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ABSTRACT  

 
Knowledge of the quantity of belowground litter carbon (C) input is scarce but highly 

valued in C budget calculations. Specifically, the turnover rate of fine roots is considered as 

one of the most important parameters in the estimation of changes in soil C stock. In this 

thesis Norway spruce (Picea abies L. (Karst.)) fine root lifespan and litter production were 

studied and their responses to nutrient availability and temperature were examined. 

Aboveground foliage and understory litter C inputs were also quantified. Furthermore, fine 

root isotopic C ages were compared to fine root lifespans. 

Increased nutrient availability and higher temperature shortened spruce fine root 

lifespan both in the manipulation treatments and along a latitude gradient. Fertilization 

improved tree growth and the absolute amount of litter production, both below- and 

aboveground. Soil warming, by contrast, increased the belowground litter production in 

relation to aboveground foliage litterfall but did not lead to long-term increases in 

aboveground tree growth. In warmed soil, the changes in spruce short root morphology 

indicated nutrient deficiency. Fine root litter C input into the soil in relation to the 

aboveground litter C input was higher towards lower fertility, due particularly to the greater 

contribution of understory vegetation. The structural 
14

C age of fine roots was consistently 

3 - 6 years older than fine root lifespan determined with the minirhizotron method 

indicating that root growth may use also use stored or recycled C. 

In almost all stands, fine root litter C input into the soil at least equalled the 

aboveground input, which confirms the significance of belowground litter production in the 

boreal forest C cycle. The importance of understory vegetation was also significant. In 

addition on understory vegetation, different stand age and tree species, more studies should 

also focus on the shift in the litter production pattern from above- to belowground along 

environmental change as this may have an impact on litter C quality and soil C storage in 

boreal forest soils.   

 

 

 

Keywords: fine root biomass and turnover, litter C input, belowground:aboveground -ratio, 

C age 
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1 INTRODUCTION 

 

 
Of all the terrestrial carbon (C) stores, forest ecosystems are the most important because 

they store vast amounts of C in living biomass, but particularly in the soil. Globally, soils 

contain three times more C than terrestrial vegetation (Schlesinger 1977, Lal 2005), high-

latitude forest soils reserving even greater amounts (Dixon et al. 1994, White et al. 2000). 

In relation to the atmospheric C pool, boreal vegetation and soil together contain ~300 Pg 

of C, which amounts to approximately half of the C in the atmosphere (Gower et al. 2001).  

In terrestrial ecosystems, C circulates among atmosphere, biomass and soil (Figure 1). C 

is assimilated into ecosystems via photosynthesis and then allocated to the different plant 

components. Traditionally, research has focused on the aboveground biomass, i.e. forest 

growth, but during recent decades the importance of the belowground part has also been 

acknowledged. In recent years, fine roots and root-associated fungi have been shown to 

play the most significant role in long-term C sequestration in boreal forests (Godbold et al. 

2006, Högberg et al. 2008, Clemmensen et al. 2013).  

Living plant components release part of the C back to the atmosphere via respiration 

(Figure 1), and from belowground parts also as rhizodeposition. After senescence, the 

biomass turns into litter. Soil animals, saprotrophs and bacteria decompose organic matter 

and release C into the atmosphere via heterotrophic respiration. A part of the organic C is 

lost from the system via leaching of DOC or via biomass harvesting (Figure 1). Thus, soil C 

stocks are controlled by the input of C by both below- and aboveground litter production 

and exudation and the output of C by decomposition, autotrophic respiration and leaching.  

According to current knowledge, the inputs of C exceed the outputs in boreal forests, 

meaning that boreal forests constitute an important sink for atmospheric carbon dioxide 

(CO2) (Liski et al. 2003). Climate change has been predicted to be the most pronounced in 

northern regions (IPCC 2007), leading to boreal and artic areas experience more warming 

than any other biome. In the boreal zone warmer climate would enhance N mineralization 

and lengthen the growing season, thus clearly increasing vegetation productivity (Chapin & 

Shaver 1996, King et al. 1997, Norby & Luo 2004, Jansson et al. 2008,). As a result, the 

amount of aboveground tree and understory litterfall would increase, thus increasing the 

flux of C into the forest floor. However, the belowground responses are far less well known 

and predictions of the effects of global warming-related changes such as elevated CO2, 

nutrient availability, moisture and temperature on the belowground processes are much 

more uncertain (Hyvönen et al. 2007, Allison & Treseder 2011, Nannipieri 2011, Pickles et 

al. 2012). In addition to the methodological challenges of studying belowground 

phenomena, the conclusions are often based on short-term studies, which may show only a 

temporary response or no response at all because it would have required a longer period of 

time for the effects to become detectable. Furthermore, many studies have investigated only 

the above- or belowground part without taking into consideration the whole ecosystem, 

even though the two components are inseparably interconnected.  

In one Finnish C budget study, fine roots and foliage together comprised 80 - 90% of 

litterfall, of which fine roots alone accounted for more than 50% (Lehtonen 2005). As the 

belowground net primary production such as root production has been far less studied than 

the aboveground C input, there is considerable uncertainty in the quantification of Finnish 

forest C stocks and fluxes (Lehtonen 2005, Peltoniemi et al. 2006). Fine root turnover has 

been shown to affect the average C stock and C accumulation rate most when the turnover  
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Figure 1 Simplified carbon cycle in a forest, in which the pools are displayed in rectangles and fluxes 
in ellipses. 
 

 

rates of other tree compartments are kept constant: by setting the fine root turnover rate to 

its lower or upper limit (from the literature), fine root litter production ranges from 0.65 

(with low turnover) to threefold (with high turnover) the needle litter production 

(Peltoniemi et al. 2004). In order to improve the robustness of soil carbon models, and of C 

budget estimations, it is important to collect empirical data of the belowground processes, 

especially on fine roots and their responses to environmental changes. The ultimate goal is 

to increase our understanding of overall ecosystem processes and thus contribute to our 

ability to predict what will happen to the soil C storage in the future. 

 

 
1.1 Definition of fine root 

 
Generally, fine roots are defined as roots less than 2 mm in diameter (D) and very fine roots 

less than 0.5 mm in D (Gill & Jackson 2000). Thicker roots are called coarse roots. Fine 

roots are considered as non-woody, absorbing organs which together with their mycorrhizal 

associates account for the bulk of nutrient and water uptake and are the most dynamic 

component of the forest ecosystem (Ruess et al. 2006). The primary infection point for 

ectomycorrhizas is the distal root tip. The lateral fine root branches are both 

morphologically and physiologically responsive to changes in water and nutrient 

availability (Pregitzer et al. 1993, 2002).  
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Previously, fine roots have been considered as a homogeneous root pool but currently 

we know that this ‘pool’ is a mixture of highly heterogeneous ‘populations’ (Fahey & 

Hughes 1994, Wells & Eissenstat 2001, Pregitzer et al. 2002, Gu et al. 2011). Rather than a 

D-based definition, a more functional definition of the fine root (Wells & Eissenstat 2001, 

Wang et al. 2006), such as dividing fine roots according to their branching orders (similar 

to a stream order classification in which the most distal, unbranched roots are classified as 

first order and the point where two first order roots join represents a second order root and 

so on (Pregitzer et al. 2002)) has been suggested.  

Root orders have been shown to differ anatomically (Withington et al. 2006, 

Valenzuela-Estrada et al. 2008), morphologically (Wells et al. 2002, Guo et al. 2004, 

Valenzuela-Estrada et al. 2008), functionally (Rewald et al. 2011) and dynamically 

(Valenzuela-Estrada et al. 2008, Wells et al. 2002). Basically, the hydraulic transport 

capacity increases and the absorbance of water and nutrients decreases along root orders 

(Valenzuela-Estrada et al. 2008, Rewald et al. 2011, Hishi 2007). For example Valenzuela-

Estrada et al. (2008) examined the root system of Vaccinium corymbosum and reported that 

fine roots less than 1 mm in D had up to 7 root orders: First and 2
nd

 order roots were almost 

identical anatomically and according to mycorrhizal colonization, and differed only 

regarding their C:N -ratio and SRL. Hydraulic transport capacity increased along root 

orders; 5
th

 and higher order roots were primarily used only for conduction, 1
st
 and 2

nd
 order 

roots in contrast were for absorbing of water and nutrients, and 3
rd

 and 4
th

 order roots were 

transitional. With some species, some of these functional differences can be captured by 

dividing fine roots into more frequent D classes, such as <0.5 mm, 0.5 - 1 mm  and 1 - 2 

mm, but as Valenzuela-Estrada et al. (2008) showed with Vaccinium corymbosum this is 

not applicable to all species. In recent studies, Norway spruce roots have also been divided 

into tighter diameter classes, the smallest diameter cut-off being at 1 or even at 0.5 mm 

(Hansson et al. 2013).  The proportion of fine roots with a diameter <1 mm of those with a 

diameter <2 mm was 55% (Helmisaari et al. 2009a), showing the quantitative importance 

of the classification.  

It appears that first order roots are relatively inexpensive to build because of their high 

SLR and low structural content, but costly to maintain due to their high N content and 

respiration rate (Eissenstat & Yanai 1997, Pregitzer et al. 1997, 2002) – which leads to their 

high turnover rate, particularly in fertile sites. By contrast, in less fertile sites the 

mycorrhizal partnerships become more abundant and mycorrhizal short roots can have a 

longer lifespan than non-mycorrhizal roots (King et al. 2002).  

Currently, the fine root – coarse root classification system is under evaluation as 

division can also be done into fibrous (feeder, short or absorbtive roots) and pioneer roots 

(long, framework or skeletal roots) (Zadworny & Eissenstat 2011) – or in case of boreal 

conifers, into EcM short roots and other roots (Helmisaari et al. 2009a, Keel et al. 2012). 

This functional division should improve the accuracy of estimations of fine root dynamics, 

as the borderline of 2 mm includes a great share of woody roots. For example, in case of 

Norway spruce, all roots with D >1 mm are woody (Helmisaari et al. 2009a). 

However, as long as the functional separation lacks accepted guidelines, fine root 

separation on the bases of D is a common practice in fine root research. In addition, some 

fine root methods are poorly applicable to root order-based separation (e.g. rhizotrons and 

minirhizotrons, (Withington et al. 2006, Baddeley & Watson 2005), and root sorting in its 

current form is already extremely labour-intensive.  
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1.2 Assessing fine root turnover, production and C input into soil  

 

Litter production, both above- and belowground, is a vital flux component in the 

biogeochemistry of forest ecosystems. As fine roots and associated mycelium are reported 

to contribute significantly to soil C (Clemmensen et al. 2013), accurate quantification of 

their annual biomass production and the share of soil litter input is crucial for C balances. 

Above ground, it is generally assumed that in a stabilized plant community, the litter crop 

equals the annual production of leaves and shoots (Mork 1946, Mälkönen 1974). This can 

be applied belowground by determining the annual fine root and mycelia production. 

Generally, C content is estimated to be 50% of root biomass (dry mass basis), which is used 

when estimating the annual fine root litter C input into soil. C sequestration by fungal 

mycelia production has been estimated via correspondence factor to ergosterol content 

(Wallander er al. 2011). Conceptually, belowground net primary production during the two 

time intervals is calculated as: 

 

Belowground NPP = ∆B + ∆H + ∆E + ∆D   (1) 

 

where ∆B is the change in belowground biomass, ∆H the amount of biomass consumed by 

herbivores, ∆E the amount of biomass lost to rhizodeposition, and ∆D is the amount of 

biomass lost due to death and detachment (Lauenroth 2000). Generally both roots and 

ectomycorrhizal mycelia growing around the root tip (mantle) and between the cortical 

cells are incorporated in the (fine) root biomass whereas the biomass of external mycelia is 

estimated with different methods (Wallander et al. 2013). Biomass loss to rhizodeposition 

is complicated to determine as the term rhizodeposition includes a wide range of processes 

by which C enters the soil, such as 1) death and lysis of root cells (cortex, root hairs etc.), 2) 

leakage of solutes from living cells (root exudates), 3) root cap and border cell loss, 4) 

gaseous losses, and 5) insoluble polymer secretion from living cells (mucilage) (Jones et al. 

2009). However, currently there is no proper method to quantify the amount of biomass 

loss either to herbivory or to rhizodeposition.  

Traditionally, the change in root biomass has been calculated directly from sequentially 

collected soil samples (Böhm 1979). There are several different approaches to processing 

the data obtained from soil cores, such as comparing mass on two sampling dates (Persson 

1980, McClaugherty et al. 1982), if the mass change is significant (Gower et al. 1992, 

Publicover & Vogt 1993), or recording the difference between the annual maximum and 

minimum values (Brunner et al. 2013). Some approaches, such as the Compartment flow 

(Santantonio & Grace 1987), also include the decomposition rate of fine roots. However, 

regardless of the chosen approach, the sequential coring method is strongly criticized for 

being based on tenuous assumptions (Hendricks et al. 2006, Majdi et al. 2005) as it assumes 

that no production, mortality, additional peaks or lows of standing root mass occur between 

the sampling dates, and therefore often leads to erroneous estimates (Kurz & Kimmins 

1987, Milchunas 2009). Furthermore, distinguishing dead roots from SOM also is subject 

to considerable error.  

Another common method to measure fine root production is the ingrowth core method 

(Lund et al. 1970, Persson 1983), which is based on removing all roots from a known 

volume of soil and monitoring the regrowth. Sorting roots from the ingrowth cores is easier 

and faster than from soil cores, but due to the altered conditions of root-free soil, severing 

of roots at the edge of the core, ignoring simultaneous root mortality and too short 

incubation time, this method often leads to underestimates of root production (Fahey & 
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Hughes 1994, Finér & Laine 2000, Lauenroth & Gill 2003, Ostonen et al. 2005, Milchunas 

2009). The method is thus more suitable for comparing different treatments, rather than for 

assessing the actual root production (Makkonen & Helmisaari 1999). The modification of 

ingrowth cores, the ingrowth meshes (Fahey & Hughes 1994, Jentschke et al. 2001, 

Godbold et al. 2003, Hirano et al. 2009), provide some solutions to the above-mentioned 

shortcomings, as their installation causes less disturbance, and the physical properties of the 

soil remain unchanged.  

The N and C budget methods (Nadelhoffer et al. 1985, Raich & Nadelhoffer 1989) are 

based on quantifying the element fluxes in the ecosystem. The N budget method gives an 

estimation of root turnover when the total annual mass of N allocated to fine roots is 

divided by the mean fine root N content. Further, fine root production can be estimated by 

using equation 3. The C budget method does not provide an estimate of root production, but 

it sets an upper limit (derived using other methods) of what it can be (Nadelhoffer & Raich 

1992) by providing the total BG C allocation. However, several studies have shown that the 

flux measurements do not have sufficient accuracy (Ruess et al. 1996 Hendricks et al. 

2006) and the budget methods suffer from serious uncertainties as errors associated with the 

measurement of each process may cumulatively render the root production estimates 

unreliable.     

The alternative way to approach the annual fine root production is to determine fine root 

longevity (yr) and root biomass.  

