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AbstRAct

Biomass equations for above- and below-ground tree components of Scots pine (Pinus 
sylvestris L), Norway spruce (Picea abies [L.] Karst) and birch (Betula pendula Roth and 
Betula pubescens Ehrh.) were compiled using empirical material from a total of 102 stands. 
These stands (44 Scots pine, 34 Norway spruce and 24 birch stands) were located mainly on 
mineral soil sites representing a large part of Finland. The biomass models were based on 
data measured from 1648 sample trees, comprising 908 pine, 613 spruce and 127 birch trees.
Biomass equations were derived for the total above-ground biomass and for the individual tree 
components: stem wood, stem bark, living and dead branches, needles, the stump, and roots, 
as dependent variables. Three multivariate models with different numbers of independent 
variables for above-ground biomass and one for below-ground biomass were constructed.  
Variables that are normally measured in forest inventories were used as independent variables. 
The simplest model formulations, multivariate models (1) were mainly based on tree diameter 
and height as independent variables. In more elaborated multivariate models, (2) and (3), 
additional commonly measured tree variables such age, crown length, bark thickness and 
radial growth rate were added. 

Tree biomass modelling includes consecutive phases, which cause unreliability in the 
prediction of biomass. First, biomasses of sample trees should be determined reliably to 
decrease the statistical errors caused by sub-sampling. In this study, methods to improve 
the accuracy of stem biomass estimates of the sample trees were developed. In addition, the 
reliability of the method applied to estimate sample-tree crown biomass was tested, and no 
systematic error was detected. Second, the whole information content of data should be utilized 
in order to achieve reliable parameter estimates and applicable and flexible model structure. In 
the modelling approach, the basic assumption was that the biomasses of the tree components 
on the same site and in the same tree are dependent. This statistical dependency was taken into 
account when simultaneously estimating parameter estimates for all biomass components, 
by applying a multivariate procedure. Based on the verified statistical dependence between 
the biomass components, the multivariate procedure had a number of advantages compared 
to the traditionally independently estimated equations, by enabling more flexible application 
of the equations, ensuring better biomass additivity, and giving the more reliable parameter 
estimates.

The generalization and applicability of the models may be restricted by the fact that 
the study material was not an objective, representative sample, and some tree components 
were poorly represented. Despite these shortcomings, the models provided logical biomass 
predictions for individual tree components and were comparable with other functions used in 
Finland and Sweden.

Keywords: Tree biomass, biomass equations, pine, spruce, birch
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1  INtRODUctION

1.1  background 

Interest in estimating tree and stand biomass has increased during the last decades. Currently, 
reliable estimates for the biomass of a tree and its components are needed for practical forestry 
as well as for research purposes. Tree and stand biomass estimates are a prerequisite for, e.g., 
the assessment of nutrient cycling and fluxes, energy wood potentials, and carbon storage of 
forests. 

The importance of the estimation of forest biomass has increased since the Kyoto Protocol 
was adopted in 1997. Based on this protocol, the objective of the climate politics is to reduce 
the emissions of greenhouse gases such as carbon dioxide (CO2). Countries that have ratified 
the Kyoto Protocol are obligated to report emissions and removals of greenhouse gases to the 
United Nations Framework Convention on Climate Change (UNFCCC). Forest carbon sinks 
were included in the Kyoto Protocol as one of the mechanisms for mitigating climate change.  
Forest carbon sinks are known to play an important role in national and global greenhouse gas 
balances. The assessment of the forest carbon stock, in turn, is based on estimates of above- 
and below-ground tree biomass.  

The aim of reducing global emissions of greenhouse gases has led to an increased desire to 
use renewable energy resources in energy production. Forest biomass (energy wood) has played 
an important role in increasing the use of renewable and carbon neutral energy resources. In 
Finland, an increasing amount of energy wood has been used in energy production during 
the last decades (Finnish Statistical Yearbook of Forestry 2011). Estimates of the biomass of 
tree components are required for assessing the energy-wood potential from different sources 
at national or regional scales. Biomass estimates of the crown (branches and foliage), the 
unmerchantable part of a stem, the stump and roots are needed when assessing the amount 
of logging residues in final cuttings. In addition, stem biomass and the whole above-ground 
biomass are needed when estimating the energy-wood availability from young stands.

1.2  Methods to estimate and predict tree biomass

1.2.1  Overview of the methods

The biomass of a whole tree or its components can be expressed as dry mass, fresh mass or 
volume. Dry mass, determined as the mass of dried organic matter, has mostly been used 
as an expression of tree biomass. Dry mass is also the most appropriate measure for the 
determination of forest carbon sinks and the energy content of tree biomass, because around 
fifty percent of the dry mass constitutes carbon, and due to the rather strong correlation 
between dry mass and energy content. In this study, tree biomass refers to the dry mass.   

Biomass estimates of a tree or its components can be obtained using different methods. 
These methods can be divided into two approaches; biomass estimation and biomass 
prediction. Biomass estimation includes the process of determining tree biomass.  Biomass 
estimation is commonly defined as the process of determining tree biomass by sub-sampling 
(Parresol 1999). But also biomass determination by direct measurement can be included in this 
approach, which is also called the measurement of biomass (Parresol 1999). In turn, biomass 
prediction can be defined as the process of obtaining tree biomass by utilizing measured 
tree dimensions and compiled biomass models, biomass tables, or expansion factors. In this 
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study biomass estimation refers to the process of determining tree biomass by sub-sampling, 
followed by biomass prediction as defined above.

1.2.2  Biomass estimation with measurements and sub-sampling

Biomass estimates at regional and stand scales are commonly based on single-tree biomass 
estimates. Several approaches to determine the biomass of a tree or its components have been 
applied. The most comprehensive approach is a direct measurement based on the dry or fresh 
weight of a whole tree or an entire tree component. However, such a direct measurement 
of tree fresh or dry weight is in practice too expensive and time consuming, especially for 
individual tree components and for large trees (See Briggs et al. 1987). In biomass studies, 
determination of the biomass of tree components or total tree biomass is commonly based 
on sub-sampling (Parresol 1999, 2001). In sub-sampling, small samples are selected from 
tree components by a specific procedure (usually a random procedure) and measurements 
(fresh and/or dry weight) of the samples are then used for estimating the biomass of the 
entire tree component. Different statistical estimators, such as a design-based or a model-
based estimator, have been applied in estimating the biomass of entire components (Briggs et 
al. 1987, Monserud and Marshall 1999, Parresol 1999). 

The theoretical approaches of a design-based and a model-based method differ substantially. 
In the design-based method, the population is regarded as fixed, whereas the sample is 
regarded as a realisation of a random process. The reference distribution is a consequence 
of all possible samples under the sampling design. The inference is based on the distribution 
of estimates generated by the sampling design. Therefore, the sampling design is crucial for 
inference, and the inference is independent of any assumption about population structure and 
distribution (Gregoire 1998). In the model-based methods, the population is regarded as a 
realisation of a stochastic process, and values generated by the sampling are realisations of 
random variables. In model-based estimation, the characteristics of a population are described 
with a model, and inferences about the population depend on the assumed models, not on 
sampling design, as in design-based methods (Kangas 1994, Gregoire 1998). 

Design-based estimators, such as ratio estimators, are commonly used for biomass 
estimation of all tree components (e.g. Marklund 1988, Hakkila 1991, Monserud and 
Marshall 1999, Claesson et al. 2001). The strategy is to measure the total fresh weight of a 
tree component in the field. Some samples are selected and the fresh and dry weight of the 
samples is measured. The ratio of the dry and fresh weight of samples is then used to estimate 
the biomass (dry weight) of the entire tree component. The other strategy is to first measure 
(or determine) the volume and average density of a tree component, and then biomass can be 
calculated by multiplying the volume by the average density. This approach has mainly been 
applied only for determining stem biomass (wood and bark). Stem volume can be reliably 
determined by applying tree dimensions and volume functions, but the determination of 
average stem density is much more troublesome for many reasons. Firstly, measurements of 
stem density are laborious and, secondly, many factors (tree species, environmental factors, 
tree age and size, growth rate and genetic factors) cause variation in wood density. Stem 
density varies in the radial and vertical directions of the stem according to a species-specific 
pattern (Tamminen 1962, Hakkila 1966, Knigge and Shultz 1966, Uusvaara 1974, Hakkila 
1979, Björklund 1984). For tree species with a high vertical dependence of wood density in 
particular, an inappropriate sampling design may lead to biased estimates of average wood 
density and subsequent biomass estimates. 
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Regression is commonly applied in the model-based framework, especially for estimating 
tree crown biomass. The regression method is based on easily measured basic variables, such 
branch diameter, and their vertical position along the stem of all the branches of a tree. Some 
samples of the tree component are taken for dry-weight measurements. The samples are used 
to model dry weight as a function of the basic variables. The regression model is then used 
to determine the dry weights of the whole-tree components, e.g. the sum of the predicted 
biomass of all branches is the total crown biomass of a tree. The reliability and applicability 
of such an equation depends on how well the basic assumptions of the model are met, i.e. 
how efficiently the information and structure of the study material is utilised in the model 
estimation.

