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ABSTRACT 

 
The main aim in forest mapping and monitoring is to produce accurate information for forest managers with the use 
of efficient methodologies. For example, it is important to locate harvesting sites and stands where forest operations 
should be carried out as well as to provide updates regarding forest growth, among other changes in forest structure. 
In recent years, remote sensing (RS) has taken a significant technological leap forward. It has become possible to 
acquire three-dimensional (3D), spatially accurate information from forest resources using active RS methods. In 
practical applications, mainly 3D information produced by airborne laser scanning (ALS) has opened up 
groundbreaking potential in natural resource mapping and monitoring. In addition to ALS, new satellite radars are 
also capable of acquiring spatially accurate 3D information. The main objectives of the present study were to 
develop 3D RS methodologies for large-area forest mapping and monitoring applications. In substudy I, we aim to 
map harvesting sites, while in substudy II, we monitor changes in the forest canopy structure. In studies III-V, 
efficient mapping and monitoring applications were developed and tested.  

In substudy I, we predicted plot-level thinning maturity within the next 10-year planning period. Stands 
requiring immediate thinning were located with an overall accuracy of 83%-86% depending on the prediction 
method applied. The respective prediction accuracy for stands reaching thinning maturity within the next 10 years 
was 70%-79%.  

Substudy II addressed natural disturbance monitoring that could be linked to forest management planning when 
an ALS time series is available. The accuracy of the damaged canopy cover area estimate varied between -16.4% to 
5.4%. Substudy II showed that changes in the forest canopy structure can be monitored with a rather straightforward 
method by contrasting bi-temporal canopy height models.  

In substudy III, we developed a RS-based forest inventory method where single-tree RS is used to acquire 
modelling data needed in area-based predictions. The method uses ALS data and is capable of producing accurate 
stand variable estimates even at the sub-compartment level. The developed method could be applied in areas with 
sparse road networks or when the costs of fieldwork must be minimized. The method is especially suitable for large-
area biomass or stem volume mapping. 

Based on substudy IV,  the  use  of  stereo  synthetic  aperture  radar  (SAR) satellite  data  in  the  prediction  of  plot-
level forest variables appears to be promising for large-area applications. In the best case, the plot-level stem volume 
(VOL) was predicted with a relative error (RMSE%) of 34.9%. Typically, such a high level of prediction accuracy 
cannot be obtained using spaceborne RS data. Then, in substudy V, we compared the aboveground biomass and 
VOL estimates derived by radargrammetry to the ALS estimates. The difference between the estimation accuracy of 
ALS–based and TerraSAR X–based features was smaller than in any previous study in which ALS and different 
kinds of SAR materials have been compared.  

In this thesis, forest mapping and monitoring applications using active 3D RS were developed. Spatially accurate 
3D RS enables the mapping of harvesting sites, the monitoring of changes in the canopy structure and even the 
making of a fully RS-based forest inventory. ALS is carried out at relatively low altitudes, which makes it relatively 
expensive per area unit, and other RS materials are still needed. Spaceborne stereo radargrammetry proved to be a 
promising technique to acquire additional 3D RS data efficiently as long as an accurate digital terrain model is 
available as a ground-surface reference. 
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INTRODUCTION 
 
 
Background 
 
Forests are mapped and monitored for multiple purposes. Forest resource information is gathered for large-scale 
strategic planning, operative forest management and pre-harvest planning. National forest inventories (NFIs) are 
examples of inventories undertaken for large-scale strategic planning for gathering information about nationwide 
forest resources, such as growing stock volume, forest cover, growth and yield, biomass, carbon balance and large-
scale wood procurement potential. In NFIs, it is important to have unbiased estimates and obtain information also 
from small strata. The making of inventories of forest resources has a long tradition in Finnish forest sciences, 
making it among the first countries in the world to take such measures: a sampling-based forest inventory covering 
the whole country was introduced over 90 years ago (NFI 1, 1920-1924). Finnish foresters were also pioneers in 
developing new inventory methodologies when the making of multisource forest inventories was introduced in the 
early 1990s (Kilkki and Päivinen 1987, Tokola 1988, Muinonen and Tokola 1990, Tomppo 1991). However, 
operational forest management planning has been based on stand-wise field inventory (SWFI) for over 60 years in 
Finland. The potential of remote sensing (RS), such as the utilization of satellite – radar – and aerial images in the 
estimation of forest variables has been studied intensively, but the methodologies have not become generally used in 
practice. The reason is simple: the accuracy obtained in forest variable estimation at the stand level using RS data 
has not been adequate for forest management or pre-harvest planning. 

During the last decade, RS has taken a significant technological leap forward, as it became possible to acquire 
three-dimensional (3D), spatially accurate information from forest resources using active RS methods. In practical 
applications, mainly airborne laser scanning (ALS) has opened up groundbreaking potential in natural resource 
mapping and monitoring (see Figure 1). ALS collects 3D information from forest resources, which enables a highly 
accurate estimation of tree or stand variables. For example, estimated root mean square error (RMSE) accuracies for 
total volume have ranged between 10% and 20% at the stand level in the Nordic countries (Næsset et al. 2004).  

 
 

 
 

Figure 1. Principle of airborne laser scanning.©Ville Kankare. 
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ALS surveys are carried out at relatively low altitudes, usually from 0.5 to 3 km, which makes it relatively 
expensive per area unit. Other remotely sensed data will still be needed, especially when updated information is 
required annually. In addition to ALS, satellite radars, launched in recent years, are also capable of acquiring 
detailed 3D information for forest mapping and monitoring. Synthetic aperture radar (SAR) is a special case of 
imaging radars being able to provide images with the spatial resolution of about one meter from satellites, which are 
orbiting at an altitude of several hundreds of kilometers. An overview of the use of ALS, SAR, and hyperspectral 
remote sensing data for forest assessment can be found in Koch (2010). 

Forest mapping and monitoring is carried out to support decision making by the forest owner. In operative forest 
management planning, input data have been traditionally gathered using SWFI. In SWFI, wood procurement 
potential, the amount of round wood removal and forest management proposals are mapped and determined. In 
addition to stand variables, site types are classified to map forest growth potential, the thinning regime, and 
biodiversity. Forest growth and yield are also highly correlated with forest estate value. The wood procurement 
chain from forest to users starts with knowledge of the stands available for harvesting. The accuracy of the SWFI 
data has not been adequate for mapping the thinning and final cutting sites, causing additional field work. In 
addition, preharvest measurements have been carried out separately based on existing SWFI.  

In Finland, rather expensive SWFI endeavours have been carried out once every 10 years. In this case, updated 
forest resource information for the intermediate years is predicted using growth models. Another option is to use 
continuous updating in forest management, where forest stands are inventoried after each operation and the growth 
between operations is updated using growth models. However, neither of these methods provides an efficient means 
to monitor rapid changes in the forests.  

Currently, the retrieval of stand variables, which is needed in forest management planning, is being replaced by 
ALS-based inventory methodologies in the Nordic countries. Relatively new ALS-based inventory methodologies 
were adopted quickly after the first promising studies (e.g. Nilsson 1996, Næsset 1997a, b, 2002, Hyyppä and 
Inkinen 1999, Hyyppä and Hyyppä 1999). The first operational test (6000 ha) in which an ALS-based inventory was 
carried out occurred in Norway in 2001. This test was followed by the first commercial contract for 46 000 ha in 
2002. Various operational tests were carried out in Finland and Sweden during 2003 and 2004. In 2008, UPM-
Kymmene acquired ALS data covering 450 000 ha of its forests. Forest inventories using ALS in privately-owned 
forests were first undertaken in 2010 in Finland, and by the end of 2011, almost 5 million ha had been scanned.  

In operational wall-to-wall forest inventories, a two-stage procedure using ALS data and field plots, i.e. an area-
based approach (ABA, Næsset 2002), has become common and a reference against which other inventory 
methodologies are compared. The foremost advantages of the state-of-the-art ABA compared to traditional SWFI 
are more precise prediction of forest variables and sampling-based estimation with the possibility of calculation 
accuracy statistics, and, at least in principle, ALS-based inventory does not depend on stand boundaries. Although 
current  ALS  data  acquisition  and  processing  costs  are  lower  than  that  of  traditional  SWFI  methods,  ALS  data  is  
expensive compared to many other RS materials, and it is currently used mainly for the retrieval of basic forest 
inventory variables. Thus, improved means are needed to utilize it more efficiently in forest resource management, 
especially for large areas. 

The mapping of potential harvesting sites is one of the key decisions for large-scale forest owners (Laamanen 
and Kangas 2012). Furthermore, monitoring applications related to forest growth and the mapping of natural hazards 
are required at varying scales. In large-area wall-to-wall applications, efficient methods are needed for accurate stem 
volume and biomass mapping. Thus, the fusion of ALS with other RS materials must be considered. This thesis 
contributes to these subjects. 

  
 

Objectives of the study 
 
The main aim in forest mapping is to produce accurate information from forest resources for forest managers with 
efficient methodologies. Methods are needed to monitor forest growth, among other changes in forest biomass, e.g. 
natural hazards and disturbances as well. The objectives of the present study were to develop active 3D RS 
methodologies for large-area forest mapping and monitoring applications. In substudy I, we aim to map harvesting 
sites, while in substudy II, we monitor forest canopy changes using ALS data. In substudy III, an efficient mapping 
application is developed using ALS data. In substudy IV, a method for the area-based mapping of forest variables is 
developed using radargrammetric 3D measurements, while in substudy V, the developed method is tested against 
state-of-the-art area-based estimation using ALS data. The specific objectives of studies I-V were as follows: 

 
I An area-based approach is currently used in operational forest management planning inventory. Still, 

forest management proposals are made in the field by foresters. Here, we demonstrate a method to 
predict stand thinning maturity using ALS data. The method can be used for the mapping of harvesting 
sites. 
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II Multitemporal, spatially accurate 3D RS data sets are becoming more general, which enables novel 

monitoring applications. Here, we present a method for monitoring changes in the forest canopy 
structure using bitemporal ALS data. 

 
III Single-tree remote sensing could be used to acquire the modelling data needed in ABA. Here, we 

demonstrate a fully RS-based forest inventory method. The method uses ALS data and is capable of 
producing accurate stand variable estimates even at the sub-compartment level. 

 
IV Airborne laser scanning is relatively expensive per area unit compared to spaceborne RS data. Thus, 

other remotely sensed data will still be needed, especially in monitoring applications requiring high 
temporal resolution. A promising approach to map and monitor forest resources by radar imaging is 
radargrammetry. Here, we develop a radargrammetry-based method to predict plot-level forest 
variables. 

 
V Here, we compare 3D information derived by ALS and radargrammetry to predict stem volume and 

biomass. 
 

 
Laser scanning 
 
Laser scanning in measuring forests  

 
Laser scanning (LiDAR, Light Detection and Ranging; LS, Laser Scanning) is an active RS technique that uses the 
time-of-flight measurement principle to measure the distance to an object. With the known position of the sensor 
and precise orientation of these range measurements between the sensor and a reflecting object, the position (x, y, z) 
of an object is defined. The principle of LS measurements is the same regardless of the placement of the scanner. In 
forest mapping, the most frequently applied method is laser scanning done from an aircraft (ALS). Mobile and 
terrestrial laser scanning (MLS, TLS) have so far been used mainly for research purposes. From the forest mapping 
point of view, MLS could be linked to a logging machine to collect tree quality data, while TLS could be used in 
acquiring a plot-level reference. In this thesis, the applications of ALS are studied and MLS and TLS applications 
are discussed. The instruments used for ALS forest inventory purposes typically emit very short (3-10 ns), narrow-
beamwidth (0.15-2.0 mrad), infrared (0.80-1.55 m) laser pulses at near-nadir incidence angles (<30 degrees) with 
high pulse repetition frequencies (50-200 kHz). In general, when operated at flying altitudes of around 500 m to 
3000 m, ALS sensors generate a dense sample pattern (0.5-20 pulses/m2) with a small footprint (<1 m) on the 
ground.  

A laser pulse hit on the forest canopy can produce one or more returns. In the simplest case, a laser pulse scatters 
directly from the top of the dense forest canopy or from the ground, resulting in a single return. Since the forest 
canopy is not a solid surface and there are gaps in the canopy cover, the situation becomes more complex when a 
laser pulse that hits the forest canopy passes through the top of the canopy and intercepts different parts of the 
canopy such as the trunk, branches, and leaves before reaching the ground. This series of events may result in 
several returns being recorded for a single laser pulse, which are referred to as multiple returns. In most cases, these 
multiple returns are recorded. Some systems record the full waveform of the reflected laser pulse as well. The first 
returns are mainly assumed to come from the top of the canopy and the last returns mainly from the ground, which is 
important for extracting the terrain surface. Multiple returns produce useful information regarding the forest 
structure (Hyyppä et al. 2009b). 