 

Root production = root longevity * root biomass   (2) 

 

Root turnover rate (yr
-1

) is calculated by using the equation of Gill & Jackson (2000) 

 

Root turnover rate = annual BG production 

         maximum BG root biomass   (3) 

 

but root turnover can also be calculated from root length or root area data (Lauenroth & 

Gill 2003). The MRs (and rhizotrons) differ from the other methods as they can separate 

growth and mortality. The MR is a less destructive in situ method in which a transparent 

tube is inserted into an auger hole in the ground for estimating fine root longevity. Differing 

from other methods, MR method (Bates 1937, Böhm 1979) allows the observation of 

individual fine roots from their first appearance until their death or disappearance, including 

the timing of the different phases, as well as the monitoring of rooting density, root length, 

colour and diameter. Although the MR method has been claimed to provide the most 

reliable method (Aerts et al. 1989, Majdi et al. 2005, Hendricks et al. 2006), it also has its 

limitations, of which the most important is the difficulty of distinguishing between live and 

dead roots in MR images (Wang et al. 1995, Comas et al. 2000, Withington et al. 2003). 

The material of the MR tube, the stabilization time after tube installation, the length of the 

study and the sampling frequency may also cause variation in the turnover estimates (Joslin 

& Wolfe 1999, Withington et al. 2003, Satomura et al. 2007). Furthermore, even with the 

MR method there is several different ways how to define fine root turnover (yr
-1

), varying 

5.6-fold across the methods of calculation (Satomura et al. 2007).   

Currently, the tracer techniques, such as artificial labeling with 
14

C or 
13

C either in 

pulses or continuously, and the 
13

C natural abundance method, are commonly used for the 

estimation of C input into the soil by plants. In artificial labeling methods, the label is 

introduced via photosynthesis and followed until it is no longer detectable in the root-soil 
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system, whereas the 
13

C natural abundance method is based on the discrimination of 
13

C 

and 
12

C isotopes during CO2 assimilation by plants with different photosynthesis type. The 

pulse-labeling method is the most commonly used: it is cheap, easy to handle and provides 

information on the recent photosynthate distribution. The major weakness of pulse labeling 

is that it is not steady-state, so appearance in different pools vary, but also the results show 

only the relative distribution of assimilated C for a specific growth period and cannot be 

applied to the whole growth period – which is the advantage of the continuous labeling 

method. However, the continuous labeling method is very expensive and limited to only a 

few places in the world, and the same disadvantage applies to the 
13

C natural abundance 

method as it demands unnatural conditions where soils developed under C3 vegetation 

allow the growth of C4 plants and vice versa (Kuzyakov & Domanski 2000). 

 

 

1.3 Carbon age of fine roots 

 

A more recently introduced approach in root research is the radiocarbon (
14

C), ‘bomb C’ 

-method (Gaudinski et al. 2000, 2001), which is based on the comparison of ∆
14

C 

concentrations in root mass and the historic record of 
14

C in atmospheric CO2 - a legacy of 

thermonuclear weapons testing in the atmosphere in the early 1960s. 
14

C isotopes allow an 

estimation of the age of C in structural plant C components such as cellulose and lignin and 

ideally it would correspond to the root age, as several studies have shown that recently 

assimilated C is used to produce fine root cellulose (Gaudinski et al. 2001, Matamala et al. 

2003, Trumbore et al. 2006).  

When Gaudinski et al. (2000) first published the 
14

C values of SOM and CO2 samples 

for quantifying the residence time of C in different fractions in the plant-soil system, the 

observation of 5 to 10 years residence time of C in root litter led to a series of 
14

C studies 

(Gaudinski et al. 2001, Tierney & Fahey 2002, Vargas & Allen 2008, Sah et al. 2011, Solly 

et al. 2013) with a common aim to clarify the mystery of why fine root C age was greater 

than the turnover time or lifespan obtained by other methods. As a result, several 

researchers have confirmed that living fine roots can include C which is several years 

(Gaudinski et al. 2000, Sah et al. 2011), or even more than a decade old (Vargas et al. 2009, 

Gaudinski et al. 2001). As the majority of fine root turnover studies carried out with several 

other different methods have reported much shorter, close to annual, turnover times 

(Hendrick & Pregitzer 1992, 1993, Burke & Raynal 1994, Fahey & Hughes 1994, Coleman 

et al. 2000, Brunner et al. 2013, Repo et al. 2014), there is a great uncertainty concerning 

whether C age can be used for the fine root turnover estimate; not least among the 

modellers (Peltoniemi et al. 2006). 

According to Gaul et al. (2009) minirhizotron observations and sequential coring reflect 

the turnover rates of fast-cycling roots, whereas those from radiocarbon analyses mirror the 

rates of long-lived roots: the finest roots are under-represented and new roots may be 

constructed with storage C (Vargas et al. 2009). The alternative hypotheses are that fine 

roots are built by the C storage reservoirs (Vargas et al. 2009) or that roots take up C from 

SOM either directly or via mycorrhizal associations (Simard et al. 1997, Deslippe & Simard 

2011), and incorporate it into their tissues. Some evidence has been presented that after 

disturbances plants use reservoir C to grow new fine roots (Vargas et al. 2009, Gaudinski et 

al. 2009), but at the same time in some studies the C age matched rather well (max 2 years 

lag) with the contemporary CO2 in the atmosphere (Gaudinski et al. 2001, Tierney & Fahey 

2002, Matamala et al. 2003). Gaudinski et al. (2001) disputed the hypothesis of fine roots 
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taking up C from SOM, as fine root ∆
14

C content was greater than that of SOM at many 

depths in the soil profile.  However, in northern vegetation zones mycorrhizas have been 

demonstrated to take up organic nitrogen (e.g. amino acids) (Bending & Read 1995a, 

1995b, Näsholm et al. 1998, 2009, Kielland et al. 2007), although the quantification still 

needs to be assessed.   

 

 

1.4 Effects of environmental factors on fine roots 

 

Temperature 

One might erroneously consider soil as a stable and constant environment for organisms to 

live in. Although soil temperature varies less and with lower oscillation than the air 

temperature, soils experience a wide range of different thermal conditions. In the summer, 

the temperature gradient from the soil surface to the deep mineral soil can be a decrease of 

several degrees Celsius, whereas in the winter the temperature gradient is the opposite. In 

Scandinavia, average soil temperature during the summer varies between 7 and 11 °C 

(Strömgren & Linder 2002), rarely reaching 15 °C. Interestingly, many plant species have 

their optimal root growth temperature much higher than they ever experience in their 

natural habitat (Barney 1951, Lyr & Hoffman 1967, Tryon & Chapin III 1983, Kaspar & 

Bland 1992). In the summer, the soil surface is the warmest and most nutrient-rich place for 

roots to grow and live in but at the same time this layer experiences the most severe 

conditions (temperature, moisture, and disturbance). The higher temperature enhances 

metabolic activity and respiration of the fine roots (Marshall & Waring 1985, Ruess et al. 

2003, Schindlbacher et al. 2009), which is associated with the regularly observed earlier 

senescence and increased mortality of fine roots in surface soil than in mineral soil 

(Baddeley & Watson 2005, Chen & Brassard 2013).  

When growing as a monoculture, Norway spruce has a shallow rooting pattern 

compared to Scots pine and silver birch (Hansson et al. 2013a) and is even more superficial 

in northern Finland than in southern Finland (Helmisaari et al. 2007). In a mixed stand, the 

vertical distribution of fine root biomass was similar in all three species, i.e. a shift in the 

rooting pattern of spruce had occurred from the humus layer to the mineral soil, probably 

due to increased belowground competition (Kalliokoski et al. 2010). Roots have adapted 

successfully to different local soil conditions and to both diurnal and seasonal temperature 

variation. 

 

Moisture 

In boreal forests soil moisture, or drought, are generally not the limiting factors for tree 

growth, except in peatlands. Spruce roots tolerate poorly waterlogged soils (Russel 1977, 

Xu et al. 1997), as stagnant water soil restricts soil aeration. Therefore, the water table 

practically determines the maximum rooting depth. Soil moisture and irrigation/drought 

experiments accomplished with other species than Norway spruce, such as Scots pine, are 

largely not comparable as their physiological resilience against high/low soil moisture 

content among species is so different. A few months of experimental drought in a Norway 

spruce stand in SW Sweden led to no statistical differences in fine root biomass between 

the drought and control treatments, even though in the drought treatment the fine root 

biomass in the surface litter was lower than in the control treatment (Persson et al. 1995).  

This rather superficial effect was caused by the fine root response to extend deeper in the 

soil where more water was available. The substantial amount of necromass in the drought 
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treatment was suggested to result from high mortality of fine roots or slow decomposition 

of dead fine roots. In a spruce stand in central Germany an induced drought resulted in 

strong aboveground effects such as reduced growth and photosynthetic capacity, whereas 

the fine root biomass did not respond very distinctly (Bredemeier et al. 1998). Their data 

provided no evidence that roots were either dying due to the drought or that root growth 

was increased to maintain the water supply. 

 

Nutrients 

Limited nitrogen availability strongly restricts tree growth (Tamm 1991, Linder & Flower-

Ellis 1992, Reich et al. 2006, Lukac et al. 2010) in boreal forests because of limited cycling 

from soil, in contrasts to temperate and tropical forests where N typically cycles rapidly and 

most of the ecosystem N is found in live biomass (Lukac et al. 2010). The greatest pool of 

N (1000 - 2500 kg N ha
-1

) in the northern forests is in soil (Mälkönen 1974, Helmisaari 

1995, Finér et al. 2005, Lukac & Godbold 2011), but due to the cold climate, it is locked up 

in undecomposed organic matter with a low turnover rate. Therefore, the soil quality is 

commonly described by the C:N -ratio of the organic layer which determines how much N 

is mineralized per unit of C respired and influences the amount of this N that is 

immobilized by decomposers (Accoe et al. 2004)  

Microbes are the key actors in soil N cycling as they account for releasing the organic N 

to mineral form. When they decompose SOM with a high C:N -ratio, they also immobilize 

N (Nilsson et al. 2012) and, especially in the case of fungal mycelia, translocate N into the 

decaying biomass. Tree stumps, for example, offer a long term N source for vegetation for 

years, even for decades (Palviainen et al. 2010). In this kind of highly patchy and 

heterogeneous environment fine roots and mycorrhizal hyphal networks proliferate 

intensively in the microsite nutrient patches (Lyr & Hoffman 1967, Pregitzer et al. 1993, 

Robinson et al. 1999) but overall, the poorer the site fertility, the wider root system incl. 

mycorrhizas, trees need in order to acquire a sufficient amount of N and other nutrients.  

According to the functional equilibrium hypothesis (Brouwer 1963, 1983), plants 

increase the relative production of a responsible absorbing organ in order to improve the 

uptake of a limiting resource and reduce stress. Thus, in conditions of nutrient or water 

deficiency plants allocate relatively more C to belowground than aboveground biomass, 

which has been observed (Keyes and Grier 1981, Gower et al. 1994, Ruess et al. 2006, 

Helmisaari et al. 2007), and also modeled on the bases of empirical data sets (Mäkelä et al. 

2008, Dewar et al. 2009, Valentine and Mäkelä 2012). According to the C optimization 

theory (Eissenstat 1992), trees growing in nutrient-poor habitats invest large amounts of C 

in the construction of new fine roots for improved nutrient acquisition. As the cost of 

construction is high in relation to the cost of maintenance and nutrient uptake in nutrient 

poor sites, root lifespan is expected to increase (Schoettle & Fahey 1994, Eissenstat et al. 

2000).  

 

CO2  

Although the current atmospheric C supply is not a growth-limiting factor for vegetation 

growth (Körner 2003), the increasing CO2 concentration in the atmosphere is seen as a 

potential for increasing forest growth, C storage in the vegetation and belowground C input 

in the future. Plants exposed to CO2 enrichment realize a significant increase in 

photosynthesis and growth, and C allocation to belowground processes is often stimulated 

even to a greater extent than to aboveground processes (Pritchard 2011). However, even 

though the fine root production and biomass generally respond positively to elevated CO2 



17 

 

levels (Phillips et al. 2012, Smith et al. 2013), the amount of C input into the soil also 

depends on turnover rate.  The elevated CO2 has been shown to increase fine root diameter 

(Rogers et al,. 1992a, Milchunas et al. 2005), stimulate fine root proliferation in deeper soil 

(Norby et al. 2004) and increase root tissue density (Ryser 1996, Eissenstat et al. 2000), 

which all correlate positively with fine root longevity, thus decreasing the root litter C input 

into the soil. Overall, the responses of fine root longevity to elevated CO2 have been highly 

controversial (Thomas et al. 1999, Johnson et al. 2000, Milchunas et al. 2005, Johnson et al. 

2006, Pritchard et al. 2008, Pritchard 2011), probably due to the multiple interacting 

factors. For example, Sigurdsson et al. (2013) and Reich et al. (2006) observed that low N 

availability progressively suppressed the positive response of plant biomass to elevated CO2 

and in a Norway spruce forest in Sweden elevated CO2 concentration caused no effect on 

tree height and stem increment unless extra nutrients were supplied (Sigurdsson et al. 

2013). This may be an important finding with regard to the effects of global warming on 

boreal forest growth.  

 

pH 

Finnish forest soils are acid, due to the principal soil forming process in coniferous forests: 

podzolisation. Spruce and pine form slowly decomposable needle litter, which accumulate 

on the forest floor and acidic solutes from this litter cause leaching of the upper layers with 

accumulation of material in lower layers. Podzolisation is a natural process, and it includes 

the acidification caused by naturally acidic rainwater. Boreal tree roots are mostly adapted 

to these conditions.  

Anthropogenic acidification is a process caused by atmospheric deposition (low in 

northern Europe) or long-term N fertilization. Basically it is the same process as natural 

acidification but being too potent it exceeds the buffering capacity of the soil: the base 

saturation of the cation exchange sites of the mineral soil is reduced, which leads to a 

decrease in the storage of base cations such as Mg and Ca and increases the availability of 

potentially toxic ions such as Al (Ulrich et al. 1994). The concentration of available Al is 

highest in the subsoil, which is probably the reason for the shallow rooting pattern 

(Jentschke et al. 2001, Godbold et al. 2003) and higher fine root mortality (Godbold et al. 

2003) observed in acidified soil. Also, the lower the pH of the soil gets, the more difficult it 

becomes for the plants to acquire nutrients from the soil. However, unless too severe, tree 

roots and associated mycorrhizas have several means to reduce the negative impacts of 

acidifying soil such as changing the composition of EcM communities, enhancing the 

formation of adventitious roots and adjusting the fine root growth in the most appropriate 

soil depth (Cudlin et al. 2007). 