1.2.3  Biomass expansion factors and biomass tables

Sampling or direct measurement have commonly been applied in biomass studies, e.g., when 
collecting biomass data for constructing biomass equations. In practice, biomass estimates 
of a tree or its components are obtained by using biomass expansion factors, weigh tables, 
or regression models. Biomass expansion factors (BEFs) are used at tree and stand level to 
convert the stem volume into whole tree biomass or the biomasses of different tree components. 
In general, constant BEFs have been applied, although it is known that BEFs may vary 
depending on growth conditions and the phase of stand development (Satoo and Madgwick 
1982, Hakkila 1991, Lehtonen et al. 2004). The BEFs are easy to apply because they need 
only stem volume as an input variable. The problem with using BEFs is that they produce only 
coarse biomass estimates, and may in the worst case lead to biased estimates (Kärkkäinen 
2005). Biomass tables are based on one or more tree dimensions, such as diameter, height and 
stem taper (Baskerville 1965, Hakkila 1979). Normally, neither estimates of biomass based on 
BEFs nor on biomass tables take between-tree variation into account. 

1.2.4  Regression models

Nowadays biomass estimates of a tree or its components are commonly obtained with 
regression models. The biomass models predict biomass as a function of easily measurable 
tree dimensions such as diameter and height. Biomass regression models are normally 
constructed for individual tree components such as stem, stem bark, crown (branches and 
foliage), stump and roots.   

Several biomass models have been published in different countries since Kittrede (1944) 
applied tree allometry in the study of biomass. In the Nordic countries many studies on tree 
biomass, especially on above-ground tree components, have been published, but only a few of 
the functions are widely applicable and include all of the main tree components. Marklund’s 
(1988) biomass functions, most widely applied in Scandinavia, are valid for predictions of 
different above-ground components of pine, spruce and birch. These functions are based on 
a large and representative material from the Swedish national forest inventory. In Finland 
there has been a lack of widely applicable (general) individual-tree biomass models, but 
according to Kärkkäinen (2005), Marklund’s (1988) functions can be applied also in Finland. 
Kärkkäinen (2005) concluded also that Marklund’s (1988) functions are primarily applicable 
for the calculation of biomass estimates at a large scale, and more applicable for the estimation 
of carbon sequestration than for the estimation of energy-wood resources. These conclusions 
(Kärkkäinen 2005) were based on the evaluation and comparison of tree-level biomass 
models, but not on empirical biomass data. In Finland, Hakkila’s (1972, 1979 and 1991) 
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functions have been also applied for predicting biomass of above- and below-ground tree 
components. However, the disadvantage of these functions is that the equations for the main 
tree components: stem, crown, and stump including roots, were not based on the same sample 
trees. Repola et al. (2007) published general biomass equations for pine, spruce and birch, in 
which the biomass of the above-ground and the below-ground tree components are modelled 
mainly on the basis of the same sample trees. All previously mentioned biomass functions 
are primarily applicable for trees growing on mineral soil, but according to Kärkkäinen 
(2005) Marklund’s (1988) and Hakkila’s (1979, 1991) functions can also be applied for trees 
growing on peatlands. Compared to equations for above-ground biomass, functions for the 
below-ground biomass components published in Nordic countries are generally based on a 
more limited material (Hakkila 1972, Marklund 1988, Finer 1991, Petersson and Ståhl 2006, 
Repola et al. 2007), which restricts their applicability in practice. 

Biomass models should meet specific requirements before they can be incorporated into 
forest management planning systems or applied on large forest areas, e.g., when assessing 
forest carbon pool and energy-wood potentials at the national scale (Kärkkäinen 2005). First 
of all, at application the models should provide reliable biomass estimates of tree components 
for all growing stock, with a prerequisite that the derived models span a wide diameter range 
and a wide range of stand and site conditions in the whole country. In order to obtain reliable 
biomass estimates at the national scale (large scale), the biomass models should be based on 
a representative sample of the stands in which the results are to be applied (Parresol 1999). A 
representative sample based an objective sampling, such as national forest inventory data, has 
generally been considered to be a prerequisite for valid and unbiased models for national-scale 
application. In addition, a logical model specification throughout the range of the material, and 
unbiased biomass estimation (determination) of the sample trees are both also prerequisites 
for reliable biomass estimation. Secondly, the biomass models should be based on variables 
that are normally measured in forest inventories, or which can be estimated easily and reliably 
from inventory data. Thirdly, the models of individual tree components should be based on 
the same sample trees, in order to give a reliable description of the relationships between 
the tree components. In addition, one desirable feature of the tree-component equations is 
biomass additivity, which means that the sum of the predictions for the tree components 
equals the prediction for the whole tree (Kozak 1970 Cunia and Briggs 1984, Parresol 1999, 
2001). Information on biomass accumulation in different parts of the stem and crown are 
needed, e.g., when assessing the amount of energy wood in stands or trees. For energy-wood 
estimation purposes, the biomass model should also be able to predict the vertical biomass 
distribution of the tree components along a tree.   

1.3  the process of modelling tree biomass with regression analyses

The common procedure for estimating tree biomass is through the use of regression analysis. 
The process of developing a regression model for tree biomass contains three main phases, 
all of which have an effect on the reliability of the models. In the first phase, a number of 
stands are selected, from which sample trees for biomass determination are chosen through 
an appropriate selection procedure. (e.g. by using random selection). Secondly, biomass of 
tree components is determined on the basis of within-tree sampling (Parresol 1999, 2001). 
Finally, for biomass regression models, quantitative relations between tree dimensions and 
tree biomass are constructed. 

The reliability of biomass prediction depends on the study material and also on how 
efficiently the study material is utilized in the model estimation. Ideal modelling data would 
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be a representative sample of the forests in the region where the models will be applied. But 
at the same time, the data should include a wide range of site conditions, in order to have a 
high variation of independent variables. This is a prerequisite for a reliable regression model, 
i.e., the higher the variation in independent variables, the higher the reliability of parameter 
estimates (lower standard errors) usually obtained in the model estimation (Lappi 1993).   

The dependent variable, biomass of a tree component of sample trees, is usually estimated 
on the basis of within-tree sampling (Parresol 1999). Small samples are selected from the 
tree components by a specific procedure and information about the samples is then used to 
estimate the biomass of the entire tree component. This process, determination of the biomass 
by sub-sampling, produces an error in the biomass estimate (Parresol 2001), and it is therefore 
important to apply sub-sampling methods that minimize such errors. Biomass estimation of 
sample trees should be as reliable as possible, because errors in biomass estimation can cause 
problems also in the subsequent analysis (e.g., when constructing biomass models) or at 
application (when applying biomass models to predict biomass values). As long as the error 
in a biomass estimate can be interpreted as random, uncorrelated with independent variables, 
it does not cause a problem with respect to the assumption of a linear model (Parresol 2001). 
However, this source of error increases random errors of the model (Parresol 2001). If the 
errors are correlated with independent variables, it may produce a trend of increasing variance, 
and the assumption of homoscedastic variance is not valid.  The ignored heteroscedasticity, in 
turn, can generate bias in parameter estimates and in the reliability of the parameter estimates 
(Parresol 1999, 2001). 

In the model specification different facts, such as unbiased fixed effects, the correlation 
structure of data, and biomass additivity, should be taken into consideration in order to have 
an applicable and reliable biomass model. To have reliable parameter estimates and thereby 
biomass predictions, the model specification should be correct and the data structure should 
be considered when choosing appropriate correlation structure in model estimation. Biomass 
equations have generally been constructed by applying linear or nonlinear model forms 
(Parresol 1999). In many biomass studies, a nonlinear model form with multiplicative error 
has been used as the basis of the model formulation. In this form, a logarithmic transformation 
has commonly been used to obtain homoscedastic variance, and to transform the equation into 
a linear form. 

