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ABSTRACT

Pinus brutia is a major element of the Mediterranean forest landscape. It plays an important
ecological and socioeconomic role by providing wood and non-wood forest products and
ecosystem services. Despite its regional relevance, information is lacking for scientific
management of P. brutia. The aim of this thesis is to address several gaps in knowledge in
the prediction of P. brutia growth and yield in relation to contemporary multi-objective
management planning. Individual-tree forest management-oriented models were fitted to
predict stand dynamics of even- and uneven-aged P. brutia stands. Taper models and
allometric biomass equations were fitted to enable the prediction of assortment volumes
and aboveground biomass of P. brutia. Different prediction strategies based on mixed- and
fixed-effects models in the absence and in the presence of model calibration were tested.
The potential of using meta-analytical approaches was also inspected. The joint production
of pine honeydew honey and timber was optimized. Although P. brutia tends to form even-
aged stands and it is mainly managed using even-aged schedules, the prediction of semi-
even-aged stand dynamics is more accurate if ingrowth is considered within the framework
of uneven-aged modelling approach. In the absence of calibration, marginal predictions of
timber assortments based on mixed-effects taper equations are competitive with those from
fixed-effects models. The calibration of generalized mixed-effects biomass meta-models
with minimal sampling effort results in more accurate predictions than local models
developed from much larger datasets. The economic profitability of P. brutia forest
management is the highest in healthy stands growing on good sites unaffected by
Marchalina hellenica. In infested stands growing on good sites, honey production cannot
compensate for the volume increment loss caused by the scale insect. On the contrary, on
poor and medium sites, joint production of honey and timber can result in higher economic
profit than wood production in healthy stands.

Keywords: stand dynamics, mixed-effects, calibration, biomass and carbon, optimization,
non-wood forest product, forest planning
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1 INTRODUCTION

1.1  Pinus brutia forests

1.1.1  Worldwide distribution of P. brutia

Mediterranean forests cover approximately 25.5 million hectares (FAO 2013).
Approximately, 25% of the Mediterranean forest area is covered by pines. This proportion
becomes much higher in the eastern Mediterranean rim and North Africa where pine forests
represent, in average, 75% of the total forest cover (Barbéro et al. 1998). Pinus brutia Ten.,
commonly known as Turkish red pine, Turkish pine, Brutian pine or Calabrian pine, is
native to the eastern Mediterranean region, where it constitutes the most widespread
coniferous ecosystem. It is also the most abundant non-broadleaved forest type in terms of
forest cover in the whole Mediterranean basin. The total area covered by P. brutia is
commonly estimated at 4 million hectares in the literature (Le Houerou 1981; Quézel 2000;
Fady et al. 2003; Boydak et al. 2006). Based on more recent information, the area covered
P. brutia within its native range could be estimated at more than 6 million hectares: around
5.8 million hectares in Turkey (MFWA 2012), 175,000 hectares in Cyprus (Pantelas 1986),
196,000 hectares in Greece (Skordilis and Thanos 1997), around 50,0000 hectares in Syria
(IPGRI 2001) and around 17,000 hectares in Lebanon (Dalsgaard 2005). According to this
information, P. brutia forests in Turkey, Cyprus, Greece, Syria and Lebanon represent,
respectively, 26, 90, 6, 11 and 13 percent of the national forest cover. In addition, the
species is also sparsely present in other countries out of its natural distribution area (i.e.,
Italy, Israel, France, Morocco, Australia), as a consequence of its introduction as a
plantation species (Biger and Liphschitz 1991; Schiller and Mendel 1995; Barbéro et al.
1998; Quézel 2000).

1.1.2 Ecological and economic importance of P. brutia

P. brutia forests constitute a major element of the eastern Mediterranean landscape and
play a key ecological and socioeconomic role. As most Mediterranean wooded lands, P.
brutia forests are multipurpose ecosystems that provide multiple wood and non-wood
products and services (EFI 2010). They are of great economic importance for the forestry
sector since they represent the main source of timber products in some Mediterranean
countries (Gezer 1985; Fischer et al. 2008). P. brutia provides a number of timber
assortments such as sawlogs, sawn wood, pulpwood and fuelwood, which are used in
construction, wood and paper industry, carpentry, as well as for producing charcoal and
forest biomass-based energy (Pantelas 1986; Fady et al. 2003; Petrakis et al. 2007; Tolunay
et al. 2008). Furthermore, non-wood forests products from P. brutia forests, such as pine
honey, mushrooms, resins, and medicinal and aromatic plants (Sabra and Walter 2001;
Ye il et al. 2005; Satil et al. 2011; K larslan and Sevg 2013) are relevant from the
socioeconomic point of view. They can represent more than 40 percent of forests’ total
economic value and they are crucial for rural livelihoods (Croitoru and Liagre 2013). In
addition, pine forests constitute a key habitat for biodiversity (Ne’eman and Trabaud 2000)
hosting a number of eastern Mediterranean endemisms such as the Krüper's Nuthatch (Sitta
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krueperi) (Frankis 1991) and the scale insect Marchalina hellenica (Hatjina and Bouga
2009).

The interaction between M. hellenica and P. brutia constitutes a paradigmatic example
that symbolizes the complexity of the ecological and socioeconomic trade-offs that occur in
these pine forest ecosystems. Namely, the sap-sucking scale insect causes a weakening of
infested trees and stands, which reduces forest growth and may lead to tree mortality. Since
P. brutia forests  are  mostly  publicly  owned,  this  is  perceived  by  the  forestry  sector  as  a
threat to forest health and productivity. On the other hand, honeybees feed on the honeydew
secretions of M. hellenica and produce a valuable non-wood forest product commonly
known  as  pine  honey  (Ye il  et  al.  2005).  The  beekeeping  sector  is  mostly  privately
managed business and, therefore, beekeepers perceive the scale insect as a beneficial
feature of the forest system.

P. brutia forests are also key ecosystems in relation to global change. As a fast-growing
fire-prone pine (Boydak 2004), carbon sequestration and storage in its biomass is important
for climate change mitigation and REDD policies. In terms of adaptation to climate change,
its ability of withstanding aridity and continentality brings special interest to this species
(Fischer et al. 2008), also in regions beyond the boundaries of the Mediterranean basin
where the climate might become more Mediterranean-like in the future (FAO 2013).

As most Mediterranean ecosystems, P. brutia forests are fragile and vulnerable
ecosystems historically affected by an intense anthropogenic pressure and harsh climatic
conditions. In view of the undergoing global changes in climate, land uses, societies and
lifestyles, P. brutia forests need to be properly and adaptively managed in order to meet the
social demands for forest goods and services at multiple scales (global, regional and local)
(FAO 2013).

1.2 Stand structure, dynamics, silviculture and management of P. brutia

P. brutia is a fire-prone fast-growing light-demanding species that can regenerate well after
wild fires and usually grows in pure stands (Boydak 2004). Thus, completely unmanaged
and non-harvested P. brutia forests tend to form even-aged stands as a result of the
recurrent fire regime typical of the ecological and socioeconomic Mediterranean conditions.
This  is  the  case  for  instance  of  pine  forest  ecosystems  in  Syria,  where  the  strict  forest
protection policy started during the 1950s has prevented any large-scale forest management
or harvesting of P. brutia forests for decades (Shater et al. 2011).

When intensively managed for timber production (i.e., in Turkey), P. brutia is mostly
managed under even-aged management schemes using regeneration methods that mainly
consist of thinning from below and clearcutting, as well as of shelterwood and strip clearcut
methods. In combination with natural regeneration or planting, such forest management
schemes also tend to form even-aged stand structures (Boydak 2004). However, in other
Mediterranean countries such as Cyprus or Lebanon, P. brutia forests have been
historically “managed” until relatively recent times by applying selective cutting or
thinning from above with the aim of harvesting the dominant and most profitable trees
(Pantelas 1986; Assaf 2010). Such forest harvesting practices have led to more complex,
uneven-sized and multi-layered stands ranging from two-aged to rather uneven-aged
structures. It is, in fact, common that, under natural conditions, forest stands form semi-
even-aged structures, that is, gradations between the strict even-aged and uneven-aged
structures, which also occur in forest ecosystems other than P. brutia (Smith et al. 1996;
González 2005).
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Stand structure is an important feature in forest management planning. On one hand, a
given stand structure is the result of tree growth and mortality dynamics, and of certain
silvicultural practices. In turn, it determines the future stand dynamics and affects future
forest management. Continuous regeneration and ingrowth play an important role in semi-
even-aged pine stand dynamics. The structural heterogeneity of multi-layered uneven-sized
stands is an important determinant of high bird diversity in pine forests (Izhaki 2000) as
compared to typical even-aged stands. On the other hand, in the fire-prone P. brutia forests,
vertical and horizontal continuity of vegetation may entail higher fire risk and severity than
in even-aged stands (González et al. 2006).

Stand density and structural heterogeneity may have an influence on aboveground tree
biomass allocation patterns. This may, in turn, have an impact on forest carbon balance and
on nutrient cycles by affecting litter production and decomposition (Arianoutsou and Radea
2000), as well as carbon stock in tree biomass components and pinewood assortments
(Naidu et al. 1998; Jenkins et al. 2003; Henry et al. 2011). Stand density and forest cover
also affect understory plant diversity (Kutiel 2000), which is in turn tightly related to the
potential use of Mediterranean pine forests as complementary sylvopastoral systems. In
addition, taking into account water scarcity within the Mediterranean basin, the
modification of the canopy structure towards multi-layered stands by means of silvicultural
treatments may increase water infiltration to the soil and improve water use efficiency by
the trees (Gracia et al. 2011). Therefore, tools are needed for properly describing and
predicting different features of P. brutia stand dynamics and their influence on relevant
forest attributes.

1.3 Why to model P. brutia forests?

Society demands an increasing number of goods and services from forest ecosystems. Such
demands represent a major driving factor determining forest management objectives and
practices. Thus, forests need to be managed for the provision of wood and non-wood forest
products, biodiversity conservation, bioenergy supply, carbon sequestration and storage,
avoiding deforestation and forest degradation, preserving water resources, etc. In short,
forests have to be managed as complex adaptive systems facing ecological and
socioeconomic changes (Messier et al. 2013). In view of the complexity and
multifunctionality that characterize P. brutia forests, there is a need for efficient forest
management schemes based on scientific knowledge in order to ensure the provision of
multiple wood and non-wood forest products and ecosystem services in a changing world.
Therefore, there is a need for science-based tools and decision support systems in order to
assist and enable adaptive forest management to properly face the changing environmental
and socioeconomic conditions (EFI 2010).

However, such science-based tools are few for many countries and for many forest
ecosystems. This has been the case for instance of P. brutia forests. Despite the ecological
and economic importance of P. brutia, the scientific knowledge concerning its stand
dynamics and yield prediction is scanty. In addition, there is little knowledge for predicting
stand dynamics in transitional complex stand structures of light-demanding species
naturally tending to form even-aged stands, as it is often the case for Mediterranean pine
forests. Although the prediction of forest biomass and carbon is important for many
purposes such as carbon balance calculations, fire risk management and fuelwood
production, there is not much knowledge on the influence of forest management and stand
structure on forest biomass allocation in eastern Mediterranean pine forests. Accurate
prediction of tree-, stand- and forest-level biomass and carbon stock on large spatial scales
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is a topical issue within forest science (Jenkins et al. 2003; Muukkonen 2007). Furthermore,
the implications of ecological interactions between stand dynamics and different features of
P. brutia ecosystems (e.g., pests, wood and non-wood forest products) are not well known
or fully understood.