 

 

1.5 Other belowground C inputs  

 

The most visible part of the belowground C input is fine roots and their mycorrhizal fungal 

associates. Part of the ectomycorrhizal mycelia growing around the root tip (mantle) and 

between the cortical cells is incorporated in the fine root biomass (about 3% of the Norway 

spruce fine root biomass, Kårén & Nylund 1997), but the majority is spread throughout the 

soil as external mycelia including sporocarps (Colpaert et al. 1992, Kårén & Nylund 1997, 

Wallander et al. 2001). External mycorrhizal mycelia is known to form a strong sink of C 

(Godbold et al. 2006, Cairney 2012), but accurate estimation of extramatrical mycelia 

production is difficult (Ekblad et al. 2013, Wallander et al. 2013). According to Hobbie & 
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Wallander (2006) 5 - 28% of NPP of forest trees is directed to EcMs. Further, merely in 

Swedish Norway spruce forests, estimations of the amount of annual production of EcM 

external mycelia have varied from 110 kg ha
-1

 (Hagerberg et al. 2003) to 125 - 200 kg ha
-1

 

(Wallander et al. 2001) and 590 kg ha
-1

(Wallander et al. 2004). Thus, the contribution of 

EcM to total C input into the soil may be considerable. In addition to fine roots, 

mycorrhizal mycelia and other forms of rhizodeposition, coarse roots, stumps, decomposing 

saprotrophic mycelia and soil animals all form a heterogeneous flux of C into the soil which 

is currently impossible to determine per fraction. According to approximate estimations, 

rhizodeposition could amount to one quarter of C allocated to roots (Jones et al. 2009), but 

the estimations vary considerably between cereals, grasses and trees (Kuzyakov & 

Domanski 2000).  

 

 

1.6 Aboveground litter C inputs 

 

Due to the long traditions of forest management in Europe, the aboveground wood 

production has for long been subjected to intensive research. However, as the timber is 

normally harvested, the aboveground litter C input into the soil consists only of tree foliage 

and understory vegetation litter, and after the tree harvest, of harvest residues. Foliage 

litterfall is rather simple to collect, although for example in the case of Norway spruce the 

collection must be organized around the year in order to catch all the shed needles (the 

foliage of Norway spruce consists of 6 - 10 needle cohorts and it does not shed all the 

needles of one needle cohort at the same time (Sander & Eckstein 2001)). Collection should 

also be continued for long periods in order to register the inter-annual variation – which can 

be considerable, even between consecutive years (Saarsalmi et al. 2007). In Finland the 

amount of annual aboveground litterfall has been reported to range from 651 to 4912 kg ha
-1
 

(average for seven spruce stands 2986 kg ha
-1

 (Ukonmaanaho et al. 2008)) and from 614 to 

5046 kg ha
-1

 (average for 18 stands 2539 kg ha
-1

 (Saarsalmi et al. 2007)), i.e. the variation 

between stands can be 8-fold. However, if only the needle litter was considered, the 

variation between the southern and northern stands was an order of magnitude. The total 

litterfall of spruce correlates with the total aboveground biomass (Ukonmaanaho et al. 

2008) and with the annual volume increment (Hansen et al. 2009) which can be seen as 

higher amounts of litterfall e.g. in southern Sweden and Denmark (Nilsson & Wiklund 

1992, Bille-Hansen & Hansen 2001, Hansen et al. 2009) where the fertility (and N 

deposition) is generally higher than in Finland.  

The contribution of understory vegetation (shrubs, herbs, mosses, lichens, and 

understory trees) to the total biomass is significant in the early stages of succession but later 

in succession, especially after canopy closure when the light conditions change, the share of 

understory of the total stand biomass decreases, eventually comprising only a minor part 

e.g. in mature spruce or mixed hardwood forests (Seedre & Chen 2010, Hansson et al. 

2013a). However, although representing only a small fraction of total biomass, bryophyte 

and understory vegetation production can equal or exceed the foliage litter production 

(Gower et al. 1997, Kleja et al. 2008, Seedre et al. 2011).  

Compared to the foliage litterfall collection, the annual biomass production of 

understory vegetation is much more challenging to measure and is often omitted from the 

NPP studies. However, depending on the ecosystem, the share of understory vegetation can 

be considerable (Mälkönen 1974, Kleja et al. 2008, Hansson et al. 2013b). The most 

straightforward way is to estimate the understory annual growth (Helmisaari 1995, Schulze 
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et al. 2009), but correlations between the tree stand mean diameter, height or leaf biomass 

(Hansson et al. 2013b), percentages of the total biomass (Hansson et al. 2013b) or turnover 

rates (Lehtonen 2005, Kleja et al. 2008) have also been used.   

 

 

2 OBJECTIVES 
 

 

The overall objective of this thesis was to study how environmental conditions affect fine 

root production and fine root litter C input into the soil. To achieve this aim, fine root 

biomass and turnover were determined for Norway spruce stands under different 

environmental conditions, both manipulated and natural. In order to obtain a more holistic 

view of the whole ecosystem, the aboveground stand foliage and understory litter C input 

were also determined.  

 

As a part of the on-going discussion concerning the observed surprisingly long residence 

times of C in fine roots, we analyzed the age of root 
14

C of the fine roots and compared it to 

the root longevities obtained by the minirhizotron (MR) method. In addition, we studied the 

changes in root 
14

C age with varying conditions and traced the origin of ‘old’ C by 

analyzing the root 
14

C age in conifer seedlings of known age. 

 

 

The specific objectives in the sub-studies were:  

 

 to investigate Norway spruce belowground responses to varying soil temperature, 

length of the growing season and nutrient availability by determining the biomass, 

morphology (I, III) and turnover rate (II, III) of fine roots; 

 

 to quantify the annual input of C into the soil from Norway spruce fine root litter 

in varying environmental conditions and to relate this to the aboveground foliage 

litter C input (II, III), including the understory vegetation (III); 

 

 to define the age of C in fine roots from soil core roots for investigating how root 

C age changes along with root diameter, soil depth, soil fertility, tree species (IV) 

and soil temperature (V), and to compare the known age of fine roots from the 

ingrowth cores and minirhizotrons with the estimated age of root C based on 

radiocarbon (V). Furthermore, we tested the hypothesis that the old C in fine roots 

could originate from soil by analyzing the fine root C age of spruce and pine 

seedlings of known age (V).    
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3 MATERIALS AND METHODS 

 

 
3.1 Study sites 

 
Flakaliden  

A unique long-term nutrient optimization, and later soil-warming (studies I and II) 

experiment is being conducted in a boreal Norway spruce (Picea abies (L.) Karst.) forest in 

Flakaliden (64°07′N, 19°27′E, 310 m a.s.l.) in northern Sweden (Figure 2). At this site, the 

forest is even-aged; the stand was planted in 1963 with four-year old Norway spruce 

seedlings of local origin after clear-felling. At the time of establishment, stand density was 

ca. 2400 trees ha
-1

 and no thinnings have subsequently been carried out. Understory 

vegetation mainly consists of Vaccinium vitis-idaea, Vaccinium myrtillus, Deschampsia 

flexuosa and Empetrum spp., and the ground is covered by forest mosses. 

Soil at the site is a thin podzolic, sandy, post-glacial till with mean depth of about 120 

cm, classified as Spodosol according to USDA Soil Survey Staff (1999), with soil water 

content normally not limiting tree growth (Bergh et al. 1999). The site fertility is low (tree 

growth <4 m
3
 ha

-1
 yr

-1
, Berggren et al. 2004) and the annual deposition of total nitrogen in 

the region is also low (≤3 kg ha
-1

) (Berggren et al. 2004).  Climate is boreal; long cool days 

in the summer and short cold days in the winter; the mean monthly temperature varies from 

−7.5 °C in February to 14.6 °C in July (mean for 1990 - 2009). Mean annual precipitation is 

~600 mm with approximately one-third falling as snow, which usually covers the frozen 

ground from mid-October to early May. For more information concerning the experimental 

site, see Berggren et al. (2004) and Table 1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2 Location of the study sites in Finland, 

Sweden and Estonia. Studies I, II and V were 

located in Flakaliden, study III in Olkiluoto and 

Kivalo and study IV in Mekrijärvi, Punkaharju and 

Voore. The additional sites in the study III were 

Flakaliden, Knottåsen and Asa (Kleja et al. 2008) 

and Tönnersjöheden (Hansson et al. 2013a,b).   
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Olkiluoto 

In the latitudinal gradient study in Finland (study III), Olkiluoto represents the southern 

site. In association with the decision for choosing Olkiluoto (in Eurajoki, south-western 

Finland (61°13’N, 21°28’E, 10 m a.s.l., Figure 2) as a final disposal site for spent nuclear 

fuel, a massive current biosphere programme has been conducted. Our study site, a 93-year-

old Norway spruce stand (FIP10) is one of the intensive monitoring sites. The spruce plot 

represents rather high fertility herb-rich heath forests (i.e. Oxalis-Myrtillus type, OMT 

(Cajander 1949)), but due to the relatively high age of the trees, the period of maximum 

stand volume increment has been passed (Aro et al. 2012). Soil is fine-textured till (Rautio 

et al. 2004) and pedologically rather young after the previous glaciation (Tamminen et al. 

2007). The understory vegetation is characterized by an abundant forest moss layer with 

many herb and fern species, whereas the cover of dwarf shrubs is only 2 - 4% (Aro et al. 

2012). There are birch trees (17% of overall tree number) growing among the spruces. Root 

biomass and foliage litterfall of these birch trees were excluded from the data. The mean 

monthly temperature varies from −4.2 °C in February to 17.1 °C in July (mean for 1993 - 

2009) (Haapanen 2010). For a more detailed site description, see Aro et al. (2012), 

Helmisaari et al. (2009c), Haapanen (2010) and Table 1.  

 

Kivalo 

In the latitude gradient study in Finland (study III), Kivalo (66°20’N, 26°40’E, 486 m 

a.s.l.Figure 2) represents the northern site. The stand (including three 25 m x 25 m plots) 

was clear-cut and prescribed to be burned in 1926, and planted in 1930. Understory 

vegetation at Kivalo represents a mesic site type (Hylocomium-Myrtillus type, HMT 

(Cajander 1949)) and the most abundant species are Vaccinium myrtillus and forest mosses 

(Pleurozium schreberi, Hylocomium splendens and Dicranum spp.). On average, 20% and 

12% of the total stem volume of the stand are birch and pine trees, respectively (Smolander 

& Kitunen 2002). Soil type in Kivalo is podsolic loamy sand (Smolander & Kitunen 2011) 

and the annual total N deposition and N mineralization at the site are low (~2 kg ha
-1

 yr
-1

 

and <4 kg ha
-1

 yr
-1

, respectively, Lindroos et al. 2007, Olsson et al. 2012). The mean 

monthly temperature varies from –12.3 °C in January to 15.1 °C in July (mean for 1981 - 

2011). For more information concerning the site, see Smolander & Kitunen (2002, 2011) 

and Table 1.  

 

Additional sites in Sweden 

For widening the variation in above- and belowground litter C input in study III and 

discussing it in relation to site nutrient availability, data from four earlier published Norway 

spruce sites from a north-south transect in Sweden were included: Flakaliden (64°07’N, 

19°27’E, 310 - 320 m a.s.l.), and Knottåsen (61°00’N, 16°13’E, 315 - 320 m a.s.l.) in the 

boreal zone, Asa (57°08’N, 14°45’E, 190 - 200 m a.s.l.) in the boreo-nemoral zone (Kleja 

et al. 2008) and Tönnersjöheden (56°40’N, 13°03’E, 70 - 90 m a.s.l.) in the cold temperate 

vegetation zone (Hansson et al. 2011) (Figure 2). Climatic conditions (Table 1) as well as 

nutrient availability change along the latitude gradient: Tönnersjöheden, the southernmost 

site, is a site with high N deposition (18 kg ha
-1

 yr
-1

, Bergholm et al. 2003), leading to high 

N mineralization and availability (Olsson et al. 2012) whereas at Flakaliden, the 

northernmost site, the annual N deposition load and N mineralization (~4 kg ha
-1

 yr
-1

, 

Andersson 2002, Olsson et al. 2012) is on the same level as in Kivalo (2 - 3 kg ha
-1

 yr
-1

, 

Kleja et al. 2008, Lindroos et al. 2007).  
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Table 1 Stand characteristics. The C:N -ratio of the organic layer at the sites was provided by 

Smolander & Kitunen (2002), Helmisaari et al. (2007), Potila et al. (2007), Berggren et al. (2004), 

Hansson et al. (2011) and (Ostonen et al. 2007a). The stand characteristics were measured at Kivalo 

and Voore in 2000 (Smolander & Kitunen 2002, Ostonen et al. 2011), at Mekrijärvi in 1983 

(Helmisaari et al. 2002), at Olkiluoto and Tönnersjöheden in 2009 (Aro et al. 2010, Hansson et al. 

2011) and at the other Swedish sites in 2001 (Berggren et al. 2004, Kleja et al. 2008). In all countries 

the mean annual precipitation (MAP), mean annual temperature (MAT) and mean length of the 

growing season (>5 °C, MLGS) were calculated for a 30-year period: in Finland 1981 - 2011, based on 

the dataset of the Finnish Meteorological Institute, in Sweden and in Estonia 1961 - 1990 

(Alexandersson et al. 1991, Kleja et al. 2008, Ostonen et al. 2011), except the MLGS at 

Tönnersjöheden (Olsson & Staaf 1995). p = pine, s = spruce, Ba = stand basal area, D = diameter, 

dom. = dominant, d = day. 

 

 

C:N 

Stem 

density 

(trees ha
-1

) 

Ba 

(m
2
 ha

-1
) 

Mean 

stem D 

(cm) 

Age of 

dom. 

trees (yr) 

MAP 

(mm yr
-1

) 

MAT 

(C °) 

(MLGS) 

(d yr
-1

) 

Finland         

Kivalo 32 939 20 18 74 517 0.7 112 

Mekrijärvi  432 26 27 100 589 2.4 140 

Punkaharju (p) 42 956 17 21 36 
532 3.9 163 

Punkaharju (s) 21 378 28 32 45 

Olkiluoto 24 667 31 31 96 545 5.3 162 

Sweden         

Flakaliden 40  20  42 523 1.2 120 

Knottåsen 35  18 11 37 613 3.4 160 

Asa 32 1528 26  38 688 5.5 190 

Tönnersjöheden 24 614 29 25 54 1053 6.4 204 

Voore 29 1050 50 26 65 647 5.4 177 

 

 

Mekrijärvi, Punkaharju, Voore 

The research sites in the 
14

C study (study IV) were located in boreal forest zone,  at 

Punkaharju (61°48′N, 29°19’Ε) and Mekrijärvi (62°47′, 30°58′Ε) in Finland, and in the 

hemiboreal zone, Voore (58°42′N, 21°59′Ε, 90 m a.s.l.) in Estonia (Figure 2). The 

Punkaharju site had stands of both tree species (Norway spruce and Scots pine (Pinus 

sylvestris L.)). At the time of soil core sampling, the age of the stands varied between 35 

and 100 years, and in all stands the canopy was closed. The two lowest fertility sites were 

on podzol soils: Punkaharju pine stand (between Vaccinium vitis-ideae type (VT) and 

Calluna type (CT) (Cajander 1949)) and Mekrijärvi pine stand (VT type), of which 

understory vegetation consisted of Vaccinium vitis-idaea L., Vaccinium myrtillus L., 

Calluna vulgaris (L.) Hull and Pleurozium schreberi (Brid.) Mitt. The Punkaharju spruce 

stand (OMT) is on more fertile cambic arenosol and Voore stand (Oxalis type, OT) on still 

more fertile umbric luvisol. At the latter site the dominating tree species was Norway 

spruce, with a 10% mixture of pine and birch trees. More information on the Mekrijärvi and 

Punkaharju sites can be found from Helmisaari et al. (2002) and Sah et al. (2011), and on 

the Voore site from Ostonen et al. (2007). 
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3.2 Nutrient availability and soil warming manipulations 

 

The Flakaliden fertilization experiment (Figure 3) was established in 1987, with the aim of 

optimizing the nutritional status of the stand without leaching of nutrients to groundwater. 

