In the cemt approach, almost all of the parameter
values of the models were available from previousliss on the individual summary
models (for example, Méakeld et al. 2008b, Duursmd Makelda 2007). Some of the
parameters were readily available through modelkitions. Based on the findings in
studies II-1V, the summary model approach seemseta potential tool at least for short-
term forest growth predictions in Finland and ngadpeas. However, there are several
drawbacks and development needs in the currentepsdgased approach, which are
discussed in the following sections.

Comparing the accuracy of the simulators

Estimations by the empirical simulators were coragawith the field data from NFI
permanent sample plots (Study I), the focus beimghe forest attributes at the end of the
10-year simulation period. The final state wasdeld as a baseline for the comparisons, as
updating of the forest resource data is in impantate in forest management planning. For
comparison, the increment in the stand basal aneagithe simulation period (calculated
using the data from the Study I) was included sngbimmary of this thesis.

All the empirical simulators provided fairly goodtinates for tree diameter and height,
while the estimates for basal area and volume waraverage slightly poorer. Overall, the
differences between the simulators were small. bmbined simulator was the least
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biased of the tested simulators in the diametémagtibns and the volume was estimated
least biased with the stand simulator, while theabarea and height were estimated least
biased with the tree simulator. When examiningnesties of the basal area growth the least
biased was clearly the tree simulator. The biasesean height, diameter and stand basal
area were similar to those obtained by Makinen let(2008). The empirical model
predictions for the birches were notably less bddighan those for Scots pine or Norway
spruce. It should be noted, that the regeneratidheonew trees was not included either in
the simulations or when calculating the field refare data, as the data for the smallest
trees (O <4.5cm) was available only for the trees, whicheveonsidered as qualified by
the measuring person. This means, that some o$rfalest trees have falsely excluded
from the data, which can have increased uncertaintlye results of the young stands with
lot of trees around that size (Studies | and II).

Geographically, the tree and stand level empirgeadulators behaved similarly, the
volume error varying between different parts ofl&iml. The highest overestimations in the
stand volume were found in certain areas in Sontled North-Eastern Finland. In the
northern part, the forests were exceptionally od50 years) in the areas where the
overestimations were the highest. This can be dinkeproblems in predicting stand-level
mortality reliably. The findings were in line wita study by Sironen et al. (2008) in
Southern Finland, where a non-parametric estimatiethod was compared with the tree-
level models of Hynynen et al. (2002). In theirdstuthe tree-level models overestimated
the basal area growth in Southern Finland, whil¢hm north the basal area growth was
mainly underestimated. When examining the resultStady 1V, one can see that the
process-based GPP estimations are mainly in lith e EC measurements both in
Hyytiala and Sodankyld, but the NEE estimationstfar Hyytiala (Southern Finland) site
are much closer to those measured by EC than irSddankyla site (Lapland). Even
though there were only two EC sites from Finlandikable, the results indicate that
applying the approach to Northern Finland requifegher model development and
parameterisation.

The growth estimates produced by the different ggecbased versions, including the
static and dynamic versions (Study Il and IIl), eegenerally in line with the field
observations. When comparing the process-basedneogrowth (Study Il) and basal area
growth (Study Ill) estimations to those of the engal growth models commonly used in
forest planning in Finland, one may conclude that rieliability of the volume estimations
of the static process-based approach is at the Eamkin the given data set. In Study II,
the growth estimates were generally in line with ghem biomass growth derived from the
NFI volume development, but the precision of thedictions was not very high (RMSE
34.3 %). The bias of the process-based estimatgsdvaith tree species, stand age, and
site fertility. The stem biomass growth was undimeted for the young stands; a potential
explanation for this is the fact that mean annualmgh was determined using the stand
characteristics in the first measuring year (198%)compared against field observed mean
annual growth during a 10-year period. In the yostands, the leaf biomass is increasing
rapidly, while in the older stands leaf mass is enstable (Sprugel 1984). There were also
differences in the reliability of the model for fdifent site types. The model highly
underestimated growth in the most fertile sites [QMut for the other site types the biases
were much lower. One reason could be that the raggdarameters estimated using the
PipeQual model may not be sufficiently accurate tloe OMT sites. Also, the study
material contained only a few OMT sample plots.



31

In Study Il the accuracy of the process-based mpalictions was even slightly better
than that provided by the empirical tree-level mMedélynynen et al. 2002). Instead, in
Study 1l the empirical model was the more accurte. In both cases the process-based
model produced higher growth estimates than thereamapmodel. In Study Il the selected
sample plot set remained rather small due to hegjuirements for the stand characteristics
and data availability. Only the mineral soil plotghich contained all the required sample
tree measurements for all the existing strata, ahith were free of mortality and
thinnings, were selected to the study. Therefdre,dample plot set might not represent
Finnish forests very comprehensively, which migatthe reason for the biased empirical
model estimates. It should also be noted, thatetheere differences between the
initialisation procedures of the different modebésg, which caused variation in the initial
status of the stands. The process-based modskdtilhe measured crown base height data,
whereas in the empirical SIMO simulator the crovasd heights were estimated using a
crown ratio model (Hynynen et al. 2002). Furthéffedent tree height calibration routines
were used in the SIMO (stratum-wise calibrationdl &m processing of the NFI reference
data (stand-wise calibration), which caused slijfferences in the estimated initial stand
volumes. This might have added some uncertaintythi®® empirical volume growth
comparison presented in Study Il, because the @apimean annual growth was
calculated based on the final volume simulated iy $IMO and the initial volume
estimated based on the NFI data. It would be mppeapriate to compare them with the
empirical model’s mean annual volume growth estaaatirectly by the SIMO simulator
for the first 5-year period (see Fig. 11). In thate the empirical volume growth estimate
decreased 0.2% on average from the mean annuatdOgyowth estimate used in the
Study Il, the RMSE and bias staying around the lami¢vel (biag of 18.8%, RMSE, of
39.6%, § of 34.9%).