1.4 Multi-objective forest management planning: managing for complexity

Contemporary multi-objective forest management planning, which is partly based on
operational research approaches, constitutes a suitable framework for tackling the above-
mentioned challenges at multiple scales (i.e., tree, stand, forest, landscape). Stand dynamics
and management objectives can be integrated by means of model-based simulation
procedures of stand development in combination with quantitative or numerical
optimization methods. Under this approach, stand-level optimization constitutes the first
meaningful planning level. The outcomes are useful for developing forest management
instructions. Sometimes, the outputs from stand-level optimizations may be scaled up in
order to produce optimal forest- or landscape-level management plans. However, it is more
common to use combinatorial optimization techniques on those cases (Pukkala 2002). So
far, optimization has received little attention in previous research on P. brutia, and is absent
from the relatively recently published monographs dealing with the management and
silviculture of this species (Ne’eman and Trabaud 2000; Boydak et al. 2006).

Based on sound forest growth and yield models, it is possible to conduct flexible
simulations of stand dynamics under different growing conditions and management
alternatives. In combination with socioeconomic data, the efficiency and the optimality of a
given forest management schedule can be assessed. In this regard, multi-objective forest
management planning tends more and more to reflect the multifuncionality of forest
ecosystems. Hence, the joint provision of wood and non-wood forest products and
ecosystem services is receiving increasing interest in research and forestry practice. By
means of numerical optimization techniques, it is possible to provide an objective scientific
basis for the selection of management alternatives that maximize or minimize the objective
function that defines the forest management goals.

The basic features of contemporary multi-objective forest management planning are the
following (Pukkala 2002):

- Models to predict tree- and/or stand-level dynamics, characteristics and attributes,
- Simulation of stand dynamics (i.e., growth and yield of wood and non-wood forest

products and ecosystem services) in alternative forest management schedules (i.e.,
number of thinnings, thinning intensities, rotation lengths) based on the existing models,

- Quantitative optimization to integrate the simulation of complex forest systems and
socioeconomic criteria in order to find the optimal management according to one or
several forest management objectives (e.g., provision of non-wood forest products,
timber assortments, ecosystem services) (Fig. 1).

1.5 Individual-tree forest management-oriented models

Science-based models for describing how forest stands develop and for predicting the yield
of forest goods and ecosystem services constitute the basis of contemporary multi-objective
forest management planning (Fig. 1).
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Figure 1. Flowchart of contemporary science-based forest management planning.

Among the existing modelling approaches (i.e., empirical, process-based or mechanistic,
hybrid and gap or forest succession models) (Hasenauer et al. 2000), empirical growth and
yield models, also called forest management-oriented models, have been widely used in
forest management planning to predict stand dynamics and the yield of wood and non-wood
products and ecosystem services (Vanclay 1994; Pretzsch 2010; Weiskittel et al. 2011;
Bonet et al. 2012; Martínez-Peña et al. 2012; Burkhart and Tomé 2012). Such predictive
models rely on statistical analyses, often under the form of regression techniques, aiming at
predicting growth and yield from several predictor variables. They are based on the state-
space approach (García 1994), which assumes that the variables describing the current state
of  a  given  forest  system  at  any  time  include  the  required  information  for  predicting  the
future evolution of the system (Fontes et al. 2010). Although these models rely to some
extent on the stationarity of site conditions (Vanclay and Skovsgaard 1997; Skovsgaard and
Vanclay 2008), they are also suitable to accurately predict stand dynamics under changing
environmental conditions when based on a dynamic state-space approach (Nord-Larsen and
Johannsen 2007; Nord-Larsen et al. 2009) or if productivity-environment relationships are
developed (e.g., Seynave et al. 2005; Tyler et al. 1996).

Empirical forest growth and yield models can be broadly classified as: i) individual-tree
models, if the basic modelling units are the individual trees within a stand, ii) size-class
models (e.g., transition matrices) if the basic modelling units are, for instance, stand
diameter classes containing several trees, iii) diameter-distribution models, if statistical
probability functions are used to model the evolution of stand diameter distribution, and iv)
whole-stand models, if the stand constitutes the modelling unit (Munro 1974; Weiskittel et
al. 2011). Individual-tree growth modelling has several advantages compared to other
modelling methods: i) it accounts for between-tree differential growth and survival rates as
a result of inter- or intra-specific competition, ii) has a high resolution and enables flexible

Decision maker Forest system

Forest inventoryPreferences

Models: growth & yield,
ecosystem services

FOREST
MANAGEMENT

OBJECTIVES Information on alternatives
at stand, forest, landscape levels Simulation

Modelling

Sample plots

OptimizationComparison of alternatives

DECISION = Optimal forest management at stand, forest or landscape levels
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and detailed simulations of stand dynamics taking into account the aforesaid differential
development of every tree (Pretzsch et al. 2002), iii) avoids the potential bias emerging
from the mean tree approach typical of stand-level and some hybrid physiological
modelling approaches as a consequence of Jensen’s inequality (Duursma and Robinson
2003), and iv) by aggregation of individual-tree predictions it can also provide estimates of
lower resolution (i.e., diameter class- and stand-level) in a similar way as size-class,
diameter distribution and whole-stand models (Pretzsch et al. 2002). In addition, some other
modelling approaches (i.e., diameter-distribution models) are not suitable for properly
simulating all management alternatives and their impacts on forest stand dynamics, growth
and yield.

Depending on whether the between-tree spatial distance is explicitly taken into account
or not in model fitting and in the prediction of stand dynamics, individual-tree models can
be distance-dependent or distance-independent (Weiskittel et al. 2011). Distance-dependent
models are able to account for the between-tree competition in a more detailed and
sophisticated way than distance-independent models. However, the distances between
individual trees in a stand are usually unknown in forest management practice. Therefore,
distance-independent models may be more widely applicable in forestry practice. On the
other hand, increasing use of LIDAR in forest inventory would possibly broaden the
applicability of distance-dependent approaches.

In addition, since different stand structures may reflect differences in stand dynamics,
predictive individual-tree models need to be able to imitate and reproduce the expected
stand dynamics according to the stand structure and species composition. In this regard,
previous research has given little attention to exploring the most suitable modelling
approaches for complex, transitional or intermediate stand structures between even-aged
and uneven-aged stands.

Multi-objective forest management often needs to address issues related not only to the
provision of wood products and timber assortments (i.e., sawnwood, pulpwood, firewood),
but also in relation to carbon sequestration and storage. Since forest yield can be expressed
in terms of either volume or biomass, taper models and biomass allometric equations are
useful tools for predicting tree-level yield into different timber assortments and tree
components. By aggregating individual-tree predictions, such models can be used for
scaling up estimations of timber and biomass production at multiple scales (i.e., stand,
forest, landscape, country). In fact, according to the IPCC guidelines (IPCC 2006),
currently under review, the accounting of biomass and carbon stock for Tier 2 (national
level) and Tier 3 (local level forest modelling) levels should be based on sound allometric
equations.

Large-scale prediction has much ado with the generalisation of biomass and carbon
estimates (e.g., Jenkins et al. 2003; Muukkonen 2007; Somogyi et al. 2007). In a nutshell,
to what extent are our results applicable elsewhere or generalizable into larger scales? From
the modelling perspective this can be partly tackled from a number of approaches ranging
from sampling design issues, to data acquisition methods and basic statistical modelling
theory.  Thus,  from the  sampling  point  of  view,  it  is  desirable  that  the  modelling  data  are
collected from a wide range of possible growing conditions in terms of site characteristics,
stand structure and geographical distribution. Concerning data acquisition, most forest
research relies on the analysis of field data, regardless of whether those field measurements
are processed within the framework of primary or secondary analysis (Glass 1976).
Furthermore, it is possible to directly rely on the outcomes of previous forest modelling
research, i.e., already published models for different geographical areas and growing
conditions, to generate data for large-scale models. These latter kinds of data are often
called pseudo-data or pseudo-observations, and the models developed from them may be
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called meta-models, as they fall into the research field of meta-analysis (Glass 1976;
Jenkins et al. 2003; Muukkonen 2007).

Model validation against independent data is probably the most robust way to prove
whether model predictions are accurate and precise enough beyond the range of the
modelling data. In addition, modelling theory offers the possibility to account for the
variation arising from different hierarchical levels of the data. This can be conducted by
means of mixed-effects models which implicitly assume that the modelling data represent
only a sample of a larger population. Mixed-effects may be calibrated to different growing
sites and conditions with little resampling effort (Pinheiro and Bates 2000).

1.6 The state of the art of P. brutia growth and yield modelling

Despite the relevance of P. brutia in the Mediterranean region, the scientific knowledge on
P. brutia growth, yield and management is rather scanty. Differences in stand structure,
growing conditions and tree shape among locations and provenances (e.g., Isik et al. 1999;
Zianis et al. 2011) prevent the extrapolation of local results to broader areas.

The complete set of equations provided by Palahí et al. (2008) to predict P. brutia stand
dynamics on an individual-tree basis was limited to a small area in Dadia National Park
(north-eastern Greece). In addition to the restricted geographical area, the study failed to
provide an ingrowth model to properly simulate uneven-aged stand dynamics. In fact,
according to Kitikidou et al. (2011), the scarcity of suitable data has prevented the
development of sound individual-tree models in other Greek areas. The other available
complete set of forest management-oriented models for even-aged P. brutia stands (Shater
et  al.  2011)  was  conducted  within  the  framework  of  this  PhD  thesis.  More  recently,  a
couple of local site index models have been developed for areas in Greece and Cyprus
(Kitikidou et al. 2011, 2012). In view of the relevance of P. brutia in Turkey, one would
expect to find growth and yield models from that country. However, no such research
papers can be found from international journals. The fact that none of the two main
monographs on this species (Ne’eman and Trabaud 2000; Boydak et al. 2006) explicitly
tackles the multi-objective forest management planning of P. brutia also indicates lacking
knowledge for scientific management.

So far, the studies dealing with tree taper and biomass prediction of P. brutia are also
scanty and restricted to geographically small areas in Turkey and a couple of Aegean
islands in Greece. In addition, the existing papers on allometric biomass equations for P.
brutia are based on rather small datasets presenting mainly medium-sized and small trees
(Bilgili and Kucuk 2009; Durkaya et al. 2009; Zianis et al. 2011). Therefore, reliable
estimations of aboveground biomass and carbon cannot be obtained for most regions
throughout the natural distribution area of P. brutia. Concerning taper modelling of P.
brutia, the existing rather localised studies are based on the evaluation of a limited number
of models that in some cases result in biased predictions of stem volume, especially for
large trees (Brooks et al. 2008; Özçelik et al. 2011; Özçelik and Brooks 2012).

1.7 Strategic research objectives for P. brutia

The international strategic research objectives for Mediterranean forests are in accordance
with the above-mentioned concerns and challenges in relation to P. brutia ecosystems, as
well as with their ecological and economic importance. They are also consistent with the
contemporary multi-objective forest management planning approach. The Mediterranean
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Forest Research Agenda 2010-2020 (EFI 2010) identifies the following meaningful
research targets in relation to the aforementioned gaps in knowledge: i) to implement
modelling approaches at multiple scales (e.g., tree- and ecosystem-level), ii) to use and
develop new forest growth and yield models that can provide predictions on the provision
of wood and non-wood products and ecosystem services, iii) to develop goal-based
dynamic and adaptive silvicultural models to optimise the provision of relevant goods and
services, iv) to develop new multi-objective forest planning models to solve multiple
objective problems considering socioeconomic and ecological factors and adjacent
resources at multiple scales, v) to develop advanced optimisation techniques capable of
integrating bio-physical and socioeconomic paradigms, in dynamic modelling frameworks,
vi) to monitor, understand and model interactions between forests and microorganisms and
insects: symbionts, pathogens, pests, and vii) to design, implement and evaluate policy
instruments to promote the optimal provision of market and non-market goods and services.