All essential macro- and micro-nutrients were supplied every second day during the period 

of active growth (early June–mid-August). The amount and composition of the nutrient mix 

(Table 2) was determined annually on the basis of foliar analysis, nutrient concentrations in 

the soil water, and from the predicted growth response. The amount of irrigation was set to 

maintain soil water potential above –100 kPa. After ten years of optimized fertilization (at 

the time of installing the heating cables) in the fertilized plots the annual stem volume 

production had more than quadrupled (from 3 to 14 m
3
 ha

-1
 year

-1
) and the trees were higher 

compared to those in the non-fertilized treatment. At the time of our study, the basal area 

(ba) of the WFI plots was 43 and 50, FI plots 41, WI 22, I 22 and C 19 m
2
 ha

-1
 (study I). 

For further details on this, see Bergh et al. (1999) and Linder (1995). 

In the summer of 1994, six 85 m long heating cables (DEVI, Elektrovärme AB, 

Vällingby, Sweden) were buried in the soil of the buffer zone of the fertilization and/or 

irrigation plots. The cables were installed between the organic and mineral soil layer 

(spacing ~20 cm). Soil warming started in April 1995, five weeks before the snowmelt, 

with an increase of 1 °C per week, until a 5 °C difference between warmed and non-

warmed plots was attained. In the autumns, the soil temperature was correspondingly 

allowed to decrease by one degree per week to the ambient level after the soil temperature 

in the control plots approached 0 °C. Soil temperature was recorded in the organic layer and 

at 5, 10, 20, 30 and 40 cm depths of mineral soil. In addition to increased soil temperature, 

the aim was to lengthen the growing season by two months. Irrigation was included in the 

soil warming treatment in order to avoid unwanted drying effects. For further information 

about the warming treatment, see Bergh & Linder (1999) and Strömgren & Linder (2002).  

For the studies I and II, only 10 m x 10 m sub-plots of the 50 m x 50 m treatment plots 

were used with following treatments: soil warming-fertilization-irrigation (WFI), soil 

warming-irrigation (WI), fertilization-irrigation (FI), irrigation (I) and control plot (C). In 

these two studies, the experimental plots were exactly the same in WI and WFI treatments.  

 

 

Table 2 The amounts of macro- and micro-nutrients (kg ha
-1

) supplied with irrigation water during 

the period 1987 - 2010 in (a) WFI, FI (studies I and II) and (b) I reference treatment (study II). For 

further details see Linder (1995) and Strömgren & Linder (2002). 

 

    N P K Ca Mg S Mn Fe Zn B Cu Mo 

1987-2006 1350 211 591 79.3 121 53.1 4.0 7.0 0.3 3.95 0.3 0.1 

a 2007 50 15 15 22.5 4 3.3 0 0 0 0.37 0 0 

 
2008 50 15 15 22.5 4 3.3 0 0 0 0.37 0 0 

 
2009 50 10 42 2.9 4 3.9 0.2 0.2 0.03 0.10 0 0 

 
2010 50 10 42 2.9 4 3.9 0.2 0.2 0.03 0.10 0 0 

 
Tot. 1550 261 705 130.1 137 67.5 4.4 7.4 0.36 4.89 0.3 0.1 

b 2007 100 30 30 46 8 6.0 0 0 0 0.37 0 0 

 
2008 100 30 30 46 8 6.0 0 0 0 0.37 0 0 

 
2009 50 10 42 3 4 3.9 0.2 0.2 0.03 0.10 0.02 0.004 

 
2010 50 10 42 3 4 3.9 0.2 0.2 0.03 0.10 0.02 0.004 

  Tot. 300 80 144 98 24 19.8 0.4 0.4 0.1 0.94 0.04 0.008 
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Figure 3 Design of the long-term soil warming and fertilization experiment at the Flakaliden research 

site, in northern Sweden. In the figure the study plots used for the fine root biomass and necromass 

sampling (study I), fine root turnover estimation (study II), foliage litterfall (study II) and fine root C 

age determination (study V) of Norway spruce are described. 
 

 
In the FI treatment the experimental plots were the neighbour ones, but in the I, the 

treatments were slightly different. Therefore when referring to the treatment I in a study II, 

it is called reference treatment instead of irrigation (Figure 3). When calculating the EcM 

short root characteristics (study I) and fine root longevity (study II), the data from the two 

plots in the WFI and WI were pooled together. 

 

 
3.3 Belowground measurements 

 

Fine root biomass and short root morphology 

For determining fine root biomass (studies I and III) soil samples were taken with a 

cylindrical soil corer from Flakaliden, Kivalo and Olkiluoto, at 2 - 5 m distance from the 

MR tube. When possible, the autumn sampling was favoured on the basis of the results of 

previous boreal conifer studies, according to which the seasonal maximum fine root 

biomass occurs at the end of the growing season (Ostonen et al. 2005, Makkonen and 

Helmisaari 1998). At Flakaliden and Kivalo the organic layer was separated and thereafter 

the mineral soil was divided into 10 cm layers. At Olkiluoto, the whole core was divided 

into 5 cm layers, because the organic layer was not clearly distinguishable and the upper 

mineral soil layer consisted of a mixture of organic and mineral soil. At Olkiluoto, due to 

the high stoniness the maximum sampling depth was only 15 cm (study III) whereas at 

Kivalo it extended to 34 cm (study III) and at Flakaliden to 37 cm (study I). The stoniness 
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of the site was taken into consideration when weighing the dry mass of the fine roots in the 

mineral soil by using the stoniness index (Viro 1952, Tamminen 1991) (studies I and II). 

For studies of EcM short root morphology, an additional sampling of organic layer was 

conducted at the end of the growing season in Flakaliden (study I) and in Kivalo (study III, 

published in Ostonen et al. (2007a).   

Roots for the biomass measurements were wet-sieved and sorted under a dissecting 

microscope into different tree species, understory, biomass and necromass categories 

according to their colour, elasticity and toughness (Persson 1983). Understory roots were 

further separated into dwarf shrub roots and grass & herb roots (study III). Roots smaller 

than 2 mm were regarded as fine roots by Persson (1983) and Vogt et al. (1993), but tree 

fine roots (plus understory fine roots at Olkiluoto) at our sites were further sorted into two 

D classes: 1 - 2 mm or <1 mm, the latter including EcM short roots. As practically all 

spruce short roots are colonized by EcM in boreal spruce forests (Taylor et al. 2000, 

Ostonen et al. 2011), no separation between EcM and non-EcM short roots was made. A 

subsample of roots in each sorted sample of living roots <1 mm in D was used for counting 

the number of EcM root tips on short roots with the aid of a microscope, and weighed 

separately. The root samples were dried at 70 °C for 48 h, and weighed. The biomass of 

Kivalo fine roots <2 mm in D has been published by Ostonen et al. (2007a), but in this 

study (study III) only <1 mm in D were used. 

EcM short root (Figure 4) for the morphology analysis were cleaned with a small soft 

brush to remove all soil particles, and counted under a microscope (180 - 360 first and 

second order roots per treatment (study I)) after separation from the long roots. The length, 

D and projection area of short roots were defined using WinRHIZO™ Pro 2003b 

(resolution 800 dpi, Regent Instruments Inc. 2003). The air-dry short root were dried at 

70 °C for 2 - 3 h to constant weight and weighed. RTD (kg m
−3

) and specific root length 

(SRL) (m g
−1

) were determined as described by Ostonen et al. (2007a). In Olkiluoto the 

SRL was determined for the fine roots <1 mm in D (study III) by using the same software. 

EcM short root tip mass (tip W, mg) was calculated as the dry mass of all the EcM short 

root tips in a sample divided by the number of root tips in the sample (study I). To quantify 

the EcM short root tip biomass (EcMB) m
-2

 for the studied soil profile the mean tip W and 

 

 
 
 

 

 

 

 

 

 

 

Figure 4 Ectomycorrizal (EcM) short root, 

consisting of 1st and 2nd order roots, and 

measured EcM short root morphology 

parameters.  
(Picture: Ivika Ostonen) 
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their number m
-2

 were used, and this fraction was compared to the total fine root biomass in 

order to determine the proportion of nutrient- and water -absorbing organs. The relation of 

EcMB to BA was used as an indication of the functional relationship between above- and 

belowground parts and has proven useful in the comparison between sites with varying tree 

sizes and/or numbers.  
Due to the low number of replicate plots (n = 1, 2 and 3 in Olkiluoto, Flakaliden and 

Kivalo, respectively), the emphasis on statistical analyses is limited and no difference in 

fine root biomass between the sites was statistically tested. At Flakaliden (study I), the 

differences between four irrigated treatments were tested using the Univariate, General 

Linear model (GLM) SPSS (PASW Statistics 18.0). The significance among means was 

tested by using the Least significant difference (LSD) test. STATISTICA 7.0 software was 

used for testing the differences in short root morphology between the treatments. When 

testing the effect of fertilization or warming only, or their interactions, two treatments were 

pooled together (for warming: WFI + WI vs. FI + I (n = 4) and for fertilization: WFI + FI 

vs. WI + I (n = 4)) and full factorial design was applied. In both cases the control (C) is 

included only in the figures. Linear regression models were used to test the relationship 

between fine root and needle biomass as well as BA. Linear regression model was also used 

when relating the above- and belowground litter production to the C:N -ratio of organic 

layer. The significance level α = 0.05 was accepted in all cases. 

 
Fine root turnover 

For estimating the fine root turnover rate (studies II and III), the MR method (Hendrick & 

Pregitzer 1992) was utilized.  Digital images of fine roots were repeatedly collected via 

transparent, acrylic tubes during three consecutive growing seasons. At Flakaliden, the 

tubes were installed almost 15 years earlier, at the time when Majdi & Öhrvik (2004) 

studied the short-term response of root growth to soil warming, but at Kivalo and Olkiluoto 

they were installed a year before the image collection started. The images were collected 8 - 

15 times using a MR camera (BTC-2; Bartz Technology, Santa Barbara, USA) between 

11.6.2008 - 8.10.2010 at Flakaliden (study II), 23.6.2004 - 12.9.2006 at Kivalo and 

26.6.2008 - 18.5.2011 at Olkiluoto (study III). A total of 13458 images were taken during 

the study period, of which 5006 at Flakaliden, 2849 at Kivalo and 5603 at Olkiluoto. 

At Flakaliden, the number of tubes (installed at an angle of 45°) in the treatments were: 

10 at WFI, 8 at WI, 4 at FI and 5 at I, and about 23 digital photos (size 1.1 x 2.0 cm) were 

taken at each point, thus one stripe per tube. Due to technical problems the autumn image 

collection session in 2009 was missed, which led to uncertainty in recording which roots 

were born or died before or after the winter in the images of 2.6.2010. Therefore, the birth 

and death times of new and dead roots observed on this date were randomized and divided 

according to the distribution of root life status in 2008 autumn and 2009 spring. These 

values were then used for estimating the percentage of the new and dead roots observed 

2.6.2010 to have been born or died already in the previous autumn.   

At Kivalo, all nine MR tubes (three in each plot) were vertically installed, whereas in 

Olkiluoto due to the high stone content of the soil horizontal tubes were also used: two 

vertical and three horizontal ones, with different lengths. Therefore, when comparing the 

number or the elongation of fine roots between the sites, the variables were calculated for 

an image rather than for a tube by dividing the variable by the number of images filmed per 

session at each site. Two stripes of images were taken of each tube, from different sides of 

the tubes (study III). 
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The images were analyzed at Flakaliden and Olkiluoto with WinRHIZOTron MF 2005 

and 2008c (Regent, Quebec, Canada) and at Kivalo with RooTracker (Duke University, 

Durham, N.C.) softwares. As root orders (Pregitzer et al. 2002) are difficult to trace with 

the MR method (Withington et al. 2006) every segment was considered as an individual 

root, remembering that the distal roots could not stay alive if the connected higher order 

root was defined as dead. Appeared roots were followed until estimated to be dead on the 

basis of visual criteria: unsuberized, turgid roots turned to dark brown/black (grass roots 

light brown), wrinkled and produced no new roots in subsequent viewings. At Flakaliden, 

understory roots were excluded from the analysis, but at Kivalo and Olkiluoto they were 

classified into two groups: dwarf shrub and grasses/herbs. At Flakaliden the disappeared 

roots were separated into two groups: visually disappeared roots (GV), which became 

covered by mycelia/soil or had grown out of the image and apparently grazed roots (GG). 

In the analysis, the GG roots were treated as ‘dead’ and GV roots were as ‘censored’ as 

generally they were probably alive at the time of disappearance (became covered by 

mycelia, other roots or soil). Likewise, roots living at the end of the monitoring period were 

treated as ‘censored’.  

The mean diameter (D), length and location of each root and short root tip were 

recorded and they were divided into five D classes: 1: <0.2 mm, 2: 0.2 - 0.3 mm, 3: 0.3 - 

0.4 mm, 4: 0.4 - 0.5 and 5: <0.5 mm and two depth classes: topsoil (0 - 5 cm, from vertical 

tubes the five uppermost images, from horizontal tubes all images) and mineral soil (the 

rest of the images after the top five). The term ‘topsoil’ was chosen instead of ‘organic 

layer’ because the thickness of the organic layer varied between the tubes, or because the 

organic layer was not in all cases easily distinguishable.  

All traced roots from the first session were excluded from the survival analysis because 

the birth time of the fine roots was unknown (in Kivalo and Olkiluoto 404 and 258, 

respectively, of the total of 3819 roots (incl. understory) and in Flakaliden 373 of the total 

of 2213 spruce roots). In the Olkiluoto and Kivalo data, the times of death and birth were 

fixed to the midpoint between the sessions. For the survival analysis, the data from all MR 

tubes per site or per treatment were combined.  

We estimated the median and mean longevity of the fine roots as well as differences 

between the survival probabilities of different groups by a parametric regression model 

with Weibull error distribution (Weibull 1951) using the SurvReg function in the R 

program, version R 2.13.0 (R Development Core Team). In order to provide comparability 

with many earlier fine root publications, we also estimated the median longevity of fine 

roots using the non-parametric Kaplan-Meier survival function (Surv function in the R 

program) (Kaplan & Meier 1958). The regression model uses the survival data more 

effectively than the Kaplan-Meier function through the assumption of equal variances of 

longevity in different treatment classes. When comparing the mean D of a fine root (from 

the MR images) of the Kivalo and Olkiluoto sites the independent sample t-tests (IBM 

SPSS Statistics 20) were used with the level of statistical significance of α = 0.05, and each 

strip of the MR tube was considered as an independent replicate (10 in Olkiluoto, 17 in 

Kivalo). In Flakaliden the D comparisons were included in the morphological investigation 

and the D was measured from the EcM short roots of first and second orders (Figure 4) 

instead of MR images. 