The trunks, branches, and leaves in dense vegetation tend to cause multiple scattering or absorption of the 
emitted laser energy so that fewer backscattered returns are reflected directly from the ground (Harding et al. 2001, 
Hofton et al. 2002). This effect increases when the canopy closure, canopy depth, and structure complexity increase 
because the laser pulse is greatly obscured by the canopy. In practice, the laser system specification and 
configurations also play an important role in how the laser pulse interacts with the forest. For example, it has been 
found that a small-footprint laser tends to penetrate to the tree crown before reflecting a signal (Gaveu and Hill 
2003); ground returns decrease as the scanning angle increases (TopoSys 1996); the penetration rate is affected by 
the laser beam divergence (Aldred and Bonnor 1985, Næsset 2004); a higher flight altitude alters the distribution of 
laser returns from the top and within the tree canopies (Næsset 2004); and the distribution of laser returns through 
the canopy varies with the change in laser pulse repetition frequency (Chasmer et al. 2006). Furthermore, the 
sensitivity of the laser receiver, wavelength, laser power, and total backscattering energy from the tree tops are also 
factors that may influence the ability of laser pulses to penetrate and distribute laser returns from the forest canopy 
(Baltavias 1999). 
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Two main approaches to derive forest information from ALS data have been used: ABA (Næsset, 2002) and 
individual tree detection (ITD) (Hyyppä and Inkinen 1999). In the former method, statistics calculated from the 
laser-point cloud are used as predictors and the retrieval of forest variables is typically based on nearest-neighbour 
(NN) or regression estimation using the laser-derived metrics and tree-by-tree measured field plots. With the ITD 
method, individual trees are recognized or segmented from the laser-point cloud, and tree-level variables are 
determined either straight from the point cloud or are estimated based on various other ALS features that are 
extracted  for  the  tree  segments  using  similar  methodologies  as  in  ABA.  Beyond these  two approaches,  it  is  worth  
mentioning the tree cluster approach (TCA), which can be seen as a combination of these two. 
 
 
Estimation of stand variables using an area-based approach 
 
In the first ABA studies, single forest variables were predicted. Næsset (1997a) predicted stand mean height using 
the highest laser returns in grid cells within a stand. The use of all returns resulted in the underestimation of the 
mean height. Stand mean volume was predicted in Næsset (1997b) with regression. In the model, the predictors used 
were the mean height of the laser returns, laser-derived canopy cover, and mean height. Magnussen and Boudewyn 
(1998) calculated quantiles from the laser-point height distribution and used those as predictors of mean height. 
Later, these types of features were used in many ABA and ITD studies to predict variables of particular interest.  

Hyyppä and Hyyppä (1999) predicted forest variables using area-based features as predictors. For the first time, 
ground elevation was subtracted from laser-point heights, which enabled the use of point heights as predictors that 
were directly comparable to the tree heights. In the study, ALS inventories were compared to various other optical 
RS methodologies, and it was concluded that ALS inventories had superior accuracy compared to others.  

Næsset (2002) formulated data-specific regression models to predict forest stand variables using plot-wise tree-
by-tree field-measured modelling data and laser-point height distribution metrics. With the developed models, stand 
variables were predicted for grid cells, and from them, stand-level variables were calculated. The standard deviation 
of the predicted stand variables varied between stand development classes and site types. The variations were 0.61 

1.17 m in mean height (Hg), 1.37 cm 1.61 cm in mean diameter (Dg), 8.6 11.7% in basal area (BA), and 
11.4 14.2% in stem volume (VOL). Models were formulated using 144 tree-wise measured plots, and the results 
were evaluated using 61 stands.  

In Finland, the ABA was tested by Suvanto et al. (2005). Regression models were developed using laser height 
metrics for Dg, Hg, stem number, BA, and VOL of 472 reference plots. The predicted accuracies for 67 stands were 
9.5%, 5.3%, 18.1%, 8.3%, and 9.8%, respectively. The predictions outperformed the accuracy of conventional 
SWFI (Poso 1983, Haara and Korhonen 2004, Saari and Kangas 2005, Vastaranta et al. 2010a). In forest 
management planning inventories in Scandinavia, species-specific information is needed for growth projections and 
simulated bucking. Tree species composition also has a major effect on forest value. The formulation of data-
specific models for every strata is thus laborious, and NN-methodologies are more suitable for that estimation task. 
Maltamo et al. (2006) added features from aerial photographs and variables from existing stand registers as 
predictors, in addition to ALS height metrics and the NN imputation of VOL. The k-most-similar-neighbour (k-
MSN) imputation method was used, and the plot-level VOL accuracy varied from 13% to 16% depending on the 
predictors used. Packalén and Maltamo (2007) used the k-MSN method to impute species-specific stand variables 
using ALS metrics and aerial photographs. Basically, they used the same dataset as in Suvanto et al. (2005), and the 
accuracies for species-specific VOLs at the stand level were 62.3%, 28.1%, and 32.6% for deciduous, Scots pine 
(Pinus sylvestris,  L.),  and  Norway  spruce  [Picea abies (L.) H. Karst], respectively. Holopainen et al. (2010b) 
predicted timber assortment volumes with corresponding data and methodologies. At the stand level, the saw wood 
prediction accuracies (RMSE) were 79.2% (7.0 m3/ha), 33.6% (35.5 m3/ha), and 78.6% (6.2 m3/ha), for Scots pine, 
Norway spruce, and birch, respectively. The respective accuracies for pulpwood were 167.6% (7.0 m3/ha), 46.7% 
(11.4 m3/ha), and 218.5% (25.8 m3/ha).  In  the  study,  ABA was  also  discovered  to  provide  slightly  more  accurate  
predictions for timber assortments than SWFI.    

ABA has been intensively studied in the Nordic countries because of the practical need to replace SWFI. 
However, the methodology is applicable and has also been studied outside boreal forest regions. ABA has proven to 
be suitable for forest variable estimation in an alpine environment. Hollaus et al. (2007) obtained a cross-validated 
accuracy (RMSE) of 21.4% for VOL prediction, which is in line with Nordic studies. Hudak et al. (2007) tested 
several NN-imputation methodologies in ABA. They concluded that Random Forest (RF) was the most robust and 
flexible among the imputation methods tested. Latifi et al. (2010) tested ABA in a temperate forest for timber 
volume prediction. Their results strengthen the findings by Hudak et al. (2007). RF proved to be superior compared 
to other NN-methodologies, and the accuracies obtained were 23.3%-31.4% in plot-level timber volume prediction. 
In an ABA study conducted by Hawbaker et al. (2010), coefficient of determination (R2) values of 65% for 
sawtimber and pulpwood volume, 63% for Hg, 55% for mean tree height, 48% for Dg, 46% for BA, and 13% for 
tree density were obtained in the state of Wisconsin in the U.S. Falkowski et al. (2010) imputed tree-level inventory 
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data to parameterize a forest growth simulator. The results were validated with independent inventory data, and the 
root mean square differences in BA and VOL were 5m2/ha and 16m3/ha, respectively. They concluded that ABA 
was effective in generating tree-level forest inventory data from ALS metrics. Only a few studies have tested ABA 
in tropical forest conditions. Hou et al. (2011) compared ALS, Airborne CIR, and ALOS AVNIR-2 data sets to 
estimate VOL and BA in Laos. The prediction procedure followed Nordic experiences (e.g. Næsset 2002). In the 
study, ALS data proved to be superior, with an RMSE of 36.9% for VOL and 47.4% for BA. Integrating ALS 
metrics with other predictors from Airborne CIR or ALOS AVNIR-2 did not improve the prediction accuracies 
significantly. 
 
 
Estimation of stand and tree variables with individual tree detection  
  
ITD is based on detecting trees from a 3D point cloud (see Figures 5 and 8), and tree variables are either directly 
measured or predicted using derived ALS features. Hyyppä and Inkinen (1999) showed that, by segmenting tree 
crowns from the canopy height model (CHM), 40%-50% of the trees in coniferous forests could be correctly 
segmented. Persson et al. (2002) improved the crown delineation and were able to link 71% of the tree heights to the 
reference trees. The linked trees represented 91% of the total volume. When trees are detected by segmenting the 
CHM, only trees that contribute to the CHM can be detected (Kaartinen and Hyyppä 2008). Therefore, forest 
structure has a major influence on tree detection accuracy (e.g. Falkowski et al. 2008, Vauhkonen et al. 2012). Tree 
detection accuracy results from heterogeneous boreal forests are presented in Pitkänen et al. (2004), where the 
overall detection accuracy was only 40% (70% for dominant trees). Yu et al. (2011) presented an accuracy of 69% 
for tree detection in various managed forest conditions. These results are on a completely different scale from those 
in Peuhkurinen et al. (2007), where ITD was carried out for two mature conifer stands (density ~465 stems per 
hectare) and the number of harvestable trees was underestimated by only <3%, a result that may, however, include 
some commission errors (segmentation of a single tree into several segments). Koch et al. (2006) detected individual 
trees using a local maximum filter and delineated crowns using watershed analyses. The obtained results were 
encouraging in coniferous stands, but dense stands of deciduous trees were more problematic. Heinzel et al. (2011) 
used crown size as prior information for tree detection and improved the tree delineation accuracy by about 30% for 
deciduous and mixed stands compared to a non-crown-size-dependent algorithm. In general, CHM-based tree 
detection approaches are at their best in single-layered, mature stands (e.g. Peuhkurinen et al. 2007). Point-based 
approaches are needed to discriminate nearby or subdominant trees. However, this has proven to be a rather 
challenging task (e.g. Wang et al. 2008, Gupta et al. 2010, Vauhkonen et al. 2012). Tree detection errors were 
studied with 12 different ITD algorithms by Kaartinen and Hyyppä (2008) and with six algorithms by Vauhkonen et 
al. (2012). Kaartinen and Hyyppä (2008) concluded that the most important factor in tree detection is the algorithm 
used, while the effect of pulse density (2-8 returns/m2) was observed to be marginal. In that study, all the algorithms 
were  tested  within  two  nearby  study  areas  consisting  of  a  few  stands.  In  addition  to  several  ITD  algorithms,  
Vauhkonen et al. (2012) used test sites varying from tropical pulpwood plantations to managed boreal forests. Their 
main  finding was  that  forest  structure,  such as  tree  density  and clustering,  strongly  affects  the  performance  of  the  
tree detection algorithm used. The difference between algorithms was not seen to be as significant as in Kaartinen 
and Hyyppä (2008).  

In ITD, tree-species classification has proven to be a challenging task, especially using only ALS data. Holmgren 
and Persson (2004) classified Scots pines and Norway spruces by their structural differences with >90% accuracy. 
In recent years, even more promising tree species classification results have been reported when high point density 
data has been used in combination with aerial images or ALS intensity. Liang et al. (2007) classified deciduous-
coniferous trees in leaf-off conditions with an accuracy of 89.8%, taking advantage of differences in first-last pulse 
data. Holmgren et al. (2008) combined high-density laser data with multi-spectral images. Canopy-related metrics 
such as height distribution and canopy shape were calculated along with spectral features. A classification accuracy 
of 96% was achieved with 1711 trees. Vauhkonen et al. (2009) used solely high-intensity ALS data (~40 returns/m2) 
and calculated so-called “alpha shape” metrics describing the canopy structure for the identification of tree species. 
The overall classification accuracy was 95%. When a method similar to that was tested with a larger data set (1249 
vs. 92 trees) and a more practical point density (6-8 returns/m2), an identification accuracy of 78% was obtained for 
three tree species (Vauhkonen et al. 2010). Korpela et al. (2010) obtained an 88-90% classification accuracy for 
Scots pine, Norway spruce, and birch using ALS intensity statistics. Puttonen et al. (2010) used illuminated-shaded 
area separation from aerial photographs combined with ALS data in tree species classification and achieved an 
overall accuracy of 70.8% with three species. Thus, taking the latest results into consideration, a solution for 
practical tree species determination can be said to be within reach, at least in the Nordic countries, where the number 
of commercially important tree species is rather low.  