Since P. brutia forests are partly distributed throughout some EU countries of the
eastern Mediterranean region, the above-mentioned research goals are also linked to the
strategic objectives, research areas and forestry-value chains defined by the first Strategic
Research Agenda (SRA), which was designed within the framework of the European
Forest-Based Sector Technology Platform (FTP – Forest Technology Platform). Among the
strategic research objectives identified by the SRA, the following ones would respond to
the challenges of P. brutia forests: i) enhancing the availability and use of forest biomass
for products and energy, and ii) meeting the multifunctional demands on forest resources
and their sustainable management. In addition, the following forestry-based value chains
mentioned in the SRA are also related to the gaps in knowledge on P. brutia: i)
commercialising soft forest values, ii) trees for the future,  iii) forests for multiple needs, iv)
advancing knowledge on forest ecosystems, and v) adapting forestry to climate change
(FTP 2006; EFI 2010). Similar targets are defined also in the second strategic theme
(“responsible management of forest resources”) of the FTP’s Strategic Research and
Innovation Agenda for 2020, and more specifically, under the following research and
innovation areas (FTP 2013): i) multi-purpose management of forests, ii) forest ecology and
ecosystem services, and iii) enhanced biomass production.

1.8 Objectives of this PhD thesis

This PhD thesis aims at addressing several of the aforementioned research goals concerning
P. brutia forests. Specifically, the objectives of this PhD thesis are to:

1. quantitatively describe and predict P. brutia stand dynamics based on individual-tree
growth models (studies I and II);

2. provide reliable tree-level models for predicting P. brutia yield in terms of biomass and
carbon, as well as in terms of timber assortment volumes (studies III, IV and V);

3. test the performance and potential of mixed-effects models in yield prediction both in
the absence and in the presence of calibration data (studies III and V);

4. inspect the potential of using meta-analytical approaches to improve the predictions of
empirical models (study V);

5. propose optimal forest management schedules for P. brutia forest stands (studies I and
VI); and

6. optimize the joint production of pine honey (a non-wood forest product) and timber in
P. brutia stands infested by the scale insect M. hellenica (study VI).
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2 MATERIALS AND METHODS

2.1 Materials

2.1.1 Study area

The study region is the eastern Mediterranean rim which practically constitutes the natural
distribution area of P. brutia (Fig. 2). Studies I, III and IV used data collected in Lebanese
and Syrian P. brutia stands.  Study  II  was  based  on  data  collected  in P. brutia stands
throughout Lebanon. Study V was based on existing models for different P. brutia
populations in Greece, Turkey, Syria and Lebanon. Finally, study VI focused on Turkey
and Greece, where all pine honey in the world is produced.

2.1.2 Data for individual-tree growth modelling

Data were collected from 133 circular plots placed throughout the natural distribution area
of P. brutia in Middle East: 83 plots in Syria and 50 plots in Lebanon. All plots were used
in study I of this PhD thesis, whereas only the Lebanese plots were used in study II.  The
sample plots were selected so as to capture the whole range of variation in site, stand age
and stand density. The sample plots were established in stands where no forestry operations
had been conducted at least during the previous 20 years. The plot radius was varied
depending on the stand density in order to include approximately 75 trees in each plot.

Figure 2. Natural distribution area of Pinus brutia (EUFORGEN 2009) and approximate
location of the study areas of the papers included in this PhD thesis.

Study VI

Studies I, III and IV

Study II

Study V
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Diameter at breast height (dbh) and radial growth of one or two past 10-year periods were
measured for every tree in the plots. Tree height and bark thickness were measured for 10
to 11 sample trees, and age was measured for 5 dominant trees. The following variables
were recorded for every plot: altitude, slope, aspect, average soil depth (5 measurements
per plot, one in the plot centre and four near the limits of the plot) and UTM coordinates of
the plot centre. Additional stand and tree level variables (i.e., stand basal area, basal area of
trees larger than the subject tree, mean dbh) were calculated for every plot as part of the
data preparation process. Two plot-wise models were fitted to calculate the height and bark
thickness of those trees for which these variables had not been measured in the field.
Backdating was used to calculate tree and stand variables at the beginning of the two past
10-year growth periods assuming that the bark thickness-dbh and height-dbh relationships
had remained constant along time.

2.1.3 Data for volume and biomass modelling

Data were collected from 201 felled trees of different sizes and shapes were felled
throughout the natural distribution area of P. brutia in Middle East: 100 trees in Syria and
101 trees in Lebanon. The trees represented different site qualities, stand densities, and
stand ages. Every tree was measured for outside bark diameter at breast height (1.3 m).
Each tree was felled at stump height (10 cm above ground level), and the total length of the
stem (total height from ground to tip) was measured from the felled trees. Stem diameter
was measured at relative heights of 1%, 5%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%,
and 90% of the total tree height. A cubic spline function was fitted for each tree to calculate
the stem diameter at 10-cm intervals. The volume of each10-cm disc was calculated with
the cylinder formula and summed to obtain the total “true” stem volume.

For taper modelling purposes (study III), the 100 sample trees from Syria were used as
modelling data, whereas the 101 trees measured in Lebanon were used as an independent
dataset for model validation of the selected stem profile equation.

For the first study on allometric aboveground biomass equations (study IV), the dry
matter content of P. brutia was determined from samples of branches and needles of about
1.5 kg each taken from felled trees. The samples were dried in an oven at 105 ºC until they
reached constant weight. The dry matter content of branches and needles was multiplied by
the corresponding fresh biomass of every sample tree in order to calculate the dry biomass
for these two components (branches and foliage). Since needles were not separated from
branches, the proportion of branches of the total fresh biomass of tree crown was calculated
from p(branch) = 0.6 + 0.003*dbh (Montero et al. 2005).

To determine the basic density of the tree stem, stem disks were taken from felled trees
of different sizes and at different tree heights. The samples were also dried in an oven until
constant weight, and the basic density was calculated by dividing the obtained dry weight
by the fresh volume of the disk. Then, the mean basic density of all samples was calculated.
The stem dry biomass of every tree stem was then computed by multiplying the total “true”
stem volume by the mean basic density.

The study on allometric biomass meta-models (study V) used pseudo-observations as
modelling data. Pseudo-observations were derived from existing allometric biomass
equations throughout the natural distribution area of P. brutia. In addition to the equations
developed in study IV for Middle East, those developed by Zianis et al. (2011) in Greece,
together with those developed by Bilgili and Küçük (2009) and Durkaya et al. (2009) in
Turkey, completed the list of equations from which the pseudo-data were derived. The
pseudo-observations were generated based on the systematic part of the models assuming
normally distributed residuals with mean equal to zero and variance equal to the reported
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variance. This procedure aimed at recovering the within- and between-location variability
of the original field measurements. Five pseudo-observations were randomly generated for
each 2-cm diameter class for the whole diameter range of the original datasets reported in
the reference studies.

2.1.4 Data for economic optimization of stand management

Study VI used the results of studies I and III for predicting and simulating P. brutia growth
and yield. The additional data requirements for this study consisted of: i) annual pine honey
production, and ii) prices and production costs of timber assortments and pine honey. Since
honey yield estimates per hectare can vary considerably, a sensitivity analysis accounting
for the effect of pine honey production on optimal forest management was conducted by
using the following honey yields: 30 kg ha-1 yr-1, 60 kg ha-1 yr-1 and 90 kg ha-1 yr-1. The
price assigned to pine honey was 7 US$ kg-1. The stumpage prices of different timber
assortments (i.e., sawlogs, pulpwood and firewood) provided by P. brutia stands were also
considered  in  the  analysis  (Table  1).  Site  preparation  and tending costs  in  years  5  and 10
were set to 200 US$ ha-1 each. The costs associated to pine honey production were 2 US$
kg-1. The economic information of wood and non-wood forest products was obtained from
the  literature  (e.g.,  Saner  et  al.  2003;  Pak  et  al.  2010)  as  well  as  from  Turkish  forestry
experts and official records.

2.2 Methods for individual-tree growth modelling

2.2.1 Model sets for predicting even-aged and uneven-aged stand dynamics

Individual-tree growth models were developed for both even-aged (EA) and uneven-aged
(UA) P. brutia stands. Individual-tree modelling of even-aged P. brutia stand dynamics for
Middle East countries (studies I and II) was based on models for dominant height,
diameter-increment, height-diameter relationship and self-thinning. Country effects
accounting for the geographical isolation between the Syrian and Lebanese P. brutia
populations were considered in model fitting by using a country indicator variable. All
models were fitted using nonlinear least squares regression analysis. Individual-tree
modelling of uneven-aged P. brutia stand dynamics (study II) was based on models for
ingrowth, diameter-increment, and height-diameter relationship.

Since only one measurement of dominant height was available from each plot, site
quality was assessed by using the guide curve method in order to produce anamorphic site
index curves (Clutter et al. 1983). Several functions among those compiled by Kiviste et al.
(2002) were fitted in nonlinear regression analysis when searching a suitable site index
model. The index age used for calculating site index was selected according to the rotation
period typically applied in managed even-aged P. brutia stands, that is, 50 years (e.g.,
Bettinger et al. 2013).

Table 1. Stumpage prices and minimum dimensions of different timber assortments.
Assortment Stumpage price

(US$ m-3)
Min. top diameter
(cm)

Min. piece length
(m)

Sawlog 90 19 2
Pulpwood 45 8 1
Firewood 10 4 0.5
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The diameter-increment modelling aimed at predicting the future 10-year diameter growth.
Variables representing site productivity, tree size and competition were used as predictors.
Under the even-aged modelling approach, site index was used to describe site quality. Since
stand age is undefined in uneven-aged forestry (a stand does not have a single age) and
dominant height may be modified through forest management, site productivity was
described via soil and topographic variables.

In height-diameter modelling of even-aged stands, the total tree height was expressed as
a function of diameter at breast height, dominant height and dominant diameter based on
the power equation model form of Stoffels and van Soest (1953) modified by Tomé (1989),
which constrains the model to pass through the point determined by dominant diameter and
dominant height. Since dominant height and diameter are not meaningful predictors under
the uneven-aged framework, the height-diameter equation was an adaptation of the
“Hossfeld I modified” function.

Stand-level survival of P. brutia trees was modelled by means of a self-thinning model
in accordance with Reineke’s model form (Reineke 1933) and the –3/2 power rule (Yoda et
al. 1963). The model was fitted using the number of living trees per hectare in the densest
sample plots as the response variable. Stand mean dbh and site index were tested as
predictors. For that purpose, the sample plots were first divided into three site quality
classes (good, medium and poor) according to site index. The plots that were assumed to be
on the self-thinning limit were selected separately in each site index category, which
resulted in 40 plots for modelling the self-thinning limit. Since nowadays P. brutia stands
are seldom thinned in Syria and Lebanon, a high proportion of plots were at the self-
thinning limit mainly in Syria, which could be verified in the field: dead, dying and
weakened trees were common in the densest plots. Since sample plots were temporary (i.e.,
measured only once for past growth), it was not possible to develop an individual-tree
mortality model.

Under the uneven-aged modelling approach, ingrowth modelling was conducted by
means of a two-equation model that predicts the number of trees that pass the 10-cm dbh
limit during the next 10-year period, and the mean diameter of those trees at the end of the
10-year period.

2.2.2 Simulation of even-aged and uneven-aged stand dynamics

The fitted growth models were used to simulate stand dynamics of even-aged (studies I, II
and VI) and uneven-aged (study II) P. brutia stands. The input data consists of a list of all
trees  growing  in  a  given  plot.  The  simulation  procedure  for  a  10-year  growth  period  in
even-aged stands was as follows (Shater et al. 2011):

1. In addition to tree diameters, dominant height (Hdom) and stand age (T) need to be
known.

2. Site index is calculated from Hdom and T using the site index model.
3. Stand age is incremented by 10 years, and a new Hdom is computed using the site

index model,
4. Diameters are incremented using the diameter-increment model,
5. The stand mean dbh is calculated (Dmean),
6. The self-thinning limit is computed using the self-thinning model,
7. If the number of trees overpasses the self-thinning limit, trees are removed
8. Dominant diameter (Ddom) is computed and individual-tree heights are predicted

using the height-diameter model,
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9. The remaining tree characteristics (timber assortment volumes, biomass in different
tree components) and stand attributes (stand volume, biomass, basal area, etc.) are
computed.