 

EcM mycelia production  

The production of EcM mycelia was estimated using ingrowth mesh bags (Wallander et al., 

2001), filled with quartz sand and buried in the organic horizon of each treatment plot 

(study I) in Flakaliden. The bags were collected two years afterwards and the extent of 
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fungal colonization was estimated by two different methods: the phospholipid fatty acid 

(PLFA) method (Frostegård et al. 1991, 1993) using the fungal biomarker 18:2ω6,9; and 

ergosterol concentration analysis (Wallander & Nylund 1992) using conversion factors 

(Salmanowicz & Nylund 1988, Olsson et al. 2003). 

 

Belowground litter production 

For estimating the belowground root litter production the median fine root age of trees and 

understory in the stands (studies II and III), perceived from the survival analyses, and the 

fine root biomass data (studies I and III), from the soil cores, were used (equation 2). The 

treatments were the same in the WFI, WI and FI regarding the fine root biomass and 

longevity data, but in the case of the reference treatment I, the treatments were slightly 

different: the treatment I in the fine root longevity study (study II) received a solution of 

nutrients (Table 2) during four growing seasons before the MR data collection. However, it 

is still considered as a reference treatment.  

As more than 99.5% (studies II and III) of the fine roots traced in the MR images were 

<1 mm in D, only the biomass of the spruce roots <1 mm in D was used in the production 

calculations. For understory the fine root biomass <2 mm in D was used, as in Kivalo no 

separation to the smaller D group was made. However, the D separation at Olkiluoto 

showed that all shrubs and 34% of grass fine roots were <1 mm in D, and at Kivalo the 

field layer consisted of dwarf shrubs only. Thus, the error resulting from this was 

considered to be acceptable. For estimating the annual fine root production (kg ha
-1

), fine 

root biomass (kg ha
-1

) in different soil layers was multiplied by the fine root turnover rate 

(yr
-1

) in the topsoil and the mineral soil. The flux of C is reported as 50% of the litter 

production. 

 

 

3.4 Aboveground litter production 

 

The spruce foliage litterfall (studies II and III) was collected using 8 - 12 conical traps (a 

collection area of 0.5 - 0.8 m
2
) located in the stands, at a height of 0.9 - 1.5 m above ground 

level. The foliage litterfall in the treatment I (study II) was collected from the same plots as 

the fine root biomass (study I) (Figure 3). Litterfall collection was implemented during 

three to four years: 2008 - 2010 at Flakaliden (study II), 2008 - 2011 at Olkiluoto (study 

III) and 2000 - 2002 at Kivalo (study III). The samples were oven-dried at 65 °C for 24 h, 

sorted to needles and other components (leaves, twigs, cones and all other material) and 

weighed. The deciduous leaf litter from the aboveground litter production of Olkiluoto was 

excluded (study III), and other components than needle litter were pooled. The average 

annual foliage litter production during the whole collection period was used (studies II and 

III).  

The estimate of aboveground biomass production of understory vegetation was made at 

Kivalo in 2000 by Nieminen & Smolander (2006), and the assessed value of 100 g m
-2

 yr
-1

 

was used as a proxy of the annual aboveground understory litterfall (study III). At 

Olkiluoto, the aboveground understory litterfall was estimated by sampling six 30 cm x 30 

cm (in total 0.54 m
2
) plant-humus-litter samples in August 2008 (study III). The organic 

layer (L, F, H horizons) and all the understory vegetation growing on each square was 

removed in one piece, placed on plastic boards in large plastic bags, and separated into 

individual plant species. The annual aboveground biomass production of dwarf shrubs was 

calculated as the sum of leaves and stems grown in 2008. The whole shoot of lower herbs 
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and ferns represented the growth in 2008. In perennial species the annual growth was 

estimated by dividing the shoot biomass by three (estimated age) and in diannual species by 

two. The annual growth of mosses was estimated by dividing the biomass of the upper part 

by 2.5, representing the average number of the annual growth segments according to field 

observations. For further information on the litter collection of foliage and understory in 

Olkiluoto, see Aro et al. (2012). The total annual litter production was calculated by 

combining the above- and belowground litter production either with or without the 

understory litter production (studies II and III). The flux of C was estimated as 50% of the 

litter production (studies II and III).  

 

 

3.5 Radiocarbon dating  

 

The radiocarbon dating takes advantage of the elevated levels of 
14

C in atmospheric CO2 

that resulted from thermonuclear weapons testing in the early 1960s. This global 
14

C 

isotope can be used to determine the time since 
14

C in plant tissues was fixed in 

photosynthesis. After the nuclear test ban treaty in 1963, the amount of 
14

C in atmospheric 

CO2 has decreased due to exchange with the ocean and terrestrial biosphere, and dilution by 

burning of 
14

C-free fossil fuels (Gaudinski et al. 2001). As the atmospheric 
14

C value is 

nowadays close to the detection limit, it is reasonable to use archive root samples in which 

the 
14

C signature is higher. The soil cores (36 mm in D, 12 in each site) were lifted up at the 

Mekrijärvi site in September 1986, at Punkaharju in September 1989 (both pine and spruce 

stands), and at Voore (spruce) in October 1996. The cores were divided into sections 

comprising the organic layer and the 10 cm thick mineral soil layers, of which only the 

roots from the 0 to 10 cm upper mineral layer were utilized (study IV). At Punkaharju we 

additionally used roots from the organic layer. After collection, the roots had been washed 

free of soil and the tree roots separated from understory roots and divided into living or 

dead roots and into two D classes: <2 mm (fine roots) and >2 mm (coarse roots), dried at 

70 °C for 48 h and weighed (Helmisaari et al. 2002). For 
14

C analyses, the fine roots were 

further separated (under a microscope) into D classes <0.5 mm and 1.5 - 2 mm. There were 

a total of 31compiled samples, the replicate number of samples being mostly 3 but in a few 

cases 2 (study IV). Cellulose was isolated from root samples as described in Sah et al. 

(2011) and the 
14

C analysis was carried out at the SUERC AMS Laboratory, East Kilbride, 

UK (Freeman et al. 2008). The 
14

C enrichment of a sample was measured as a percentage 

(or fraction) of the 
14

C activity relative to a modern standard (oxalic acid provided by the 

US National Bureau of Standards), where 100% modern is defined as the value in AD 

1950, in the absence of any anthropogenic influences. Overall analytical precision is quoted 

at 1σ. 

As our archived fine root sample size was inadequate (only two samples) for statistical 

analyses for some of the dates and sites, we combined the root C age values from different 

stands by D and soil depth and applied the paired T-test for comparison of means by 

diameter and depth. 
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4 RESULTS AND DISCUSSION 

 

 
4.1 Fine root and EcM responses to warmer soil and higher nutrient availability 

 

At Flakaliden, with a cold boreal climate, warmer soil temperature and longer growing 

season were expected to favour fine root growth and EcMs (measured as EcM short root tip 

numbers and mycelia production (studies I and II). Fertilization was also expected to 

activate fine root growth, but to reduce both the number of EcM short root tips and mycelia 

production as a response to decreased need to forage nutrients. EcM short root morphology, 

being highly sensitive to environmental changes (Ostonen et al. 1999), was hypothesized to 

respond to these changes (study I). According to the cost-benefit analysis (Eissenstat et al. 

2000), fine roots should live longer in harsh environmental conditions, where their 

construction costs in terms of expended C are higher, compared to sites with more 

favourable temperature and water and nutrient availability conditions. Thus, both the 

warming and the fertilization treatments at Flakaliden were expected to shorten the fine root 

lifespan (study II). Accordingly, in the two natural Norway spruce stands in Finland (study 

III), trees growing in the south were anticipated to have faster fine root turnover than trees 

growing in the north. As the growing season is shorter and soil organic layer C:N -ratios 

were higher in the northern stand, the hypothesis was that more fine root production would 

be directed belowground than aboveground in the northern site compared to the southern 

site, in order to guarantee sufficient acquisition of nutrients. Thus, the C input into the soil 

via root litter would become higher along with higher latitude. The litter production data 

from these two sites was eventually augmented with data from four additional sites in 

Sweden (study III). 

Fine root biomass was highest in the surface soil and decreased sharply towards deeper 

soil layers (study I), as reported also by many other investigators (Helmisaari et al. 2007, 

Finér et al. 2011, Makita et al. 2011). However, as the thickness of the organic layer affects 

the amount of fine root biomass in the organic layer (Borken et al. 2007), for comparing the 

treatments we unified the dissimilar thicknesses of the organic layer (from 0.5 to 7 cm) at 

Flakaliden by converting fine root biomass m
-2

 to fine root density (the amount of fine roots 

dm
-3

 of soil). The highest density of roots was in the organic layer (in all treatments) and 

the density of roots decreased exponentially towards the deeper soil layers (Figure 5). Soil 

warming treatment did not significantly change the fine root density in the organic layer 

(Figure 5), but in the mineral soil fine root biomass (<1 mm in D) was significantly higher 

at the depths of 10 - 20 cm (P<0.05) and 20 - 30 cm (P<0.01) in the warmed (WI + WFI) 

than in the non-warmed (FI + I) soil (Figure 6) (study I). A corresponding vertical response 

in warming experiments has also been reported by Lahti et al. (2005) and Johnson et al. 

(2006). Proliferation of roots downwards plus the higher soil temperature (enhanced 

mineralization and increased nutrient uptake capacity (BassiriRad 2000, Pregitzer & King 

2005)), both vertically but also seasonally, should enable trees to improve N uptake 

especially deeper in the mineral soil. At Flakaliden this has been demonstrated on the basis 

of isotope analysis: needles of the warmed plots had a shift in the increased abundance of 

δ
15

N compared to corresponding controls (also without any increase due to fertilization) 

(Strömgren 2001) and deeper soil layers had a significantly higher δ
15

N abundance than 

upper soil layers (Högberg et al. 1996, Högberg 1997).  
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Figure 5 The density of living roots (<1 mm in D) of Norway spruce in different treatments and 

depths at Flakaliden (study I). Abbreviations: WFI = warming – fertilization – irrigation, WI = warming 

– irrigation, FI = fertilization – irrigation and I = irrigation. Bars indicate standard deviation. 

 

 
The total fine root biomass was highest in both fertilization treatments (WFI vs. I 

P<0.05; FI vs. I P = 0.07), but as the trees in these plots were two times taller, it was 

necessary to take the aboveground part into account. After dividing the fine root biomass by 

ba, fertilized treatments were rather similar to the other treatments but the WI treatment 

stood out from the manipulation treatments by having more fine root biomass per ba 

(Figure 7), although not significantly (P = 0.19). The inclusion of the unmanipulated stands 

Flakaliden C, Kivalo and Olkiluoto in the comparison showed that the amount of fine root 

biomass per ba in the WI treatment was as high as in the low-fertility Kivalo site from 

northern Finland and in Flakaliden C (Figure 7). However, no statistical testing was done 

due to the lack of replicates and lower sampling depth at Olkiluoto (only one soil sample 

from 10 - 20 cm; due to the high stone content). Kivalo and Flakaliden are similar e.g. with 

regard to their N deposition and N mineralization (study III), Kivalo having somewhat 

harsher climate but Flakaliden having a higher C:N -ratio (Table 1). According to several 

publications the increased C allocation to the roots results from nutrient, especially N, 

deficiency (Ingestad & Ågren 1991, Ericsson 1995, Poorter et al. 2012), accompanied by 

changes in root morphology (Trubat et al. 2006, Ostonen et al. 2013) and/or increased 

production of mycorrhizal hyphae (Högberg et al. 2003, Lukac & Godbold 2011).  

The analyses of MR images and short root morphology indeed showed that other 

temperature-induced changes than increased fine root biomass per ba had taken place in the 

WI treatment. The total fine root elongation, traced from the MR images (study II), was 

higher in the WI and I treatments compared to both fertilized treatments (Figure 8), but the 

differences were not statistically significant due to high variation between the tubes. In the 

warming treatment, concurrent increment of root elongation and higher fine root biomass in 

the mineral soil is possible only if the root D has decreased. The analysis of morphological 

traits (study I) validated this as the fine root D was significantly lower in the WI than in the 

other treatments. Correspondingly, in the fertilized plots the EcM short roots were the 
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Figure 6 Norway spruce fine root biomass (<1 mm in D) in different soil layers in the warmed soil 

(treatments WFI, WI), non-warmed soil (treatments FI, I) (P>0.05) and in the control (C) at Flakaliden 

(study I). ). Abbreviations: WFI = warming – fertilization – irrigation, WI = warming – irrigation, FI = 

fertilization – irrigation and I = irrigation.  Bars indicate standard deviation of the treatment mean. 

Warmed n = 4, non-warmed n = 4, n = 2. 
 

 

 

 

 

 
Figure 7 Spruce fine root biomass (<1 mm in D) per square meter (m

2
) per stand basal area (ba) at 

Flakaliden (WFI, WI, FI and I) Kivalo and Olkiluoto (studies I and III). Abbreviations: WFI = warming – 

fertilization – irrigation, WI = warming – irrigation, FI = fertilization – irrigation and I = irrigation. 

Flakaliden n = 2, Kivalo n = 3, Olkiluoto n = 1. 
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Figure 8 The cumulative total elongation of new fine roots during the study in different treatments 

at Flakaliden (study II). Abbreviations: WFI = warming – fertilization – irrigation, WI = warming – 

irrigation, FI = fertilization – irrigation and I = irrigation. 

 

 
thickest and had the lowest RTD (P<0.05), leading to low SRL (study I). In the WI, the 

SRL of EcM short roots was significantly higher than in the other treatments; and this trait 

has been shown to be a good indicator of environmental changes (Ryser 2006, Björk et al. 

2007), especially of nutrient availability (Hill et al. 2006, Trubat et al. 2006, Ostonen et al. 

2007b). These changes in root growth and morphology reinforced the conclusion that in the 

WI the amount of nutrients was not adequate for spruce root uptake, to which the tree 

responded by increasing the absorbing root area. Thus, the increased fine root biomass in 

the mineral soil may have been not just a result of a longer growing season and more 

favourable temperature conditions as hypothesized, but a response to the necessity to 

acquire more nutrients from the soil where microbial activity has been attenuating due to 

depletion of the most labile C pools (Kirschbaum 2004, Eliasson et al. 2005, D'Orangeville 

et al. 2013) and/or decrease in litter quality (Hyvönen et al. 2007). At Flakaliden the 

microbial biomass in the WI treatment has indeed been shown to be lower than in the non-

warmed treatments (Coucheney et al. 2013). According to Ueda et al. (2013), soil warming 

may also decrease soil nitrogen pools by preventing the soil from freezing.  

EcM root tip frequency (no of tips g
-1

 fine root <1 mm in D) did not differ between the 

soil warming or fertilization treatments (study I). The (profile) average number of EcM 

short root tips per mg of fine root (<1 mm in D) was 14.8 at Flakaliden C (study I), 6.9 at 

Kivalo and 4.5 at Olkiluoto (study III). However, after taking the ba into account the 

number of EcM short root tips per ba was twofold at Flakaliden compared to Kivalo, and 

3.5-fold at Kivalo compared to Olkiluoto (Figure 9). The highest number of EcM root tips 

per ba was at Flakaliden, where the C:N -ratio of the organic layer was highest (Table 1), 

decreasing towards Kivalo and Olkiluoto (R
2 

= 0.72, Figure 10). Our result is in a good 

agreement with the pattern described in a Finnish Norway spruce stand: the number of EcM  
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Figure 9 Number of ectomycorrhizal (EcM) short root tips (calculated from the roots <1 mm in D) per 

stand basal area (ba) at Flakaliden (WFI, WI, FI and I), Kivalo and Olkiluoto (studies I and III). 