In Study Ill, the RMSE, and s, of basal area growth estimates remained ratherihigh
all the tested approaches (28.6-39.3%). The biadavain the empirical model (0.4%) and
the process-based approach with the LIDAR datéb%e),. while the results of process-
based model with field input were overestimated1y4%. Overall, the accuracy of the
growth estimates was similar to those from previstuslies conducted in Finland. In Study
I the reliability of empirical model (Hynynen et 2002) estimations was examined using
a large data set from the national forest invenfiogs in Finland. The basal area growth
estimates calculated using the data set of Stifdable 4) show, that the estimations were
the least biased with the tree level model (2.5%restimation), while the combined model
estimates were the most biased (18.1% underestimaffhe RMSE% of the basal area
growth (50.0-79.2%) estimates was remarkably higtiem that obtained in the study Il
(28.6-39.3%). However, one should keep in mind the growth results of study | contain
extra estimation error caused by natural mortakthijle in the studies Il and Il tree
mortality did not occur in the sample plots. Thiglains the higher RMSE% of the basal
area growth estimates in the study I. In Studyhé process-based model estimates were
compared with NFI data, resulting in a RMS& 34.3% and a bigsof 2.1% for stem
volume growth. The growth estimates obtained ushegmost similar neighbour method
with the Finnish data have been at a similar [¢8&bnen et al. 2008).
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Fig. 11. Comparison of the stem volume growth estimations of the process-based model
(black line, y = 1.0865x — 0.3066, R2=0.55) and the tree-level growth model included in the
SIMO simulator (dotted line, y=1.0239 x + 0.992, R2=O.51). The SIMO growth estimate is
here the mean annual volume growth during the first 5-year simulation period (based on the
initial stand status determined by the SIMO simulator).

In earlier studies, the pipe model based foliagmmaiss estimations have been tested, for
example, by Berninger et al. (2005), who did notifany clear trends with respect to stand
age, density, or site type with Scots pine, and_elitonen (2005), who reports the pipe
model being the least biased for spruce standsinfarie, when tested with several
empirical models. However, it would be worthwhitetést the pipe theory derived biomass
predictions against more recent empirical biomasdets for individual trees that are now
available for Finland (Repola et al. 2007). Comgami of the reliability of the process-
based approach with other related studies in Fihléor example, the hybrid model by
Nuutinen et al. (2006) and Matala et al. (2006)tather difficult, because those studies
focus on the long-term simulation results in eledaemperatures and G€@oncentrations,
rather than on evaluation of the model results wigasured data.

Overall improvement needs of current growth sinarkat

Forest growth simulators typically consist of apply several models starting from input
data processing and ending up to a collection bfreadels used in the growth prediction.
Therefore, problems in some part of the data psiegsand simulation chain can have a
strong impact on the results. For the current esglimodels, the changing climate and
different management regimes can raise problentianfuture. It is evident that purely
empirical-based models need to be combined withiithydmlutions containing mechanistic
processes in order to produce reliable estimatiatisvarying climate scenarios. Empirical
and process-based approaches have common probépesialy when simulating far to
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the future. The longer the simulating periods #re,more important role the used mortality
and regeneration models will get. These comporexit in the tested tree-level empirical
models, but they require still further developmértie tree-level models (Hynynen et al.
2002) consider natural mortality caused by comipetior age. Even though these models
implicitly include average mortality caused by dises, insects, snow damage, or storms,
they were build based on data only from even-agebsingle-species stands from mineral
soils. Therefore, these mortality and self-thinningdels can be assumed to function rather
unreliably in the case of stands of irregular stites (numerous tree species, uneven spatial
structure, and/or uneven size distribution) (Hynyee¢ al. 2002). In addition, while these
above-mentioned phenomena occur, the consequenicésefindividual plot or stand can
be destructive, which causes also high predictioore in growth estimations in such plots.
Instead, the stand-level models in their origimathf assume that natural mortality does not
occur at all. Removal of trees by cutting is assintetake place, however, and thus the
basal area and volume estimates can be consideliadle only in the case of “normally”
thinned forests.

There are also several development needs in thé picess-based approach. The
current approach did not include any mortality eganeration models, due to the short
simulation period. One of the aims for future resbas to link the summary approach with
mortality and regeneration models, which would wllsimulating the stand growth over
longer time periods. Additionally, special attenticshould be paid to modelling
development of young trees, as well as deciduoesst(Study Il). Another goal is to
include nitrogen and water uptake processes isithalator (Makela et al. 2008a, Duursma
et al. 2008), which would improve reliability ofehallocation procedure and, obviously,
reduce differences in model errors between sitedyps stated in Study Il. In the current
version, nutrient availability was present onlyathgh site fertility parameters, which
affected carbon allocation to fine roots, and iwigly through the leaf area, which was
derived from the NFI data. As photosynthetic prditurcrate has been reported to increase
with N content of leaves (Agren 1996, Smith e28l02), this response should be improved
in the model. As the soil properties and topogragépecially affect the water and nutrient
balance of the forests, it would be worthwhile ésttsoil maps and a digital elevation
model as model inputs, since these are available tfe whole of Finland
(http://www.geo.fi).

The current version has been parameterised only nfgmeral soils, and its
parameterisation for peat lands would be requinedrder to expand its usage to all boreal
forests. Further, as stated previously, the modelopmance especially in relation to soil
processes was not very good in the Sodankyla saphpie which suggests that the model
parameters should be adjusted for northern ardass.ctirrent version of the model was
only tested under prevailing climatic conditionadan the case of applying it with raised
temperatures, the model response to elevatecc@@entration in the air should be further
adjusted. Also, generalisations of the relationsijfor example, temperature sum angd
are only valid in climates similar to Finland. lald be noted, that tH& estimation based
on temperature sum (Study IlI) gives only roughnestes based on average weather
conditions. Further, as the hierarchical structafethe modelling data (different sites
containing data from different years) was not taketo account when building the
temperature-sum-based fodel, it can not properly differentiate the viioa between the
different years. Therefore, if local annual weattieta is available?, should be calculated
based on that.
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Needs to improve the LIDAR based version