At the individual tree level, the most important variable is the diameter at breast height (dbh),  from which  the  
stem form, volume, and timber assortments are estimated. ITD yields direct information about tree height and crown 
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dimensions, on which dbh predictions have traditionally been based (e.g. Kalliovirta and Tokola, 2005). The 
allometric relation between height and dbh is not as strong as the relation between dbh and height. Thus, dbh 
predictions based on tree height involve uncertainty. 

More dense laser data has enabled the calculation of several laser height metrics for individual trees that can be 
used in the NN-imputation of tree variables (Villikka et al. 2007, Maltamo et al., 2009, Vauhkonen et al., 2010, Yu 
et al., 2011). These features are also used in tree species classification, as mentioned above. Maltamo et al. (2009) 
predicted tree variables, including tree quality variables, of Scots pines using k-MSN estimation combined with plot- 
and tree-level height metrics calculated from ALS data. The RMSEs for dbh, height, and volume were 5.2%, 2.0%, 
and 11%, respectively, when 133 accurately matched trees were used in the validation. The respective accuracies 
were 13%, 3%, and 31% in Vauhkonen et al. (2010) and 21%, 10%, and 46% in Yu et al. (2011). Vauhkonen et al. 
(2010) used 1249 trees and Yu et al. (2011) used 1476 trees for validation. In Yu et al. (2011) in particular, the 
mismatching of reference and laser tree candidates may have affected the results. Further, tree height determination 
from CHM is highly accurate but is prone to underestimation (e.g. Rönnholm et al. 2004). If the ground elevation 
and the uppermost proportion of a crown are not detected, then the tree height is automatically underestimated. 
Laser tree height is usually calibrated against field trees to reduce the bias caused by several scanning parameters 
and data processing steps such as the filtering used in producing surface models (see, e.g., Hyyppä et al. 2009a). 
However, as shown by the aforementioned studies, tree height is the most accurately determined variable in ITD. 
 
 
Estimation of stand variables using a tree cluster approach 
 
In the TCA, the CHM is first segmented, as in ITD. In the second phase, accurately located field trees are linked to 
the segments (Hyyppä et al. 2005, 2006, Lindberg et al. 2010, Breidenbach et al. 2010). In contrast to ITD, it is not 
assumed that a single segment represents a single tree (see Figure 8). In the TCA, all the field trees are linked to the 
nearest segment. Thus, segments may include no, one, two, or even more trees. All the other methodologies are 
adapted from ITD or ABA. The TCA requires accurate tree-by-tree measured reference data. Field trees used in the 
modelling have to be positioned with an accuracy that enables reliable linking to the corresponding CHM segments. 
The TCA could be described as an ABA that operates at the segment level instead of the grid level. Tree detection is 
the main error source in ITD (Vastaranta et al. 2011b). This method practically solves the tree detection problems, 
resulting in unbiased estimates for certain area levels. The TCA does not provide information as detailed as ITD 
could, in theory, but it is still capable of capturing the spatial variation in stand variables better than ABA. Lindberg 
et al. (2010) used the TCA to predict consistent tree height and stem diameter distributions. Breidenbach et al. 
(2010) obtained a plot-level RMSE of 17.1% for VOL compared to 20.6% with ABA.  

 
 
Predicting forest growth and site type 
 
ALS has a high geometric accuracy, which makes it suitable for monitoring forest growth (Yu et al. 2004). The 
growth of an individual tree can be monitored in several ways with two-time-point laser data: as differences in laser-
measured tree heights (Yu et al. 2006), as differences in CHMs or digital surface models (DSMs) (Yu et al. 2004), 
as differences in laser height metrics (Næsset and Gobakken 2005, Vastaranta et al. 2011a), or as differences 
between tree volume estimates (Yu et al. 2008). 

Yu et al. (2006) demonstrated that the growth of an individual tree can be measured with a standard error of only 
0.14 m using multitemporal high-density ALS data (10 hits/m2). The time period between the data acquisitions 
affect the accuracy of the measurements. In boreal forests, where the growth of stands is relatively slow, one-year 
growth is not measurable with a high degree of accuracy using either ALS or the traditional forester’s field 
measurement equipment. Næsset and Gobakken (2005) observed statistically significant changes in bi-temporal 
ALS height metrics. However, the volume growth estimates had poor accuracy due to the short 2-year time interval 
between the ALS acquisitions. Yu et al. (2008) and Hopkinson et al. (2008) concluded that the longer the growth 
period was, the more accurate the growth detection would be. In temperate forests, Hopkinson et al. (2008) used 
multitemporal ALS data and showed that even annual forest h-growth was detectable. The relative standard error of 
the stand-level annual growth estimates was still high (ca. 100%) but decreased rapidly when the time interval was 
extended (~10% after 3 years). 

Site-type classification is needed to describe the production potential of forest stands, select optimal harvesting 
strategies, and determine nature protection and recreational values. Site type can be predicted from laser data using 
height-over-age curves (Gatziaolis 2007, Holopainen et al. 2009, Holopainen et al. 2010c) or differences between 
site types in laser-point height distributions (Vehmas et al. 2008). Tree height measurements have been laborious, 
and it has not been practical to apply height-over-age curves for that reason. However, ABA and ITD are both at 
their best in measuring height-related variables as the dominant height (e.g. Hyyppä and Inkinen 1999, Maltamo et 
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al. 2004, Næsset et al. 2004). The determination of stand age is more problematic if height-over-age curves are 
applied.  

Gatziolis (2007) estimated the dominant height and site types with a single-tree-based ALS method in the coastal 
Pacific Northwest of the U.S.A. The ALS measurements were carried out in two campaigns, leaves on and off, with 
a pulse density of ~9/m2. Single trees were detected with ALS, while stand age was derived from the forest 
management plan. The accuracy of age estimates was controlled with field sample plots. The coefficient of 
determination (R2) between the site indexes derived from a field inventory or ALS measurements was 0.42. Wide 
variations in topography, as well as stand density, significantly affected the results, and far better results (R2 0.88) 
were obtained when the data were filtered to include only average slopes and stand densities.  

Vehmas et al. (2008) estimated mineral soil forest site types (five classes) with area-based ALS-inventory and 
the NN-estimation approach in a nature protection area in Finland. The hypothesis was that different forest site types 
would result in different vertical distributions of laser pulses due to the increasing numbers of deciduous trees on 
fertile site types. The best overall classification accuracy was 58%, and the best correct percentage for a single class 
was 73%. Vehmas et al. (2008) concluded that one source of error was the subjective determination of forest site 
type in the field, resulting in larger errors in ground truth than in the actual estimation with ALS data. Using a 
similar method, Vehmas et al. (2009) identified herb-rich forest stands from less fertile site types with an overall 
classification accuracy of 88.9%. Vehmas et al. (2008, 2009) did not carry out any ALS-based site indexing but 
estimated the forest site types directly.  They also stated that this kind of approach is highly sensitive to the previous 
forest management and, thus, should be applied only in natural state forests.  

Classification of site types has also been studied in mires. Korpela et al. (2009) tested mire vegetation and mire 
habitats, mapping possibilities using high-density laser data (10 hits/m2). They concluded that laser-point height 
metrics combined with intensity information can be used in mire habitat mapping with a good degree of accuracy if 
local reference material is available.   

Vega and St-Onge (2008) introduced a RS method for site index classification with promising results. The 
method was based on ALS and a time series of aerial photographs. In their study, the average bias of the site index 
and age was 0.76 m and 1.86 years, respectively. In the future, site indexing could be based on multitemporal ALS. 

Holopainen et al. (2010c) determined the suitability of low-pulse density ALS and stand register data in the 
estimation of site indexes and site types via dominant height- and age-based site indexing. Dominant height was 
estimated with the NN method, and, for comparison, the dominant heights were derived directly from the 
distribution of ALS pulses. The site indexes were then estimated using models for artificially or naturally 
regenerated stands and converted to site types. The ALS-based site indexes were also compared with site indexes 
derived using field measurement data. The overall classification accuracy for the site classes was 70% in mature 
single-tree species stands. The method was sensitive to the stand age determination. The results of Holopainen et al. 
(2010c) suggest that forest site type and site index can be estimated nearly as well with an ALS-based estimation of 
dominant height as with field measurements involving single trees. However, further investigations are needed to 
develop methods for determining stand age and the functioning of site index models. 

Site type estimation via site indexes provides a useful method for the determination of stand productivity. ALS-
based forest mapping will open new opportunities for the implementation of site indexing in practice: in operative 
forest management planning, estimating the value of forest estates, and mapping ecologically important habitats.  
 
Mapping and monitoring of forest management operations  
 
In SWFI, forest management proposals for the next 10 years are determined for every stand. Proposals cover the 
whole rotation from renewal to the final cutting, and the timing varies from “immediate” to “rest” within the next 
10-year period. When ABA is applied, only the forest variables are inventoried by RS, and forest management 
proposals are determined through additional field work. If laser data could be applied in the determination and 
timing  of  forest  management  proposals  as  well,  it  would  enhance  the  efficiency  of  the  ABA  (Närhi  et  al.  2008,  
Vastaranta et al. 2010b, Räsänen 2010). Närhi et al. (2008) studied the inventory and determination of 
precommercial thinning in Norway spruce seedlings with low-pulse-density (0.5 hits/m2) laser data. Seedlings 
requiring precommercial thinning were classified based on laser data with an accuracy rate of 71.8% with 
discriminate analysis. Räsänen (2010) used low-density laser data in determining micro-stand first-thinning maturity 
with a classification accuracy rate of over 97% without using separate test and training sets. 

Forest management planning requires as accurate and up-to-date input information from forest resources as 
possible. ALS data were used in forest operation monitoring in, e.g. Yu et al. (2004) and Melkas et al. (2009). 
Change detection based on multitemporal ALS is even capable of detecting cut individual trees or branches (Yu et 
al. 2004). On-time ALS inventory data updating can be based on other information sources such as logging 
machine-gathered data (Melkas et al. 2009). Yu et al. (2004) used ITD and difference imaging of bitemporal CHMs 
to detect cut trees. With this method, 61 cut trees out of 83 were correctly detected. Undetected trees were mainly 
from the understory and did not contribute to the CHM.  
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Melkas et al. (2009) studied ABA- and ITD-acquired forest resource data updating, using species-specific timber 
volume information gathered with a logging machine. In a plot-level study, the accuracies (RMSEs) before the 
thinning were 21.6% and 21.7% with ABA and ITD, respectively. After the thinning, the timber volume information 
was updated using the logging machine data and the corresponding RMSEs were 29.4% and 31.6%. However, the 
absolute RMSE values stayed at the same level as before the cutting. They concluded that logging machine data has 
potential as a source of updated information at the stand level. Logging machine data also stores logging position, 
but it is not accurate enough to be used in tree-level data-matching. 
 
Forest biomass and disturbance monitoring 

 
One of the biggest challenges in programmes that aim to reduce global emissions from deforestation and forest 
degradation (e.g. REDD) is how to measure and monitor forest biomass and its changes effectively and accurately. 
Recent knowledge of forest biomass and changes in it is based on more or less subjective ground measurements and 
coarse- or medium-resolution satellite images. Therefore, the accuracy of biomass estimations, especially at the 
local level (e.g., in a forest stand), is poor. Stand biomass is highly correlated with tree heights, which can be 
determined accurately by ALS (Kellndorfer et al. 2010). ALS-based RS capabilities, such as the direct measurement 
of vegetation structure or tree and stand variables (e.g. Koch 2010, Holopainen et al. 2010a), should enhance the 
accuracy of the current biomass estimation means at all levels from single-tree to nationwide inventory applications.  

The inventory of stands’ above-ground biomass (AGB) can be based on single-time-point ALS acquisition. 
Multitemporal ALS can be used when monitoring biomass changes. Lefsky et al. (1999) showed that a single 
profiling LiDAR derived feature such as the quadratic mean of the canopy height could explain 80% of the variance 
in AGB. The structure of the forest canopy and the leaf area index (LAI) affects the penetration of the laser pulse in 
the crowns (Solberg et al. 2009). Changes in AGB have also been estimated using changes in LAI. The ground truth 
of LAI can be determined using a special measuring device or estimated from the ALS data (e.g. Solberg 2008, 
Solberg et al. 2006, 2009, Korhonen et al. 2011). Solberg et al. (2009) posited that LAI could use a relative number 
of ALS vegetation hits as a predictor and reported a correlation of 0.9 between ALS-derived and field-measured 
LAI. 