Abbreviations: WFI = warming – fertilization – irrigation, WI = warming – irrigation, FI = fertilization – 

irrigation and I = irrigation. Bars indicate standard deviation of the treatment. Flakaliden n = 2, Kivalo 

n = 3, Olkiluoto n = 1. 

 

 

short root tips:foliage biomass -ratio was positively correlated to the C:N -ratio in the 

organic layer (Helmisaari et al. 2009). Later, this same pattern was demonstrated on a larger 

scale: on a European latitude/fertility gradient the Norway spruce forests in Finnish 

Lapland had 4.5 to 11 times more EcM root tips per ba than roots in spruce stands growing 

in Estonia and Germany (Ostonen et al. 2011).  

Fertilization has frequently been reported to decrease the fine root biomass (Lee et al. 

2007, Wang et al. 2012), but as the below- and aboveground parts of a tree are inseparably 

intertwined, no deductions about belowground biomass or production should be made 

unless the aboveground part is included in the study, and vice versa. Optimally the stands in 

comparison are similar with regard to their age and tree density as well as climate 

conditions, but in the case of fertilizing or latitude/fertility gradients the difference in tree 

size/faster development becomes inevitable. Soil fertility also affects soil chemistry, 

microbial activity and mineralization etc, leading to differences in tree growth and 

developmental stages. The difficulty of separating the effects of tree ontogeny from the 

treatment effect has been regularly discussed (Gedroc et al. 1996, King et al. 1999, 

Coleman et al. 2004, Xie et al. 2012). 

The effects of long-term fertilization on fine root biomass were studied at Flakaliden 

already before our study: Iivonen et al. (2006) studied the effect of 12 years of nutrient 

optimization on biomass, carbon, and nitrogen acquisition and allocation in Norway spruce. 

They detected a significant increase in biomass allocation to stumps and coarse roots (as 

well as to all aboveground organs except dead branched and cones) but no changes in the 

biomass of small and fine root biomass in the fertilization treatment compared to the 

control - indicating that a smaller amount of small and fine roots was sufficient to maintain 

a higher aboveground biomass (ba in the fertilized treatment was 2.5-fold compared to the  
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Figure 10 Number of ectomycorrhizal (EcM) root tips (calculated from the roots <1 mm in D) per 

stand basal area (ba) in relation to site C:N -ratio. 

 
  

control). A similar trend has been observed by several authors (Keyes & Grier 1981, Gower 

et al. 1992, 1994, Vanninen & Mäkelä 1999, Helmisaari et al. 2009). 

Our results from Flakaliden were rather similar: fine root biomass tended to be higher 

(P = 0.071) in the fertilized treatment (FI, 388 g m
-2

) compared to the irrigated (I, 205 g m
-

2
) if only the belowground part was examined. However, after taking the twofold higher ba 

in the FI plots into account, the amount of fine root biomass in both fertilization treatments 

decreased to the same level as in the high-fertility Olkiluoto site and in I (Figure 7). Thus, 

at all these sites a smaller amount of fine roots was sufficient to maintain a higher 

aboveground biomass. The assorting of I into this group is somewhat surprising and no 

fully satisfying explanation can be provided. However, one possible explanation is that in 

the I the share of EcMB of total fine root biomass was considerably higher (54%) than in 

the other treatments (27 - 32%) (study I) implying that the quantity of absorbing roots in 

the I was approximately double that in the others. Furthermore, this short root area provides 

exudates which benefit mycorrhiza and microbes living in the rhizosphere (Priha et al. 

1999).  

Fine roots are so tightly connected with EcM that the results may sometimes differ from 

the expected. Phillips & Fahey (2007) for example found no changes in fine root biomass 

after several years of fertilization, although mycorrhizal colonization and microbial 

respiration were reduced due to fertilization. Similarly, the production of EcM mycelia at 

Flakaliden was only slightly increased by higher soil temperature (study I), which in case of 

suspected nutrient deficiency is a rather mild response, as several studies have shown that 

EcM mycelia growth and nutrient availability correlate negatively (Nilsson & Wallander 

2003, Nilsson et al. 2005, Sims et al. 2007) and temperature generally leads to a positive 

response in microbial biomass (Pendall et al. 2004). Lack of water (Lehto & Zwiazek 2011) 

or photosynthetic products (Högberg et al. 2008) can diminish EcM mycelia production, 

but at least drought seems unlikely as all the treatments were irrigated. Possible 

explanations are that the incubation time of two years to the in-growth bags was too long as 
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a growing season or one calendar year are regularly used (Nilsson et al. 2005, Wallander et 

al. 2010, Bahr et al. 2013), or that the trees responded predominantly via fine roots.  

Overall, bigger trees had more fine roots as has been described in many stand 

succession papers (Paavilainen 1968, Liu et al. 2014), but the relation is smaller in the 

fertile sites. Until canopy closure, trees increase the foliage biomass and thus a relatively 

large root system is required to provide larger amounts of nutrients. After canopy closure C 

allocation to stem D and L growth continues (Mäkelä & Valentine 2001), but re-

translocation of nutrients can satisfy much of the nutrient requirement at this stage 

(Helmisaari 1992a, b) and thus the amount of fine roots remains rather stable (Vogt et al. 

1983, Helmisaari et al. 2002, Claus & George 2005). Later in the stand development, 

nutrient availability may again decrease as more and more nutrients are bound in the litter 

and humus (Grier et al. 1981, Sprugel 1984, Vanninen & Mäkelä 1999). In our study plots 

only the trees growing in the Olkiluoto, Kivalo and Flakaliden fertilized plots (WFI, FI) had 

reached canopy closure and should thus, if following the described pattern, have had lower 

amounts of fine root biomass per ba than trees before canopy closure. However, according 

to our limited data, fertility appears to be a more dominant factor in defining this 

relationship than the stand developmental stage. 

At Flakaliden an increase in stem wood production (m
3
 ha

-1
 yr

-1
) was measured in the 

warmed plots after six seasons of soil warming (Strömgren & Linder 2002). However, ten 

years later the ba in the warmed (WI) plots was not higher than in the reference plots I and 

C, study II). Thus, the increased temperature may have enhanced the short-term 

mineralization rate, but the effect has dampened or vanished with time; a phenomenon also 

observed in other long-term soil warming experiments (Oechel et al. 2000, Luo et al. 2001, 

Melillo et al. 2002). A cause for this may be substrate limitation due to losses of labile C, 

population and community reorganization and/or the acclimatization of root or microbial 

respiration or both (Oechel et al. 2000, Luo et al. 2001, Strömgren 2001, Melillo et al. 

2002, Coucheney et al. 2013).  

 

 

4.2 Effect of temperature and nutrient availability on fine root turnover 

 

Differences in ratios of live:dead fine root biomass indicate differences in fine root 

dynamics. In  study I, we found that the ratios of live:dead fine root biomass tended to 

decrease with increasing soil depth and from the warmed plots to the non-warmed ones, 

with up to six-fold difference between the treatments. The increased live:dead -ratio may 

result from 1) increased production or 2) decreased mortality of fine roots or from 3) 

enhanced decomposition. Of these three reasons, the first two were investigated – and 

confirmed (studies I and II) but the latter could not be verified as we performed no 

measurements of the decomposition rate. However, there are indications that higher soil 

temperature may have enhanced decomposition at Flakaliden: Strömgren (2001) and 

Coucheney et al. (2013) observed an increased soil-surface CO2 flux after short- and long-

term soil warming at the same study site, but as the total CO2 flux does not separate 

autotrophic and heterotrophic respiration, no direct conclusions of the decomposition rate 

could be drawn. However, on the basis of the data collected from Flakaliden, heterotrophic 

respiration has been modelled to increase 60% in the first year after the perturbation caused 

by heating cable installation and to decrease to 30% after a decade (Eliasson et al. 2005), 

possibly due to the reduced substrate availability. Generally, many reports support the 

positive relationship between temperature and decomposition (Van Cleve et al. 1990, 
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Kirschbaum 1995, Kätterer et al. 1998, D'Orangeville et al. 2013,), although there is a 

lively discussion concerning the differences in decomposition rates between the different C 

pools (Fang et al. 2005, Fierer et al. 2005, Karhu et al. 2010).  

Higher soil temperature and longer growing season affected fine root lifespan at 

Flakaliden (study II): fine root median lifespan (weeks) was significantly lower in both soil 

warming treatments than in the un-warmed ones: 48 and 58 in WFI and WI compared to 78 

and 110 in FI and I, respectively, estimated with the regression model with Weibull error 

distribution. Nutrient addition gave an additive effect. The Kaplan-Meier survival function 

gave estimates of the median longevities very similar to those of the regression models 

(Figure 11), and both methods showed statistically significant (P<0.01) differences in the 

survival distributions between the treatments.  

Majdi & Öhrvik (2004) studied the short-term effects of the same treatments on fine 

root survival at the same site and their results agreed with ours in the main part: both soil 

warming and nutrient addition increased the risk of mortality. However, in their study the 

risk of mortality in the interaction treatment was lower than in the WI of FI treatments, 

whereas in our study it was highest of all. It is possible that the response of WFI treatment 

on fine root survival has changed during the years, but their study period of one year only, 

or the different calculation methods used, may also have affected the results to some extent. 

King et al. (1999) also observed that the root length production and mortality of trembling 

aspen increased at elevated soil temperature, but that response was modified by soil N-

availability. In the light of the suspicion of nutrient deficiency in the WI treatment, fine root 

lifespan in the WI treatment would have been expected to be higher – unless the response is 

more connected to the temperature increase itself (Pregitzer et al. 2000) than to 

temperature-related changes in nutrient availability. For example, higher temperature 

enhances autotrophic respiration (Burton et al. 2002, Melillo et al. 2011) and 

acclimatization does not always take place (Sowell & Spomer 1986, Weger & Guy 1991). 

Roots in a way respire themselves to death.  

The mechanism behind the shorter root lifespan in a warmer environment has been 

suggested to be based on enhanced metabolism (respiration) which accelerates the rate at 

which root efficiency decrease with age, causing a decrease in optimal lifespan (Eissenstat 

& Yanai 2002). Similarly, enhanced nitrogen mineralization/nitrogen uptake by fine roots, 

and higher nitrogen concentration of fine roots (Peterjohn et al. 1994, 1998, Ryan et al.  

 

 

 

 

 

 

 
Figure 11 The Kaplan-Meier survival 
curves for Norway spruce fine roots 
monitored 11.6.2008 - 8.10.2010 at a 
depth of 0 - 25 cm (study II). All 
treatments differed significantly from 
each other, P<0.01. Abbreviations: WFI = 
warming – fertilization – irrigation, WI = 
warming – irrigation, FI = fertilization – 
irrigation and I = irrigation. 
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Figure 12 The percentage of new fine root growth during the first year in warmed (WFI, WI) (a) and 

non-warmed (FI, I) (b) treatments (study II). The distributions were significantly different (P<0.01). 

Summer period = 11.6 - 19.8.2008, fall period = 19.8 - 25.9.2008 and winter period = 25.9.2008 - 

3.6.2009. 

 

 

1996, Reich et al. 1998, BassiriRad 2000, Rustad et al. 2001, Widén & Majdi 2001,  Burton 

et al. 2002, Bagherzadeh et al. 2008, Zhou et al. 2011), have been connected to enhanced 

metabolism and thus earlier senescence. However, if the temperature increment leads to soil 

drought or to the physiological acclimatization of fine roots (construction of fine roots with 

lower root amino acid and protein concentrations), the root metabolic capacity may also 

decrease (Burton et al. 2008).  

In the natural Norway spruce stands in Finland the fine root median age was also 

younger in the southern stand (89 weeks), where the MAT was higher, than in the northern 

stand (97 weeks) (study III), but other changing variables than temperature were also 

involved between these sites. The decreasing fine root survival along with increasing 

temperature has been reported in several soil/air warming or latitude experiments (Hendrick 

& Pregitzer 1993, Forbes et al. 1997, Gill & Jackson 2000, Majdi & Öhrvik 2004, Bai et al. 

2010, Kitajima et al. 2010, Finér et al. 2011), but as discussed by Eissenstat & Yanai 

(2002), Högberg & Read (2006) and McCormack & Guo (2014), there are many co-varying 

factors, such as soil fertility, moisture, growing-season length, herbivore & pathogen 

activity and the influence of solar irradiation on photosynthesis, which makes it difficult to 

distinguish the direct effects of temperature.  

Obviously higher soil temperature lengthened the growing season and the active period 

in soil, as in the soil warming treatments (WFI & WI) 25% of the first year’s total new root 

elongation had taken place outside the growing season (October-May) whereas the 

corresponding figure in the non-warmed treatments (FI & I) was 7% (Figure 12, study II). 

Majdi & Öhrvik (2004) reported related results from the same site: half of the annual root 

elongation occurred between October and June in the warmed plots compared to non-

warmed ones at Flakaliden. However, soil warming did not lengthen the period of active 

photosynthesis correspondingly, or reflect chlorophyll fluorescence or needle starch content 

at Flakaliden (Bergh & Linder 1999), which may mean that the flux of photosynthetic 

products in these warmed plots has not been higher than in the non-warmed ones, 

regardless of the higher need for C due to the longer active period in soil in the warmed 

plots, possibly affecting fine root lifespan (Eissenstat & Yanai 1997, Anderson et al. 2003).  

Belowground C availability varies during the year according to the photosynthetic 

activity and according to the changes in the aboveground-belowground sink strength, and 

due to this the survival times of fine roots formed in different seasons were expected to 
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differ. If C allocated to fine roots mostly originates from current photosynthesis (Epron et 

al. 2011, Keel et al. 2012), the fine roots born outside the growing season may have had 

less C available for their construction, and thus weaker survival capability. 

At all sites, the fine roots born during the first year of image collection were included in 

the survival analysis, and in Flakaliden, to avoid having too small cohorts, all treatments 

were pooled together. Both at Flakaliden (P<0.05) and at the Finnish sites the lifespan of 

roots appearing after the growing season and/or during the following winter was in most 

cases significantly lower than that of the roots born during the growing season (Figure 13) 

(studies II and III). In addition to low photosynthetic C availability for these roots, simply 

the stress derived from low winter temperatures, the mechanical damage caused by frost 

heaving or the impaired water uptake capacity of roots in cold soil in spring and early 

summer, when evapotranspiration is high (Repo et al. 2014), may have lowered the survival 

capacity. Just before the winter the C availability for the roots may be low due to 

competition: the aboveground parts compete for C for accumulating storages for winter 

dormancy and frost hardiness (Brüggemann et al. 2011).  

A shift in the C allocation to the aboveground for a new needle cohort growth early in 

the summer and to the belowground late in the summer has been demonstrated (Högberg et 

al. 2010, Keel et al. 2012). However, only at Kivalo did the spruce roots born in the end of 

the summer have a significantly longer lifespan (P<0.05) than the roots born in other 

seasons. Most probably, the disparity in the correspondence in the growing season timing 

between northern and southern sites, and the unequal intervals between the image 

collections, are the best explanations for this. 