Based on the findings of Study lll, the LIDAR basgugproach produced reasonable results
despite of a tendency to overestimate crown voluntéswever, there were several
drawbacks and inaccuracies in the current approablth should be addressed in future
development. The most crucial need is improvenrettié crown volume estimation and its
conversion to leaf biomass. In Study Ill, the crowolume estimation employed a
triangulation and alpha-shape based approach #saeérlier been successfully applied to
species recognition (Vauhkonen et al. 2009), ptixtis of stem attributes (Vauhkonen et
al. 2008), and crown base height estimation (Vankka2010). Here, this methodology led
to overestimated crown volumes, and thus to ovienastd leaf biomasses. Estimating the
number of trees per plot could actually be ignobgdestimating the tree level crown
volumes directly for all the trees in the plot eithby using single tree detection methods or
by the k nearest neighbour imputation (for examplackalén and Maltamo 2008) and
applying them with the tree level leaf biomass ¢igna.

One obvious reason for the inaccuracy in the crewiume estimation was the low
pulse density (0.7 /) of the LIDAR data used. Even though findings @veral studies
show that the accuracy of stand-level estimatidngon example, stem volume based on
distribution of the ALS based height values doesremarkably decrease with a decreasing
pulse density (for example, Maltamo et al. 2006b&den and Naesset 2007), according to
Vauhkonen et al. (2008), a density of at least Beqsun? would be required when
attempting to predict the species and stem diameteindividual trees using crown
structural attributes. Despite of a low pulse dgnghe estimated mean crown volumes
were fairly well in relation with the reference wab, at least when compared with the
crown base height estimation. It should be noteat the estimations obtained by the
LIiDAR based version contain both under and overegtions in the sub-models, which has
to be considered when examining the accuracy ofitia results. Because the stand total
crown volume and number of trees per hectare weeeestimated in the LIDAR version,
the reliability of the mean tree crown volume esties also is exaggerated.

As the estimates based on the field data alscaowmtd some uncertainty, it is rather
difficult to verify the real origin of the estimati error. Some inaccuracy is related to the
field measured growth, which was based on drillathges, which were only from the
dominant tree class. Therefore, the generalisetiglel field growth might have been
overestimated. Because the field reference oftréeegrowth was determined based on the
generalisation model using only one calibratioe fper stratum, the plot-level field growth
values contain also remarkable random variatiorshtiuld be noted, that the model for
generalising the field growth ignored the bark giowbut this effect was assumed to be
very small during such a short growth period. Hogrewaccording to Ilvessalo (1965) the
bark growth of Scots pine can be 5-20% of the diamgrowth, depending on the tree
shape and diameter, the share being highest vathrttallest trees.

Only a few of the countless possibilities that LiRAlata would offer for determining
the canopy conditions were utilised in this stuBlgr example, as the 3D LiDAR point
cloud is available, shading properties in the cgnoquld be derived directly from it. This
could be applied, for example, to the effectiveiretion coefficient used in the process-
based approach (Duursma and Mékela, 2007), whichdedaved here from the estimated
mean tree crown dimensions. When applying the amprao mixed forests, species
specific input data should be derived from the Li®Aata. This could be done by applying
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the area based approach with the nearest neighlgvooedure as introduced by Packalén
and Maltamo (2007). Alternatively, one could incargite tree species recognition into the
procedure either by combining the LIDAR data withultispectral aerial images as
suggested by Holmgren et al. (2008), or in caselLib&AR data is dense enough, using
only the LIDAR data (Vauhkonen et al. 2008). Thehal shapes should also be compared
with alternative methods of estimating the crowruaure, such as the voxel based
approach as introduced by Popescu and Zhao (2608her, the process of deriving the
required input data should be tested with moreatiesforest stands in the future. Now, the
sample plots were only from Scots pine dominateesks. Problems may arise when
applying the approach to young stands, where LilvaRed detection of crown dimensions
may face challenges (Naesset and Bjerknes 200Idu@ting field based and LiDAR
based forest inventory with leaf biomass and cralimension measurements based on
versatile sample plot data would be useful for feitdevelopment purposes. In addition to
improving the crown volume estimation method, fartetudies with more accurate LIDAR
data and more versatile forest area would be reduir order to make reliable conclusions
on its applicability with the process-based model.

Generalisation with k-NN method

The nearest neighbour method (k-NN) can be useth wétellite images either for
producing missing input data for the areas to bmukited or for generalizing the already
simulated results to the surrounding pixels. I1s thiesis, k-NN was used for generalizing
the plot wise simulated results of annual carbolarz® to the larger areas based on
Landsat 5 TM satellite images. When examining bdlitg of the k-NN itself, the method
seems to work well (Study 1V). However, the tendeatthe k-NN method to average the
results is apparent in the results of Study IV, rehile highest carbon sinks and sources
were lacking among the imputed values. FurtherGR® imputations for the stands with a
low basal area were remarkably unreliable, and Wwith basal areas, the imputed GPP
started to saturate. Study IV showed also thatréhi@bility of the imputations varied
according to the site fertility and the main treedes in the stand, which indicates that the
spatial variation in carbon production caused lesé¢hfactors was not sufficiently detected
based on Landsat images only. Employing other siatiaces in addition to Landsat bands,
for example, soil maps or DEM-derived products,utidoe considered in order to improve
the reliability of the imputations. Furthermore,geggating the data from different years
was found problematic. It is likely that the lanseumap from 2007 and the Landsat image
from 2007 do not match with the NFI observatiors1fr2004-2008 in all the areas due to
thinnings, cuttings, or land use changes.