Popescu et al. (2004) combined small-footprint ALS and multispectral data to estimate plot-level volume and 
AGB in deciduous and pine forests using ITD. The maximum R2 values were 0.32 for deciduous trees and 0.82 for 
pines. The respective RMSEs were 44 t/ha and 29 t/ha. Bortolot and Wynne (2005) also used ITD in AGB 
estimation, and the correlation (r) varied from 0.59 to 0.82 and the RMSEs from 13.6 t/ha to 140.4 t/ha. Van Aardt 
et al. (2006) estimated forest volume and AGB with ALS point height metrics as predictors on a per-segment 
estimation. The adjusted R2 and RMSE values for deciduous AGBs were 0.58 t/ha and 37.41 t/ha. Næsset (2004) 
used regression methods to estimate AGB for 143 sample plots in young and mature coniferous forests. The sample 
plot data was divided into three stratums (I: young forest, II: mature forest with poor site quality, and III: mature 
forest with good site quality). Regression methods explained 92% of the variability of the AGB covering all of these 
forest types. Jochem et al. (2011) used a semi-empirical model that was originally developed for VOL estimation to 
estimate AGB in spruce-dominated alpine forests. The model was extended with three canopy transparency 
parameters (CTP) extracted from ALS. The models were calibrated to the selected 196 sample plots. The R2-values 
for  the  fitted  AGB  models  were  0.70  without  any  CTP  and  varied  from  0.64  to  0.71  with  different  CTPs.  The  
standard deviations varied from 87.4 t/ha (35.8%) to 101.9 t/ha (41.7%). Latifi et al. (2010) tested ABA in 
southwestern Germany in timber volume and biomass mapping. They obtained accuracies of 23.3%-31.4% in plot-
level timber volume and 22.4%-33.2% in AGB prediction, depending on the feature sets and feature selection used. 
Kankare et al. (2012) fused ITD and ABA in the imputation of plot-level AGB and VOL. The NN-estimation 
accuracies were 24.9% and 26.4% when field measurements were used in training the ABA. When ITD 
measurements were used in training ABA, the respective accuracies were 28.5%-34.9% and 29.2%-34.0%.  

The determination of single tree biomass from ALS data has not been widely studied. One reason is that the 
acquisition of proper ground truth is laborious and requires laboratory analyses. Räty et al. (2011) made one of the 
pilot studies in modelling single-tree AGB using dense ALS data. In the study 38 trees consisting of 19 Scots pines 
and Norway spruces were analyzed in the laboratory after dense ALS data was acquired. Trees were segmented 
from the CHM and features used as biomass predictors were calculated at tree segment level. In linear regression, 
AGB estimation accuracy was 21% and 40% for Scots pines and Norway spruces, respectively. 

The risk of forest hazards is growing partly because of climate change, which affects the natural forest dynamics. 
Damage caused by drought, snow, wind, and insects is more common. Forest damage can be monitored, e.g. by 
measuring changes in the leaf area index (LAI). This kind of approach is suitable for damage that causes defoliation. 
Solberg (2008) studied the use of multitemporal ALS in monitoring insect-related defoliation in Norway. Solberg 
had ALS data from three different time points and used changes in LAI as an indicator of defoliation. Solberg 
observed that the LAI values were high prior to the damage in July, as natural growth during the summer was also 
detected and affected the high values of LAI. Multitemporal data is expensive to use in practice. Thus, Solberg 
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(2008) proposed an indicator calculated for single-pass ALS data to be used in forest health monitoring. The 
proposed indicator was the relation between ALS-derived LAI and forest stand density.     

Kantola et al. (2010) tested the use of ITD in the classification of defoliated and healthy trees using dense ALS 
data (10 hits/m2) in conjunction with aerial images. Predictions were made using logistic LASSO regression, RF, 
and k-MSN. The classification accuracy ranged between 83.7% and 88.1% (kappa value 0.67-0.76). It should be 
noted that the trees used in the classification were clearly divided into healthy and defoliated trees, thus the results 
are not applicable to practice. However, the study proved that defoliated and healthy trees produce divergent point 
clouds and that the subject should be studied further.  

Nyström et al. (2011) used bitemporal ALS data to classify changes in mountain vegetation. They used three 
treatments, the removal of 50% and 100% of the total number of stems above 1.5 m and a reference without any 
treatment. A rather high classification accuracy rate of 82% was obtained using only the proportion of vegetation 
returns as the predictor variable.  

 
 
Large-area inventories 
 
Laser scanning data is a far more expensive auxiliary data than, e.g., satellite images. Thus, strategic large-area 
forest inventories are still based either solely on field measurements (national level) or a fusion of field data and 
satellite images (county level). At the county level, ALS inventory has been studied. Næsset (2004) tested ABA in a 
65 km2 area in Norway. The accuracy of the predicted plot level volume was 17.5%-22.5% and the respective stand-
level accuracy was 9.3%-12.2%. Holmgren and Jonson (2004) conducted a similar study in a 50 km2 area in Sweden 
with a stand-level volume RMSE of 14.1%. In the aforementioned studies, ALS data covered the whole study area. 
In recent years, far larger areas have been inventoried operationally using ABA. At the national inventory level, it is 
not feasible to acquire wall-to-wall ALS data for forest inventory purposes. Holopainen and Hyyppä (2003) and 
Næsset et al. (2006) suggested the use of ALS data in strip-based sampling. There have been many studies in which 
profiling LiDAR has been used to acquire sampled forest inventory data (e.g. Nelson et al. 2003a, 2003b, 2004). 
Nelson et al.  (2004) inventoried forest resources in the state of Delaware in the U.S. using 14 flight lines with a 4 
km sampling distance. Their timber volume estimate at the county and state level differed from the U.S. Forest 
Service estimate by 21% and 1%, respectively. The corresponding differences in the AGB estimates were 22% and 
16%. However, only a few studies have used a sampling procedure with ALS data. Gautam et al. (2010) used a two-
phase sampling procedure to estimate the forest AGB in Laos. The procedure integrates sample plots with ALS 
transects (10% coverage tested) and satellite images, and it attains a relative RMSE of 25 to 35 percent in AGB in an 
area of 0.5 ha. The first sampling phase is based on full coverage by satellite imagery, and the second phase is based 
on ALS data and field measurements. A broad stratification is made based on satellite images. Then a sample of 
ALS transects are collected and the field plots are positioned based on ALS characteristics. Field plots are used to 
calibrate statistical models based on ALS. Finally, variables predicted using ALS models are used as references 
when estimation is carried out for a complete wall-to-wall area using satellite images. A somewhat similar approach 
was used in Gregoire et al. (2011) and in Ståhl et al. (2011) for a large-area forest inventory in Norway. They used 
NFI field plots, ALS transects, and profiling LiDAR data. The two-phase laser sampling estimates for AGB were 
close to the estimates predicted using only field plots. However, the corresponding standard errors were larger. Ståhl 
et al.  (2011) obtained standard errors close to those of systematic field sampling with laser sampling. In this case, 
the predictions were overestimations. In both studies, profiling LiDAR and ALS were also compared, and the ALS 
was found to be more useful. 
 
Acquisition of tree-wise field data using laser scanning  

 
ALS is the most frequently applied laser system in forestry. However, in the acquisition of ground truth or in small-
area monitoring, other applications such as TLS (Figure. 2) or MLS (Figure 3) are feasible.  

TLS is usually done from a tripod with a scanner unit. The tripod is placed in the desired location and the 
scanner measures the 3D-locations of the targets within reach of the scanner. Scanners measuring phase-shifts are 
mainly used in measuring individual trees or field plots, while “pulse scanners” can be used in mapping larger areas 
with a maximum distance of around one kilometer to the target. TLS produces a dense point cloud from the 
surrounding trees. For example, with current phase-shift scanners, it takes 2-4 minutes to measure the surrounding 
area with a radius of 70-120 m, as the applied pulse density at a 10-m distance is still 6.3 mm. This corresponds to 
25 000 points/m2. From this dense point cloud, tree and stand variables such as location, height, crown coverage, 
species, and stem curve can be measured (Hopkinson et al. 2004, Pfeifer and Winterhalder 2004, Watt and 
Donoghue 2005, Henning and Radtke 2006, Holopainen et al. 2011a, Liang et al. 2011). Only the trees visible to the 
scanner can be measured; thus, tree density, visibility, and measuring geometry strongly affect how accurately tree 
variables can be measured (Liang et al. 2011).  
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Figure 2. Principle of terrestrial laser scanning. ©Ville Kankare 

 
 

Forest plots are measured with one scan from the centre of the plot (Liang et al. 2011, Holopainen et al. 2011a) 
or with several scans around the plot (Hopkinson et al. 2004, Henning and Radtke 2006). In the single-scan mode, 
the amount of 3D data obtained is smaller and the field measurements are faster to carry out. The major drawback is 
that trees located in blind spots, i.e. shadowed by other trees, cannot be measured. In this method, the density of the 
point cloud depends on the distance to the scanner as well, affecting the modelling accuracy. In the multiscan mode, 
blind spots and problems of varying point density are reduced. However, additional work in the field and in post-
processing, especially in the integration of several scans into a single point cloud, needs to be done. Automatic 
processing and forest measurements are currently being developed for TLS applications. 

TLS provides a means of objectively collecting various tree and forest variables that are laborious to acquire 
with traditional means. Hopkinson et al. (2004) showed that TLS is capable of measuring forest stand variables. 
Vastaranta et al. (2009) used TLS to measure tree location accuracy with 0.1 m precision and tree dbhs  with  a  
standard error of 4.5% (8.3 mm). Liang et al. (2011) automatically mapped tree locations from single-scan TLS data, 
and 71% of the trees were detected correctly. However, unless processing of the TLS data and extraction of the 
basic tree variables is not fully automated, the strength of the TLS is in measuring tree variables other than the 
traditional ones. Various crown variables and even single branches are measurable in TLS data. Henning and Radtke 
(2006) measured tree stem diameters up to the crown-base height with accuracies <1 cm and <2 cm under 13 m of 
stem height. Pfeifer and Winterhalder (2004) modelled, in addition to stem diameters, branch diameters with an 
accuracy of better than 1 cm. Moorthy et al. (2008) determined in laboratory conditions the canopy gap fraction and 
LAI  from  TLS  data  with  R2 of 0.95 and 0.98, respectively. Hyyppä et al. (2009b) and Kaasalainen et al. (2010) 
conducted defoliation and biomass change measurements using TLS. The diminished number of point returns 
estimated the level of defoliation: the change in point returns correlated with an R2 of 0.99 with a change in biomass. 
Holopainen et al. (2011a) modelled tree AGBs for Scots pines and Norway spruces. The stem and crown dimensions 
measured from the TLS point clouds correlated strongly (r 0.98-0.99) with laboratory biomass measurements carried 
out after scanning. 

MLS can be seen as a method falling between ALS and TLS. MLS is laser scanning that is done from a moving 
vehicle such as a car or a logging machine. The application of MLS in forestry is being actively studied (Lin and 
Hyyppä 2010, Lin et al. 2010, Holopainen et al. 2011b, 2011c) (Figure 3). In the near future, MLS can be seen as a 
practical means to produce tree maps or inventories in urban forest environments. Holopainen et al. (2011b) 
obtained promising results with TLS and MLS compared with the accuracy of LS-based results and method 
efficiencies in Helsinki city street and park tree mapping. MLS and a logging machine could enable the automatic 
selection of harvestable trees and enhancements in stem bucking. However, MLS is still far from a widely used 
practical application in forestry, but the situation may change due to the rapid development of automatic MLS and 
TLS data processing. 
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Figure 3. Mobile laser scanning in Evo.  
 
 
Satellite SAR imaging 

 
Overview of relevant satellite SAR imaging techniques  

 
Spaceborne RS data is typically needed when multitemporal information from large-area forest resources is 
required. An intriguing option is the use of inexpensive images with good temporal resolution that can be utilized in 
addition to ALS measurements in multiphase sampling and in the monitoring of changes in forest structure. In the 
Nordic countries, the sky is often covered by clouds and the amount of solar radiation is limited for long periods. 
This makes radar imaging, especially SAR carried by satellites, an interesting option in developing methods for 
forest mapping and in the monitoring of large areas. Compared with optical region satellite images, the major 
advantage of radar images is their temporal resolution under all imaging conditions, although, e.g., moisture affects 
to the image. SAR transmits a short pulse of microwave radiation  the wavelengths are typically between 3 and 25 
cm  and then it records the backscattered signal from the illuminated target area. After the post-processing of raw 
SAR data, the result is a 2D radar image. A single SAR image includes information from radar backscattering 
intensity, the phase of the backscattered signal, and the range measurement between the radar antenna and the target 
pixel (Henderson and Lewis 1998).  