In order to obtain efficient parameter estimates for constructed biomass models, it is 
important to correctly address the correlation structure of the data. Both spatial and temporal 
correlation is known to be common in all types of forestry data, including biomass data. 
Modelling these correlations provides considerable gains in the efficiency of estimation 
(Parresol 1999, Gregoire et al. 1995). Spatial correlation (e.g. hierarchical data) exists 
when biomasses of trees are more strongly correlated within stands than between stands. 
Contemporaneous correlation means that biomasses of tree components of the same tree or the 
same stand are correlated (Parresol 1999, 2001). Contemporaneous correlation also means that 
the errors in the different equations of tree components can not be assumed to be independent. 
Hierarchically structured data and contemporaneous correlation have commonly been ignored 
in model estimation, which has meant a loss of precision in the parameter estimates. If ordinary 
least squares (OLS) is applied to hierarchically structured data, parameter estimates are 
unbiased, but standard errors of these estimates are commonly underestimated (Lappi 1993). 
Hierarchically structured data can be analysed more precisely, e.g., by the generalized least 
squares (GLS) estimation method, which permits analysis of the between-stand and within-
stand variation (Claesson et al. 2001, Repola et al. 2007). Contemporaneous correlation can 
be taken into account by using a multivariate procedure, i.e. by constructing a set of linear or 
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non-linear models, the parameters of which are estimated simultaneously (linear or non-linear 
seemingly unrelated regression) (Zellner 1962, Srivastava and Giles 1987, Parresol 1999 
and 2001, Carvalho et al. 2003, Bi et al. 2004, Návar et al. 2004). Advantages of utilizing 
the multivariate procedure instead of independently estimated equations have been found. 
Parresol (1999 and 2001) concluded that, by utilizing contemporaneous correlation in the 
model estimation, parameter estimates were also more reliable. Lappi (1991) showed that 
the across-equation correlation in hierarchical data could be utilized to flexibly calibrate 
the model to a new stand. The across-equation covariance is also needed when calculating 
the prediction reliability for any combination of tree components. This information is not 
available for independently estimated equations. 

At application, a desirable feature in the equations of tree components is that the sum of 
the predicted individual tree components equals the prediction of whole tree biomass (Kozak 
1970 Cunia and Briggs 1984, Parresol 1999, 2001). The multivariate procedure (seemingly 
unrelated regression), has also been used to ensure biomass additivity by estimating across-
equation correlation at the tree level, and by setting linear restrictions, i.e., across-equation 
constraints to the regression coefficients (Parresol 1991 and 2001, Carvalho et al. 2003, Bi et 
al. 2004, Návar et al. 2004). However, in many studies the equations for the total above-ground 
biomass have not been formulated. In those cases, the sum of individual tree-component 
models might produce biased estimates for whole tree biomass. 

1.4  Research aims

The first and principal objective of this study is to develop tools that can be utilized for 
estimating and predicting tree biomass. This is achieved by compiling individual-tree biomass 
equations for above- and below-ground tree components of Scots pine, Norway spruce 
and birch, which produce reliable biomass predictions over a wide range of stand and site 
conditions in Finland, and which can be utilized flexibly in practical forestry and research. The 
second aim is to develop methods to determine the biomass of sample trees, and to evaluate 
the reliability of tree biomass estimates. This is important because a prerequisite for a reliable 
biomass model is that the error of a response variable (biomass of a tree component) caused 
by biomass estimation is minor and that no systematic error exists, i.e. biomass estimation of 
sample trees should be as reliable as possible.

In paper I, models were constructed for the vertical dependence of the basic density of 
Scots pine, Norway spruce, and birch stems. These models can be utilized in determining 
the biomass of the whole stem, a stem section, or biomass distribution within the stem. The 
purpose is to construct a model that can be flexibly calibrated to new trees or stands by utilizing 
measurements of wood density and information on between-tree variation. The linear mixed 
model technique with both fixed and random parameters was used in the model estimation. 

The purpose of paper II was to compare methods for estimating the living crown biomass 
of individual Norway spruce trees by applying both design-based and model-based estimators. 
The aim was also to assess the reliability of these estimates at tree level, i.e., assess the amount 
of statistical error generated by the process of determination of the crown biomass. In the 
model-based method, two different approaches of constructing a regression model were 
compared. In the design-based method, ratio estimation with two different sampling designs, 
objective and subjective sample branch selection, were compared. Of particular interest was 
the comparison of the design-based methods with each other, because subjective sampling 
was applied to biomass data in papers III and IV. 
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The aim of papers III and IV was to develop biomass equations for above- and below-
ground tree components of Scots pine, Norway spruce and birch by applying a statistical 
method (multivariate procedure) that effectively utilizes the information of the biomass 
data as well as the information produced by national forest inventories. This enables 
more flexible application of the biomass models. Another aim of papers III and IV was to 
study whether the multivariate procedure gives more reliable parameter estimates than the 
separately (independently) estimated equations published by Repola et al. (2007).  In paper 
IV, the purpose was to study the advantages of applying a multivariate procedure instead of 
estimating the models independently using data with unbalanced response variables, i.e. when 
not all the biomass components have been measured on all the sample trees.
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2  MAtERIAL AND MEtHODs

2.1  study materials

The study material consisted of two main data sets: data on stem-wood density (paper I) 
and biomass data (papers II-IV). Data on wood density were used for modelling the vertical 
dependence of the basic density of stems. Biomass data were used for modelling the biomass 
of tree components. The study stands were mainly located on mineral soil sites representing 
a large part of Finland (Fig. 1). The distribution of forest site types was typical for Scots 
pine, Norway spruce and birch on mineral soil. The spruce and birch stands were growing on 
fertile (the mesic Myrtillus type) or highly fertile (the fertile Oxalis-Myrtillus type) sites, and 
the pine stands on poor to fertile sites (the dry Calluna type, dryish Vaccinium type or mesic 
Myrtillus type) (Cajander 1949).

The material for paper I was obtained from sample trees collected during 1993-2000 in 
connection with the National Bioenergy Research Program, carried out by the Finnish Forest 
Research Institute. The material consisted of a total of 90 stands, comprising 38 Scots pine 
(Pinus sylvestris L.) stands, 39 Norway spruce (Picea abies [L.] Karst.) stands and 13 birch 
stands (Betula pendula Roth and Betula pubescens Ehrh.) located in southern Finland (Fig. 1). 
The study material was composed of trees removed in cuttings from stands at different stages 
of development; first and second commercial thinning and final cutting. The total number of 
sample trees was 1365: 585 pine, 585 spruce and 195 birch (A in Table 1). 

Figure 1. The location of the study sites of biomass studies (A, papers III-IV) and wood density study 
(B, paper I).

Pine
Spruce
Birch

A) B)
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The empirical material of papers III and IV consisted of a total of 102 stands: 44 Scots 
pine, 34 Norway spruce and 24 birch stands, representing a large part of Finland (Fig. 1). The 
average annual effective temperature sum (dd, >5ºC) varied between 705 and 1385 dd. The 
stands were even-aged, and ranged from young to mature growing stands (B in Table 1). The 
birch stands were mainly dominated by Betula pendula or Betula pubecens, with a varying 
admixture of conifer trees. The study material was gathered between 1983 and 2003. 

The whole data set consisted of three sub data sets: 53 temporary sample plots, nine 
thinning experiments, and the control plots of 39 fertilization experiments. The majority of the 
study material for pine and spruce was from the fertilization experiments. The temporary plots 
and thinning experiments were selected to obtain higher variation in independent variables of 
the modelling data. The temporary plots were established subjectively in five of the Finnish 
Research Institute’s research areas, and the plots were located subjectively in representative 
parts of the stands. At the establishment the locations of fertilization and thinning experiments 
were selected subjectively. Hence the study material was not based on objective sampling. 

The total number of sample pine, spruce and birch trees was 908, 613 and 127 respectively 
(B in Table 1). The majority of the sample trees were from the control plots of fertilization 
experiments. In the thinning experiments the sample trees were taken from unthinned, 
moderately thinned and heavily thinned plots. The diameter and age distribution of the sample 
trees was broad (B in Table 1). 

For paper II the additional field data were gathered from three (subjectively selected) 
Norway spruce stands from the material used in paper IV.

2.2  Field and laboratory measurements

The studies (papers I–IV) consisted of field and laboratory measurements. Field work 
consisted of the measurement of tree attributes (height, diameter and bark thickness at several 
points along the stem, living crown length, age and diameter increment), fresh weighing, and 
sampling (stem, crown, stump and roots). In the laboratory, dimensions as well as fresh and 
dry weigh of the samples were measured for the determination of biomass or wood density. 

In order to assess wood density (Paper I), knot-free sample disks were taken at one-meter 
intervals from the pulpwood and unmerchantable top sections, and from the saw logs at the 
base and top of the logs. The number of disks per tree varied from 7 to 20. In the laboratory, the 
disks were separated into wood and bark sections and, after 2–3 days drying at a temperature 
of 106 oC, the basic density of the wood and bark was determined.   

Table 1. Sample tree characteristics in the two data sets A and B. 