The timing of a satellite image is an importantnedat which largely affects the
reliability of the imputations. Several studiesr(fxample, Rautiainen et al. 2009) have
reported seasonal differences in reflectance oéstsr due to changes in biochemical
properties, such as chlorophyll and water concgatran the vegetation. With satellite
images, for example, MODIS (Moderate Resolution dimg Spectroradiometer), earlier
greening of the understory vegetation can be mixéd canopy greening (Wang et al.
2005, Rautiainen et al. 2009). Therefore, if thgutations are done with images taken at
the very beginning or end of the summer in an awih long distances between the
southern and northern borders, the reliability wiputations might differ remarkably
between different parts of the area. In additibwe, ltandsat images represented the forests
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on only 1-2 days per year, while the simulated e@alaf GPP, NPP, and NEE represented
accumulations over the whole year, which is likely}cause uncertainty in the results. One
solution to tackle the issue would be to basentfgutation on longer time series of satellite
images taken during the growing season. Howevdeaat in Finland, it seems difficult to
find such a good time series covering large ara#ts an acceptable level of cloud cover.
The k-NN procedure used in Study IV could be imgabin the future by adding weighting
procedures (Tomppo and Halme, 2004) or by applgegeral images from the growing
season. MODIS maps or EC measurements from thehlmamiging countries could be
utilized in the future to validate this approach.

The k-NN approach used in Study IV allows extendimg estimations of, for example,
carbon fluxes for all the boreal areas with simitiimatic conditions as in Finland, for
example, in Sweden, Norway, and northern parts wési, provided that the required
weather data and NFI or equivalent data are availas previously mentioned, the used
process-based model has been parameterised onmhjrferal soils and for few tree species,
and parameterisation for peat lands and additiwaalspecies would be required to reliably
extend estimations to all the boreal forests. AsIN® maps provide thematic maps on
numerous different environmental variables, suclleaéarea index, land cover, and land
surface temperature, they could also be utilizeth whis approach, if such data is not
otherwise available. MODIS maps have been utiliz@tkly in recent studies both as input
data for growth models or for evaluation purposéisap et al. 2005, White et al. 2006,
Coops et al. 2007). MODIS also offers NPP mapschvhiave been developed by utilizing
an eddy covariance (EC) network and process-basmtklsi (Running et al. 2004). The
disadvantage of the MODIS product, however, icdarse resolution (1 km) and limited
network of ground data, i.e. a sparse eddy fluxvagk (Turner et al. 2006). Landsat 5 TM
images (Study 1V) enable a significant improvemefthe output resolution. When using
k-NN methods, the localization of the estimatesdrasmportant role (Sironen et al. 2008).
Variation in vegetation and climate zones can weithin a satellite image (image size 170
x 185 km in Landsat 5 TM), and in order to reduue effects of, for example, variation in
rainfall to the carbon flux imputations, both tleference and target pixels should be from
the same, relatively small area. Sub-areas includdtbe k-NN method could be defined
based on the distance from the target pixel ordiggusegmentation methods, such as local
indicators of spatial association (LISA), as inuodd, for example, by Raty and Kangas
(2010).

However, even though the reliability of the k-NNngealization seemed to be at an
acceptable level, the reliability of the actualirestions for the sample plots still remains
guestionable. If the estimation method fails todmethe carbon balance of the sample
population, the generalization will also fail. $tiather difficult to estimate the accuracy of
the carbon balance estimations, as only two Eddgariance measurement stations exist in
the study area. Based on the comparisons of thelatied and observed carbon production
in the Eddy sites, the Yasso07 soil carbon modahsel to work better in Southern Finland
than in Northern Finland. The soil model simulataely on several rough assumptions,
which can have a considerable effect on the NEifhasts. The steady state simulation (for
10,000 years in this case) was conducted with asdumean litter fall and weather
conditions, which definitely can vary during sucltoag time span. The annual plot wise
litter fall and weather conditions were assumedrdmain similar during the whole
simulation period, except for in the last few yedos which stand wise estimates based on
NFI data were available. This simplification may veacaused both under- and
overestimation of annual litter fall, depending; &xample, on stand age, site fertility and
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main tree species of the forest, as well as theaineg weather conditions. Secondly, the
possible cutting removals in the recent decades vggored, as the data was not available.
The mean steady state values obtained in Studg.¥Kg C nif for Central Finland) were

in line with those reported by Liski and Westmafi(2) and Peltoniemi et al. (2004), who
observed average soil carbon pools of 5.8-9.6 kg“Cand 6.8 kg C M, respectively, in
Southern Finland. However, weather conditions atter Ifall, especially during the latest
simulation years, can cause large variations inegtamated carbon pool, and inaccuracies
in these estimates are reflected in the NEE vallibsrefore, estimating NEE with this
approach is rather uncertain, especially if re¢ecdl weather data is not available. This is
of particular concern when the uncertainty rangs &t about zero, i.e., the stand may either
be a sink or a source of carbon. Further investigais required in order to assess the
reliability of the method. Comparisons could beeexted, for example, to Eddy covariance
stations in Sweden. Additionally, other soil carboadels, such as ROMUL (Chertov et al.
2001), are available and could be applied instéakeoYasso07 model.

6  CONCLUSIONS

It is evident that there is a need for 1) develgpfarest growth estimation methods
adaptable to both climatic and environmental changg developing methods capable of
estimating the development of other than traditiGtand characteristics, 3) improving the
methods of utilizing remote sensing data with tkeerypes of growth simulators, and 4)
shifting towards open-source simulation framewdhet can be easily modified, updated
with new models and linked with other systems ideorto adapt them to the changing
needs of the users. The climate-sensitive foreswvidr estimation approach introduced in
this thesis (studies II-1V), as well as the openfse simulation frameworks, such as SIMO
(Tokola et al.2006) utilized in Study I, can be seen as promigffgrts towards these
goals.