The simulation procedure for a 10-year growth period in uneven-aged stands was as
follows:

1. 10-year diameter increment is predicted for each tree and added to the current tree dbh,
2. The number and initial diameter of ingrowth trees is calculated using the two-equation

ingrowth model,
3. Ingrowth trees are added to the stand,
4. New tree heights are computed based on the height-diameter model.

Survival was not simulated in study II, where the simulation period was short. This choice
was necessary since the backdated characteristics of current survivors were used as input
data; there was no mortality in the data. In addition, the Lebanese stands of study II were
seldom near the self-thinning limit.

2.2.3 Comparing even-aged and uneven-aged modelling

As a result of study I, it was observed that while Syrian pine stands were rather even-aged,
the plots sampled in Lebanon presented higher structural heterogeneity ranging from even-
aged to uneven-aged stands (Fig. 3). To analyse which modelling approach may be more
suitable to predict P. brutia growth  and  yield  when  dealing  with  such  complex  stand
structures, the 50-plot Lebanese sample was split into two sub-samples of 25 plots
containing, respectively, the most even-aged and the most uneven-aged stands. The stand
classification was based on the standard deviation (SD) and skewness (SK) of the diameter
distribution. SD was selected because high standard deviations of dbh are indicative of
“uneven-agedness”, even if the diameter distribution is bell-shaped. In turn, positive SK
describes the degree of asymmetry of typical uneven-aged, inverse J-shaped diameter
distributions. Standard deviation plus two times skewness (SD+2 SK) was used to bisect
the plots as even-aged and uneven-aged. As a result, a 50-plot sample containing all the
stands, as well as two 25-plot sub-samples containing the most even-aged and the most
uneven-aged stands, were obtained to evaluate the performance of the two modelling
approaches in stand volume prediction. Stand volume was estimated through aggregation of
individual-tree stem volumes using the taper model developed in study III.

A 20-year growth simulation was conducted separately on the 50-plot sample and the
two 25-plot sub-samples. The even-aged and uneven-aged model sets were used separately
to simulate a 20-year growth period in every sample stand using the known backdated stand
conditions  20  years  ago  as  the  starting  point  for  the  simulation  process,  and  running  the
simulation until the current stand conditions.

The performance of each modelling approach was evaluated by comparing the
simulation-based stand volume predictions with the observed values in three different ways:
(a) assuming that all the stands were either uneven-aged or even-aged, that is, testing the
predictions of each modelling approach against the observed values in all the 50 stands
(“overall-performance”); (b) testing the predictions of each approach against the measured
values of the 25 stands corresponding to the same stand structure as the approach (“self-
performance”); and (c) testing the predictions of each approach against the measured values
of the 25 stands corresponding to the opposite stand structure (“cross-performance”).
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Figure 3. Differences in stand structure between Lebanese and Syrian P. brutia forests
according to skewness and standard deviation of the stand diameter distribution.

2.3 Methods for volume and biomass modelling

2.3.1 Comparing volume prediction strategies based on taper modelling

A taper model for P. brutia in Middle East was developed within study III. Alternative
volume prediction strategies based on fixed- and mixed-effects models in the absence of
calibration were compared: 1) marginal predictions from a marginal (fixed-effects) model,
2) conditional predictions from a conditional (mixed-effects) model with random effects
equal to zero, and 3) mean predictions from a mixed-effects model over the distribution of
random effects (marginal predictions from a conditional model).

Candidate taper equations with different numbers of parameters (from 1 to 10) were
selected from the literature. Because volume prediction was the main purpose of this study
and tree volume is the integral of cross-sectional stem area over the tree height, the models
were fitted for squared dbh (d2). These models provide unbiased predictions for tree cross-
sectional area and volume (Bruce et al. 1968; Prodan et al. 1997; Gregoire et al. 2000). The
best model for each number of parameters was selected aiming at identifying a single best
equation.

Since marginal predictions from fixed-effects models have been shown to be often more
accurate when the aim is prediction (e.g., Pukkala et al. 2009; Guzmán et al. 2012; de-
Miguel 2013), the fixed-effects least squares modelling approach guided the model
selection procedure. Once the best model was selected, a nonlinear mixed-effects model
was fitted and compared with the fixed-effects model. For that, the effects of different
parameters on the shape of the taper curve and their random variation were analyzed. Based
on this analysis, the parameters that were tree-specific were identified, and the best
combination of random parameters according to the likelihood ratio test was selected.

Whereas volume predictions under strategy 1 and 2 can be directly obtained by
numerically integrating the taper equation resulting from model fitting, the implementation



23

of strategy 3 required Monte-Carlo calculation consisting of 20,000 realizations of model
parameters drawn from the multivariate normal distributions of the random parameters
taking into account the covariance matrix of the random effects. The taper curve for each
simulated vector of random effects was integrated numerically to compute the volume.
Finally, the mean over the 20,000 predictions was computed as the marginal prediction of
tree volume. All three prediction strategies were evaluated in the modelling data (Syria) and
validated using an independent data set gathered from another country (Lebanon) aiming at
a generalized taper equation meaningful to Middle East.

2.3.2 Allometric modelling of aboveground biomass

Study IV was devoted to the assessment and inspection of differences in tree-level
aboveground biomass prediction for P. brutia in Middle East. A number of models among
the most utilized in previous research dealing with biomass prediction (e.g., Zianis et al.
2005) were tested. Two alternative models were provided for each aboveground tree
component: one using the best combination of the available predictors (i.e., dbh, tree height
and crown length), and the other using dbh as the only predictor. Predictions at the tree,
stand and forest levels were based on the latter model form.

The equations presented in this study were fitted under the intrinsically linear form,
which assumes an additive error in model fitting (Návar 2010), and using generalized least
squares nonlinear regression analysis. Such an approach is supposed to prevent the
“additivity problem” (Parresol 2001) arising from the mismatch between the sum of
biomass component-specific predictions and total aboveground biomass estimates
(Snowdon 2000). In addition, yielding predictions for the response variable on its original
scale avoids the use of bias corrections factors (e.g., Baskerville 1972).

A power-type variance function describing the heteroscedasticity found in the model
residuals was used to homogenize the residual variance:

22var yei (1)

where 2 is the error variance, y represents a variance covariate given by the fitted values of
the model, and  is the variance function coefficient.

2.3.3 Generalizing biomass models to the natural distribution area of P. brutia

Study V focused on providing generalized meta-models for predicting aboveground
biomass of P. brutia on large spatial scales by calibrating those models to location-specific
conditions. The hierarchical structure of the meta-modelling data (i.e., pseudo-observations
generated based on existing models developed for different locations) was taken into
account by means of a mixed-effects modelling approach. The widely used allometric
model with dbh as the only predictor was selected due to lacking local information for
relating other tree attributes (e.g., height) to dbh and because tree attributes other than dbh
may not be available in large-scale biomass prediction. Thus, the power-type equation form
using  diameter  at  breast  height  as  the  single  predictor  of  tree  biomass  was  selected  to
conduct the meta-analysis. The linearized version of the power-type equation was favoured
instead of the nonlinear form to enable the straightforward calibration procedure within the
context of linear prediction without linear approximations of nonlinear functions.
Therefore, the logarithmic transformation of the biomass model was selected to conduct the
meta-analysis.



24

Thus, the selected model form was:

ijijiiij edbby )ln()()(ln 1100              (2)

where yij is dry biomass of the corresponding component (stem, crown or foliage) of tree j
in location i (kg  tree-1), dij is diameter at breast height (cm), 0 and 1 are fixed-effects
regression coefficients, b0i and b1i are the parameters accounting for between-location
random effects and eij is residual variance. It is assumed that both random effects and
residual are independent, normally distributed random variables with (b0i, b1i)’= bi

~ ),0( DMVN and eij ~ ),0( 2NID . Parameters 0, 1, D  and 2  were estimated using
restricted maximum likelihood as implemented in the nlme package (Pinheiro and Bates
2000) of R-environment (R Development Core Team 2011). Baskerville’s bias correction
factor (Baskerville 1972) was used to back-transform aboveground biomass estimates into
their original scale (kg tree-1).

The meta-model calibration procedure was based on the prediction of random effects using
the best linear unbiased predictor (BLUP) (Lappi 1991), which requires destructive
sampling of at least one tree from the location of interest for measuring the biomass
components. Thus, the logarithmic aboveground biomasses measured from trees in location
i are pooled into vector yi, and they follow the model

iii eby              (3)

where  is the fixed part of the mixed-effects model, bi is a vector of random effects
accounting for between-location differences, Z is the design matrix including those
measured predictors which have a random coefficient, and ei is a vector of random
residuals. Let us define the variance-covariance matrix of the random effects var(bi)=D and
var(ei)=R, where R= 2I. D is, therefore, a square n × n matrix with n equal to the number of
random parameters. In this case, the design matrix Z is a 2 × n matrix.

The mean and variance of a vector including both random effects and observations are
(McCulloch and Searle 2001)
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The Best Linear Unbiased Predictor (BLUP) of the random effects for the location of
interest, bi, can be then computed as follows:

yRZZDZDbbBLUP iii
1ˆ              (5)

with the prediction variance of
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ii              (6)
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An independent dataset was used in model validation. Different sampling strategies were
tested using Monte-Carlo simulation by generating 10,000 sampling realizations per
sampling strategy. The sampling strategies tested were the following: i) completely random
sampling of 1,2,3,...,n trees, ii) stratified random sampling of 2,4,6,...,n trees within two
strata (dbh 23, dbh 23), and, iii) stratified random sampling of 3,6,9,...,n trees within three
strata (dbh 18, 18<dbh 30, dbh>30). The dbh thresholds to determine the partitioning of
the independent dataset into tree-size categories was set so as to have the same number of
trees per tree-size category. At every iteration, the independent dataset was split into two
sub-datasets. The first sub-dataset contained nineteen sample trees randomly selected for
model validation purposes. Of the remaining 20 trees, 1 to 20 trees were selected according
to the applied sampling strategy for model calibration using BLUP. At each iteration, an
ordinary least squares (OLS) linear model was also fitted to the calibration sub-dataset.
This procedure aimed at comparing the differences in terms of predictive performance
between the calibrated linear mixed-effects meta-model and the equivalent OLS linear
model based on the same sample of trees. The performances of the meta-models and the
corresponding OLS models were then assessed by comparing observed versus predicted
biomass estimates.

2.4 Criteria used in model selection, comparison, evaluation and validation

In studies I to IV, the selection of the best individual-tree growth and yield models was
based on the following criteria: a) agreement with current biological knowledge, b) logical
behaviour of the models in extrapolations and long-term simulations, c) simplicity and
robustness, d) accuracy and precision, e) statistical significance (p-value < 0.05) of model
parameters, f) non-biasness, g) homocedasticity and normal distribution of residuals, h)
acceptable levels of multicollinearity, and i) sensitivity analysis of model predictions to
changes in the parameter values. The statistics used for model selection were the coefficient
of determination (R2), residual standard error (RSE), Akaike’s information criterion (AIC),
and Bayesian information criterion (BIC). Likelihood-ratio tests were carried out in order to
assess whether the improvement of model fitting arising from adding more predictors to a
null model was statistically significant.

Model comparisons, evaluation and validation in studies II to V were also partly based
on the partitioning of the mean square deviation (MSD) into squared bias (SB), nonunity
slope (NU) and lack of correlation (LC) (Gauch et al. 2003). Such a partitioning enables a
proper assessment of all sources of discrepancy between observed and predicted values
with respect to the perfect fit.

When needed (i.e., studies II and III), a multi-criteria decision analysis (MCDA) was
conducted based on the above-mentioned criteria to produce a ranking in order to facilitate
the decision-making on the best modelling approach (Render and Stair 1992). Accordingly,
a performance index (rank sum) was computed for each model or modelling approach by
adding the rates for the different criteria used in model selection and evaluation.