Data Number 
of stands

Number of 
sample trees

Age, 
years

d, 
cm

h, 
m

Density data (A):
Pine
Spruce
Birch

38
39
13

585
585
195

60  (23-139)
60 (24-153)
30 (16-48)

17.1 (12.0-37.8)
18.0 (7.4-47.2)
11.9 (7.0-21.2)

16.4 (7.2-30.0)
17.8 (7.9-31.2)
15.6 (10.0-21.8)

Biomass data (B):
Pine
Spruce
Birch

44
34
24

908
613
127

56 (11-146)
52 (15-164)
44 (11-134)

13.1 (1.5-35.8)
17.9 (1.7-41.7)
16.5 (2.5-38.0)

11.2 (2.9-28.6)
15.9 (2.1-35.0)
17.1 (3.9-29.0)
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For the biomass study (papers III–IV) the samples were taken from the stem, crown, stump 
and roots. Because the proportion and properties of tree components is not constant along the 
length of a tree, the samples were taken systematically from different parts of a tree. Sample 
disks of a stem were taken at breast height and at a relative height of 70% for stem biomass 
determination. For crown biomass determination, the sampling was done by crown sections, 
since the proportion of needles and branches varies throughout a tree crown. First, the living 
crown was divided into four sections of equal length, and one living sample branch was 
selected subjectively from each section. One dead sample branch per tree was taken from the 
lowest crown section. The fresh weight of all the branches was measured by crown sections 
in the field. Fresh and dry weights of the sample branches were measured in the laboratory. 
The stump and root biomasses were measured for a sub-sample of the trees on the temporary 
plots. The minimum coarse-root diameter varied from 2–5 cm, depending on tree diameter. To 
facilitate field works, the minimum coarse-root diameter was taken to be 5 cm for trees with 
a diameter > 20 cm. In addition, the root biomass was determined for roots with a diameter 
larger than 1 cm for some of the trees. The fresh weight of the stump and roots was measured 
in the field. One sample (stump sector) was taken from the stump, plus two root discs for 
moisture content determination. 

In addition, for the material of paper II, branch diameter over bark at the stem junction, 
and distance of the branch whorl from the tree top were measured in three Norway spruce 
stands. The living crown of the tree was divided into ten equally long sections and one living 
branch was randomly sampled from each section.

2.3  Methodology  

2.3.1  Modelling the vertical dependency of stem-wood density (Paper I)  

Data of stem-wood density were used to fit the models for the vertical dependence of the basic 
density of the stem. The material was hierarchically structured at stand, tree and within-stem 
levels. Therefore the linear mixed model technique, with fixed and random effects, was used 
in the model estimation (McCulloch and Searle 2001). In the final model, the stand- and tree-
level effects were combined at the tree level because the stand level was not significant. The 
final model structure was:

 ŷik = xT
i  k b + zT

i  k uk + eik (1)

where ŷik  = basic density at stem position i in tree k
 xik = vector of the fixed regressors for position i in tree k
 b = vector of the fixed effects
 zik = vector of the independent random regressors for tree k
 uk = vector of the random effects for tree k
 eik = random error term for position i in tree k

The random effects (uk) of the different trees are assumed to be uncorrelated. Random 
errors eik are assumed to be uncorrelated and also assumed to be normally distributed with a 
mean of zero and variance σ2. 
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2.3.2  Methods to estimate Norway spruce crown biomass (Paper II)

The needle and branch (including wood and bark) biomasses of an individual tree were 
estimated by applying both model-based and design-based approaches. A regression estimator 
was applied in model-based approaches, and a ratio estimator in design-based approaches. 
Two different variants of both methods were studied (Table 2). In the ratio estimation method, 
the estimates for tree crown biomasses were based on the fresh weight of four crown sections 
and on two different sampling designs for branches: objective (N=10) and subjective (N=4) 
sample branch selection. In the regression method, biomass estimates of a tree crown were 
based on the measurements of the tally branches and the compiled branch-level regression 
models.  

The regression models were estimated in two ways: separately for each tree (TREE-
SPECIFIC MODELS) and for all sample trees (OVERALL MODEL) by using objectively 
selected sample branches (N=10 per tree). TREE-SPECIFIC MODELS were based on the 
ordinary least squares method (OLS), and the OVERALL MODEL, on the generalized least 
squares (GLS) method. The reliability of the biomass prediction of a tree was examined on 
the basis of the prediction errors. The basic assumption in both regression models was that 
the branch and needle biomasses of the same branch and tree are dependent, i.e., the errors 
of the branch and needle biomass equations are correlated (contemporaneous correlation). 
This statistical dependence was taken into account by applying linear seemingly unrelated 
regression (SUR) in the estimation of both models (Zellner 1962, Srivastava and Giles 1987, 
Parresol 1999, 2001,). This procedure enables to calculate the prediction errors for branch and 
needle biomass and also for whole crown biomass. 

Table 2. The description of the methods applied for estimating tree crown biomass. 

MODEL-BASED ESTIMATOR
Regression methods

DESIGN-BASED ESTIMATOR
Ratio estimation methods

Measurements:
Sample branch
Whole crown

Dry weight
Tally branches

Dry and fresh weight
Fresh weight 

Methods name TREE-SPECIFIC 
MODELS

OVERALL MODEL RATIO 
OBJECTIVE

RATIO SUBJECTIVE

Estimation OLS (sur) GLS (sur) Ratio estimator Ratio estimator

Sample branches:
Number
Selection

10
Objectively

290
Objectively

10
Objectively

4
Subjectively

* OLS = ordinary least square, GLS = generalized least square, SUR = seemingly unrelated regression 
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2.3.3  Modelling biomass of Scots pine, Norway spruce and birch (Papers III and IV)

2.3.3.1  Biomass estimation for the sample trees 

Biomass data were used for modelling tree biomass. The biomass was estimated for individual 
tree components; stem wood, stem bark, living and dead branches, foliage, stump and roots. The 
branch biomass included both branch wood and bark, and the living branch biomass included 
the cones. Not all the biomass components were measured on all sample trees (Table 3).

The branch biomass of a tree was predicted by applying ratio estimation methods based 
on subjective sample branches (RATIO SUBJECTIVE method). The ratio of the dry and fresh 
weight of the sample branches was used to estimate the branch and needle dry weight from the 
fresh mass. Ratio estimates for living branch biomass were calculated first by crown sections. 
The total living branch biomass was the sum of the crown sections. Constant moisture content, 
based on the mean moisture content of dead sample branches on the plots, was used for dead 
branches. 

The biomass of stem wood was calculated by multiplying the stem volume by the average 
stem-wood density. Stem volume, both under-bark and over-bark, was calculated by applying 
Laasasenaho’s (1982) taper curve equations, calibrated with diameter measurements at six 
points along the stem. Owing to the risk of bias in the estimates of average wood density, 
which was determined on the basis of only two sample disks per tree (breast height and a height 
of 70%), the average wood density was determined by applying equations for the vertical 
dependence of wood density presented in paper I and the two sample disk measurements 
and the stem taper curve. These equations (paper I) were calibrated with the measurements 
performed on the two disks, in order to obtain the tree level density curve, which predicted 
the wood density at different points along the stem. The corresponding stem diameters, which 
were used as a weight in estimating the average wood density, were obtained from the taper 
curve. The average wood density was then calculated from the density curve and taper curve. 
The obtained estimates for stem-wood density were, on average, 411 kgm-3 (SD 29.6), 379 
kgm-3 (SD 34) and 478 kgm-3 (SD 33.2) for pine, spruce and birch, respectively.  

The biomass of stem bark was obtained from the average bark density and bark volume 
of the tree. The bark volume of the stem was calculated as the difference between the under-
bark and over-bark stem volume. Bark volume was based on measured bark dimensions of 
the sample discs. The average bark density of the tree was the mean of the bark density 

Table 3. Number of measured biomass components by tree species.

Tree component Scots pine Norway spruce Birch

Stem wood 626 366 127

Stem bark 311 170 127

Living branch 892 611 127

Dead branch 892 609 127

Foliage 892 611 21

Stump 36 31 39

Roots: > 2-5 cm
 > 1 cm

35
6

31
5

39
6



19

measurements made on the two sample disks (breast height and a height of 70%). Disk level 
bark density was obtained by dividing the bark dry mass by the bark volume. 

The stump and root biomasses were measured on a sub-sample of the trees on the temporary 
plots. The minimum determined coarse-root diameter varied from 2 to 5 cm, depending on tree 
diameter. In addition, the root biomass was also determined on roots with a diameter larger than 
1 cm on some of the trees (Table 3). The fresh weight of the stump and roots was determined 
in the field. For moisture content determination, one sample was taken from the stump (sector) 
and two from the roots (discs). The stump and root biomasses of the tree were estimated by 
applying ratio estimation methods. First, simple regression equations (2–4) were constructed 
for the dependence of > 1cm root biomass on the biomass of coarse roots (2–5 cm). The >1 
cm root biomass was then predicted for the whole root material by applying equations (2–4). 

 Scots pine y = 0.103+1.525x R2 = 0.99,  σ ̂            = 1.471 kg (2)

 Norway spruce y = 0.842+1.306x R2 = 0.99,  σ ̂            = 2.332 kg (3)

 Birch y =1.068+1.364x R2 = 0.99,  σ ̂            = 1.698 kg (4)

where y is the >1 cm root biomass, x, the coarse-root biomass (minimum root diameter 2–5 
cm), R2, the coefficient of determination and σ ̂           , the random error. 