The reliability of the empirical and process-basathmary models tested in this thesis
was at a similar level in the short run (Studiesamid 111). However, the process-based
simulations were carried out using rather smaladsgts, which included mainly well-
managed forests without natural mortality. Therefdurther testing of the process-based
approach with a wider range of site types, treecisge mixed forests, as well as
geographical areas is required in order to dravelesions of their reliability in larger scale
use. In longer simulations, the role of mortalitydaregeneration models becomes more
important; this would require special attention afiadther developing efforts in both
empirical and process-based approaches. As a ame/uwvhich model to use depends on
the input data, simulation time, and the needfi®fmhodel user. As shown in Study I, there
are not big differences between the empirical &ne@ stand-level models, and they remain
the mostly used ones due to their long empiricalkbeound. However, in the case of
warming climate or when testing new kind of managemregimes, process-based
approaches or hybrid models would obviously offemare reasonable solution (see e.g.
Miehle et al. 2009), given that they contain properchanisms to respond the changes in
the environment and that they have been adequisyd. Based on the evaluations done
in studies Il-1V, the current summary approach sedm have potential for short-term
predictions in even-aged mineral soil forests ia southern part of Finland. However, in
order to apply the process-based approach to neavd{ithinning schedules, for example,
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uneven-aged forest management, proper regeneratidnmortality models should be
applied and the estimation procedure should be wtiad on tree level. Developing a
mechanistic model system with a reliable regenematind mortality system that responds
to changing light, nutrient, and water conditioemgins a future challenge.

In general, the approach seems to be a promisamtjngt point and there is a wide range
of possibilities to expand its usage. For exame#imating carbon fluxes for large areas
based on LIDAR data would be a very interestingliapfion and could be immediately
tested, as the model contains components for egtigngross and net primary production
as well as the soil respiration, which enables dbémation of the whole net ecosystem
production. The approach presented in the thesigot building blocks for developing an
easily applicable visual tool in order to examihe effects forest management in changing
environmental and climatic conditions for enviromte¢ and industry related decision
making and policy making purposes. It could belgasiegrated, for example, in the forest
planning framework SIMO, which would allow accommatidg for carbon balance issues
in practical forest planning and optimisation taskswould also offer an interesting
platform for future research purposes.
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Appendix 1.

Static process-based summary model

Tree growth is estimated at the stand level, basedarbon production and respiration in
different components of the trees. Annual foresingh can be expressed as

Pn=rnep P, (A1)

wherePy is net primary production (NPFJ,is gross primary production (GPP), angp is

the ratio of the two, depending on the respectigges of maintenance angrowth
respiration of the stand. In studies Il-Iipp was assumed to be proportional to mean stand
height in accordance with the equatigppr= 0.6 — 0.0113H,,.., based on the findings by
Mékela and Valentine (2001) (see Study Il). Annbi@mass productiorG, (kg DW ha'

yr') (DW=dry weight), is proportional tBy as follows:

G, =c 'R, (A2)

where cc is the carbon content of biomass dry weight € 0.5). P depends on
environmental driving variables and forest stanth @& follows:

P = fapar Po, (A3)

wherefapar is the (effective annual) mean fraction of photdbgtically active radiation
(PAR) absorbed by the canopy, d@glis annual canopy photosynthesis in a (hypothetical)
canopy that absorbs all PAR radiation.

According to the LUE based model (Makela et al.&f)0 annual canopy GP[P) can
be expressed as

365

P= fAPARZ (BP fufafon), (A.4)

k=1

wherefaparis as aboves is potential daily LUE (kg C / mol)®, (mol m?) is PAR above
the canopy during the ddy andf,, fsandfy are modifying functions of daily PAR, daily
average temperature, and daily average vapour yeestficit (VPD), respectively, that
take values between 0 and 1 (see Harkénen et 4D 2fr details). FurtherP,, the
(hypothetical) maximum canopy GPP, can be obtamitdthe eqn. A.4 whefhpar=1.



48

Table A.1. Model parameters and their values. Version “D” denotes the dynamic version
parameters used in Study Il and version “S” the static version used in studies Il and IV.

Explanation Unit Scots pine
Vb Coefficient of allometric eqn. for branch length 0.386
b Allometric exp. for mean branch length 0.8268
Ps Form coefficient 1.3
Pc Form coefficient of stem inside the crown 0.55
Ps Form coefficient of stem below the crown 0.5(rc+ 1)/re,
where rc= Lc/H
Ne Foliage mass:basal area of branches kg DW m™ 350
nNs Foliage mass:cross-sectional area at crown base kg DW m? Tmean X 16 +440
are  Fine root biomass:needle biomass on OMT ? kg DW (kg DW)™* 0.2
Or3 Fine root biomass:needle biomass on MT kg DW (kg DW)* 0.36
QR4 Fine root biomass:needle biomass on VT kg DW (kg DW)™* 0.51
Ors Fine root biomass:needle biomass on CT kg DW (kg DW)* 0.7
Ps Wood density of stem kg DW m? 400
Ps Wood density of branches kg DW m? 400
] Empirical parameter 0.4
Kn Extinction coefficient for homogeneous stands 0.3
SLA  Specific leaf area m? (kg DW)* 11
Mgo  Maintenance respiration rate of foliage kg C (kg C)* yr? 0.7
Mro  Maintenance respiration rate of fine roots kg C (kg C)* yr* 0.3
Mw,o  Maintenance respiration rate of sapwood kg C (kg C)* yr* 0.075
z Sapwood area:crown length m*m™ 2
c Carbon used for growth respiration:NPP kg C (kg C)* 0.3
VE Leaf longevity years 3.5
VR Feeder root longevity years 1
ar Coarse root biomass:stem biomass kg DW (kg DW)™* 0.22
Bs Mean pipe length in main stem of crown:crown mm* 0.5
length