Recently launched SAR satellites, TerraSAR-X, TanDEM-X, and Cosmo-SkyMeds, enable the acquisition of 
SAR images with spatial  resolutions as high as 1-3 m. In addition to the improved spatial resolution, modern-day 
SAR-satellites enable advanced techniques such as SAR interferometry and SAR polarimetry, which are of interest 
in mapping forests.  

Interferometry utilizes the interferogram generated from the phase differences of two SAR images taken from 
slightly differing positions. With the interferogram, a coarse 3D surface model of the landscape is obtained (Rosen 
et al. 2000). In forested areas, this interferometrically measured surface model is located somewhere between the 
ground and the tree canopies depending on the wavelength used. Longer wavelengths tend to penetrate deeper into 
the forest canopy (Balzter 2001). The quality of the interferogram can be evaluated by calculating a coherent image 
between two interferometric SAR images. In the case of a multi-temporal image pair, even small changes in the 
target, such as the movements of branches or needles, reduce the between-image coherence. For the extraction of 
elevation information, interferometry is at its best in digital elevation modelling (DEM) generation in poorly 
surveyed areas (e.g. Balzter 2001).  

Polarization means the direction of the orientation of the electric field vector of the electromagnetic wave 
transmitted by the radar. In SAR systems, the vibration direction of the transmitted or received radio wave can be 
either horizontally (H) or vertically (V) polarized in relation to the antenna orientation. In full polarimetric imaging, 
all four combinations of transmit and receive (HH, HV, VH, and VV) are simultaneously recorded. The multiple 
polarizations can be used in image interpretation in ways similar to the multiple bands of an optical satellite image. 
The backscattering intensity of the cross-polarization bands (HV and VH) has proven to be a rather good estimator 
of the forest AGB: the greater the biomass is, the greater the backscatter at the cross-polarization band will be 
(Henderson and Lewis 1998). The main advantage of SAR polarimetry and interferometry for forest resource 
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mapping and monitoring is that they allow the use of additional features, such as scattering mechanisms and the 
height differences of scatterers (Papathanassiou and Cloude 2001).   

From the stand-level forest resource mapping point of view, an alternative to interferometry when extracting 3D 
elevation data from radar data is radargrammetry, which is based on the stereoscopic measurement of SAR images. 
It shares the same theoretical background as 3D stereophotogrammetric measurements, i.e., in radargrammetry, a 
stereo  pair  of  SAR  images  with  different  off-nadir  angles  can  be  used  to  calculate  the  3D  coordinates  for  
corresponding points on the image pair. The stereo-viewing possibility of radar images is not a new invention, as 
they were recognized already in the 1960s (see, e.g., La Prade 1963). The radargrammetric processing of SAR 
satellite data has recently been employed in a new way because of the improvements in SAR technology (Raggam et 
al. 2010). The spatial resolution of SAR data has improved so that it is now around 1 meter, which enables the 
extraction of more detailed DEMs than was the case with earlier SAR satellite data. With modern SARs, such as 
TerraSAR-X, it is possible to acquire images with varying off-nadir angles over the target area. Moreover, the direct 
georeferencing information of the SAR images has proven to be accurate and reliable (Ager and Bresnaham, 2009), 
enabling fairly effortless radargrammetric processing. Here, direct georeferencing refers to the solution of the 
orientation parameters of the imaging sensor using the Global Navigation Satellite System (GNSS) without ground 
control points.  
 
 
SAR in forest mapping and monitoring 

 
The Seasat satellite produced the first radar images obtained from a satellite as early as 1978, with a 25 m spatial 
resolution. In the 1980s and 1990s, the development of SAR satellite radars proceeded towards meeting aims set at a 
global scale: large-area applications without detailed information. In inventory applications based on SAR satellite 
radar images, the emphasis was on the estimation of large forest areas (e.g. Rauste 1990) and biomasses (e.g. 
Dobson et al. 1992, Le Toan ym. 1992, Baker et al. 1994, Rauste et al. 1994, Rauste 2006). During the last decade, 
SAR images have been used in plot- and stand-level forest variable estimation (e.g. Hyyppä et al. 2000b, 
Kellndorfer et al. 2003), as well as for monitoring forest operations (Ulander et al. 2005, Fransson et al. 2007). The 
results found by Hyyppä et al. (2000b) show that, with SAR data, to be precise using ERS coherence or JERS-1 L-
band backscatter intensity, data accuracies similar to those of medium-resolution satellite images (Landsat TM) can 
be obtained. SAR data have been used successfully in large-area forest disturbance mapping. Ulander et al. (2005) 
mapped wind-induced forest damage using space- and airborne SAR. In that study, due to the coarse resolution and 
unfavorable wavelength (C-band), spaceborne SAR (Envisat and Radarsat) were not capable of detecting forest 
damage as well as long wavelength (3-15 m) airborne SAR (CARABAS-II) was able to detect damaged and even 
partly damaged forest areas. The spatial resolution (3 m) of CARABAS-II is similar to that of modern-day 
spaceborne systems. Clear-cut stands were separated from untreated stands using the backscattering coefficient in 
controlled experiments using multitemporal L-band ALOS PALSAR data with HH polarizations (Fransson et al. 
2007).    

The use of high-resolution radar image backscattering information in stem volume and AGB estimation has been 
studied quite intensively in recent years (Rauste 2006, Nelson et al. 2007, Tokola et al. 2007, Hyde et al. 2007, 
Holopainen et al. 2009a, 2010d). However, it has proven to be challenging because the SAR backscatter intensity is 
also affected by factors other than the forest AGB. Such factors are, e.g., terrain properties and target moisture 
content (Santoro et al. 2009). In addition, when assessing AGB, radar signals tend to saturate at certain AGB levels, 
resulting in the inability to estimate higher AGB quantities. The saturation level is dependent on the radar 
wavelength used and the forest structure (Santoro et al. 2009). Nelson et al. (2007) investigated pine stock biomass 
estimation by combining low-frequency (80-120 MHz) VHF RaDAR BioSAR and profiling LiDAR (PALS) data. 
The best R2 and RMSE values for a linear regression model based on RaDAR features were 0.82 and 57.5 Mg/ha, 
respectively. The degree of determination of the respective single-feature profiling LiDAR model was 0.93 (RMSE 
33.9 Mg/ha). The combination of the investigated sets of data improved the model’s accuracy only slightly (R2 0.94, 
RMSE 32.7 Mg/ha). Hyde et al. (2007) investigated the accuracy of stock biomass estimation in Southwestern 
Ponderosa pine (Pinus ponderosa) stands on the basis of profiling LiDAR, SAR, and InSAR data. The ground 
reference data comprised 52 circular sample plots. The biomass was estimated on the basis of a single-tree breast-
height diameter and model-based approach. The mean canopy height derived from profiling LiDAR was able to 
account for most of the variance in the plot-level biomass (R2 0.83, RMSE 26 Mg/ha). When stock biomass was 
predicted using GeoSAR/InSAR features derived from the P- (HH polarization) and X-band (VV polarization) 
responses and interferometric SAR height variables, the respective R2 values decreased to 0.36 (RMSE 50.2 Mg/ha). 
By combining profiling LiDAR and GeoSAR X-P, the interferometric height increased the prediction accuracy only 
slightly (R2 0.84, RMSE 24.9 Mg/ha). In a study conducted by Holopainen et al. (2010d), the estimation of VOL 
based on ALS data was far more precise than with TerraSAR-X data when they compared area-based laser-point 
height metrics and high-resolution TerraSAR-X dual-polarized (HH-HV or VH-VV) X-band backscattering 
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intensity features in the estimation. The fusion of these data sources enhanced the results only slightly.  
Banskota et al. (2011) investigated the estimation of deciduous and mixed-species AGB with scanning and 

profiling LiDAR and high-frequency (80-120 MHz) BioSAR-SAR data. The features derived from the LiDAR data 
were able to account for stock biomass better than those derived from the BioSAR-SAR data. The model’s accuracy 
could be significantly improved by combining the two data sets. The best results were achieved by combining 
scanning LiDAR and BioSAR-SAR features (AGB estimation R2 0.80 and RMSE 21.3 Mg/ha). Sun et al. (2011) 
investigated AGB estimation accuracy using ALS and SAR data (L-band polarimetric and interferometric SAR, Pol-
InSar) in Howland, Maine, U.S.A. They found that Laser Vegetation Imaging Sensor (LVIS) data predicted field-
measured biomass with a R2 of 0.71 and RMSE of 31.33 Mg/ha. It was found that the SAR data can predict the ALS 
biomass samples with an R2 of 0.63–0.71 and RMSE of 32.0–28.2 Mg/ha up to biomass levels of 200–250 Mg/ha. 
Their  study  showed  the  potential  of  the  combined  use  of  ALS  samples  and  radar  imagery  for  forest  biomass  
mapping. Næsset et al. (2011) used ALS and InSAR data (Shuttle Radar Topography Mission, X-band) and model-
based and model-assisted methods for AGB estimations from the stand to the district level. At the stand level, an 
independent validation on 35 field plots was carried out. RMSE values of 17.1–17.3 Mg/ha and 42.6–53.2 Mg/ha 
were found for ALS and InSAR, respectively. The RMSE% for the ALS estimations were 15%-17%, and for 
InSAR, the estimations were 42%-46%. Næsset et al. (2011) concluded that the examined RS techniques can 
provide more precise biomass estimates than a purely field-based sample survey. 

It  should  be  noted  that  a  similar  accuracy  level  to  that  of  the  2D  interpretation  of  aerial  images  or  the  use  of  
optical region satellite interpretation can be achieved with 2D radar image features (e.g. Hyyppä and Hyyppä, 1999, 
Hyyppä et al. 2000b). This means that 2D methods are suitable for large-area applications, but not for sub-
compartment-level mapping or monitoring. When this level of information is needed, the fusion of radar images and 
LiDAR (scanning or profiling) could be used (e.g. Nelson et al. 2007, Hyde et al. 2007, Holopainen et al. 2010d). 
Perhaps the most promising approach to determine forest AGB by radar imaging is via 3D canopy height 
information, similar to ALS. Nowadays, nationwide digital terrain models (DTMs) based on ALS are becoming 
available in many countries. Because ALS data includes many measurements from the ground surface, accurate 
DTMs for relating the radargrammetric measurements to the ground surface level exist. For example, Perko et al. 
(2011) used TerraSAR-X stereo radargrammetry to derive elevation models over forested areas and compared these 
models to ALS data. They concluded that the radar-based elevation values correlated with the forest canopy height 
values at the stand level, and the underestimation of the canopy height depended on the characteristics of the forest 
stand. 
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MATERIALS 
 
 
Field data 
 
Evo 
 
Evo is located in Finland (61º19´N, 25º11´E, Figure 4). The area belongs to the southern Boreal Forest Zone and 
comprises approximately 2000 ha of mainly managed boreal forest. However, Evo is also a popular recreation area, 
which distinguishes it from totally homogenous managed forests and provides a cross-section from natural to 
intensively managed southern boreal forests. The average stand size in the area is slightly less than one ha. The 
topography of the area varies from 125 m to 185 m a.s.l. Scots pine and Norway spruce are the dominant tree 
species, as the site quality varies from groves to barren heaths. 

Extensive field measurements were carried out in the Evo area during the years 2007, 2008, and 2009. The 
sampling of the field plots conducted in 2007 was based on the prestratification of existing SWFI data to distribute 
plots over various site types, tree species, and stand development classes. The plots measured in 2008 were located 
in harvested stands. In 2009, the stratification of the existing inventory data was completed. The plots (r=10 m) were 
located with GPS devices, and the locations were post-processed with local base station data. The following 
variables were measured for trees with a dbh larger than 5 cm: location, tree species, dbh, height, lower limit of 
living crown (only 2007), and crown width (only 2007). The stem volumes were calculated with standard Finnish 
models (Laasasenaho 1982). Plot-level estimates were obtained by summing the tree data. In substudy I, thinning 
proposals were determined in the field as in SWFI (Oksanen-Peltola et al. 1997). A summary of the used data sets 
and methods is presented in Table 1. 