2.3.3.2  Modelling approach

The basic assumption in the modelling approach was that biomasses of individual tree 
components in the same site and in the same tree are dependent. This statistical dependency 
between the equations means that the errors of the individual biomass equations are correlated. 
Thus, multivariate procedures with random parameters were applied to take into account the 
across-equation correlation at both the stand and tree level. The multivariate procedure has a 
number of advantages compared to the independently estimated equations, if across-equation 
correlation is detected. The multivariate procedure enables more flexible model calibration 
and produces more reliable parameter estimates (Lappi 1991, Parresol 1999, 2001). It also 
enables biomass additivity to be ensured and the calculation of the prediction reliability for 
any combination of the tree components 

Because we currently need biomass estimates not just for the total tree, but also for the 
tree components, the biomass equations for above- and below-ground tree components were 
compiled. The models for the above-ground tree components consisted of the equations for 
wood, stem bark, foliage, living and dead branches and total above-ground tree biomass. 
Equations for below-ground biomass components were estimated for stump and root (> 1cm) 
biomass. The equations for individual tree components and total above-ground biomass 
were first fitted independently, and a set of linear models was then constructed to form a 
multivariate linear model (Lappi 1991). The parameters of the multivariate models were 
estimated simultaneously, separately for the above-ground and below-ground biomasses. The 
compiled multivariate model was written as follows:

 y1ki = b1x1ki + u1k + e1ki (5)

 y2ki = b2x2ki + u2k + e2ki   
 . 
 . 
 . 

  ynki = bnxnki + unk + enki  
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where y1ki , y2ki… ynki = dependent variables of biomass components 1, 2, ... n for tree i in stand k

 n = number of biomass components
 x1ki, x2ki… xnki = vectors of the independent variables of biomass components 1, 2, ... n
 for tree i in stand k
 b1 , b2… bn= vectors of the fixed effects parameters
 u1k , u2k… unk =  random effects of biomass components 1, 2, ... n for stand k
 e1ki , e2ki…enki = random effects of biomass components 1, 2, ... n for tree i in stand k 
 (residual error)

The covariance components, cov(ujk, uj+1k) and cov(ejki, ej+1ki), which addressed the 
dependency between the random effects of biomass components j, were estimated for both the 
stand and tree level. All the random parameters (u1k, u2k… unk) of the same stand are correlated 
with each other, and the residuals errors (e1ki, e2ki…enki) of the same tree are correlated. The 
random parameters and residual errors are assumed to be uncorrelated and are also assumed 
to be identically distributed Gaussian random variables with a mean of 0. In addition, the 
random parameters are assumed to have different variances. 

The material had a hierarchical, 2-level (temporary plots) and 3-level (thinning and 
fertilization experiments), structure. To define the model, the study site was treated as a 
2-level unit and the tree as a 1-level unit. In order to simplify the structure of the data, the plot 
level was ignored in the fertilization experiments. In the thinning experiments, the plots were 
assumed to be independent, i.e. treated as if they were from different stands. 
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3  REsULts

3.1  Models for vertical dependence of wood density (Paper I)

According to the constructed model (Table 4), wood density was dependent on the vertical 
location along the stem in all species. This dependency was highest for pine. Wood density 
of pine decreased from the butt to the top, and the gradient of wood density decrease was 
steepest at the butt (the lowest part of the stem). The difference in wood density between the 
butt and the top was considerable, about 100 kg/m3. The vertical dependence was similar in 
birch, but the density gradient was much smaller. For spruce the vertical dependence of the 
basic density was slight; the density first decreased slowly and then started to increase when 
approaching the top. 

In additon, stem-wood density was correlated with tree height and tree growth rate for 
all tree species. Positive correlation with tree height indicated that taller trees tended to have 
higher wood density. Growth rate, expressed as the interaction between the tree diameter and 
age, improved the equation considerably for all tree species. The negative parameter estimates 
of growth rate suggested that fast-growing trees had low wood density. The effect of growth 
rate on wood density was highest for spruce and lowest for birch. 

The random part of the model, related to the vertical tree-level variation in the density 
gradient, consisted of constant and random coefficients for relative height (Table 4). Random 

Table 4. Parameter estimates of models for the vertical dependence of the basic density of the stem 
(BD, kgm-3). For the fixed parameters, the standard error of estimates is given in parentheses. 

Variable Scots pine 
Estimate

Norway spruce 
Estimate

Birch 
Estimate

Intercept 467.073 (5.490) 431.339 (4.639) 470.098 (13.980)

h 0.228 (0.026) 0.075 (0.018) 0.359 (0.078)

d/t -11.777 (0.829) -16.973 (1.041) -9.612 (1.750)

hr -239.074 (11.999) -41.801 (3.782) -82.642 (8.915)

hr2 - 63.583 (4.150) 180.597 (18.632)

hr3 332.810 (6.502) - -136.931 (12.335)

hr5 -231.238 (4.352) - -

h*hr 0.346 (0.135) - -

h2*hr -0.001 (0.000) - -

var(u0k) 1068.687 637.196 799.304

var(u1k)*hr 9496.149 6664.309 4760.085

var(u2k)*hr2 8177.287 8398.160 5036.492

cov(u0k,u1k) -2136.378 -324.087 -662.301

cov(u0k,u2k) 1430.737 -43.835 317.603

cov(u1k,u2k) -8275.861 -6931.747 -4591.453
eik 92.740 114.407 115.461

Note: h, tree height (dm); d, tree diameter at breast height (mm); t, tree age (years); hr, relative height of position 
i (0…1); u0k, u1k and u2k, random tree effects, eik, residual error.
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tree effect proved to be applicable when the model was calibrated to a new tree. By utilizing 
the random effect and one or more wood density measurements at freely selected heights, 
the vertical dependence could be predicted more accurately. The advantages were greater 
for pine, which had a strong vertical dependence in basic density, than for spruce and birch. 
These models offered tools for obtaining reliable estimates of average stem-wood density, 
and decreased the risk of systematic errors when only a few wood density measurements 
have been carried out. A reliable estimate of average wood density is needed when, e.g., 
stem volume and wood density are used to determine stem biomass. An error in average 
wood density estimation also leads to an error in stem biomass estimates. This risk is most 
significant for pine, with a high vertical dependence of wood density.  

3.2  crown biomass obtained with different methods (Paper II)

The branch and needle biomass for the tree crown was calculated by applying the branch-
level regression models (model-based) and ratio estimation (design-based) methods, with 
two different variations of both methods. In the ratio estimation methods, both the objective 
(RATIO OBJECTIVE) and subjective (RATIO SUBJECTIVE) sample branch selection were 
applied. The latter was used in crown biomass estimation of the sample trees in papers III and 
IV. Comparing the ratio estimation methods, estimates based on the subjective and objective 
sampling were, on average, quite similar. Estimates differed on average by < 3% (0.7 kg) and 
< 2% (0.4 kg) for branch and needle biomass (Table 5). Although no significant differences 
were found on a stand level, there were differences at a tree level between the methods, in 
predictions of both the needle and branch biomass (Figure 2). Despite tree to tree variation, 
there was no systematic trend in the results between the methods with regard to tree size or stand 
(Figure 2). Using the RATIO SUBJECTIVE design (applied in papers III and IV), it was not 
possible to estimate the accuracy of estimates by statistical theory. However, using the RATIO 
OBJECTIVE design, the average accuracies of estimates, SEpred, were 5.3% (SD 2.8), 4.5% 
(SD 2.5) and 4.2% (SD 1.9) for needle, branch and total crown biomass, respectively (Table 5).  

Both model-based approaches, the TREE-SPECIFIC MODELS (OLS-models) and the 
OVERALL MODEL (mixed models), on average produced similar biomass estimates (Table 
5). The branch biomass estimates using the TREE-SPECIFIC and the OVERALL MODELS 
were almost identical (38.1 kg and 38.5 kg), but the OVERALL MODEL on average produced 
a 1.4 kg (7.5%) larger needle biomass. No significant differences or major trends in estimates 
were identified between methods. In terms of prediction errors (SEpred), independently of the 
method used, estimates of branch biomass were found to be more accurate than estimates of 
needle biomass (Table 5). Estimates based on the OVERALL MODEL method were found to 

Table 5. Average crown biomass (kg) estimated using the model-based methods (the OVERALL 
and TREE-SPECIFIC MODELS) and design-based methods (the RATIO SUBJECTIVE and RATIO 
OBJECTIVE). Relative SEpred (%) in parenthesis.