2.5 Methods for optimizing stand management

Study VI optimized the management of even-aged P. brutia stands in the joint production
of timber and pine honey. The distance-independent individual-tree models developed
within study I were used to simulate stand growth. The taper model provided within study
III was used to estimate the volume of different timber assortments and total tree volume.
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The negative effect of M. hellenica on tree growth in infested stands was subtracted from
tree growth predictions for healthy stands based on the quantitative information provided
by  Ye il  et  al.  (2005).  Thus,  based  on  the  simulation  of  stand  dynamics  for  healthy P.
brutia stands (i.e., in the absence of the scale insect) detailed in section 2.2.2, the procedure
for simulating 10-year growth periods in pine stands infested by M. hellenica was as
follows:

1. The following equations published by Ye il et al. (2005) were used to calculate
diameter increment of infested and healthy trees as a function of stand age:

35571ln24790infested .T.d              (7)

23991ln19090infested-non .T.d              (8)

where dinfested and  dnon-infested is diameter increment of infested and non-infested P.
brutia trees (cm), and T is stand age (yr).

2. The ratio between dbh increment in infested and non-infested trees was modelled as a
function  of  stand  age.  This  ratio  was  used  as  a  correction  factor   accounting  for  the
growth reduction caused by M. hellenica in subsequent simulation steps (CFinfested)

T.CF 003901infested              (9)

3. The dbh growth prediction for non-infested stands ( d) based on the diameter
increment models of study I was multiplied by the aforesaid growth correction factor in
order to simulate 10-year diameter growth of infested trees ( dcorrected)

dCFd infestedcorrected            (10)

4. The dominant height increment ( Hcorrected) resulting from the dominant height model
fitted in study I was multiplied by the same factor

12infestedcorrected TT HHCFH            (11)

where HT1 is predicted dominant height at the current stand age, HT2 is predicted
dominant height at the end of the next simulation step.

5. The site index was updated after every simulated growth period (SIcorrected) using the
site index model provided in study I

50
2

corrected1
corrected HG

HG
HHSI

T

T            (12)

where HGT2 is guide curve value at the end of the next simulation step and HG50 is the
guide curve value at the reference age (50 years).
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Since specific quantitative information regarding the impact of M. hellenica on tree vigour
is lacking, it was assumed that tree mortality occurring at the stand level followed the self-
thinning model fitted within study I for healthy stands. Since increasing site index increases
the self-thinning limit, infestation by M. hellenica increases mortality via its negative effect
on site index. In simulation, trees having lower growth rates had a higher mortality rate
(Vanclay 1994). The stand age at which pine honey production started in stands infested by
M. hellenica was set to 35 years, when the infestation of trees is, in average, more likely to
be relevant enough (Ye il et al. 2005). In the absence of detailed scientific information, it
was assumed that,  in a given stand, pine honey yield remains constant over time until  the
final cut.

The simulation stands considered in this study VI represented even-aged structures and
different site productivities according to site index: good site (SI = 22.2 m), medium site
(SI = 14. 8 m) and poor site (SI = 9.7 m). The initial stand density was 1800 trees ha-1. The
initial  stand age  was  10  years  for  the  good and medium site  quality  and 15 years  for  the
low-productivity site. It was assumed that infestation by M. hellenica started at the initial
stand  age  and  was  considered  to  be  intensive  enough  for  honey  production  at  35  years.
Forest management schedules typical of even-aged forestry (i.e., low thinning and final cut
at the end of the rotation period) were the silvicultural operations allowed in simulation.

Simulation of both healthy and infested P. brutia stands  was  run  together  with  an
optimization procedure so as to obtain the optimal management schedules for the joint
production of wood and non-wood forest products (i.e., timber assortments and pine honey)
(Fig. 4). The optimization method was based on Hooke and Jeeves (1961) nonlinear
programming algorithm, a direct search method that uses exploratory and pattern search
alternatively. The objective function to be maximized was soil expectation value (SEV)
(Price 1989) which, in even-aged forestry, expresses the value of a forest stand as a sum of
discounted net cash flow over an infinite number of rotations. SEV is based on net present
value (NPV) (Hartman 1976) and was calculated as follows using a 3% discount rate:

T

T
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tt
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T i

i
ChRh

i
CwRw

i

NPVSEV

1
11
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1
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00            (13)

where Rwt is  revenues  from  all  wood  assortments  in  year t (US$ ha-1), Cwt is timber
production costs in year t (US$ ha-1), Rht is revenues from pine honey in year t (US$ ha-1),
Cht is pine honey production cost in year t (US$ ha-1), i is discount rate (percentage divided
by 100), and T is rotation length (yr).

The optimized decision variables were: (a) for the first thinning, number of years since
regeneration/planting, (b) for 2 to n thinnings, number of years since previous thinning, (c)
basal area removal in every thinning (%), and (d) number of years since the last thinning to
the final cut. The best combination of number of thinnings and decision variables that
maximised SEV was selected as the optimal schedule for different management scenarios.
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Figure 4. Flowchart of the stand-level simulation and optimization procedure.
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3 RESULTS

3.1 Individual-tree models for simulating stand dynamics

3.1.1 Models for simulating even-aged stand dynamics

The set of individual-tree growth models for predicting even-aged P. brutia stand dynamics
in Middle East are displayed in Table 2. These models were fitted within study I based on
pooled data from Syria and Lebanon. Country-level differences were found when
modelling dominant height development, 10-year diameter increment and self-thinning
limit. Thus, the regional models for P. brutia stand dynamics are country-sensitive.

The following two supplementary models for 10-year diameter increment and height-
diameter relationship were fitted within study II for the particular case of Lebanese P.
brutia stands using additional predictors, some of which were not available for Syria. The
additional two models are

GsoilGsoildepthslope
d

BALGTSI

d ei 21 016.0020.0)ln(045.0)ln(114.0)20ln(0.4550.012)ln(393.00.0202.989
   (18)

Tdepth
Ddom

d

Ddom
dHdomh

002.0)ln(133.0ln095.0657.0

                                       (19)

where slope is terrain slope (%), depth is average soil depth (cm), soil1 is dolomitic sand
and soil2 is sand, and the rest of symbols have the same meaning as reported in Table 2.

Table 2. Models for predicting even-aged P. brutia stand dynamics in Middle East.
Models Equations

Dominant height 522.2

522.2

01.0055.0766.52 TLebanon
THdom                                            (14)

10-year dbh
increment

dGSIBALLebanon
d ei 083.0125.0ln050.1007.0019.0391.0      (15)

Height-diameter Ddom
d

Ddom
dHdomh

173.0516.0

                                                      (16)

Survival (self-
thinning)

SILebanonDneN 016.0026.0ln639.1649.11
max                       (17)

Note: d is dbh(cm), id is 10-year dbh increment (cm), G is stand basal area (m2/ha), BAL is
stand basal area of trees larger than the object tree (m2/ha), Hdom is dominant height (mean
height of the 100 thickest trees per hectare, m), Ddom is dominant diameter (cm), T is stand
age (yr), SI is site index (m), Nmax is maximum number of living trees per hectare, h is tree
height (m), Dn is stand mean diameter (cm), and Lebanon is an indicator variable (country
dummy) expressing country effects (0 = Syria; 1 = Lebanon).
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Among the tested dominant height models, Hossfeld IV showed the best fit according to
statistical and biological criteria. Dominant height follows an s-shaped asymptotic
development that attains the asymptote when the stand is about 50 years old. In the
diameter increment models, tree size is represented by diameter at breast height and age,
site quality by site index, slope, soil depth and soil type, and competition by stand basal
area and basal area in larger trees. Whereas site index contributes positively to tree diameter
increment, all the other predictors entail a reduction of radial growth. Diameter increment is
higher in younger trees (low diameters) and it gradually decreases as the diameter
increases. Site index also has a positive effect on survival. The country dummy results in
lower dominant height in Lebanon than in Syria, as well as in a reduction of the maximum
number of living trees per hectare in Lebanese stands with respect to Syrian ones. In
contrast, the country dummy diminishes the effect of tree-level intra-specific competition in
P. brutia stands growing in Lebanon.

3.1.2 Models for simulating uneven-aged stand dynamics

The set of individual-tree growth models for predicting uneven-aged P. brutia stand
dynamics in Lebanon were fitted within study II and are displayed in Table 3. Stand basal
area is the main predictor for the mean diameter of ingrowth trees and the number of
ingrowth trees per hectare. The higher the stand basal area, the lower is the number and
diameter of ingrowth trees. In the diameter increment model, tree size is represented by
dbh, and site quality is represented by altitude, slope, soil depth and soil type, whereas
competition is represented by stand basal area and basal area in larger trees. Variables
representing competition and tree size as well as describing challenging site conditions for
trees have negative signs in the equations (causing a reduction in 10-year diameter
increment). Variables that contribute to improved site quality have a positive sign. The
altitude and its logarithmic transformation illustrate an increasing–decreasing trend with a
maximum in some point along the altitudinal range. The height–diameter equation is an
adaptation of the “Hossfeld I modified” function.

Table 3. Models for predicting uneven-aged P. brutia stand dynamics in Middle East.
Models Equations
Number of
ingrowth trees

slopeG
in eF 0.0160.4236.932                                                      (20)

Mean dbh of
ingrowth trees

G
in eD 0.0132.667                                                                      (21)

10-year dbh
increment

GsoilGsoil
d

BALaltaltslopedepthG

d ei 21 058.0120.00.049)ln(0.4020.001)ln(0.1760.0060.2020.676

(22)

Height-diameter 2

2
2

226.71

)408.0001.0015.0122.5(

d

soilaltdepthh
(23)

Note: d is dbh (cm), id is 10-year dbh increment (cm), G is stand basal area (m2/ha), Din is
mean diameter of the ingrowth trees at the end of the 10-year period (cm), Fin is number of
ingrowth trees at the end of the 10-year period (trees ha-1), slope is terrain slope (%), depth
is average soil depth (cm), alt is altitude above sea level (m), BAL is stand basal area of
larger trees (m2/ha), h is tree height (m), and soil1 and soil2 are indicator variables for
dolomitic sand and sand, respectively.
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3.1.3 Comparison of uneven- and even-aged modelling approaches

When the measured and predicted values were compared assuming all P. brutia sample
stands either as uneven-aged or as even-aged (referred to as overall-performance), the mean
squared deviation (MSD) was practically the same for both modelling approaches (only
0.21 m3ha 1 difference). However, the predictions based on the EA approach had higher
squared bias (SB). The UA models met much better the nonunity slope principle (smaller
NU). The regression line of the UA approach almost crossed the origin, and its slope was
closer to 1.

When the predictions based on one of the modelling approaches were compared with
the measured values of plots representing the opposite stand structure (referred to as cross-
performance), the MSD was considerably lower for the UA approach. In addition, the UA
approach was less biased and performed better according to the NU criterion. Similarly to
the overall-performance, the EA approach tended to underestimate wood production
(mainly in intermediate and low stocking stands), whereas the UA approach tended to
overestimate it.

When predictions based on one of the modelling approaches were compared with the
measured values of those stands representing the same stand structure as the modelling
approach (referred to as self-performance), the MSD was considerably lower for the EA
approach. However, this approach was much more biased (underestimation) and performed
worse also with respect to the NU criterion. In fact, the simulation based on the UA set of
models was almost non-biased. Consequently, the regression line was closer to the origin,
and the slope was closer to 1 when the UA modelling approach was used to predict the
growth of the most uneven-aged stands.

The  lack  of  correlation  (LC)  was  higher  (worse)  for  the  UA  approach  for  all
performance types. Based on the aforesaid results, the UA modelling approach was ranked
better according to the overall- and cross-performance due to the smaller MSD, SB and
NU. Regarding the self-performance, both modelling approaches were ranked equal, as the
EA approach presented lower MSD and LC, but the UA one was less biased and better met
the NU criterion. Thus, the global performance (aggregation of the scores obtained for each
performance type) was better for the UA modelling approach, i.e., it turned out to be the
most suitable way to simulate and predict semi-even-aged P. brutia stand dynamics (Fig.
5).