 
Hyytiälä 
 
Substudy II was conducted in Hyytiälä in southern Finland (61°50´N, 24°20´E), which hosts a multitude of 
permanent forest plots that have been scanned five times since 2004 using ALS. The elevation of the studied forests 
ranges from 135 to 198 m a.s.l., which is quite high for southern Finland. In 2009, a large number of the forest plots 
were measured in support of RS research activity. In January-February 2010, the forest above 160 m a.s.l was 
subject to snow damage, which was most common in Scots pine stands. In 2010, ten pine-dominated plots that had 
been subject to varying degrees of snow damage were mapped (Table 1). The plots covered a total of 3.0 ha and 
were located in an 800 x 500-m area at 179.5-194.9 m a.s.l. The previous tree-wise measurements for these plots 
were made in the years 2006-2009, and the trees were positioned using a total station or a photogrammetric-geodetic 
method (Korpela et al. 2007). Damaged trees were identified in the field, and dbh measurements were updated for 
the plots, which had been measured before 2009. Using the previous measurements, it was possible to identify the 
events of the winter of 2010. All the plots represent forests in the thinning phase, with the mean age of the dominant 
trees ranging from 45 to 65 years. The site quality ranged from semi-barren (Vaccinium) to intermediate (Myrtillus 
type).  
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Figure 4. Map of Finland and location of the study areas.  
 

 
Table 1. Summary of the data sets and methods used. 
 

Study Area Number of field 
plots (area) 

ALS SAR Estimation method 

I Evo 381 (314 m2) Yes No k-MSN, Logistic regression 
II Hyytiälä 10 (0.25–0.64 ha) Yes No CHM 
III Evo 509 (314 m2) Yes No k-MSN 
IV Espoonlahti 110 (201 m2) Yes Yes Random Forest 
V Espoonlahti 110 (201 m2) Yes Yes Random Forest 

 
 

Espoonlahti 
 
The study area used in substudies IV and V is located around Espoonlahti in Southern Finland, approximately 20 km 
west of the city of Helsinki (60°10'N, 24°36'E). In general, the topography of the test area can be described as 
undulating, with only slight variation in terrain elevation. The elevation values (heights above geoid) range from sea 
level (0 m) to approximately 50 m a.s.l. The forest in the study area is heterogenous semi-urban forest because the 
area is densely populated. The forests are also used mainly for recreation purposes.  

Plot-level tree-by-tree field measurements for a total of 110 circular test plots (r = 8 m) were carried out in the 
fall of 2010. All the test plots were located in the same way as in the Evo study area. The dbh and tree species were 
determined for all trees with a dbh of more than 5 cm. Moreover, the height of every fifth tree was measured using a 
Haglöf Vertex clinometer (Haglöf Sweden AB, Långsele, Sweden) and the heights of all the trees were then 
modelled. The stem volumes and tree-level biomasses were calculated using models by Laasasenaho (1982) and 
Repola (2008, 2009). The plot-level estimates were obtained by summing the tree data. 
 
 
Remote sensing data 

 
Airborne laser scanning 

 
Various ALS data sets were used in the thesis. Data were acquired in 2004, 2006, 2007, 2008, 2009, and 2010. The 
ALS data set from 2004 was used only for a DEM creation in the Hyytiälä study area. Detailed information from the 
ALS campaigns is presented in Table 2. 
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Table 2. Summary from the ALS data sets used. 
 

Acquisition 
date year 

Area Instrument Altitude, 
AGL 

Pulse 
density 

Foot 
print, m 

(1/e) 

Substudy 

2004 Hyytiälä Modified 
Optech 
1033 

1200 1-2  II 

2006 Hyytiälä Optech 
ALTM3100 

850 9.8 0.26 II 

2007 Hyytiälä Leica  
ALS50-II 

800 7.0 0.12 II 

2008 Espoonlahti  2000* 0.5* 0.5* IV, V 
2009 Evo Leica  

ALS50-II 
400 10 0.06 I, III 

2010 Hyytiälä LeicaALS60 1100 11.9 0.17 II 
*According to the National Land Survey of Finland (2011) 

 
 

Synthetic aperture radar 
 
Detailed information on the TerraSAR-X images used is presented in Table 3. All the images were ordered as 
Multilook Ground Range Detected (MGD) products, i.e., non-interferometric data were used. All images were 
acquired within a period of two weeks in the spring of 2009.   

 
 

Table 3. The list of TerraSAR-X SAR satellite images used. 
 

Image# Acquisition 
date 

Polarization Orbit/ antenna 
direction 

Incidence angle 
at scene centre 

Time 
(UTC) 

Resolution in 
ground 

range/azimuth 
(m) 

Weather 

1 28.4.2009 HH/VV Ascending/Right 35.8° 15:54 2.0/2.4 +19 °C, 
clear 

2 29.4.2009 HH/VV Descending/Right 36.1° 4:48 2.0/2.4 +10 °C, 
mostly 
cloudy 

3 8.5.2009 HH/VV Ascending/Right 51.7° 16:11 2.0/2.4 +16 °C, 
clear 

4 11.5.2009 HH/VV Descending/Right 52.0° 4:31 2.0/2.4 +9 °C,  
overcast 
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THEORETICAL OVERVIEW OF THE METHODOLOGIES USED 
 
 
 The processing of airborne laser scanning data 
 
Creation of terrain, surface, and canopy height models 
 
Laser scanning data is 3D point data in its discrete form with additional characteristics recorded for every return, 
such as echo type and intensity. The most frequently used method for the creation of a DSM is to take the highest 
first echo within a given neighborhood and interpolate the missing heights. After the creation of the DTM, a CHM 
can be calculated by subtracting the height of the ground from the DSM. The DSM is calculated from the highest 
echoes as the height of the ground, the DTM is calculated from the lowest. The accuracy of the DTM varies in forest 
conditions by around 10-50 cm (Kraus and Pfeifer 1998, Hyyppä et al. 2000, Ahokas et al. 2002, Reutebuch et al. 
2003, Takeda 2004). The structure of the forest, variations in the terrain, and scanning parameters such as opening 
angle and pulse density affect the accuracy of the DTM (Ahokas et al. 2005).  

Airborne laser measurements tend to underestimate tree height (Nelson et al. 1988, Hyyppä and Inkinen 1999, 
Lefsky et al. 2002, Rönnholm et al. 2004). The first echo return reflects more often from the shoulder of the tree 
instead of the top. Although a laser pulse hits the top, the tree top may not be dense enough to reflect a recordable 
return signal. On the other hand, dense under-vegetation causes overestimation in the DTM. Mainly for these 
reasons, the CHM is underestimated. Other factors affecting tree height measurement accuracy are flying height, 
pulse density, pulse footprint, modelling algorithms, scanner properties (e.g. sensitivity to record return signals, field 
of view, zenith scan angle, beam divergence), structure and density of the tree crown (Holmgren et al. 2003, 
Hopkinson et al. 2006). 
 
 
Feature extraction unit 
 
In RS based forest inventory, the feature extraction unit is usually a crown segment, grid cell, or microstand. Feature 
extraction in both ITD and ABA is based on a DTM (Figure 5) that is formulated from the lowest point heights. 
With DTM, the point heights can be normalized to represent heights above ground level. In ITD, the CHM (Figure 
5) representing tree height is often used for tree delineation (Hyyppä and Inkinen 1999, Persson et al. 2002, 
Kaartinen and Hyyppä 2008, Vauhkonen et al. 2012). In the area-based prediction of forest variables, features are 
generally extracted from the ALS data at the grid level. The size of the grid cell is typically 100-900 m2. The size of 
the grid depends on the purpose of the inventory and corresponds to the size of the reference plots. With a small grid 
size, ABA estimation comes close to ITD (Vastaranta et al. 2011a), as the large size can be equivalent to the whole 
forest stand (Næsset 1997a). The grid size used in operational forest management planning inventory in Finland is 
16 m x 16 m. 

Microstands can be used instead of a systematic grid in area-based feature extraction. Microstands are segmented 
automatically or semiautomatically using RS materials, such as CHM, aerial images, satellite images, or a fusion of 
these. A microstand is a spatially continuous, homogenous interpretation unit that follows the natural borders of the 
forests. In theory, natural borders are the advantage of using microstands over grid cells when the results are 
aggregated at the stand level. (Tuominen and Haapanen, 2011).  

In ITD feature extraction, the unit is the tree crown area. Individual tree crowns can be segmented using ALS 
data or aerial images. The segmentation of aerial images is based on colour tones, while segmentation based on ALS 
data usually uses CHM 3D information.   
 

  
 

Figure 5. Digital terrain model (left) and corresponding canopy height model (right). 
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Geometric features 
 
Tree variables can be measured directly from a laser point cloud. Traditionally, the characteristic geometric features 
have been the tree height and crown dimensions. The crown dimensions are determined by segmentation, as the tree 
height is the highest CHM value, or a laser return inside the segment. With dense ALS data (> 5 hits/m2), it is also 
feasible to calculate various other geometric features to be used in estimating tree variables. These features describe 
the crown volume, shape, and structure (Holmgren and Persson 2004, Vauhkonen et al. 2010). 
 
 
Vertical point height distributions 
 
The prediction of stand variables in ABA is based mainly on point height metrics calculated from ALS data. 
Features such as percentiles calculated from a normalized point height distribution, mean point height, densities of 
the relative heights or percentiles, standard deviation, and coefficient of variation (Næsset 2002) are generally used. 

The percentiles are down to the top heights calculated from the vertical distribution of the point heights, i.e., the 
percentile describes the height at which a certain number of cumulative point heights occur. The proportion of 
vegetation hits compared to all hits is also used as a predictor feature describing the crown density. A hit is seen as a 
vegetation hit from trees or bushes if it has been reflected from over some threshold limit above ground level. All 
the features are calculated separately for every echo type. The reason for this is that the sampling between echo 
types is somewhat different (Korpela et al. 2012). With dense ALS data, the predictors used in ABA and ITD have 
become similar (e.g. Villikka et al. 2007). The point height metrics that have generally been used in ABA are also 
used in the ITD approach. In ITD, these features are calculated at the tree crown level and used in the estimation of 
tree-level variables analogously to the estimation of stand variables in ABA.   
 
 
The radargrammetric processing of SAR data 

 
Extraction of point clouds from SAR stereo data  

 
The most challenging part of radargrammetric processing is finding an automatic algorithm for seeking out the 
corresponding points (i.e. the tie-points) from the SAR image pairs at the level of single pixels.  

Stereoscopic SAR measurement is demanding even when done manually due to the speckle and image 
distortions. An automated search of the tie-points can be done with area-based or feature-based methods (Zitová and 
Flusser, 2003). Area-based methods typically use a window of image pixels, for which the best matching location is 
searched from within a pre-defined area on another image. With the aim of finding the location giving the best 
matching, the cross-correlation value of the pixels in the pixel window in the various locations in the search window 
is typically calculated. If the cross-correlation value is higher than the selected threshold value at some point within 
the area examined in the second image, this point is considered to be a tie-point to the location shown in the pixel 
window of the first image. The feature-based methods rely on basic mapping entities, i.e., points, lines, and 
polygons. Still, even though a considerable amount of effort has been put into feature-based methods, area-based 
methods are most often used when images with the same sensors and similar imaging geometries are considered.  

 
 

Obtaining above-ground elevations and predictor features from 3D points measured with radargrammetry 
 

An accurate DTM is needed to derive above-ground point height values for stereoscopically measured 3D points. 
Currently, nationwide DTMs based on ALS are becoming available in many countries and provide a solid base for 
relating the radargrammetric measurements to the ground surface level. The accuracy of the radargrammetric points 
depends highly on the DTM accuracy. Radargrammetric heights are obtained in a similar way to the ALS 
normalized point heights, i.e., the height of the ground level is subtracted from the corresponding point height.  

In this thesis, radargrammetric 3D features were extracted for plots with radii of 15 m. The radargrammetrically 
derived point density was ~0.03 hits/m2, limiting the number of statistical features that are worth calculating. The 
following statistical features were calculated from radargrammetry point clouds: (1) the number of 3D points within 
a test plot, (2) the mean above-ground elevation of 3D points, (3) the standard deviation of the above-ground 
elevation values, and (4) the minimum and (5) maximum above-ground elevation values.  
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Figure 6. 3D point cloud from a forest plot. The grey dots represent ALS data and the black dots are 3D points 
derived from stereo SAR data.  
 
 
Area-based approach 
 
The area-based prediction of forest variables is based on a statistical dependency between the variables measured in 
the field and predictor features derived from RS data. In case of ALS, the method in which this kind of two-stage 
procedure is used to produce stand-level information from wall-to-wall grid-level predictions is called an area-based 
approach (ABA, Næsset 2002). In a more general context, two-stage predictions using field – and RS data has a long 
history in forest inventory (e.g. Poso et al. 1984), and it could also be called ABA. Thus, later, this two-stage 
prediction procedure with SAR data is also called ABA because it shares the same theoretical background.  