Methods Needle, kg Branch, kg Total crown, kg

RATIO OBJECTIVE 20.99  (5.3) 44.64  (4.5) 65.63  (4.2)

RATIO SUBJECTIVE 21.49  (-) 43.99  (-) 65.39  (-)

OVERALL 18.99  (12.0) 38.46  (7.2) 57.45  (7.8)

TREE-SPECIFIC 17.59  (18.1) 38.13  (7.8) 55.72  (10.7)
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be more accurate, especially for needle biomass, than estimates based on TREE-SPECIFIC 
MODELS (Table 5). The relative SEpred obtained by the OVERALL MODEL was, on average, 
12.0% and 7.2% for needle and branch biomass. The predictions were also stabile, i.e., the 
reliability of the biomass values (SEpred) varied only a little from tree to tree. Estimates using 
the TREE-SPECIFIC MODELS were almost as accurate, with an estimated average accuracy 
of 7.8%. However, the needle biomass predictions obtained by TREE-SPECIFIC MODELS 
were found to be less reliable and stabile; the relatve SEpred was on average 18.1%, with a 
range of 7.5–55.5 %. 

3.3  biomass equations for scots pine, Norway spruce and birch in Finland  
(Papers III–IV)

Multivariate models were constructed separately for the above-ground and below-ground 
biomass. Owing to the different number of observations of the above- and below-ground 
components, the model parameters could not be estimated simultaneously. The multivariate 
models for above-ground biomass contained the individual equations for stem wood, stem bark, 
foliage, living and dead branches, and total tree biomass (Tables 6, 7 and 8). The equation for 
foliage biomass of birch was estimated independently due to the limited amount of material. 
The multivariate model for below-ground biomass included the equations for stump and roots 
with a diameter > 1cm, and for birch, also the equation for total below-ground biomass (Table 
6). The biomass equations had a multiplicative model form. Logarithmic transformation was 
used to obtain homogenous variance, and to transform the equations to a linear form.

Three multivariate models for above-ground biomass and one for below-ground biomass 
were constructed separately for each tree species. All the multivariate models were based only 
on the variables that are commonly measured in the national forest inventory. In the simplest 
model formulation, multivariate models (MV models 1) were based only on tree diameter at 
breast height (d) and tree height (h), as independent variables (Table 6). Tree age at breast 
height (t13) and crown variables such crown length (cl) or crown ratio (cr), as independent 
variables, were added to more complex multivariate models (MV models 2) (Table 7). The 
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most elaborate multivariate models (MV models 3) were based, in addition to the previously 
mentioned variables, also on bark thickness (bt) and radial increment (without bark) during 
the last five years (i5) (Table 8). 

Tree diameter proved to be the most significant independent variable in all equations 
(Tables 6, 7 and 8). Tree height was used as an independent variable in most cases. Only the 
equations for dead branches and stump and roots were mostly based only on d. The inclusion 
of more independent variables (cl, cr, t13, bt, i5) improved the multivariate models by reducing 
especially the between-stand variance. 

Stem-wood biomass was correlated with tree dimensions (d and h) and growth rate. 
Negative correlation with growth rate indicated that fast-growing trees seemed to have low 

biomass. Adding variables depicting tree growth rate (t13 or d
t13

) to equations for stem-wood 

biomass (MV models 2) reduced the total error variance (the sum of random stand- and tree-
level variance) by 13–34%. The inclusion of radial growth (ig5) decreased the total error 
variance by a further 6–10%, but only for conifers. The equation for stem bark biomass had a 
similar form in MV models (1) and (2), and contained only d and h as independent variables. 
In MV models (3) bark thickness (bt) was added to bark equations, which decreased the total 
error variance by 10–15%. 

The tree crown biomass (living branches and foliage) was correlated with tree dimensions; 
positively with d and negatively with h. Negative correlation of h may indicate that, at a given 
d, taller trees tended to have a lower crown biomass (Fig. 3). Furthermore, long crown length 
and fast growth rate were related to high crown biomass. The inclusion of crown variables, 
crown length or crown ratio, improved significantly the performance of equations for crown 
components (living branches and foliage) (MV models 2) by decreasing the total error variance 
by 29–45%, and between-stand variance even more. The total error variance was  reduced by 

about a further 7–24% when variables describing tree growth rate (i5, t13,
 

d
t13

) were included 

in the equations for crown components (MV models 3). In contrast, the equation for dead 
branches could be improved only marginally compared to the simplest equation formulation 
(MV models 1), and the error variance was considerable in all cases.

The total above-ground biomass was positively correlated with d and h. In addition, crown 
variables (cr) improved slightly the fit of the total above-ground biomass equation only for 
spruce and pine, but not for birch.  Only the equation for pine showed better fit after adding 
bark thickness (bt) and variables indicating tree growth rate. 

The assumed statistical dependence between the biomass equations was verified in the 
analysis at both the stand and tree levels. In general, the across-equation correlation at the 
stand level was higher than that at the tree level. The tree-level errors were not systematically 
correlated between the tree components, and no correlations over 0.5 were detected. The 
magnitude of across-equation correlation at stand level depended on the tree species and 
the MV models. Generally dead branch biomass showed a high correlation with other 
tree components. The random parameter of dead branches and needles showed a negative 
correlation in all the multivariate models of pine and spruce. In addition, dead-branch biomass 
was systematically correlated with stem-wood biomass in the MV models of pine and birch. 
Also uniform correlations between the needles and living branches as well as with stem bark 
occurred for the spruce models.
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Biomass allocation to the tree components was illustrated by applying the MV model (2) to 
the biomass data. Biomass allocation varied by tree species, and the differences between tree 
species also depended on the stage of stand development, which is demonstrated in Fig. 4 with 
two example trees. At given tree dimensions the highest whole stem biomass (stem wood and 
bark), especially at the stage of final cutting, was detected for birch, and the lowest for spruce. 
The highest crown and below-ground biomass was obtained for spruce, and the lowest for 
pine. 

Allometric relationships between tree-component biomasses changed with tree size (Figs. 
5–7). The stem is the greatest biomass component and its proportion of whole tree biomass 
showed an increasing trend with tree size, especially for spruce and birch. The stem proportion 

Figure 3. The effect of tree height on living crown biomass (living branches and foliage) at a given 
diameter (d = 12 cm) using MV models 1. 
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in mature stands was mainly between 60–70%; it was highest for birch and lowest for spruce. 
The proportion of the whole crown biomass was highest for spruce and lowest for birch. The 
crown proportion showed a decreasing tendency with age for all tree species. For spruce the 
crown proportion dropped from 30% in young stands to 17% in mature stands. This trend was 
less clear for pine and birch; the crown proportion dropped from 19% to 11% for birch and from 
24% to 12% for pine. The relative share of the below-ground biomass of the whole tree biomass 
is ca. 20%; it is higher in young spruce and birch stands and lower in young pine stands.   
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Figure 5.  The biomass allocation of pine by applying MV models 2 to the biomass data of this study. 

Figure 6.  The biomass allocation of spruce by applying MV models 2 to the biomass data of this study. 
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Figure 7.  The biomass allocation of birch by applying MV models 2 to the biomass data of this study. 
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4  DIscUssION

4.1  General

In this study, individual-tree biomass equations for above- and below-ground tree components 
of Scots pine, Norway spruce and birch were compiled. The constructed biomass equations 
were based on the same material, and mainly also on the same independent variables, that 
were used in a previous study (See Repola et al. 2007). However, the parameters of the 
new equations were estimated using a statistical method that utilizes the information of the 
biomass data more efficiently and produces a more flexible and exact model structure. The 
applied model structure enables the model to be calibrated more flexibly and the prediction 
reliability for any combination of the tree components to be assessed more exactly. The aim 
was to construct models that are applicable for wider range of purposes (e.g. for assessing 
forest carbon-pool and energy-wood recourses), and which fulfill the current requirements for 
the biomass models.  

4.2  Material 

In order to obtain reliable biomass estimates at the national scale, the biomass models should 
be based on a representative sample of the stands in which the results are to be applied, e.g., 
national forest inventory data (Parresol 1999). However, sampling and analysis of biomass of 
different tree components is laborious and costly, which effectively reduces the possibilities 
to obtain data. Therefore, existing biomass data collected during previous projects was 
utilized, and only a limited amount of new material could be collected for the current study. 
Hence, the majority of the pine and spruce study material originated from a series of long-
term fertilization experiments (only unfertilized plots included), which were primarily not 
designed for constructing general biomass equations. When deriving regression models it 
might be better to subjectively select sites and stands rather than use objective sampling. It is 
essential to have a high variation in the independent variables. The selection is made such as 
to represent a variety of different site and stand conditions of the population. However, within 
stands, trees are usually sampled in an objective way. The main purpose of the collection of 
new biomass material (temporary sample plots and thinning experiments) was to reflect a 
wide range in site and stand conditions in the modelling data, i.e., to have higher variation 
in the independent variables. This design is assumed to have improved the reliability of 
the model, because high variation in the independent variables is a prerequisite for reliable 
parameter estimates (Lappi 1993). Small variation in independent variables along with a weak 
correlation between the response and independent variables produces unstable parameter 
estimates and reliable predictions only for observations with near to average values. It is 
also important that the models include the most essential variables and that the dependencies 
are delineated correctly. These dependencies should be described with common and easily 
measurable variables. To obtain a more applicable model and to decrease the bias caused by 
the unrepresentative data (subjective selected material), the equations were based only on 
the variables commonly measured in Finnish National Forest Inventories, and the equations 
based only on tree diameter are not presented here. Variables such as stem diameter and tree 
height are assumed to be easy to measure with a negligible measurement error. By allometry 
these variables have a natural correlation with volume and biomasses. Thus, despite some 
minor shortcomings, the material was found to be suitable and representative for its purpose.
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The number of sample trees used in this study varied by tree species; the volume of pine 
material was the largest and the volume of birch material the smallest. All the tree components 
were relatively well represented in the material, apart from below-ground tree components and 
birch foliage. In addition, pine and spruce material was unbalanced in terms of the response 
variables for above-ground tree components, i.e., not all tree components were measured on 
all the sample trees. In pine and spruce data, only the crown components were measured for all 
sample trees, and stem bark data was the least complete. The underlying number of units used 
for modelling was similar to that used for Marklund’s functions (1988). In fact we had data on 
more pines, about the same number of spruces and less birches  Marklund’s data (1988) were 
more comprehensive in terms of above-ground tree components (except birch foliage), i.e., 
there were less missing values for tree components. In addition, Marklund (1988) clearly had 
more data on the below-ground biomass of pine and spruce, but no data at all for the below-
ground biomass of birch. The shortcoming of Marklund’s data is that the minimum diameter 
for roots of < 5 cm diameter was poorly defined, which makes the biomass predictions vague. 