0 5 10 15 20

Overall-performance

Cross-performance

Self-performance

Global performance

Ranking scores

Uneven-aged modelling approach
Even-aged modelling approach

Figure 5. Performance of EA and UA modelling approaches in wood production of semi-
even-aged P. brutia stands.
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3.2 Taper and biomass models

3.2.1 Taper models

In general, the higher the number of parameters, the better was the statistical fitting of stem
profile models fitted in study III. Nevertheless, this trend was not systematic since some
equations with few parameters performed very well and some equations with more
parameters did not. The “1995 equation” referred to as Kozak II (1997) was selected as the
best taper model for P. brutia in Middle East among more than thirty candidate equations.
Although Kozak II had originally 8 parameters, it was found that two of them were not
significant for the equation fitted to P. brutia stem data. Therefore, two 6-parameter
versions of Kozak II model were finally fitted using fixed- and mixed-effects modelling
(Table 4) the latter including a power-type variance function to account for the
heteroscedasticity of the residuals. The residual variance of the mixed-effects model was
assumed to follow the model

22)var( kki De (24)

where 2 is the error variance, Dk is dbh and  is the variance function coefficient.

The general form of the selected taper model based on Kozak “1995 equation” is
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where dki is the ith diameter measurement of tree k measured at height hki, Dk and Hk are the
dbh and total height of tree k, qki is hki/Hk, tki is 1.3/Hk, b2 to b8 are fixed parameters, 1, 2,
and 3 are random parameters accounting for the between-tree variation in the lower, top,
and middle parts of the stem, respectively, and eki is residual.

Table 4. Estimates of regression parameters of the fixed- and
mixed-effects Kozak II (1997) models for P. brutia in Middle East.

Parameter Fixed-effects model Mixed-effects model
b2 0.9693 0.9771
b3 0.0347 0.0238
b4 0.2818 0.4189
b5 0.9272 0.7630
b6 0.8227 0.5068
b8 -0.0050 -0.0018
var( 1) - 0.01332

var( 2) - 0.22472

var( 3) - 0.16952

corr( 1, 2) - -0.851
corr( 1, 3) - 0.184
corr( 2, 3) - 0.360

2 4691 0.2142

- 1.51
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The utilized variance function realistically described the heteroscedasticity of the residual
variance, and the random effects reduced the correlation of residuals at successive heights
compared with the fixed-effects model.

3.2.2 Biomass models and intra-specific differences in biomass allocation

Study IV found between-country differences for all aboveground biomass components. On
the other hand, no statistically significant differences were found for the total aboveground
biomass of P. brutia. Without accounting for the country-effects, the regional models using
pooled data from Syria and Lebanon resulted in biased predictions in Syria and Lebanon
(Fig. 6), whereas they were unbiased for Middle East.
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Figure 6. Country-specific relationships between dbh and total (a), stem (b), branch (c) and
needle (d) biomass. The 95% confidence intervals for country-specific allometric models are
shown by the grey areas around the model predictions. The thick solid line represents the
predictions of the regional model based on pooled data (Lebanon + Syria).
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For that reason, fitting separately country-specific models (Table 5) was finally considered
as the most suitable approach to get unbiased estimates at both the country and the regional
scales.

Table 5. Country-specific models for aboveground biomass components (Ne: needles, Br:
branches, Cr: crown, St: stem) considering all predictors and only dbh, where y is dry
biomass (kg tree-1), d is dbh (cm), h is tree height (m), cl is crown length (m),  is the
variance function coefficient, and RSE is the residual standard error.

Country Component Model

 Syria

Ne cl
d

d

ey
581.0

782.19
582.7905.2 (26)

Ne 790.20
865.8302.2

d
d

ey (27)

Br hcl
d

d

ey
ln824.0ln845.0

660.21
665.10794.1 (28)

Br 816.26
395.10652.1

d
d

ey (29)

Cr cl
d

d

ey
ln593.0

443.24
570.8838.1 (30)

Cr 316.25
925.9203.1

d
d

ey (31)

St hdey ln937.0ln835.1371.3 (32)

St dey ln440.2698.2 (33)

Lebanon

Ne h
d

d

ey
ln855.0

492.26
665.10078.0 (34)

Ne 854.26
279.8820.0

d
d

ey (35)

Br h
d

d

ey
ln855.0

900.30
203.12625.0 (36)

Br 376.33
921.9253.0

d
d

ey (37)

Cr h
d

d

ey
ln855.0

832.29
737.11096.1 (38)

Cr 814.31
422.9215.0

d
d

ey (39)

St h
d

d

ey
ln920.0

960.25
100.8372.1 (40)

St 196.21
187.10622.0

d
d

ey (41)
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The widely used exponential model presented better fitting only for stem biomass of Syrian
trees. Most of the selected biomass models were of the form

Xc
bd

dbb
ey 2

10

(42)

where d is the diameter at breast height (cm), b0 to b2 are model parameters, c is a vector
containing the regression coefficients of predictors other than dbh, and X is a vector
containing predictors other than dbh.

Crown length was a significant predictor of crown biomass components in dense even-aged
Syrian stands, whereas it was not among the best predictors in the more sparse and uneven-
aged stands of Lebanon. Using tree height as an additional predictor improved most
biomass models.

The contribution of each tree component to the total aboveground biomass varied
according to tree size (Fig. 7). Thus, the proportion of stem biomass (so-called harvest
index)  is  lower  in  small  or  young  trees,  whereas  the  proportion  of  crown  biomass
diminishes as trees grow. A medium-sized pine growing in a Syrian unthinned even-aged
stand is expected to have 30% more biomass in its stem than a medium-sized tree growing
in a sparse and more irregular Lebanese stand. On the contrary, a medium-sized tree
growing in Lebanon is expected to have 88.5% more biomass in its crown than a medium-
sized tree in a Syrian stand.

3.2.3 Mixed- vs. fixed-effects volume modelling in the absence of calibration

In study III, three different prediction strategies (strategy 1: fixed-effects model; strategy 2:
conditional prediction of mixed-effects model; strategy 3: marginal prediction of mixed-
effects model) based on non-calibrated mixed- and fixed-effects taper models were tested in
volume prediction.
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Figure 7. Contribution of crown and stem components to total aboveground tree biomass as
a function of tree size (dbh) in Syria and Lebanon.
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Although the errors in prediction were low for all three prediction strategies (less than
0.060 m3 in the modelling data and less than 0.040 m3 in  the  validation  data),  there  were
differences in the way they performed. Regarding the total discrepancy from perfect fit
(MSD), strategy 1 performed better in model evaluation, followed by strategy 3. Strategy 3
performed equally well as strategy 1 in terms of MSD in model validation (independent
data set). Strategy 2 had the highest MSD and nonunity slope in both model evaluation and
validation, and it was the most biased in model evaluation as well. Strategies 2 and 3 were
less biased in model validation than strategy 1. In contrast, strategy 1 was the least biased in
model evaluation and the best in terms of the nonunity slope criterion in both model
evaluation and validation, followed by strategy 3. For deviations from perfect fit due to
scattering, strategy 3 was the best approach in model evaluation and as good as strategy 2 in
model validation, whereas strategy 1 was the worst in both cases (Table 6, Figure 8).

Table 6. Results of model evaluation (against the modelling data) and validation (against
independent data) in volume (m3) prediction according to the different prediction strategies in
the absence of calibration. The best value of each criterion is in boldface.

Evaluation (modelling data) MSD SB NU LC
Strategy 1 0.00226 0.00001 0.00018 0.00207
Strategy 2 0.00333 0.00028 0.00096 0.00209
Strategy 3 0.00284 0.00015 0.00063 0.00206
Validation (independent dataset) MSD SB NU LC
Strategy 1 0.00150 0.00002 0.00005 0.00144
Strategy 2 0.00156 0.00000 0.00014 0.00141
Strategy 3 0.00150 0.00000 0.00010 0.00141

Note: MSD is the mean squared deviation accounting for the total discrepancy from perfect
fit when comparing predicted vs. observed values, SB is the squared bias, NU is the
nonunity slope and LC is the lack of correlation. SB, NU and LC represent additive sources
of discrepancy which sum up to the MSD.

0

1

2

3

0 1 2 3

M
ea

su
re

d 
tr

ee
 v

ol
um

e,
 m

3

Predicted tree volume, m3

Syria

Perfect equality line

0

1

0 0.2 0.4 0.6 0.8 1 1.2

M
ea

su
re

d 
tr

ee
 v

ol
um

e,
 m

3

Predicted tree volume, m3

Lebanon

Perfect equality line

Figure 8. Predictions with strategy 3 vs. measured stem volume with the Kozak II model in
the modelling (Syria) and independent (Lebanon) datasets.
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3.2.4 Mixed-effects vs. OLS biomass modelling in the presence of calibration

Study V was devoted to developing a method for generalizing biomass models via meta-
analysis. Based on existing equations, mixed-effects meta-models for predicting stem,
crown and foliage biomass of P. brutia trees were developed (Table 7).

The fixed part of the meta-models provides a prediction for a typical location or dataset.
The predicted stem biomass based on the fixed part of the mixed-effects meta-model clearly
overestimated the values predicted by the original allometric equations developed for
Greece, and resulted in clear underestimation when compared to the original equations of
Syria and southern Turkey. Similarly, the fixed part of the crown biomass meta-model
clearly overestimated the pseudo-observations of Syria and southern Turkey, and resulted
in clear underestimation when compared to the original models for Lebanon and Greece.
Finally, regarding foliage biomass, the pseudo-observations of north-western Turkey were
clearly overestimated by the fixed part of the mixed-effects meta-model, whereas those of
Lebanon and southern Turkey were underestimated. Comparing the predictions of the
original allometric equations and the predictions provided by the OLS model fitted to the
whole independent dataset shows that the trees of the validation dataset had higher stem
biomass than predicted by any of the original equations. On the other hand, crown and
foliage biomass were, in average, within the range of predictions of the reference studies
(Fig. 9).

The influence of sampling strategy used in meta-model calibration on the accuracy of
biomass predictions was negligible for all aboveground tree components. On the contrary,
the corresponding OLS models were more sensitive to sampling strategy in such a way that
the stratified sampling based on three tree-size categories provided the most accurate
predictions of aboveground biomass followed by the two-category stratified sampling,
whereas random sampling was the worst approach (Fig. 10a, 10b and 10c). Conditional
stem and foliage biomass predictions of the mixed-effects meta-model based on calibration
were better in terms of root mean squared deviation (RMSD) than the corresponding OLS
model. These differences in RMSD diminished when the number of sample trees involved
in meta-model calibration and OLS fitting increased. Regarding crown biomass, the
calibrated mixed-effects meta-model performed better when sample size was lower than 12
to 14 trees, depending on the sampling strategy. Increasing the number of trees used in
calibration always resulted in an improvement of the predictive accuracy of the calibrated
meta-models. The predictive performance was always worse than for any calibrated model
except for one case (Fig. 10d). The reduction in MSD of calibrated mixed-effects meta-
models with increasing sample size was basically due to the reduction of the squared bias.
In contrast, the improvement in the predictive performance of the corresponding OLS
fittings with increasing sample size was due to a reduction in both bias and non-unity slope.

Table 7. Estimates of the fixed and random parameters of the mixed-effects meta-models
for different aboveground tree biomass components.