When ABA is applied, accurate training data must be on hand (Poso et al. 1984, Næsset 2002). Training plots 
should represent the whole population and cover the variations in it as much as possible. The efficient selection of 
the training plot locations requires pre-knowledge of the inventory area (e.g. Maltamo et al. 2011). A sample unit in 
ABA is most often a grid cell, the size of which refers to the size of the field-measured training plot. Then the laser-
derived features are extracted from the grid cell areas and used as possible predictors. The statistical relation 
between the predictors and response variables is modeled using training data when both of them are on hand. The 
response variables are predicted for grid cells without training data using regression or NN methods (Figure 7). If 
stand-level variables are needed, they are calculated by weighting the grid-level predictions inside the stand.  
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Figure 7. NN method. ©Ville Kankare 
 
 
Individual tree detection  
 
Individual trees can be detected from the laser-point clouds. There are two main approaches to detecting single trees 
from ALS data: point-based (e.g. Wang et al. 2008, Gupta et al. 2010) and surface model-based approaches (e.g. 
Hyyppä and Inkinen 1999, Persson et al. 2002). The main tree detection methods developed in boreal forest 
conditions belong to the latter and are usually based on finding local maxima on a smoothed CHM. After the local 
maxima are found, the boundaries of the crown are extracted, e.g., using a watershed-based region detector (Figure 
8). The accuracy of the CHM and the corresponding accuracy of the ITD depend on the pulse density applied. A 
pulse density of around 5-6 hits/m2 is  seen  as  a  prerequisite  for  the  ITD,  although  even  with  pulse  densities  of  
around 2 hits/m2, it is possible to detect individual dominant trees or tree groups (e.g. Breidenbach et al. 2010, 
Vastaranta et al. 2011c). Tree variables such as height and location can be measured directly from the laser-point 
cloud. The estimate for tree height can be the highest echo or the CHM value within the tree crown. The XY-
location of the tree is generally the location of the tree top, i.e., the XY-location of the highest echo or CHM value. 

Laser-based tree height is underestimated (e.g. Rönnholm et al. 2004) and usually calibrated using field data. 
Tree dbh cannot be measured directly from the point cloud and must be predicted. In dbh prediction, general 
allometric models (Kalliovirta and Tokola, 2005), local models (Peuhkurinen et al. 2007), or NN methods (Yu et al. 
2010, 2011) can be used. 

Besides tree height and crown dimensions, the use of other geometric features (Holmgren and Persson, 2004, 
Vauhkonen et al., 2010) and point height distributions (Villikka et al., 2007, Yu et al. 2011) has become more 
common in ITD predictions. In tree species classification, spectral features from aerial images or laser pulse return 
intensity are applied (e.g. Korpela et al. 2010). When NN methods are applied for the prediction of tree variables, 
training data is required. With respect to the plot level-training data used in ABA, ITD training data should cover the 
whole population variation at the tree level. However, ITD can be carried out without any field measurements if 
desired. In this case, missing variables are measured straight from the point cloud and/or modelled with existing 
models. Major error sources in ITD are the detection of the trees and the modelling of the missing variables, 
especially dbh and tree species classification (Holopainen et al. 2010a, Vastaranta et al. 2011b). 
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Figure 8. Trees crowns are delineated from the CHM (see Fig. 5) using watershed segmentation.   
 
 
Multitemporal active 3D remote sensing data 
 
Multitemporal active RS data provide a means of updating the forest data. Especially interesting are the possibilities 
for forest growth measuring, but it could also be utilized in the mapping of sudden large-scale disturbances. 
Multitemporal 3D data in monitoring tasks can be divided into methods that use changes in surface models (Yu et al. 
2004, Hopkinson and Demuth, 2006, Vaaja et al. 2011), point height metrics (Yu et al. 2005, Næsset and Gobakken 
2005, Hopkinson et al. 2008, Nystöm et al. 2011, Vastaranta et al. 2011a), or forest variables (Yu et al. 2008). 

Independent inventories for two time points and observations of changes in the predicted variables is a basic 
mean of monitoring changes. This kind of approach can be applied in both ABA and ITD. The high geometric 
accuracy of the active RS data enables the contrasting of surface models from different time points. Difference 
imaging of DTMs is related to the detection of topography changes (e.g. Hopkinson and Demuth, Vaaja et al. 2011), 
as CHMs are related to changes in the canopy structure (Yu et al. 2004). These surface model-based methods are 
robust and the results are easy to interpret. The drawback is that only the phenomena that contribute to the surface 
model can be detected, i.e., harvested trees that do not contribute to CHM cannot be detected by contrasting CHMs. 
Change detection methods using point height metrics (e.g. laser point height distributions) from two time points also 
enable the detection of understory trees (Vastaranta et al. 2011a, Korpela et al. 2012) but are far more sensitive to 
changes in the implementation of the data acquisition parameters. Point height metric change detection methods can 
be used in ABA to monitor stand- or plot-level changes; as in ITD, tree-level changes can be monitored with similar 
means.    

 
 

 
 

Figure 9. Effect of snow damage in a bitemporal laser point cloud (2007: grey; 2010: black). Minor height growth is 
also detectable. 
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 Evaluation of results 
 
The accuracy of the estimated continuous variables was evaluated by calculating the bias and RMSE: 
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where n is the number of plots, yi is the value estimated from the field data for plot i, is the predicted value for 
plot i, and y  is the mean of the variable in the validation plots. In substudy III, the term “error” was replaced with 
“difference”. The performance of the thinning proposal prediction accuracy was evaluated by calculating the overall 
accuracy and kappa values. The omission and commission rates were used to evaluate CHM methods in substudy 
III as well. 
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RESULTS AND DISCUSSION OF THE SEPARATE STUDIES 

 
 

Predicting stand-thinning maturity from airborne laser scanning data  
 
Forest variables are retrieved accurately with ABA for forest management planning purposes. However, much of the 
information needed in forest management planning must be collected in the field. For example, forest management 
proposals are often determined in the field by an expert. The mapping of harvesting sites is one of the key decision 
points for large-scale forest owners (Laamanen and Kangas 2012). In substudy I, the first tests were conducted to 
predict the thinning maturity of stands using ABA. The study was carried out in Evo, and the results were evaluated 
with 100 test plots located in young and advanced thinning stands. The ground truth regarding the timing of thinning 
was determined in the field by an expert. Stands that will reach thinning maturity within the next 10-year period (1) 
and stands in which thinning should be done immediately (2) were located using logistic regression and k-MSN. 
Logistic regression models based on ALS point height metrics predicted the thinning maturity with a classification 
accuracy rate of 79% (1) and 83% (2). The respective percentages were 70% and 86% with k-MSN.  

The results here are comparable with the study conducted by Hyvönen (2002), particularly when a stand’s 
operational need during the next 10 years is predicted. Hyvönen used Landsat TM satellite images and stand register 
data in a nonparametric k-NN estimation of forest stand variables and forest management actions. In substudy I, the 
classification accuracies were 79%, 70%, and 66% with the logistic ALS model, k-MSN, and the logistic model 
based on field measured forest variables, respectively, while Hyvönen obtained an accuracy rate of 64.1%. It should 
be noted that Hyvönen (2002) used far more inexpensive RS data, operated at the stand level, and that the reference 
and test sites were located in different areas. Substudy I demonstrated the feasibility of utilizing ALS data for 
predicting stand-thinning maturity. Although ALS data are a more expensive type of auxiliary data than satellite 
images, they are beginning to be widely available in many countries. Subjective expert knowledge was used in 
substudy I as a reference and that can be seen as a drawback. On the other hand, it enables one to use it in a wide 
range of forest conditions and thinning regimes, at least in theory. Närhi et al. (2008) also used ALS features in 
classifying a stand’s precommercial thinning maturity with an overall accuracy of 71.8%. The results of their study 
are in line with those achieved here. However, precommercial thinning was not examined in this substudy. In 
general, the ALS-based prediction of forest management proposals could provide a practical future means of 
locating stands with operational needs. 
 
 
Mapping of snow-damaged trees in bitemporal airborne data 
 
Multitemporal ALS data is of interest in forest monitoring applications. However, short growing periods between 
ALS acquisitions have hindered the research. From that point of view, more rapid changes such as natural 
disturbances are easier to monitor. The snow-voluminous winter of 2009-2010 opened up the possibility of studying 
the use of bi-temporal ALS in snow damage mapping near the Hyytiälä forest research station. ALS data were 
acquired in years 2004-2010. The damage was documented in ten permanent Scots pine-dominated plots. To support 
method development, we examined the factors explaining the snow damage event at the tree level. We developed a 

CHM-method (Figure 10) for the detection of snow-damaged crowns. In it, bitemporal ALS CHMs were 
contrasted and the resulting difference image was analyzed using binary image operations to extract the damaged 
crowns. Performance was evaluated by errors of omission and commission as well as the error in the estimated 
damaged crown projection area (DCPA). The method makes use of two threshold parameters, the required height 
difference ( h) in the contrasted CHMs and the minimum plausible area of damage (mCC). The best-case 
performance was evaluated for these parameters and the optimal values were ~1.0 m for h and ~5 m2 for mCC. 
The plot-level omission error rates were 19-75%, while the commission error rates were 0-21%. The relative 
estimation accuracy rate of the DCPA was -16.4-5.4%. The strongest predictors of snow damage were stem 
tapering, relative tree size, and local stand density.  

We had dense, small-footprint ALS data, and the grid size in the CHMs was 0.5 m. Sparser data is likely to be 
used in practice for detecting corresponding damage. However, we assume that our method is not oversensitive to 
the pulse density applied, but its performance probably becomes less accurate at densities below 2-3 pulses per m2. 
The average crown size is also an important factor, as it is linked to pulse density. In general, the larger and fewer 
the crowns are, the less dense the ALS data needs to be. 

Vastaranta et al. (2011a) tested the area-based classification of snow damage with multitemporal ALS data 
(Figure 11). In the study, a forest area was divided into undamaged and damaged grid cells. The predictors used 
were the ALS point height change metrics, and stepwise logistic regression was used in the classification. The 
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overall classification accuracy for the snow-damaged areas was 78.6% with a Kappa-value of 0.57. Vastaranta et al. 
(2011a) concluded that area-based estimation is also suitable for snow-induced change detection. Area-based 
estimation could also detect changes in trees that are not contributing to CHM, which is not possible with 
methodologies that only use changes in CHMs (substudy II). 

The CHM method is a potential tool for the monitoring of structural canopy changes in the dominant tree layer. 
Although the method was developed and evaluated in boreal Scots pine-dominated stands, it should be applicable to 
a wide range of forest conditions with different parameter values.  Bitemporal ALS data are not widely available, 
and the acquisition costs for making a damage inventory would be substantial. Snow damage is a local phenomenon 
that is related to topography, while severe storm disturbances occur on a larger scale. Large continuous areas are 
needed for cost-efficient ALS campaigns, and the methodology proposed here is applicable under such 
circumstances. 
 

 

Figure 10. CHM [m] of plot P_M_08. The colours range from 18 m to +19 m. Damaged trees were plotted, using 
black circles. 
 
 

 
 

Figure 11. Effect of snow damage in grid-level point height distributions. 
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Combination of individual tree detection and area-based approach in imputation of forest variables using 
airborne laser data 
 
The third substudy was a pilot study combining laser scanning inventory methods. ITD was used to measure training 
data for the ABA. In addition to automatic ITD (ITDauto),  we  tested  a  combination  of  ITDauto and visual 
interpretation (ITDvisual). ITDvisual had two stages: in the first, ITDauto was carried out, and in the second, the results 
of the ITDauto were visually corrected by interpreting 3D laser point clouds (Figure 12). The findings of previous 
studies encouraged us to test this kind of method fusion. The idea of performing visual interpretation from laser 
point clouds began with the tree detection problems with ITDauto reported in many studies (e.g. Kaartinen and 
Hyyppä 2008, Vastaranta et al. 2011b). ITDauto is usually carried out using only the CHM information, and the 
understory trees that do not contribute to the CHM are not detected. Visual interpretation is not feasible in a “wall-
to-wall” inventory but could be utilized when acquiring training data. Our assumption was that the human eye can 
detect understory trees, separate closely growing trees, or drop commission errors easily from the whole point cloud 
compared with current ITD algorithms. 