In order to give a reliable description of the relationships between the tree components, 
the equations for individual tree components should be based on the same sample trees. In our 
data this requirement was partly fulfilled, but not all tree components were measured on all the 
sample trees, especially in pine and spruce data. Consequently, the equations for individual tree 
components were based on different numbers of observations, which can cause distortion in 
the relations of tree components. In addition, the equations for below-ground tree components 
were based on relatively limited material, which decreases the reliability of the predictions 
of these components, and can also produce an error in the relationship between below- and 
above-ground tree biomass. Despite this, the compiled equations produced predictions for the 
below-ground biomass and the share of below- and above-ground biomass which are in line 
with earlier studies (Marklund 1988, Vanninen et al. 1996, Helmisaari 2001 and Petersson 
and Ståhl 2006). Also the relationships between the above-ground tree components showed 
a similar trend with regard to tree size in this study and in Marklund’s (1988) study, although 
the equations in this study predicted a lower stem proportion for conifers in mature stands.

In addition to the biomass of entire tree components, there is currently also a need to 
predict biomass accumulation along a tree (Kärkkäinen 2005). This information is requested 
especially when assessing the amount of energy wood. The compiled biomass equations give 
predictions for entire tree components, but not for the vertical biomass distribution along a 
tree. However, the equations for the vertical dependence of wood density (Paper I) can be 
utilized for assessing the biomass distribution along a stem. The total biomass accumulation 
for crown and below-ground components was not directly addressed in this study, which can 
restrict the use of the equations, e.g., in calculating energy wood removal of a stand.

4.3  Modelling tree biomass 

The reliability and applicability of biomass equations depends on the study material and also 
on how efficiently the study material is utilized in the model estimation in order to obtain 
reliable parameter estimates. In addition, the reliability of the predicted biomass value is 
affected by the statistical errors of the dependent variable, caused by a sub-sampling (Parresol 
1999). Therefore it is important that biomasses of sample trees are estimated reliably. In this 
study, the estimation errors in the sample tree biomasses could not be estimated reliably, and 
no exact estimate for the magnitude of this error was presented. 

In biomass data (papers III and IV), the determination of stem biomass was based on tree 
volume and average stem-wood density. For wood density measurements, only two sample 
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disks per tree (breast height and a height of 70%) were taken.  The low number of sample 
disks can lead to a biased estimate of average wood density, and consequently of biomass, 
especially for tree species with a high vertical dependence of wood density. Therefore models 
for the vertical dependence of the wood density of pine, spruce and birch stems (paper I) were 
constructed. These models can be calibrated for any stem using one or more wood density 
measurements at a freely chosen height. Hence, they were applied for determining the average 
wood density of the sample trees in our biomass data. Compared to other studies (e.g. Hakkila 
1979) the estimates for average values and SD were similar, 411 kgm-3 (SD 29.6), 379 kgm-

3 (SD 34.0) and 478 kgm-3 (SD 33.2) for pine, spruce and birch, respectively. Hence, it can 
be concluded that the applied method improved the accuracy of wood density estimates and 
decreased the risk of systematic errors. The advantage was most significant for pine, which 
has a high vertical dependence of wood density. 

The constructed models for the vertical dependence of wood density were based on 
hierarchically structured data. The correlation structure of the observations was not properly 
addressed in the model specification. The compiled models were specified as linear mixed 
models by addressing the random effects on two levels; between-tree and within-tree levels. 
The random errors (within-tree variation) were assumed to be uncorrelated, but in fact spatial 
autocorrelation of the successive measurements of the stems obviously exists. This did not 
affect the parameter estimates of the fixed effects, but it affects the reliability of the test 
by producing too low a standard error, i.e. the reliability of the parameter estimates were 
probably overestimated.  

In biomass data, crown biomass of each sample tree was based on the ratio estimation 
method, with four subjectively selected sample branches. A number of factors caused 
uncertainty in the results obtained by the applied method. First, subjective sample branch 
selection, with the aim of selecting representative sample branches from each crown stratum, 
can lead to biased estimates of the crown biomasses, which depend on the observer. The 
results of paper II, the subjective sub-sampling applied to spruce data produced similar results 
on average and caused no systematic bias with regard to tree size compared to the objective 
sub-sampling. Therefore, an error in crown biomass caused by the applied sub-sampling can 
be interpreted as a random error, which is not a problem in the linear model (Parresol 2001). 
The results of the paper II showed also that the statistical error of the dependent variable 
caused by sub-sampling was clearly higher in the needle biomass estimates than in the branch 
biomass estimates. This error in the objective sub-sampling design was, on average, 5.3% and 
4.5% for needle and branch biomass. However the magnitude of this error in the subjective 
sub-sampling design could not be estimated, which was a disadvantage of the method applied 
in papers III and IV. Despite this, the error can be assumed to be at least at the same level as that 
in the objective sampling design. In addition, it is a well-known fact that ratio estimators are 
biased, especially if the sample size per stratum in stratified sampling is small and the number 
of strata is large, like it was in our data (Cochran 1977, Valentine et al. 1984, Cunia 1979, 
Parresol 1999). An alternative ratio estimate with a small sample size is a single combined 
estimate, i.e. the mean ratio estimator of total crown (Hansen et al. 1946). The combined ratio 
estimate is applicable if the sample size in different strata is small and the ratio estimate can 
be assumed to be constant among the strata (Cochran 1977). Despite the small sample size, 
we used a separate ratio estimator for each crown section, because the ratio estimates of both 
the needle and branch varied systematically between crown sections, i.e., the assumption of 
constant ratio estimate was not valid.  

The reliability and applicability of biomass equations depends partly on how the model 
has been formulated. The compiled equations were based only on the variables commonly 
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measured in forest inventories, and were formulated so that the predictions would be logical 
throughout the range of the material, i.e., nonnegative values (small trees) or overestimates 
(big trees) are not obtained even in cases where the functions are extrapolated. Furthermore, 
whole information of data has been utilized in order to produce reliable parameter estimates 
and an applicable and flexible model structure. For an unbiased test of the parameters, the 
correlation structure of observations must be addressed in the model specification. To avoid 
a too complicated random part of the model and the problem in the model estimation, the 
correlation structure of the data was not totally addressed in the model specification. Biomass 
data was hierarchically, 2-level (temporary plots) and 3-level (thinning and fertilization 
experiments) structured. In the thinning experiments, based on the different thinning 
treatments, the plots were assumed to be independent (treated as if they were from different 
stands).  In the fertilization experiments, the treatment in the control plots did not differ from 
each other and stand and plot levels were combined, i.e. plot level was ignored. Temporal 
autocorrelation existed in some fertilization experiments; the sample trees had been removed 
at two different times (with a 5-year interval). This temporal correlation was ignored and the 
sampling time of the same plot was assumed to be independent (treated as if they were from 
different stands). These simplifications may decrease the reliability of the parameter test when 
the standard error of parameter estimates could be underestimated. 

Generally, equations for the biomass of individual tree components have been estimated 
separately and ignoring the correlation between the biomass components of the same tree 
or stand. In this study, this across-equations correlation (contemporaneous correlation) was 
taken into account in the model estimation by applying the multivariate procedure. Based 
on the verified statistical dependence between the biomass equations, especially at the stand 
level, the multivariate procedure had a number of advantages compared to the independently 
estimated equations. First, the across-equation correlations of the random parameters 
enable information to be transferred from one equation to another, which is especially 
useful in calibrating the model for a new stand (Lappi 1991). In the model calibration, the 
determination of one biomass component, e.g., stem biomass as a result of stem volume and 
average wood density, also enables the prediction of random stand effect for the other tree 
components, which results in more reliable predictions for all tree components in a stand. 
Second, the multivariate models also produced across-equation covariance of the fixed 
parameters, which enables the calculation of the prediction reliability for any combination 
of tree components. This information is not available for independently estimated equations. 
Third, the multivariate model usually produces more reliable parameter estimates when 
contemporaneous correlations occur (Parresol 1999, 2001). This advantage was, however, of 
only minor importance in this study (see paper III). 