Tree biomass
component

Fixed
parameters

Random
parameters

 Residual

0 1  var(b0) var(b1) corr(b0 , b1) var(eij)
Stem -2.697 2.345  0.345 0.031 -0.925  0.058
Crown -2.612 2.076  0.195 0.002 -0.858  0.170
Foliage -3.127 1.757  0.515 0.022 -0.513  0.148
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Figure 9. Stem (a), crown (b) and foliage (c) biomass independent dataset used in model
calibration/validation (dots) and predicted biomass by the original allometric equations, by
the fixed part of the mixed-effects meta-model, and by the OLS fitting to the independent
dataset.
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Figure 10. Predictive performance of the calibrated (a) stem, (b) crown and (c) foliage
mixed-effects meta-models and the local OLS models for different sample sizes and
sampling strategies. The lines represent the upper bound of the 95% confidence interval of
the Root Mean Square Deviation (RMSD) computed from 10,000 realizations per sample
size and sampling strategy via Monte-Carlo simulation. Sub-figure d represents the average
RMSD in biomass prediction of the mixed-effects meta-models. When the number of sample
trees is zero, the prediction is based on the fixed part of the mixed-effects meta-model.

3.3 Optimal management of even-aged P. brutia stands for timber production

Simulation based on the individual-tree growth models provided in study I allowed us to
determine the mean annual increment (MAI) and the current annual increment (CAI)
curves. Volume was estimated using the fixed-effects taper model of study III. If wood
production is maximized in the absence of thinning, the optimal rotation length is the age at
which the MAI and CAI curves cross. According to the simulations, the optimal rotation
length in a medium-quality site is about 50 years, and site productivity, as described by the
maximum MAI, is around 4.5 m3ha-1yr-1 (Fig. 11).
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Figure 11. MAI and CAI and curves for even-aged P. brutia growing in an average site. MAI
and CAI values have been calculated by simulating stand development based on the
individual-tree growth and yield models provided in studies I and III.

However, management of P. brutia stands without thinning is not economically optimal.
When stumpage prices of different timber assortments are taken into account, optimal
management schedules for P. brutia stands require one to two thinnings depending on site
productivity (study VI). Thus, in good sites, maximal economic profit (as described by the
soil expectation value calculated with 3% discount rate) is obtained when the forest
management schedule uses a 40-year rotation length and one thinning. For medium- and
poor-quality sites, the optimal number of thinnings is two and the optimal rotation length is
49 and 71 years, respectively. In all cases, the optimal thinning intensity is close to 30% of
stand volume and basal area. When thinnings are applied, wood yield increases as
compared to management without thinning (Table 8, Fig. 12).

Fuelwood yield is of minor importance and rather similar across site qualities at the end
of the rotation, if economic profit is maximized. On the contrary, pulpwood and sawnwood
yield increases as site productivity improves. In medium and poor sites, pulpwood is the
most important timber assortment whereas, in good sites, sawlog production is slightly
higher than pulpwood production (Fig. 13).

Table 8. Soil expectation value (3% discount rate), rotation length and wood production in
the optimal management of P. brutia stands growing on good, medium and poor sites.

Good site
(SI= 22.2 m)

Medium site
(SI= 14. 8 m)

Poor site
(SI= 9.7 m)

SEV, US$ ha-1 15065 5290 941
Rotation length, yr 40 49 71
Wood yield, m3 ha-1 yr-1 12.9 5.9 2.3
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Figure 12. Optimal stand management schedules for P. brutia growing on good, medium
and poor sites when soil expectation value with 3% discount rate is maximized. Calculations
are based on the individual-tree growth and yield models developed in studies I and III.
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Figure 13. Timber assortments produced during the rotation representing optimal
management of P. brutia stands growing on good, medium and poor sites.

3.4 Optimal joint production of pine honeydew honey and timber

Pine honey production requires the infestation of P. brutia trees by the scale insect M.
hellenica. The simulated effect of M. hellenica infestation according to the models provided
in  study  I,  taking  into  account  the  impact  of  the  scale  insect  on  tree  growth  (Ye il  et  al.
2005), resulted in a reduction of tree growth and survival. The effect of insect infestation on
stand-level growth and mortality increased as stands grew older (Fig. 14).

The importance of pine honey on the optimal joint production of honey and timber
varied according to site quality and honey productivity. In good sites, the contribution of
pine honey to the overall economic profitability under the alternative honey production
scenarios (30, 60 and 90 kg ha-1 yr-1 starting at stand age of 35 years) represented,
respectively, 4%, 10% and 15% of the soil expectation value. The reduction in total soil
expectation value due to the presence of the scale insect was 16%, 11% and 6%,
respectively. The loss in timber-related soil expectation value was not compensated for by
means of honey production. In medium-quality sites, soil expectation value was higher in
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healthy stands than in the presence of M. hellenica only when the honey production of
infested stands was 30 kg ha-1 yr-1. Honey productivity of 60 or 90 kg ha-1 yr-1 resulted in
higher economic profit than obtained in the absence of the scale insect. In poor sites, the
soil expectation value was higher in the presence of M. hellenica for all honey production
scenarios. The contribution of pine honey to the total soil expectation value of poor sites
ranged from 82% to 97% with increasing honey productivity, and the economic profit was
2 to 6 times higher in infested P. brutia stands than obtained in healthy stands (Table 9, Fig.
15).

Both site quality and pine honey productivity had a strong impact on optimal stand
management. The optimal management consisted of only one thinning if stands growing on
good sites were healthy, or if infested stands had a honey productivity of 30 kg ha-1 yr-1. In
all other cases, the optimal number of thinnings was two. The intensity of most thinnings
was around 30% of stand volume and basal area. Integrating honey yield into stand
management optimization had a modest influence on rotation length in good sites; optimal
rotations were always shorter than 50 years regardless of the amount of honey produced. In
medium sites, the optimal rotation length in the absence of M. hellenica increased up to by
49% when alternative honey yield scenarios were considered. In poor sites, the optimal
rotation length doubled, as compared to healthy stands, when pine honey productivity was
assumed to be 90 kg ha-1 yr-1. Differences in optimal rotation length between good, medium
and poor sites also became larger when the honey production of infested stands was taken
into account (Table 8, Table 9, Fig. 16).

Longer rotation lengths due to honey production entailed a reduction in mean annual
wood production as compared to healthy stands. The reduction ranged from 14% to 39%
depending on the annual honey production and site quality. Increasing honey production
from 30 to 60 kg ha-1 yr-1 (starting at 35 years) doubled the mean annual honey yield during
the whole rotation in the poor site, and resulted in approximately three times higher mean
annual honey yield in the good and medium sites. Increasing honey production to 90 kg ha-1

yr-1 resulted in more than three times higher mean annual honey yield in the poor site and
between four and five times higher yield in the good and medium sites.

Table 9. Soil expectation value (US$ ha-1), rotation length (yr), pine honeydew honey
production (kg ha-1 yr-1) and timber production (m3 ha-1 yr-1) for alternative optimal stand
management schedules in infested P. brutia stands growing on good (G), medium (M) and
poor (P) sites, and under different assumptions on honey productivity.

30 kg ha-1 yr-1 60 kg ha-1 yr-1 90 kg ha-1 yr-1

G M P G M P G M P
SEVtotal 12669 4867 2019 13356 6038 3644 14100 7441 5471
SEVwood 12179 3839 366 11967 3422 214 12017 3144 129
SEVhoney 490 1028 1652 1389 2616 3429 2083 4296 5324
Rotation 41 54 99 45 66 112 45 74 141
Timber prod. 11.1 4.7 1.7 10.7 4.4 1.7 10.7 4.3 1.4
Honey prod. 4.1 10.4 19.3 12.8 27.9 41.3 19.2 47.1 67.6
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Figure 14. Effect of M. hellenica on growth, survival and yield of P. brutia according to the
models fitted in studies I and III, and taking into account the impact of the scale insect on
tree growth (Ye il et al. 2005).
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Figure 16. Optimal management schedules for infested P. brutia stands providing joint
production of pine honey and timber products, growing on good (SI = 22.2 m), medium (SI =
14.8 m) and poor sites (SI = 9.7 m) and under different assumptions on pine honey
productivity (30, 60 and 90 kg ha-1 yr-1).



45

4 DISCUSSION

4.1 Individual-tree growth and yield modelling and simulation of P. brutia

The empirical individual-tree models and simulations of P. brutia stand dynamics based
on studies I and II correspond to current scientific biological knowledge. Simulations
reflect the ecology of a relatively fast-growing pioneer species (Boydak 2004). The fact that
data for growth modelling were collected from temporary sample plots (i.e., measured only
once) prevented the development of an individual-tree mortality model. Thus, in the
absence of any other individual-tree mortality model tree, survival can be estimated by
means of the self-thinning model, whose suitability for properly predicting mortality may
be questioned. Alternatively, the equation provided by Palahí et al. (2008) may be used.
Therefore, further research could aim at remeasuring the same sample plots in order to
enable mortality prediction on an individual-tree basis. This could also allow for the
validation of the growth models presented in this PhD thesis and, if needed, for their
improvement.

It is clear that the EA modelling approach is the most suitable when dealing with strictly
even-aged stands, and the UA approach is the most suitable for uneven-aged stands.
However, it was not clear from previous research what is the best modelling approach when
dealing with transitional or semi-even-aged stands. In this regard, study II shows that UA
models produce more accurate predictions of wood production in semi-even-aged stands,
even though model fitting may be statistically less accurate. This result arises from the fact
that the assumptions of the EA modelling approach are more constraining, whereas the UA
approach is less sensitive to slight deviations from the theoretical foundations of the
method. Based on the principle of caution, the use of the UA modelling approach might be
safer to predict growth and yield based on sound simulation of stand dynamics. The UA
approach is also to be preferred since it enables higher flexibility in the simulation of forest
management alternatives. Reliable UA models can be used to simulate any kind of thinning,
whereas the EA approach assumes that the dominant trees are not removed in thinning (i.e.,
only thinning from below is allowed). Since there was no mortality in the modelling data,
the lack of an individual-tree mortality model did not represent a shortcoming in this
research.

Although not explicitly considered in studies I and II, due to the lack of appropriate
climatic data, the growth models for P. brutia can accommodate the effect of changing
environmental  conditions  on  stand  dynamics  (Fontes  et  al.  2010).  Since  site  index  is  a
predictor of tree growth and survival in even-aged P. brutia stands, one possibility would
be to relate site index to environmental variables (e.g., precipitation and temperature)
(Seynave et al. 2005). Alternatively, the models for even-aged and uneven-aged stands
could directly incorporate environmental variables as additional predictors. Snowdon et al.
(1998) opted for incorporating climatic indices into growth models. Along the same line,
another possibility to make the models climate-sensitive would consist of including a
growth trend multiplier accounting for the environmental effects (Pukkala and Kellomäki
2012). Site productivity may be, in fact, affected by ecosystem features other than climate
change. In this regard, study VI represents an example of how these models can be used to
account for a changing environment caused by the infestation of P. brutia trees by the scale
insect M. hellenica. Further research should model the impact of precipitation on P. brutia
stand dynamics (Sarris et al. 2007). Then, the models provided in studies I and II could be
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used to derive stochastic or deterministic predictions of stand dynamics under different
climate change scenarios. Developing site-specific models implicitly accounting for spatial
or temporal changes in site quality (i.e., dynamic state-space approach) is a way of
providing flexible empirical growth models to be used within the global change context
(Fontes et al. 2010).