There was no uniform pattern in the fine root turnover rate regarding the soil depth 

(Table 3). In the warming treatments at Flakaliden as well as in northern Finland, the fine 

root turnover was, surprisingly, faster in the mineral soil than in the soil surface, although 

significantly only in the WFI. In general, the opposite trend has been reported (Baddeley & 

Watson 2005, Joslin et al. 2006, Chen & Brassard 2013), although with some exceptions 

(López et al. 2001, McCormack et al. 2012). In the reference treatment I at Flakaliden and 

at Olkiluoto the fine root longevity was practically unchanged along the soil profile. In the 

latter site, there were no such distinct horizons as the soil is pedologically rather young 

after the last glaciation and land-up lifting (Tamminen et al. 2007), and therefore the 

organic layer was set as 5 cm thick. Bio- and cryoturbation may have been stronger there 

and thus affected fine root mortality more evenly along the soil profile. At Kivalo, the 

characteristic thick and dense moss layer of the HTM site type leads to rapid decrease in 

soil temperature, nutrient mineralization, oxygen availability and soil acidity (Sirén 1955), 

which may have caused unfavourable conditions for fine roots to grow in the mineral soil. 

However, with regard to Flakaliden no satisfactory explanation can be provided.  

The MR method catches mostly fine roots with small D, and in Scandinavian conifer 

forests, the majority of the roots are ectomycorrhizal short roots. Practically all traced roots 

in both countries were <1 mm in D, and in the thickest D class (0.5 - 1 mm) there were only 

2.6% and 3.4% of spruce fine roots in Flakaliden and in Finland, respectively (studies II 

and III). At Kivalo the mean fine root D was significantly (P<0.01) thinner than in 

Olkiluoto (0.27±0.08 and 0.32±0.10 mm, respectively, measured with the MR method), 

which is in agreement with earlier climate gradient studies in which Norway spruce EcM 

root tips were observed to be 2.1 times longer and significantly thinner in northern Finland 

than in Germany (Ostonen et al. 2011, 2013). In all treatments the trend was towards longer 
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Figure 13 Survival curves of spruce and understory fine root cohorts born during the first year of 

image acquisition at Flakaliden, Kivalo and Olkiluoto (studies II and III). 

Flakaliden, spruce 

11.6.-19.8.2008, n = 333, a 

19.8.-25.9.2008, n = 128, a 

25.9.-3.6.2009, n = 107, b 
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Table 3 The median (±se) fine root lifespan (weeks) in different soil layers and diameter (D, mm) 

classes (studies II and III). The letters (a-b) indicate significant differences (P<0.05) between the 

topmost 5 cm and mineral soil within each treatment. Topsoil represents the uppermost five 

centimeters and mineral soil 5 - 25 cm depth. WFI = warming – fertilization – irrigation, WI = 

warming – irrigation, FI = fertilization – irrigation and I = irrigation, us = understory, ns = non-

significant. 
 

 

 

 

turnover with increasing D (Table 3), which supports the general rule of thumb that root 

lifespan correlates with diameter (Eissenstat & Yanai 2002), but also that the root survival 

may vary markedly among fine roots differing in D by only a few tenths of a millimeter 

(Wells & Eissenstat 2001): the median longevity of spruce fine roots at least doubled within 

a root D class of only a few millimeters (Table 3). Nevertheless, as the number of roots was 

rather low in some D classes, we did not use the turnover rates of D classes when 

calculating belowground litter production. Instead, we used the fine root turnover rates in 

the two soil depths: organic layer and mineral soil. 

 
 

4.3 Norway spruce litter C input in different environmental conditions 

 

Both Finnish Norway spruce stands and the reference treatment I at Flakaliden yielded 

approximately similar ratios between the above- and belowground litter production, the 

aboveground being slightly higher (Figure 14) with the difference that in Flakaliden the 

quantities were almost twofold lower than in Finland (Table 4). This was somewhat 

surprising as higher altitude Flakaliden resembled Kivalo by its climate, length of the 

growing season and ba (Table 1) and furthermore the soil fertility did not differ 

substantially between the sites: the C:N -ratio in the organic layer was higher at Flakaliden 

than at  Kivalo (Table 1), but the net N mineralization rate and N deposition were the same 

at these sites (Andersson 2002, Kleja et al. 2008, Lindroos et al. 2008, Olsson et al. 2012). 

The tree density ha
-1

 at the sites was 2100, 939 and 667 at Flakaliden, Kivalo and Olkiluoto, 

respectively (study II, Smolander & Kitunen 2002, Aro et al. 2012). Aboveground litter 

production has been shown to correlate negatively with mean stem number, but stem 

number was not among the best predicting variables (Saarsalmi et al. 2007). The amount of 

litter production was converted to C input by assuming a C content of 50% of the litter dry 

mass (Table 4, Figure 14).  

The highest foliage litter production was in the southern Finnish spruce stand whereas 

spruces growing in northern Sweden produced the lowest amount. The longer needle 

  WFI WI FI I 
Kivalo, 
spruce 

Olkiluoto, 
spruce 

Kivalo, 
 us 

Olkiluoto,  
us 

Topsoil  71 ± 9 a 64 ± 6 ns 54 ± 12 ns 108 ± 17 ns 103 ± 3 b 89 ± 2 ns 104 ± 3 b 87 ± 2 ns 

Mineral soil 45 ± 2 b 56 ± 3 ns 90 ± 13 ns 102 ± 5 ns 89 ± 3 a 89 ± 7 ns 77 ± 1 a 92 ± 11 ns 

D <0.2  30 ± 4  32 ± 14  – 56 ± 9  
    

D 0.2 - 0.3 38 ± 2  44 ± 3  61 ± 11  99 ± 10 c 
    

D 0.3 - 0.4 57 ± 3  60 ± 3  86 ±11  126 ± 11  
    

D 0.4 - 0.5 64 ± 7  78 ± 9  90 ± 26  116 ± 22 
   

  

D >0.5 55 ± 18  95 ± 23  40 ± 23  –         



42 

 

retention time in northern Finland compared to southern Finland (Ukonmaanaho et al. 

2008) explains some of the difference in the foliage litterfall between the Finnish sites 

(Table 4), but no data of needle retention was available for comparison of Kivalo and 

Flakaliden. Furhermore the dissimilar crown form probably affected the amount of foliage 

litterfall: to diminish damages caused by heavy snow load, the northern spruce trees (Picea 

abies ssp. odovata) have a genetic tendency to grow narrower crowns with less foliage mass 

than southern spruce trees (Picea abies), although they are genetically similar and belong to 

the same species (Krutovskii & Bergmann 1995). The mean aboveground spruce litter 

productions (2100 kg ha
-
1 yr

-1
 in the north (Kivalo), 2400 kg ha

-1
 yr

-1
 in the south 

(Olkiluoto) and 1300 kg ha
-1

 yr
-1

 at Flakaliden I) were on the same level as the means of 18 

spruce stands throughout Finland, 1200 and 2800 kg ha
-1

 yr
-1

 in the north and south, 

respectively (Saarsalmi et al. 2007). Ukonmaanaho et al. (2008) reported higher spruce 

litterfall values than Saarsalmi et al. (2007) in southern Finland and lower values in 

northern Finland, but their dataset was smaller (two sites in northern and five sites in 

southern Finland). According to Saarsalmi et al. (2007), the most reliable predictors of 

annual canopy litterfall were latitude, mean temperature sum and of the stand 

characteristics mean tree height. Starr et al. (2005) reached the same conclusions based on 

34 Scots pine stands throughout Finland. In our limited dataset, consisting of the Kivalo 

and Olkiluoto sites in Finland and four extra sites in Sweden (Flakaliden, Knottåsen, Asa 

and Tönnersjöheden (Kleja et al. 2008, partly Hansson et al. 2013a,b), Figure 2) latitude 

was not a particularly good predictor (R
2 
= 0.21) (study III). 

 

 

 

Table 4 The annual belowground (BG) and aboveground (AG) C input (C g m
-2

) into the soil via spruce 

and understory litter in six Norway spruce stands along a latitudinal gradient (studies II and III). The 

original data from Flakaliden, Knottåsen and Asa was published in Kleja et al. (2008) and from 

Tönnersjöheden partly in Hansson et al. (2013a,b). 

 

    BG  AG  BG:AG -ratio BG % of total 

Spruce Kivalo 91 104 0.9 47 

 
Olkiluoto 83 121 0.7 41 

 Flakaliden (I treatm.) 51 67 0.8 43 

 
Flakaliden (natural) 57 60 1.0 49 

 
Knottåsen 82 68 1.2 55 

 
Asa 84 101 0.8 45 

 
Tönnersjöheden 57 128 0.4 31 

Understory Kivalo 27 50  35 

 
Olkiluoto 10 21  32 

 
Flakaliden (natural) 41 32  56 

 
Knottåsen 50 33  60 

 
Asa 17 17  50 

  Tönnersjöheden 1 24  4 
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Figure 14 The annual litter production of Norway spruce (foliage, roots) above- and belowground 
(AG, BG) in different treatments (WFI, WI, FI, I) at Flakaliden in northern Sweden and the annual 
litter production of Norway spruce and understory (US) above- and belowground in six natural 
stands in Sweden and in Finland (studies II and III). WFI = warming – fertilization – irrigation, WI = 
warming – irrigation, FI = fertilization – irrigation and I = irrigation, org = organic layer, min = mineral 
soil. 

 

 
The aboveground litter production experienced less drastic manipulation-induced changes: 

the highest foliage litterfall was as anticipated in the fertilized treatments (WFI, FI) (Figure 

14) as the trees as well as the ba in these treatments were the largest (Table 1, study II). 

Furthermore, C stocks in the organic layer of these plots have been determined to be 

approximately twice as high as in the non-fertilized plots (Fröberg et al. 2013). 

Correspondingly, in the WI and I plots ba, amount of foliage litterfall and the C stock in the 

organic layer were well matched. In the Finnish stands the trend was similar to that seen at 

Flakaliden: the mean annual aboveground foliar litterfall was higher at Olkiluoto, where the 

trees and the ba were larger, than at Kivalo. However, in the Finnish stands the understory 

litter production was also estimated and after including this in the litter production, the total 

annual aboveground litter C input was almost equal at both sites (Figure 14). In the north, 

there was an abundant shrub vegetation consisting of bilberry (coverage 22%) and mosses 

(coverage 37%) (Nieminen & Smolander 2006), contributing one third to the aboveground 

litterfall in the north. At Olkiluoto, dwarf shrubs were practically absent and 58% of annual 

biomass (dry weight g m
-2

) was produced by mosses (Haapanen 2010). The share of 

understory contribution to the aboveground litter production in the southern stand was 15%. 

Hansson et al. (2013b) described analogous, moss-dominated scarce understory vegetation 

in the fertile spruce stand in south-west Sweden.  

At Flakaliden, high biomass in the mineral soil combined with the fast turnover rate led 

to high annual fine root production in the warmed plots (WFI, WI) (study II). In the WFI ba 
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and foliage litterfall were also high, but in the WI the belowground litter production was 

2.2-fold in relation to the foliage litterfall (Figure 14). In the fertilization treatments the 

corresponding ratios were 1.7 and 1.2 in the WFI and FI, respectively. As the ba in the 

fertilized plots was practically double compared to the non-fertilized ones (Table 1), it was 

not meaningful to compare the fine root litter production in these treatments to the 

reference treatment I. However, in the WI and I ba was almost the same, but nevertheless 

fine root litter production in the WI was three times higher than in the I (Figure 14). 

At the Finnish spruce stands the annual belowground C input from fine root litter, both 

tree and understory, was higher at Kivalo than at Olkiluoto (Table 4), although at Olkiluoto 

the sampling depth was shallower due to the high stoniness. The share of understory fine 

root litter of the belowground litter production was 23% and 11% at the northern and 

southern sites, respectively. The C flux from spruce root litter (83 - 91 g C m
-2

 yr
-1

, <1 mm 

in D) in the natural stands falls within the relatively wide range of other reported C fluxes 

from Norway spruce forests: 25 - 57 g C m
-2

 yr
-1

 (<1 mm in D, Majdi & Andersson 2005, 

Lukac & Godbold 2010), 130 - 143 g C m
-2

 yr
-1

 (<2 mm in D, Majdi & Nylund 2001, 

Hansson et al. 2013b) and 276 g C m
-2

 yr
-1

 (<5 mm in D, van Praag et al. 1988).  

At the Finnish stands the litter production by understory vegetation was also estimated 

and particularly in the northern site it contributed substantially to both below- and 

aboveground litter production (Table 4). The calculation of understory root litter production 

was based on root biomass less than 2 mm in D, whereas roots less than 1 mm in D were 

used for spruce root litter. Furthermore, the fine root turnover time was estimated only for 

roots less than 1 mm in D. This led to a slight overestimation of the amount of understory 

litter production. The understory root separation data from Olkiluoto (to <1 and 1 - 2 mm in 

D, not shown) showed that all shrub roots and 34% of grass/herb roots were less than 1 mm 

in D. By calculating the understory litter production at both sites based on D distribution 

data at Olkiluoto, the litter C flux into the soil would have been 4 g C m
-2

 yr
-1

 and 6 g C m
-2

 

yr
-1

 lower at Kivalo and Olkiluoto, respectively, if calculated for understory roots <1 mm in 

D. Our understory fine root litter production of 10 and 27 g C m
-2

 yr
-1

 is close to the figures 

of 17 - 50 g C m
-2

 yr
-1

 reported by Kleja et al. (2008) and 37 g C m
-2

 yr
-1

 by Majdi & 

Andersson (2005). 

C dynamics in the topsoil and in the mineral soil are different (Salomé et al. 2010) and 

are strongly affected by climate, tree species and litter decomposability (Prescott & 

Vesterdal 2013, Vesterdal et al. 2013). In the topsoil, mineralization is continuously 

stimulated by addition of fresh organic material (priming effect) (Fontaine et al. 2007), 

whereas in the deeper mineral soil the soil microbial biomass and activity are lower (Taylor 

et al. 2002), gradually diminishing the decomposition rate and the biodegradability of 

organic material with increasing soil depth (Fontaine et al. 2007). In the organic layer the 

litter input is a mixture of root and aboveground litter, whereas in the mineral soil litter 

originates mainly from root tissues but also from root exudates, dissolved OM, soil animals 

and through bioturbation from leaf litter. The results of some studies indicate that the root-

originated residues increase SOM more effectively than the shoot-originated residues 

(Gregorich et al. 2001, Rasse et al. 2005, Uselman et al. 2012). Thus, it is of significance to 

investigate whether the ratio of the litter production and/or deposition in these different soil 

layers changes. 

At Flakaliden, due to the increased fine root biomass in the mineral soil and the shortest 

fine root lifespans in the mineral soil of the warming treatments (WFI, WI), almost half (42 

- 50%) of the total annual spruce litter C input ended up directly in the mineral soil whereas 

the corresponding percentage in the non-warmed plots was 22 - 25% (study II). In the 

Finnish natural stands the trend was identical: at Kivalo 25% and at Olkiluoto 28% of the 
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spruce litter C input was set down in the mineral soil (study III). Thus, it can be speculated 

that if the increasing MAT increases the root litter input into the mineral soil, more C may 

be sequestered into the mineral soil. However, at the same time, many researchers have 

speculated that in the topsoil the C cycling will be enhanced due to the priming effect 

caused by the elevated CO2 concentration and higher MAT (Phillips et al. 2012). 