The applied statistical method enables biomass additivity to be ensured by setting across-
equation constraints (Briggs 1984, Parresol 1999, Carvalho et al. 2003, Bi et al. 2004, Návar 
et al. 2004). Across-equation constraints were not applied because of the unbalanced data and 
to avoid unnecessary complexity in the total tree equation. The unbalanced data (pine and 
spruce), i.e., the equations for the total tree biomass were clearly based on a lower number 
of observations compared to the equations for the biomass of individual tree components, 
was partly responsible for some shortcomings in terms of biomass additivity. In our study, 
logarithmic transformation was applied to the dependent variables. This caused biases 
in the back-transformed value, and also problems with biomass additivity. Despite this, 
the compiled equations ensured better biomass additivity compared to the independently 
estimated equations. 
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4.4  Application area of the biomass models

Representativeness of the modelling data is a criterion of the relevant application area for the 
models. From that point of view, the compiled biomass equations are applicable for living 
trees on mineral soil over the whole country. However, due to the lack of material the validity 
of the equations is uncertain in fertilized stands, in the northernmost parts of Finland, and in 
peatland forest, especially if the dependency between the response and independent variables 
or the combination of tree dimensions deviates from that on mineral soil. The equations can 
be applied to the whole growing stock over a wide range of stand and site conditions, from 
young to mature stands. Despite this, the equations are primarily applicable for trees growing 
on normally managed stands. Hence the validity for the trees growing in sparse stands or in 
open space is uncertain. The study material includes sample trees from all tree classes over a 
wide diameter range, from 1 to 42 cm. Nevertheless, the applicability of the equation to trees 
with a height < 1.3 m is uncertain, especially for crown components.    

This study resulted in three multivariate models for above-ground tree components. The 
simplest models (MV models 1) were based on tree diameter and height, and the more elaborate 
models (MV models 2 and 3), on additional commonly measured tree variables. In contrast, 
the material on below-ground tree components was relatively limited and therefore only one 
model formulation per tree species was constructed. The reliability of biomass prediction 
varied across models, but generally the most robust (stable) predictions were obtained by 
using the simplest models (MV models 1). The more elaborate models (MV models 1 and 
2) give more reliable predictions and also decrease the risk of systematic errors caused by 
the study material. The inclusion of independent variables decreased between-stand variance 
in particular, which indicated the high correlation of these variables and the more reliable 
predictions at stand level. But in many cases, the applicability of these models (MV models 1 
and 2) is restricted by the availability of the necessary tree variables. 

Stem-wood biomass consisted of two components: stem volume and average wood density 
of the stem. The reliability of the models depended on how these components were depicted 
in the models. Growth rate is highly (negatively) correlated with wood density in conifers 
and birch (Mergen et al. 1964, Hakkila 1979, Saranpää 1983, MacPeak et al. 1990, Mäkinen 
and Uusvaara 1992), and stem volume, with the tree dimensions: diameter, height and stem 
taper (Laasasenaho 1982). The variation in wood density caused by growth rate was taken 
into account in multivariate models (2) and (3). In turn, the variation in stem form caused by 
stem tapering (diameter at a height of 6 meters) was not taken into account in the multivariate 
models, because it would have restricted the validity of the equations only to trees with a 
height > 6 m. When the upper diameter is available, the stem biomass can be calculated more 
reliably by applying an applicable volume function (e.g. Laasasenaho 1982) and the models for 
average wood density produced by Repola et al. (2007) or the equations presented in paper I. 

The most significant independent variables in equations for the crown components (living 
branches and needles) proved to be tree diameter, height and crown variables (crown length 
or crown ratio). In addition, the variable describing tree growth rate had an impact on the 
predicted crown biomass. These variables – diameter, height, crown length and ratio, and 
growth rate – have commonly been used as independent variables in the crown biomass 
equations (Marklund 1988, Hakkila 1991, Parresol 1999). In this study, the simplest equations 
for crown components included no variables related directly to crown dimensions, but height-
diameter ratio had a clear impact on crown biomass; increasing height-diameter ratio produced 
lower crown biomass. This is consistent with the previous studies, which have shown that 
height-diameter ratio captures effectively the competition status of a tree, which in turn has 



36

a strong effect on the dimension and biomass of the tree crown (Holdaway 1986, Marklund 
1988, Hakkila 1991, Mäkelä and Vanninen 1998, Mäkinen and Colin 1998). Despite this, the 
predictions based only on tree diameter and height may be unreliable on sites with a deviated 
height to diameter ratio, e.g., in pristine mires (a low ratio), and in typical young stands for 
energy wood thinning (a high ratio), where the pre-commercial thinning has been neglected. 
The equations also including crown variables such as crown length gave significantly more 
reliable predictions by decreasing the between-stand error variance. This also implies more 
reliable predictions for the stand-level crown biomass and for the amount of logging residues 
as well, which were most unreliably predicted, e.g., by Marklund’s equations (1988) equation 
based on diameter and height was applied (Kärkkäinen 2005).  Different treatments such as 
thinning and fertilization increase tree growth and the proportion of needle biomass within 
a few years. The effect of these treatments is not directly described in the models, but the 
positive correlation between tree diameter growth (5-years growth) and needle biomass was 
utilized in MV-models (3). Hence these models are recommended to be applied to fertilized 
stands. In terms of random stand and tree error variance, the equations for branch biomass 
were more reliable compared to the equations for needle biomass.  This was the result of 
the higher inherent variation in needle biomass between stand and tree levels, but also of 
within-tree variation, i.e., the dependent variable includes higher statistical error caused by 
sub-sampling (see Paper II). 

The applicability of the equations for below-ground biomass is restricted by the limited 
amount of material. The validity of these equations is more restricted than that of the equations 
for above-ground biomass. These facts should be kept in mind when applying the equations 
for root biomass, especially for trees with a diameter > 30 cm, and for trees growing on 
peatlands, where the root biomass is usual higher than that on mineral soil (Hakkila 1972, 
Marklund 1988). In addition, the compiled equations predict only coarse-root biomass 
(diameter > 10 mm), i.e. fine roots (< 2 mm) and part of the coarse roots (2-10 mm) are 
excluded. This fact can restrict the applicability of the equations for scientific purposes, but 
not that much for practical forestry, e.g., in the assessment of the amount of stump biomass for 
energy. Despite these drawbacks, the compiled equations produced logical predictions for the 
below-ground biomass when compared with the functions of Marklund (1988) and Petersson 
and Ståhl (2006). Also the share of coarse roots in whole pine tree biomass is comparable with 
the results produced by Helmisaari (2001) and Vanninen et al. (2006). However, Helmisaari 
(2001) reported a lower share of the coarse roots in mature pine stands. In our study, trees of 
two mature stands had pole roots, which partly explains the higher root biomass.
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5  cONcLUsIONs

In this study, individual-tree biomass models were derived for Finland. The models produce 
reliable biomass predictions of the different above- and below-ground tree components in a 
wide range of site and stand conditions in Finland.  The biomass equations for the individual 
tree components were derived from the same sample trees and estimated simultaneously 
by applying the multivariate procedure. This approach took account of across-equation 
correlation (contemporaneous correlations), which had a number of advantages compared to 
the traditional independently estimated equations, by enabling more flexible application of the 
equations, ensuring better biomass additivity, and giving more reliable parameter estimates.

Even though the amount of study material was quite large and all the tree components 
were represented, the validity of the models may be restricted by a deficiency of material. The 
deficiency of data may cause unreliability in the predictions for birch foliage and for below-
ground tree components.  

The reliability of the compiled biomass models was improved by constructing the tools 
to decrease and assess the statistical error of the dependent variables, which were caused 
in the biomass determination of the sample trees by sub-sampling. The models of paper I 
offered tools to estimate reliably the average stem-wood density when only a few wood 
density measurements have been carried out. These models improved the accuracy of wood 
density estimates in our biomass data. The results of paper II showed that the design-based 
estimator applied to determine the tree crown biomasses in our biomass data did not produce 
any systematic trend in errors. Thus the error in crown biomasses could also be interpreted as 
a random error, which is not a problem in the linear model.

The challenge of further biomass modeling is to expand the applicability of models to 
more diverse growing conditions. A current need is to test the applicability of the models 
on peatlands, where the relationships between the tree components may be different; root 
biomass in particular has been shown to be higher than that on mineral soil. Similarly, the 
effect of fertilization on biomass allocation should be tested. 
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