Between-country differences were found showing that dominant height development is
slightly lower in Lebanon than in Syria, BAL has a smaller effect in Lebanon than in Syria,
and site index has less influence on survival in Lebanon than in Syria. Such between-
country variations are probably related to historical uses affecting stand structure and to
differences in site conditions. Wood harvesting from P. brutia forests was allowed in
Lebanon until 1991 whereas, in Syria, harvesting activities seem to have been stopped
much earlier. Although no thinning or harvesting had been done in the sample plots within
the  measured  past  growth  periods  (up  to  20  years),  older  forestry  operations  mainly
consisting on selective cuttings may have led, in combination with forest fires, to more
heterogeneous stand structures in Lebanon. Regeneration of the unmanaged Syrian forests
most likely happened only after wildfire events, resulting in more homogeneous and even-
aged stand structures. Thus, the slightly lower site index of Lebanese stands may arise from
the past removal of dominant trees in selective cuttings as well as from poorer average site
conditions due to the fact that Lebanon represents the southernmost limit of the native
range of this species. BAL and site index have less influence, respectively, on radial growth
and self-thinning limit in Lebanon. This is probably due to greater sampling error in these
predictors arising from the higher heterogeneity of Lebanese P. brutia stands. Similarly,
different regeneration methods could also explain differences found between even-aged P.
brutia stands in Middle East (possibly regenerated after hard disturbances such as wild
fires) and semi-even-aged Greek stands modelled by Palahí et al. (2008).

In combination with forest fires and environmental factors, past management may have
led to significant differences in the amount of biomass and carbon accumulated in different
tree components, although the total aboveground biomass of trees was nearly the same in
both countries (study IV). Trees growing in uneven-aged stands have more biomass and
carbon in their crown components (needles and branches) than trees growing in unthinned,
even-aged Syrian stands. Since crown length was not significantly different between Syria
and Lebanon, these results show that tree crowns are wider and/or denser in the uneven-
aged Lebanese stands. Consequently, the biomass and carbon stored in the stem of trees is
lower in uneven-aged than in even-aged stands. Due to such between-country differences,
average regional biomass models not accounting for country effects will result in biased
predictions at the country level. The harvest index found in Syrian even-aged P. brutia
stands is fairly similar to the one reported for even-aged Norway spruce by Kuuluvainen
(1991), whereas the harvest index of the multi-layered P. brutia stands  in  Lebanon  is
considerably lower. The results suggest that forest management-induced stand structure
may have a significant influence on the way biomass and carbon are distributed within the
tree since, depending on the resulting stand structure, trees adopt different ways to allocate
biomass and carbon (Tinker et al. 2010).

These results are also consistent with current biological knowledge on stand dynamics
of light-demanding species. Namely, trees growing in unthinned dense even-aged stands are
expected to have longer stems and smaller crowns as a result of competition for light.
Dominant trees growing under strong competition in even-aged stands are expected to have
relatively small branch and foliage biomass (Návar 2009). In selectively cut uneven-aged
stands, dominant trees experience less competition and can further develop their crowns
(Naidu et al. 1998; Jenkins et al. 2003). This may happen especially when the stand density
has  been  low  for  a  long  time.  Due  to  the  low  shade  tolerance  of P. brutia, uneven-aged
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stands are not likely to be associated with high stand densities of the dominant canopy
layer, but even-aged stands may have low density. This suggests that, to correctly predict
crown dimensions, it is important to know the past competition rather than current stand
structure (Hynynen 1995). Since stem taper and d/h ratio reflect the tree’s past growing
conditions it is recommendable to use both dbh and height in biomass prediction in
simulations where different management regimes are possible (Chave et al. 2005),
especially when dealing with fixed-effects models.

Mixed-effects may be more convenient for growth and yield modelling in a number of
situations, as shown in studies III and V. This modelling approach is meaningful when
dealing with correlated observations from hierarchically structured datasets according to
given spatial or temporal grouping levels (Pinheiro and Bates 2000). Nevertheless, in
studies I and II, least squares fitting assumed independence among observations. The
reason for that choice is that it has been shown that fixed-effects models fitted via nonlinear
least squares can perform better than non-calibrated mixed-effects models in the simulation
of stand dynamics (e.g., de-Miguel et al. 2013). However, mixed-effects models could be
used to provide, for instance, site-specific predictions within the framework of the dynamic
state-space approach.

Studies III and V partly focused on providing new information and further insight into
the performance of mixed-effects models in yield prediction, both in the absence and in the
presence of model calibration. Study III shows that, in the absence of calibration, volume
estimation based on marginal predictions of mixed-effects taper models can be competitive
with the prediction of nonlinear least squares models. As suggested by Burkhart and Tomé
(2012), population-averaged prediction based on mixed-effects models should not be based
just on the fixed parameters of the model. In contrast, averaging the predictions over the
estimated distribution of random effects seems a suitable alternative. However, further
research should be devoted to fully understand the potential of such a prediction strategy
since it does not seem to systematically result in better predictions than fixed-effects
models (de-Miguel et al. 2013).

Study V shows the potential of calibrating mixed-effects allometric meta-models for
providing reliable location-specific biomass prediction throughout large spatial scales with
minimal sampling effort. The study represents a new methodological approach aiming at
providing pan-Mediterranean aboveground biomass models for P. brutia. Study V shows
that, for a given model form, calibration of mixed-effects meta-models can provide, with
very little sampling effort, more accurate location-specific predictions than obtained with
location-specific allometric equations fitted to larger datasets. Furthermore, deriving
models directly from previous research by mixed-effects modelling has a potential for
widespread use. The approach could also contribute to forest modelling disciplines other
than biomass modelling (i.e., growth modelling) and should be the object of further
research.

4.2 Forest management optimization

The empirical growth and yield models provided in this PhD thesis allow scientific forest
management of eastern Mediterranean P. brutia stands  and  forests.  They  can  be  used  to
simulate alternative forest management schedules. In combination with economic data and
optimization techniques, it is possible to propose optimal stand management schedules
within the framework of multi-objective forest management planning. In this regard, study
VI optimizes the management of even-aged P. brutia stands in the joint provision of wood
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and non-wood forest products (i.e., timber assortments and pine honeydew honey) taking
into account changes in site productivity caused by the scale insect M. hellenica.

Simulation of stand dynamics of infested pine stands reproduces logically the influence
of M. hellenica on the growth and mortality of P. brutia according to the currently available
scientific information (Ye il et al. 2005; Gallis 2007; Petrakis et al. 2010, 2011). Since the
influence of the scale insect on P. brutia growth was based on tree-level measurements
(Ye il et al. 2005), the use of an individual-tree growth model made it possible to directly
incorporate the negative effect of the scale insect on tree diameter increment. An additional
impact of M. hellenica is its negative influence on site productivity through site index
reduction. Since site index is a predictor in the diameter increment and survival models, the
impact of M. hellenica on site quality also affects the survival rate and growth of pines.

The optimal rotation lengths for healthy stands are in line with the current knowledge
for this pine species (Shater et al.  2011; Bettinger et al.  2013). The optimal schedules for
pine  stands  growing on good sites  are  rather  insensitive  to  infestation  by  the  scale  insect
and honey production. As site quality decreases, the economic importance of honey
increases, resulting in longer rotations for infested stands. The economic profitability of P.
brutia forest management is the highest in pine stands growing on good sites that remain
unaffected by M. hellenica. On very good sites, honey production in infested stands cannot
compensate for the volume increment loss caused by the scale insect. The same occurs on
medium sites when honey production is low. On the contrary, on poor sites, joint
production of timber and honey results in higher economic profit than wood production in
healthy stands, even when honey production is rather small. What is more, in those
particular cases, pine honey alone may produce more profit than obtained from timber in
healthy stands. In addition, if honey yield is at least 90 kg ha-1 yr-1, honey-oriented forest
management in poor sites may be as profitable as the traditional timber-oriented
management in more productive sites. On medium sites, joint production of pine honey and
timber is more profitable than timber production in healthy stands if honey production is
greater than 30 kg ha-1 yr-1. Therefore, from a strict economic perspective, the presence of
M. hellenica might be regarded as economically harming in P. brutia stands growing on
medium sites if honey yield is not very high (i.e., 30 kg ha-1 yr-1), and on good sites if
honey production is lower than approximately 100 kg ha-1 yr-1.  On the  contrary,  if  honey
yield is at least 10 to 15 kg ha-1 yr-1 on poor sites or at least 40 kg ha-1 yr-1 on medium sites,
joint production of timber and pine honey results in higher economic profit than the
traditional forest management in healthy stands.

In the absence of empirical results, some assumptions had to be made regarding the
interactions between P. brutia, M. hellenica and honeybees. Further research should focus
on improving our understanding about the effects of the scale insect on tree growth and
mortality. This requires deeper knowledge on the interactions between host trees and the
scale insect, and about the influence of tree vigour on sap flow and honeydew yield
(Gounari 2006). Such knowledge may provide a better understanding of (i) which trees are
“selected” by M. hellenica, (ii) what proportion of trees may be infested in pine stands
affected by the scale insect, (iii) whether the infestation pattern may be influenced through
forest management, and (iv) whether there is any relation between tree vigour, site quality
and the amount of honeydew produced. This would enable better predictions of the
availability of “raw material” for bees that produce pine honey (Gounari 2004).

M. hellenica is sensitive to changes in climatic conditions, mainly in temperature
(Gounari 2006) which, in turn, may cause considerable fluctuations in honeydew and honey
yields. Better knowledge on its weather sensitivity could improve honeydew yield
predictions under different climatic scenarios. On the other hand, more insight into the
efficiency of honeybees in processing honeydew to produce pine honey is needed. This
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would enable more detailed site-specific information concerning the potential pine honey
productivity. Finally, considering forest ecosystem services potentially affected by M.
hellenica infestation (e.g., biodiversity, recreational value, fire risk) (Gallis 2007; Petrakis
et al. 2010) as well as other non-wood forest products (e.g., mushrooms) would probably
affect the optimal management of P. brutia stands (Calish et al. 1978). Models for
predicting the amounts of these goods and services are needed before they can be integrated
in stand management optimization.

M. hellenica causes economic losses to those whose objective is to produce timber (i.e.,
the landowners). On the other hand, in combination with honeybees, the scale insect
generates economic benefits to the beekeeping sector. For the society, which should
maximize the total benefit produced by the forest, the insect may be harmful or useful,
depending on the quantity of the losses in timber production as compared to the economic
benefits  of  beekeeping.  Based  on  the  results  of  study  VI,  policy  makers  may  consider
alternative policy measures such as pine honey harvesting permits, taxation, royalties or
public investments in rural development in relation to beekeeping. This study therefore
provides valuable information for forest policy making in relation to sustainable
multifunctional forestry and rural development with special focus on beekeeping
communities.

The optimal uneven-aged management of P. brutia based on the UA models of study II
was not inspected because P. brutia forests form even-aged structures when intensively
managed. Nevertheless, further research could be devoted for instance to comparing even-
aged versus uneven-aged P. brutia management by taking into account more complex
additional interactions among different ecosystem features (e.g., other non-wood forest
products, biodiversity, fire risk). For that purpose, new models would be required. In
addition, since P. brutia forms sometimes mixed forests, mainly in combination with
Quercus species, another topic for further research is the development of growth models for
mixed P. brutia stands.

5 CONCLUSION

This  PhD  thesis  provides  a  logical  set  of  research  papers  that  intend  to  shed  light  on  a
number of relevant issues for the management of P. brutia forest ecosystems. The topic is
relevant as it addresses several of the strategic research objectives affecting P. brutia
forests, from a European and a Mediterranean perspective, defined by the Strategic
Research Agenda and the Strategic Research and Innovation Agenda for 2020 of the
European Forest-Based Sector Technology Platform (FTP – Forest Technology Platform),
as well as by the Mediterranean Forest Research Agenda 2010-2020 (EFI 2010).

The six studies that form this PhD thesis, together with this Dissertation, contribute to
filling existing gaps in scientific knowledge concerning stand dynamics, provision of wood
and  non-wood  forest  products,  biomass  and  carbon  stock,  as  well  as  in  relation  to  the
optimal forest management of P. brutia.

The PhD thesis also provides further insight into several methodological issues, namely
the suitability of alternative growth modelling approaches when dealing with transitional
semi-even-aged forest stands, the performance of calibrated and non-calibrated mixed-
effects models in volume and biomass prediction, the potential of meta-analysis in yield
prediction, and the optimization of forest management in the joint production of wood and
non-wood forest products taking into account the complex interactions among different
elements of the forest ecosystem.
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