The RMSE in the imputed VOL was 24.8%, 25.9%, and 27.2% for the ABA trained with field measurements, 
ITDauto,  and ITDvisual, respectively. When ITD methods were applied in acquiring training data, the VOL, BA, and 
Dg were underestimated in the ABA by 2.7-9.2%. Contrary to our assumption, ABAITDvisual did not provide more 
accurate results than the ABAITDauto. This phenomenon must relate to the number of nearest neighbours used in the 
estimation. Absolute accuracy within one field plot is not as crucial when the imputed variable is calculated as a 
weighted mean over several of the nearest neighbours. 

Several ALS inventory studies have been carried out in the same area. Holopainen et al. (2008) estimated the 
plot-level VOL with a 27.1% RMSE using 282 field plots for training the k-NN method. The pulse density used was 
1.8 hits per m2 and the results were validated using leave-one-out cross-validation. Yu et al. (2010) obtained an 
RMSE of 56.5% for ITD (without any calibration) and 20.9% for the ABA. Their results were validated with 69 
plots, and the pulse density used was 2.6 hits per m2. In substudy III, a similar level of errors was obtained without 
any field measurements. However, the pulse density used was much higher (~10 hits/m2) than those used in the 
aforementioned studies that favoured ITD, and although the method can be used without any field measurements, in 
practice, it might be feasible to use some tree level training data. 

The developed method could be applied in areas with sparse road networks or when the costs of fieldwork must 
be minimized. The method is especially suitable for large-scale biomass or tree volume mapping. 

 
 

 
 
Figure 12. ITDauto-detected trees plotted in grey. Left: Omission tree marked (black) from the understory. Right: 
Commission errors from a plot with a single tree are easily reduced in visual interpretation. 
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Prediction of plot-level forest variables using TerraSAR-X stereo SAR data 
 
Spatially accurate spaceborne SAR data would be suitable for monitoring applications where a high degree of 
temporal resolution is needed. The promising results obtained by Perko et al. (2011) showed that X-band stereo 
SAR satellite data have potential in forest biomass mapping and monitoring even at the substand-level. The use of 
radargrammetry may also overcome the challenges faced in the estimation of forest variables using radar-intensity 
information. In radargrammetry, the problem of relating intensity information to forest variables is transformed into 
the problem of relating the extracted elevation values to forest variables. However, when information about the 
forest height is obtained, it is a parameter that is highly correlated with forest stem volume and AGB. In substudy 
IV, we developed a radargrammetry-based method to predict plot-level forest variables. 3D points were extracted 
from stereo SAR images (X-band TerraSAR-X satellite images) to be used as predictors in plot-level forest variable 
estimation (Figure 13). The extracted point height values appeared to be somewhere between the ground surface and 
the top of the canopy. Our estimation methodologies followed the standard ABA procedures that have been used 
with ALS data.  

The RF method was used in prediction, providing relative errors (RMSE%) of 34.9%, 29.4%, 14.4%, and 20.5% 
for the VOL, BA, Hg, and Dg, respectively. In general, such a high level of prediction accuracy cannot be obtained 
using spaceborne RS data in the boreal forest zone. For example, Hyyppä et al. (2000b) compared SPOT XS, SPOT 
PAN, Landsat TM, ERS SAR, and JERS SAR data. The relative errors in VOL estimation varied from 45% to 65%. 
However, when the results of the stereo SAR data are compared to the ALS-based predictions presented in other 
studies, the relative error in the case of VOL is greater. ALS appears to be superior compared to stereo SAR data, 
mainly due to the much higher point density and lower penetration to the forest canopy. On the other hand, by 
adding more stereo pairs to the process, the number of 3D points could increase, slightly lowering the relative errors.  

An alternative to radargrammetry when extracting 3D elevation data from radar is interferometry. It has also 
provided similar level of accuracies in forest variable prediction at the plot level (Solberg et al. 2010a; 2010b).Thus, 
3D SAR data appears to be an interesting RS technique for future forest mapping and monitoring. Since SAR 
satellites enable the mapping of wide areas, there could be potential in producing detailed forest resource 
information even at the continental level. The 3D SAR data could also have high potential in forest monitoring, as 
the SAR-based features can be adapted to the methods currently used in operational forest inventories based on ALS 
data. However, further research is still needed to verify these results in other areas and compare this technique to the 
ALS.  

 

 
 

Figure 13. ALS (black) and radargrammetry derived (grey) point height distributions in one sample plot. ALS mean 
point height is 11.4 m as the respective radargrammetry height is 10.7 m.  
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TerraSAR-X stereo radargrammetry and airborne scanning LiDAR height metrics in the imputation of 
forest above-ground biomass and stem volume 
 
TerraSAR-X stereo radargrammetry and sparse nationwide ALS data could be efficient methods for inventorying 
and monitoring AGB for large forested areas. Our objective in substudy V was to evaluate the AGB and VOL 
imputation accuracy when using ALS or TerraSAR-X stereo radargrammetry derived point height metrics as 
predictors in the NN estimation approach. To our knowledge, TerraSAR-X stereo radargrammetry has not been 
previously used in AGB predictions. Treewise measured field plots were used as reference data in the imputations 
and accuracy evaluations. 

The DTM produced by the National Land Survey (NLS) of Finland was used to obtain above-ground elevation 
values for the TerraSAR-X stereo radargrammetry. The DTM used (grid size of 2 m) was derived from ALS surveys 
with an average point density of about 0.5 points/m2. The respective DTM and point data were used in the ALS 
imputations. This kind of ALS data set will cover all of Finland in the near future. 

The relative plot-level RMSEs for AGB and VOL were 29.9%. (41.3 t/ha) and 30.2% (78.1 m3/ha) when using 
TerraSAR-X stereo radargrammetry metrics. The respective ALS estimation accuracy values were 21.9% (32.3 t/ha) 
and 24.8% (64.2 m3/ha). The ALS imputations were undoubtedly more accurate than the imputations made by using 
TerraSAR-X stereo radargrammetry metrics. However, the difference between the estimation accuracies of ALS-
based and TerraSAR X-based features were smaller than in any previous study in which ALS and different kinds of 
SAR data have been compared in forest variable prediction (e.g. Hyde et al. 2007, Holopainen et al. 2010d). This 
was our main finding. The future use of spaceborne SAR radargrammetry could be a cost-efficient method for 
spatially accurate large-area AGB mapping. It should be pointed out that the method requires accurate DEM, which 
is usually derived using ALS data.  

 
Figure 14. Field-measured stem volume (VOL, m3/ha) plotted against ALS- and SAR-derived mean point heights 
(substudy V). 
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CONCLUSIONS  
 
 

During the last decade, in forest mapping and monitoring applications, the possibility of acquiring spatially accurate 
active 3D RS information instead of 2D has been a major turning point. When the aim is to produce as accurate 
forest resource information as possible for forest managers, this change has opened up totally new possibilities. ALS 
is an efficient tool for 3D probing of the forest from above, and it is very promising concerning forest mapping and 
monitoring needs. However, the flying altitudes when acquiring ALS data are relatively low, which makes it 
expensive per area unit compared to spaceborne RS data. Other RS data is needed especially if updated information 
for forest monitoring is required with high temporal resolution. A promising approach to mapping and monitoring 
forest resources by radar imaging is the 3D techniques of interferometry and radargrammetry.   

In this thesis, active 3D remote sensing forest mapping and monitoring methodologies were developed for large-
area applications. In substudy I, we developed a mapping method to locate harvesting sites. In substudy II, we 
monitored forest canopy changes induced by snow damage. Monitoring applications could be the next turning point 
when spatially accurate multitemporal data sets become more common. The application potential in this field of 
forest monitoring is enormous and largely unexplored. In substudies III-V, efficient mapping and monitoring 
applications were developed and tested.  

The mapping of potential thinning stands is the first key decision point for forest owners (Laamanen and Kangas 
2012). The method developed in substudy I could be used in locating harvesting sites with reasonable accuracy. The 
method was evaluated at the grid level; thus, it is not dependent on stand boundaries. In substudy I, we predicted 
plot-level thinning maturity within the next 10-year planning period. Stands needing immediate thinning were 
classified with an accuracy rate of 83-86% depending on the classification method applied. The respective 
classification accuracy for stands reaching thinning maturity within the next 10 years was 70-79%. We used high-
density laser data (10 hits/m2), although the methodology applied could also be used with sparser data.  

Multitemporal ALS data sets are uncommon and cover less than 10 years. Thus the general potential of ALS in 
monitoring applications using multitemporal data is largely unexplored. Study II addressed natural disturbance 
monitoring that could be linked to forest management planning when an ALS time series is on hand. Our results 
were very promising, but it should be noted that the data sets used were far more accurate than would be the case in 
the operational level. The accuracy of the damaged canopy cover area between plots varied from -16.4% to 5.4%. 
We conclude that CHM is a potential method to monitor changes in forest 3D canopy structure with dense ALS 
data. However, the method developed could be applied with reasonable accuracy with more practical data sets. 
Natural  hazards  have  also  become more  common in  Finland,  especially  wind damage,  and this  kind  of  method is  
needed.  From a  practical  point  of  view,  it  would  be  interesting  to  study the  use  of  CHMs derived from ALS and 
SAR radargrammetry in forest disturbance monitoring.    

Efficient wall-to-wall inventory means are required to provide accurate information about forest resources to 
managers. The ITD method has a strong physical background in measuring trees, and it is, thus, capable of 
measuring forest even without any field measurements. However, it is not generally used in operational forest 
inventory applications due to problems related to reliable tree detection in multilayered dense stands. During the 
studies of Vastaranta et al. (2011b), Vastaranta et al. (2011c), and Holopainen et al. (2010b), when the current ALS 
inventory methodologies were tested, we designed a method to combine ABA and ITD practically. Then we 
developed a fully RS-based forest inventory method in which single-tree remote sensing (ITD) is used to acquire the 
modelling data required in ABA. The method uses ALS data and is capable of producing accurate stand variable 
estimates even at the sub-compartment level. The method developed could be applied in areas with sparse road 
networks or when the costs of fieldwork must be minimized. The method is especially suitable for large-area 
biomass or tree volume mapping.  

Promising results have been achieved recently in the matter of the automated processing of stereo SAR satellite 
images in the endeavour to obtain elevation data. Perko et al. (2011) showed that modern-day X-band SAR satellites 
with a spatial resolution of about 1 m can provide quite accurate elevation data in open areas and concluded that, in 
forested areas, stereoscopically measured elevation data appears to be correlated with forest canopy height. These 
results encouraged us to study the prediction of plot-level forest variables using elevation information obtained from 
stereo SAR data in substudy IV. According to the results we obtained, the use of stereo SAR data in the prediction 
of plot-level forest variables appears to be promising. Using the RF method, a relative error (RMSE%) of 34.9% 
was obtained for stem volume prediction. For the other forest variables, i.e., the BA, Dg, and Hg, the accuracies 
were slightly better, 29.4%, 14.4%, and 20.5%, respectively. Typically, such a high level of prediction accuracy 
cannot be obtained using spaceborne RS data in the boreal forest zone. 

In operational wall-to-wall forest inventories, ABA has become common, and it is seen as a reference against 
which other methodologies are compared. In substudy V, we compared the AGB and VOL estimates derived by 
radargrammetry with ALS estimates. The forest AGB estimation accuracies based on TerraSAR-X stereo 
radargrammetry features were better than in previous studies. Furthermore, it should be noted that the difference 
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between the estimation accuracy of ALS-based and TerraSAR X-based features were smaller than in any previous 
study in which ALS and different kinds of SAR materials have been compared. Thus, it can be concluded that 
TerraSAR X stereo radargrammetry is promising as RS material along with single-pass SAR interferometry (e.g. the 
on-going German TanDEM-X mission) for large forest area AGB mapping and monitoring when accurate ALS-
based DTM/DEM is available. In theory, SAR interferometry could provide even more accurate height 
measurements than radargrammetry. However, the interferometric height measurements are problematic in various 
forest conditions compared to the robust radargrammetry.   

In this thesis, forest mapping and monitoring applications using active 3D RS were developed. The substudies 
covered a wide range of applications, and many of the suggested methodologies warrant further studies. Based on 
this thesis, even fully remotely sensed forest mapping is already practical with the same accuracy level as traditional 
SWFI (III). Monitoring forest biomass changes is one of the near-future applications where active RS data will be 
required. Data acquisition costs are dropping all the time, and data processing is becoming more automated, 
enabling its use in larger areas, even in global applications. 
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