Uns is a linear function of annual mean temperature fitted with the results for Scots pine by Palmroth et
al. (1999). ?Site types classified according to the classification system of Cajander (1925). CT=Calluna
type (dry heath forest), VT=Vaccinium type (dryish heath forest, MT=Myrtillus type (fresh heath forest),
and OMT=0Oxalis-Myrtillus type (herb-rich heath forest). ar for Scots pine was adjusted using the pine
fine root:needle ratios of MT and CT presented by Vanninen & Makela (2005) and Helmisaari et al.
(2007).
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Norway spruce Birch and other Source Version
deciduous trees
0.4614 0.2689 Mékela (1986), Makela & Vanninen S,D
05198 1 (2001), Vanninen & Mékela (2005) s.D
0.63 0.5 S,D
0.5 0.5 S,D
0.5(rc+ 1)/re, 7.5946 L **%® S,D
where rc= Le/H
400 216 S,D
Tmean X 16 +540 Tmean X 16 +245 Palmroth et al. (1999) S,D
0.18 1 Vanninen & Méakela (2005), S,D
0.3 15 Helmisaari et al. (2007) ? D
0.42 2 S,D
0.54 2.5 S,D
376 480 Karkkainen (2003) S,D
590 550 S,D
0.4 0.4 Duursma & Mékela (2007) S,D
0.3 0.3 S,D
10 12 Luoma (1997), Stenberg et al. (1999), S,D
Parviainen (1999)
0.7 0.7 Valentine & Mékela (2005)
0.3 0.3
0.075 0.075
2 2
0.3 0.3

O O U U U U U U O
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In Egns (A.3) and (A.4), we assume thgtr incorporates the effects of canopy structure
on GPP andP, describes the effects of driving variables. Heenopy structure is defined
as the combination of LAI, its spatial distributjcand its shading propertiegpar can be
approximated using the Lambert-Beer law with arfe@@ive annual mean) extinction
coefficient, ky (Table A.1). Duursma and Makela (2007) showed tihatsame exponential
equation can be applied more generally to non-h@megus canopies, provided tlkatis
replaced by an effective extinction coefficiek; (i denotesree species strata):

= (Kefr i)

fapar = X—€ ) (A.5)

where ko depends on leaf area per trég,(m?), mean crown surface areg, (n?), a
homogenous extinction coefficiemd;, and an empirical parameter(Table A.1). The (all
sided) leaf area per tree can be calculatet aa, sWe/N, wherea s is specific leaf area
(SLA) (m? (kg DW)Y), andN is stocking density (F8. The specific leaf areas for different
tree species were assumed constant (Table A.1)n Meavn surface area was calculated
based on the measured (basal area weighted) meam éength,Lc (m), and width,Cy
(m), assuming the pine and deciduous crowns gsseilis and the spruce crowns as cones.
In the field input version (studies II-1V), the sthleaf biomassWg, was estimated based
on the empirical ratio of foliage mass to the steoss-sectional area at the crown bage
(m?), which can be expressed As =B (Lc / (H-1.3)) whereB is basal area (h The
biomasses of other tree componems, (kg DW ha'), were estimated using allometric
equations (see Table A.2). Site fertility was imgd in the estimation through site type
specific foliage:fine root ratios using the sitgpeyclassification according to Cajander
(1925).

As each stratum contributes to canopy GP® it the proportion of its effective leaf
area,Lqn;, defined adef; = kerr, L / Ky, Stratum’s GPP can be expressed as

Pi=si fapar_mPo, (A.6)

where sis the ratio of the stratum specific effectiveflemea, L, to the sum of the
effective leaf areas of all strata.

Dynamic process-based summary model

Annual carbon production (GPP and NPP) was estinsitailarly as in the static version
explained in the previous section. The growth efrstand crown dimensions (Study IlI)
was estimated utilising the “bridging model” inttagtd by Valentine and Makela (2005),
which is based on the pipe theory. The growth oatece height was estimated as

dH [gz_(g4_1)Hc_Hj, (A7)

M g (H-H
at - % c) s +(gs —DH¢ +H

whereHc is crown base height (m), agds areempirical parameters defined in Table A.3.
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The crown rise rate was assumed to be

dH,
dt

dH
=S(C)—. 8
©) (3

whereS(C) = 0, if Lc < 7 meters and otherwi&€C) = 0.7.

Crown width was assumed to stay proportional tavaréength. Basal area growth at
breast height (1.3 m) was determined on the bddiasal area growth at crown base. First,
the total cross-sectional area at the living crioase A (m*ha?), after one year growth can
be expressed as

LCtZ ’ Htl_HCtZ ‘
= + : — . . A.9
A=A, Al[LCﬂJ ( - a9

Further, the new basal area at the height of 1.Bgncan be estimated based Ap,
new height, and crown base height using the relship in eqn. 11. The values of the
structural parameters used in the estimation chare obtained from empirical studies
testing the above relationships (Table A.1). ThBAR input and the field input versions
of the process-based dynamic approach were the, saxokiding the estimation of the
initial leaf biomasgW), which was derived directly from the crown voluegimations in
the LIDAR method (see Study ).

Estimating soil respiration and NEE

In Study IV, the soil respiration was estimateddshsn the annual litter fall data using the
Yasso07 soil model (Tuomi et al. 2008, Tuomi e28l09). In Yasso07, the total litter fall
is divided into non-woody and woody litter, whickedurther divided into four compound
groups: 1) compounds soluble in a non-polar solvettitanol, or dichloromethane (E), 2)
compounds soluble in water (W), 3) compounds hydatle in acid (A), and 4)
compounds neither soluble nor hydrolysable at &l). (Each group has different
decomposition rates, which depend on temperatutgeatipitation. Decomposition results
in mass loss from the system and inside the systmmwell as formation of more
recalcitrant humus (H). The parameters used imtbdel are described in Study IV. The
annual carbon change of sdilCs (g C m? year'), can be expressed as

ACS:CS,l'CS,O (AlO)
whereCs 1(g C m? yeaf) is soil carbon at the end of the simulation yead Cs o(g C m?
year?) is soil carbon at the beginning of the simulatigear. Net ecosystem exchange

(NEE), Ey (g C m? year'), can be expressed based on NPR), the annual soil carbon
changeACs and carbon in the annual litter fall; (g C m? year?), as follows:

EN: - (PN' LT + ACs)' (All)
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a negative NEE denoting that the forest is a cadink and positive that it is a carbon
source. The model was first driven to steady stgtsimulating soil processes for 10,000
years for each plot before starting the actual Etran. The simulation to steady state was
done in two parts. First, the Yasso07 model wasfout=10 000ts (years), wherds is the
stand age in the NFI plot data. The total annugérlifall in this first simulation part
consisted of 1) average litter fall, (kg DW ha'), from all the living trees in the NFI plots
in the study area (Lapland and Central Finlandsaseparately) from 2004-2008, and 2) the
average litter fall from dead trees and ground tagm, Ly (kg DW ha'), estimated as a
function of the effective temperature sum in thetgmean ETS during 1961-1990). The
linear functions describing the relationship betw&I'S andLyg were constructed based
on average litter fall data from Southern and NemthFinland (see Study IV). The second
part included running the Yasso07 model forears with annual litter fall, which was
interpolated between the mean annual litter lfalat moment and NFl-based plot wise
litter fall, L.s, at momentts assuming a linear relationship. The plot wise weath
conditions were assumed to be the same as the weather during 1961-1990 of the
nearest point in the FMI 10 x 10 km data grid, @tder the last 10 years of the steady
state simulation, which were run with the annuahtlier data.

Annual litter fall,L, s, was estimated on the basis of turnover ratesmei@fin Study 1V
by Liski et al. (2006) using the biomass estimaiarf the NFI plots obtained with the
process-based model. For Southern Finland, theahrfoliage turnover rates for Scots
pine, Norway spruce, and deciduous trees were(0.22, 0.1 (0.05), and 0.78, respectively
(values for Northern Finland in brackets). The airaranch turnover rates for Scots pine,
Norway spruce, and deciduous trees were 0.02, B,04@d 0.0135, respectively. The
corresponding turnover rates for coarse roots We®&84, 0.0125, and 0.0135. For fine
roots, the turnover rates were 0.868, 0.811, afAd réspectively. The estimated average
soil carbon in the steady state in 2007 in the &aglplots was 6.6 kg C fhand in Central
Finland 6.0 kg C M. The average of the total annual litter fall irpland was 159 g C
and in Central Finland 203 g C’m

Table A.2. Biomass equations based on the pipe theory (Makela 1986, Kantola and Makela
2006, llomaki et al. 2003).

Variable Equation Unit

Leaf biomass WE= ns Ac kg DW ha™
Branch biomass WB = ¢BIOB (CW /2),73 /,78 AC kg DW ha™
Stem biomass W = o5 (@sHAC + 9L A) kg DW ha™
Fine root biomass W, =a W, kg DW ha™

Coarse root biomass W = a; W kg DW ha™




Table A.3. Equations used in height growth
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estimations in the dynamic version.

Equation

Explanation

9, =1+ 2) (g, (B A+ C))

o, :(pp(so-rnp)—pRmRJ_[lﬂJ(m+pRJ

9 Oo A Ve Vg
g :(2) Pe * Pr
> +z\ B

. :1+(pwmvv:82]

9
_(2] B+ 5,
Os = 1+ 7 A,
9o = PuMy By
pw = ps /2
B1= Bo(Be+ Bs)
Bzz BO—BI

Bo=Wsap1/ Wsapa

BB:hB/LC

PF= W;:/Ac

Pr= Wer/Ac

So= GPP/W;:

Parameter

Parameter ¥
Parameter
Parameter ¥

Parameter

Parameter ¥

Wood density as carbon (kg C m'3)
Parameter
Parameter

The ratio of total sapwood Wspp 1 tO
abz())ve-ground sapwood Wsapa (kg kg’

D)

Parameter, where hg is mean branch
length (Cw/2)

Ratio of foliage mass to cross-
sectional area of sapwood (kg C m'2)

Ratio of fine root mass to cross-
sectional area of sapwood, kg C m

Specific rate of photosynthesis kg C
(kg C)™* year™

Y The maintenance respiration rates, m; (Study llI), for different biomass components (i=F,R,W, where
F=foliage, R=fine roots, and W=sapwood in stem, branches, and roots) were needed in the g; equations.
The total maintenance respiration, Ry (kg C ha™ yr?), was estimated based on the NPP:GPP ratio, ryep,
as Ru= Rr- Rg, where Rg is proportional to NPP with fraction c (see Table A.1) as Rg = ¢ ryep GPP. The
NPP:GPP ratio was estimated as ryep = 0.6 — 0.0113 Hpean (S€€ Study I1). As the rates for different
components were unknown, the m;.s were derived based on the relationships of rates m;p introduced by
Valentine and Méakela (2005) (see Table A.1) by scaling the maintenance respiration Ry = mg Wg + mg
Wer + my (Ws + W5 + 0.5 Wcg) to match the maintenance respiration estimated based on the NPP:GPP
ratio. ? The proportion of sapwood was assumed to be 100% in branches and 50% in the coarse roots.
Stem sapwood was calculated as Wsap=ps (Hc Ac +(¢c Lc Ac).
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Appendix 2.

Appendix 2 contains the updated tables (A.4-A.8)tlké RMSE, bias and standard
deviation (absolute and relative values) of th@restion error (Study I) of stand basal area
(m? ha'), basal-area-weighted mean diameter (cm), basahaeighted mean height (m),
stand volume (fhha?) in the end of the simulation period (1995), andvgh of the stand
basal area (frha® 10-yeard) with n=597. These tables replace the Table ZunBl, as it
included erroneously sample plots which had beeméd. Mark “**” indicate that the bias
is significant (p<0.01) (based on the two-taileitgh samples t-test).

Table A.4. RMSE, bias and standard deviation (absolute and relative values) of the
estimation error in plot level (n=597).

Tree Stand Combined
All (n=597) Abs % Abs % Abs %
RMSE (abs. and %)
Basal area (m”ha™) 32 149 27 125 43 198
Diameter (cm) 1.0 53 11 59 16 81
Height (m) 1.7 117 1.8 121 1.8 12.4
Volume (m® ha®) 29.4 17.6 36.2 21.7 40.9 24.4
Basal area growth (m? ha™ 10-years™) 3.2 59.5 2.7 50.0 43 792
Bias (abs. and %)
Basal area (m”ha™) 0.1 06 07 32 = 1.0 45 =
Diameter (cm) 02 08 ** 03 1.7 * 00 01
Height (m) 07 44 = 08 54 * 0.7 46 =
Volume (m® ha®) 73 44 = 1.7 1.0 39 23
Basal area growth (m”ha™ 10-years™) 0.1 2.5 07 12,9 * 1.0 181 *
s (abs. and %)
Basal area (m”ha™) 32 149 26 121 42 193
Diameter (cm) 1.0 53 11 56 16 81
Height (m) 1.6 108 1.6 108 1.7 11.4
Volume (m® ha®) 28.4 17.0 36.2 21.6 40.7 24.3
Basal area growth (m? ha™ 10-years™) 3.2 59.4 2.6 483 42 771

** The bias is significant (p<0.01), based on the two-tailed paired samples t-test.
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Table A.5. RMSE, bias and standard deviation (absolute and relative values) of the
estimation error in Scots pine strata.

Tree Stand Combined
Scots pine (n=477) Abs % Abs % Abs %
RMSE (abs. and %)
Basal area (m2 ha'l) 2.3 19.5 2.1 17.3 2.3 19.3
Diameter (cm) 1.7 8.5 1.8 9.0 1.7 8.6
Height (m) 2.0 14.2 2.1 14.6 2.0 14.3
Volume (m* ha™) 20.1 23.2 22.0 254 22.6 26.0
Bias (abs. and %)
Basal area (m”ha™) 0.2 15 0.8 6.5 b 04 3.6 %
Diameter (cm) 0.3 1.7 ki 0.6 2.8 ki 0.4 20 *
Height (m) 0.0 0.3 0.4 2.7 ki 0.2 15
Volume (m* ha™) 2.7 3.1 ok 6.2 7.2 e 4.4 51 %
s (abs. and %)
Basal area (m2 ha'l) 2.3 19.5 1.9 16.0 2.3 19.0
Diameter (cm) 1.6 8.3 1.7 8.5 1.7 8.4
Height (m) 2.0 14.2 2.0 14.3 2.0 14.2
Volume (m® ha™) 19.9 23.0 21.1 24.3 22.2 25.5

Table A.6. RMSE, bias and standard deviation (absolute and relative values) of the
estimation error in Norway spruce strata.

Tree Stand Combined
Norway spruce (n=389) Abs % Abs % Abs %
RMSE (abs. and %)
Basal area (m2 ha’l) 2.4 17.9 1.8 13.7 2.1 15.4
Diameter (cm) 1.6 8.5 1.3 6.7 15 7.8
Height (m) 2.3 15.2 2.5 16.4 2.4 15.7
Volume (m3 ha'l) 22.3 20.1 29.9 26.9 29.5 26.6
Bias (abs. and %)
Basal area (m*ha™) -0.7 5.0 0.0 0.2 -0.4 32w
Diameter (cm) -0.2 -1.0 0.0 -0.1 -0.2 -0.8
Height (m) 11 7.5 ** 15 9.6 ** 1.3 86 **
Volume (m3 ha'l) 1.9 1.7 -5.9 -5.3 ** -9.7 -8.7 **
s (abs. and %)
Basal area (m2 ha’l) 2.3 17.2 1.8 13.7 2.0 151
Diameter (cm) 1.6 8.4 1.3 6.7 15 7.8
Height (m) 2.0 131 2.0 13.2 2.0 131
Volume (m3 ha'l) 22.3 20.1 29.3 26.4 27.8 25.1
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Table A.7. RMSE, bias and standard deviation (absolute and relative values) of the
estimation error in Silver birch strata.

Tree Stand Combined
Silver birch (n=110) Abs % Abs % Abs %
RMSE (abs. and %)
Basal area (m2 ha'l) 0.8 24.0 0.9 28.3 0.9 26.4
Diameter (cm) 3.5 18.4 4.1 21.0 3.7 19.0
Height (m) 4.0 22.2 4.0 22.1 3.9 22.1
Volume (m® ha™) 115 37.2 13.0 42.2 10.0 32.6
Bias (abs. and %)
Basal area (m®ha™) 0.2 6.4 *x -0.3 -9.7 *x 0.0 0.6
Diameter (cm) 0.1 0.5 -1.4 -7.3 *x -0.7 -3.5
Height (m) 0.8 4.7 0.8 4.4 0.8 4.5
Volume (m® ha™) 1.7 5.5 0.1 0.3 2.7 8.7 *
s (abs. and %)
Basal area (m2 ha'l) 0.8 23.2 0.9 26.6 0.9 26.4
Diameter (cm) 3.5 18.4 3.8 19.7 3.6 18.7
Height (m) 3.9 21.7 3.9 21.6 3.9 21.6
Volume (m® ha™) 11.3 36.8 13.0 42.1 9.7 31.4

Table A.8. RMSE, bias and standard deviation (absolute and relative values) of the
estimation error in White birch strata.

Tree Stand Combined
White birch (n=322) Abs % Abs % Abs %
RMSE (abs. and %)
Basal area (m2 ha’l) 1.6 35.3 1.2 26.7 4.3 96.3
Diameter (cm) 1.6 11.9 15 10.9 15 10.9
Height (m) 2.2 16.2 2.2 16.0 2.2 15.9
Volume (m3 ha’l) 11.7 38.6 10.1 33.6 29.9 99.0
Bias (abs. and %)
Basal area (m2 ha’l) 0.5 11.5 * 0.2 3.7 14 309 **
Diameter (cm) -0.4 31 0.1 0.9 -0.2 -1.6  **
Height (m) 1.0 7.5 ** 0.9 6.4 *x 0.9 6.8 **
Volume (m3 ha’l) 4.7 157 * 0.8 2.7 9.1 30.1 **
s (abs. and %)
Basal area (m2 ha’l) 15 33.3 1.2 26.4 4.1 91.1
Diameter (cm) 15 11.5 1.4 10.8 14 10.8
Height (m) 1.9 14.4 2.0 14.7 2.0 14.4

Volume (m3 ha'l) 10.7 35.3 10.1 33.5 28.5 94.3
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