In Scandinavia nitrogen deposition is low compared to Central Europe (Högberg et al. 

1998, Lindroos et al. 2007, Dise et al. 2011), and N availability limits the tree growth 

(Kukkola & Saramäki 1983, Linder & Flower-Ellis 1992). Therefore, the C:N -ratio well 

describes the nutrient availability and productivity of forests in northern Europe. The 

inclusion of data from four additional Norway spruce stands, Tönnersjöheden, Asa, 

Knottåsen and Flakaliden in Sweden (Kleja et al. 2008, partly by Hansson et al. 2013a,b), 

along a Scandinavian north-south gradient (Figure 2) allowed us to examine relations of 

belowground and aboveground litter production in relation to soil fertility (study III). For 

spruce, the total litter C input (including below- and aboveground) tended to decrease 

towards higher C:N -ratios (R
2
 = 0.59, P = 0.08) (Figure 14a) whereas for the understory 

the trend was the opposite (R
2
 = 0.64, P = 0.06) (Figure 15b). Regressing the ratio of total 

above- and belowground spruce litter production against the C:N -ratio of the organic layer 

of the sites revealed that the aboveground litterfall decreased significantly towards the 

higher organic layer C:N -ratio (P<0.01) and to a lesser extent towards the lower ba 

(P<0.05) (data not shown). The shift in allocation from aboveground to belowground did 

not follow tree age, latitude or the length of the growing season gradient (P>0.05), but 

rather the organic layer C:N -ratio gradient (R
2
 = 0.70, P<0.05) (Figure 15c). The 

southernmost site, Tönnersjöheden, was the most fertile site (lowest C:N -ratio), and here 

the tree foliage litterfall was more than double compared to the belowground litter C input. 

At the less productive sites the share of belowground litter C input was almost equal to the 

aboveground input.  

Thus, at the low fertility sites, relatively more C is allocated to the belowground. The 

result also supports the functional equilibrium hypothesis (Brouwer 1963), which states that 

plants increase the relative production of a responsible absorbing organ in order to improve 

the uptake of a limiting resource and reduce stress. Thus, according to the regression, the 

lower the forest productivity, the higher the proportion of litter C of root origin, and this 

may have an impact on C sequestration into the forest soil. Some studies have reported 

differences in root litter quality (Uselman et al. 2012),  or decomposability (Vivanco & 

Austin 2006, Hansson et al. 2010, Freschet et al. 2013) compared with leaf litter, indicating 

longer mean residence times for the root litter than of leaf litter in the soil. This area needs 

further research, and if validated, should be taken into account in C cycle models. 

In our study only the belowground litter C input from fine roots less than 1 mm in D 

was estimated which means that the actual belowground litter production was greater than 

reported here. Fine roots 1 - 2 mm in D as well as coarse roots also produce litter, even if 

with a slower turnover (Nygren et al. 2009). In addition, the root lifespan decreases towards 

the smaller D classes, as reported in several studies with broadleaf species (Wells & 

Eissenstat 2001, Wells et al. 2002, Anderson et al. 2003) and in our manipulation 

experiment (study II). Thus, the smaller D classes probably produce more fine root litter 

than was calculated with the estimated average lifespan of 86 - 97 weeks for roots <1 mm 

in D in this study (study III). As a result, the total belowground litter C input most probably 

exceeds the aboveground litter C input in the majority of boreal forests. 
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Figure 15 The total litter production of a) Norway spruce and b) understory, as well as c) tree 
aboveground (AG):belowground (BG) -ratio in relation to organic layer C:N -ratio. The original data 
from Flakaliden, Knottåsen and Asa was published in Kleja et al. (2008) and from Tönnersjöheden 
partly by Hansson et al. (2013a,b). 
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When reflecting all these results in relation to the on-going climate change, it must be 

kept in mind that increasing the soil temperature via cables buried into the soil is not 

necessarily a good proxy for the predicted mean annual air temperature (and CO2) increase. 

The soil temperature increment of 5 degrees, even down to the 40 cm depth of mineral soil 

(study I), was an extremely strong manipulation. Sigurdsson et al. (2013) increased the air 

temperature by 3 °C for three years at Flakaliden and reported that tree growth was not 

affected unless extra nutrients were provided. Neither did elevated CO2 cause increased tree 

growth. Air temperature, soil temperature and CO2 elevation have been shown to increase 

root growth (Majdi & Öhrvik 2004, Zhao & Liu 2009, Lapenis et al. 2013, Pritchard et al. 

2014) but in order to attain an increase in aboveground tree biomass, nutrient addition is 

required. Thus, the future climate with higher MAT (and soil temperature) and atmospheric 

CO2 concentration may entail a greater litter C input into the soil compared to the current 

climate. However, the enhanced nutrient mineralization due to the higher soil temperature 

was not markedly increased, especially not from long-term manipulations. Thus great 

investments in forest fertilization would be needed to have substantial effects on 

aboveground forest growth in boreal forests with a few degrees higher MAT.    

 
4.4 Carbon age of fine roots  

 

In Finnish and Estonian sites, we investigated how the C age of fine root cellulose varies 

between stands, tree species, root D and soil depth by determining the natural abundance of 
14

C in fine roots (study IV). In Sweden, at Flakaliden, we compared 1) the ∆
14

C values of 

fine roots to the fine roots of known age, 2) the ∆
14

C values of roots to the tree seedlings of 

know age, and 3) the 
14

C values of fine roots sampled from the WI and I treatment plots of 

the long-term soil warming experiment to the fine root lifespans estimated with the MR 

method (study V).  

In all the studied sites in Finland and in Estonia, the root mean 
14

C values sampled from 

the soil cores exceeded the contemporary atmospheric mean of the sampling year – most in 

the less fertile Punkaharju and Mekrijärvi sites in Finland (by 60 - 170‰, i.e. 4 - 12 years) 

and less in the most fertile site at Voore (by 20 - 70‰, i.e. C age 3 - 8 years) (Table 5). If 

new fine roots are built mostly from recent photosynthetic products, this would imply that 

roots live longer in less fertile soil, which could in turn be related to the minimization of C 

costs (Eissenstat et al. 2000, Helmisaari et al. 2007) or nutrient losses through root 

mortality (Janssens et al. 2002).  

Among conifer species growing at the same location (Punkaharju), spruce roots were 

expected to have younger root C than pine, because the organic layer in the spruce forests 

was more fertile than in the pine stands (Table 5). For the same reason, fine roots growing 

in the organic layer were expected to have younger C than roots growing in the mineral 

soil. Our limited data showed tendencies for pine to have older root C in the organic layer 

and spruce in the mineral layer. Likewise, the root C age tended to be less in organic soil 

than in mineral soil (P = 0.103, tested with pooled D and tree species data in Punkaharju) 

(Table 5). However, the same trend was found at Flakaliden (sampled with soil coring from 

I and WI plots): the 
14

C age of the finest roots was higher in the mineral soil than in the 

organic soil (study V). The data in Voore and Mekrijärvi was incomplete for this 

comparison (Table 5).  

The finest roots have higher N concentration (Pregitzer et al. 1995, Majdi & Andersson 

2005) and turnover (Majdi & Andersson 20015) than thicker roots and were thus expected 
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Table 5 Mean ∆
14

C and 
14

C-derived age values (in parentheses max-min values) of soil core roots of 

all studied stands (study IV). 

 

** Root C age calculated by finding the year at which the atmospheric Δ14C value (Levin & Kromer 2004) 

corresponds to the root Δ14C value (values rounded to nearest whole year). 

 

 

 

to include younger C. At Flakaliden, root 
14

C age increased by one or two years from this 

finest root cohort to slightly thicker (0.5 - 1 mm) roots and further by two years to the next 

cohort (1 - 2 mm in D), with significant differences (P<0.05) between the smallest and 

largest diameter group in the WI treatment when the data for both soil layers were 

combined (study V). At Finnish and Estonian sites, the 2 - 3 years difference in C age 

between the corresponding D classes was significant (P<0.05) only after pooling the data 

(Voore, Punkaharju and Mekrijärvi). The difference in the 
14

C age of fine roots in these two 

D classes was more apparent in the fertile sites. An enhanced root turnover according to site 

fertility and/or decreasing root D is in agreement with several other studies which have 

used other methods than 
14

C (Pregitzer et al. 1995, Hendricks et al. 1997, Johnson et al. 

2000, Majdi & Öhrvik 2004, Chen & Brassard 2013).  

There is a basis for assuming that the finest roots (<0.5 mm in D) are constructed from 

the most recent photosynthetic products (Gaudinski et al. 2001, Matamala et al. 2003, 

Trumbore et al. 2006)): fine roots less than 0.5 mm in D are mainly EcM root tips 

(Pregitzer et al. 2002, Ostonen et al. 2007b) and EcM root tips together with their 

mycorrhizal symbionts regenerate continuously and thus form a strong C sink (Bloomfield 

et al. 1996, Simard et al. 2003).  However, our ingrowth core study at Flakaliden strongly 

contrasted with this assumption: At Flakaliden, living spruce fine roots (<0.3 mm in D) that 

had been growing into the ingrowth cores during summer 2009 and were thus at maximum 

three months old, had a mean 
14

C value 94.7±36.5‰, which means 11±6 years older 
14

C in 

cell wall cellulose than the 
14

C concentration of the atmospheric 
14

C of the study year 2009 

(45±4, Levin & Kromer 2004) (study V). The number of replicates was only three bulk root 

Stand Species Fertility 
Sampling 
year 

Soil 
depth 

Root Ø 
(mm) 

No. of 
sampl. (n) 

Calc. root C 
age** (min-
max) (yrs) 

Voore  spruce fertile 1996 mineral < 0.5  3 3 ( 6 - 0) 

     
1.5 - 2 3 8 ( 11 - 4) 

Punkaharju spruce fertile 1989 organic < 0.5  3 6 (10 - 4) 

     
1.5 - 2 2 4 (5 - 3) 

    
mineral < 0.5  2 11 (12 - 10) 

     
1.5 - 2 3 12 (14 - 11) 

Punkaharju pine less 
fertile 

1989 organic < 0.5  3 7 (9 - 6) 

    
1.5 - 2 2 8 (9 - 6) 

    
mineral < 0.5  2 8 (8 -7) 

     
1.5 - 2 3 10 (11 - 8) 

Mekrijärvi pine less 
fertile 

1986 mineral < 0.5  2 5 (7 - 3) 

        1.5 - 2 3 6 (11 - 2) 
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samples from three ingrowth cores, but even one root has been used to gain the comparable 

result (Gaudinski et al. 2000). Furthermore, archive ingrowth core root samples from 

Finland have given an equal result (Sah et al. 2011): in the Punkaharju pine site the 
14

C 

values of fine roots (1.5 - 2 mm in D) of the ingrowth cores exceeded the concurrent 

atmospheric level by 10 years, even though the maximum age of the root in the cores was 

two years. However, in some cases, the 
14

C values of the ingrowth core roots were 

consistent with the atmospheric 
14

C values of the sampling year (Sah et al. 2011). 

In order to trace whether the old C in the newborn fine roots could be of soil origin, we 

sampled young seedlings from the Flakaliden, on the site that was harvested about ten years 

ago. If the young, naturally established saplings seeded from mature Scots pine trees left on 

the site or from surrounding Norway spruce forests would have had older C in their fine 

root cellulose than their actual age was, it would mean that the C must have been taken 

from soil (for example as amino acids, Nordin et al. 2001) . The results gave no support to 

this anticipation: the 8-years-old Norway spruce seedlings and the 4-years-old Scots pine 

seedlings had current or at maximum 1.3 year old 
14

C in roots <0.5 mm in D and maximally 

two years old 
14

C in the thicker roots (study V).  

Finally, we analysed 
14

C values of fine roots sampled from the WI and I treatment plots 

of the long-term soil warming experiment. As the fine root lifespan was significantly 

shorter in the WI than in the I (study II), in case of using the recent photosynthetic products 

for constructing fine roots, the 
14

C age in the WI would be expected to be lower than in the 

I. There was a tendency for the WI to have younger 
14

C in fine roots <0.5 mm in D in the 

organic layer than in the I (study V), but the difference was not significant (study V) and 
14

C in the thicker roots did not differ between soil layers. The mean age of 
14

C in fine roots 

1 - 2 mm in D in both treatments was around 9 years (study V) which is in line with Solly 

et al. (2013) who reported rather similar 
14

C ages (11 years) of roots less than 2 mm in D 

and recently,  with Fröberg (2012) who reported that 
14

C concentration in spruce fine roots 

from soil archives in Sweden fitted well with a one-pool steady-state model with a 

residence time of 8 years. 

We compared the 
14

C results to the median fine root lifespans from MR, which 

were one year and three months and two years in WI and I treatments, respectively (study 

II), 3 - 6 years younger than the 
14

C age of the fine roots from soil cores. Similar and even 

greater differences in median lifespan from minirhizotrons and mean residence time 

using carbon isotopes have reported by several authors (Guo et al. 2008, Strand et al. 

2008, Gaul et al. 2009). These differences between the two methods, MR lifespan and 
14

C 

age, were statistically significant (P = 0.013, n = 4, study V). However, the trends in fine 

root survival analysis (MR) and fine root C age analysis (<0.5 mm in D) were parallel: fine 

root longevity (study II) was shorter and 
14

C was younger in the warmed plots than in the 

reference plots (study V). Here, only fine roots <0.5 mm in D were compared as the thicker 

roots are practically absent around the MR tubes. 

A main conclusion that can be drawn from the soil- and ingrowth core radiocarbon 

studies is that sometimes the 
14

C values of the fine roots correspond well to the concurrent 

atmospheric level and sometimes not – for unknown reason. There are several possible 

interpretations to explain the high 
14

C values in the roots, none of which is fully satisfying. 

Firstly, in the case of soil core roots, the roots may have lived significantly longer than the 

periods of a few years observed by MRs (studies II and III), or the scale of fine root 

lifespans is much wider than has been assumed. This explanation is, however, no valid in 

the ingrowth core studies, in which the maximum root age was known. Secondly, the root 

separation may have failed to separate the living fine roots from the dead ones. However, it 
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is unconvincing that roots that have died ten years ago would look superficially young and 

fresh, especially when decomposition studies from boreal forests have showed that fine 

roots lost about half of their mass only in a few years (Lõhmus & Ivask 1995, McEnroe & 

Helmisaari 2001, Majdi 2007, Palviainen et al. 2008) and seven-year-old fine roots from a 

litterbag study were strongly decomposed (Hansson et al. 2010). Thirdly, in a plant there 

may be two or more C pools with different mean residence times (Luo 2003, Riley et al. 

2009, Gaudinski et al. 2010, Keel et al. 2012). How and why the proportions of these pools 

vary in building new roots is not known, but Adams & Eissenstat (2014) recently 

demonstrated that the incorporation of current photosynthate into the structural carbon of 

roots continued after the roots were formed, showing that the root structural C pool is not 

derived solely from the photosynthate available at root initiation. A few studies have shown 

that after a severe disturbance plants may allocate long-lived storage C to produce new fine 

roots (Langley et al. 2002, Vargas et al. 2009), but never, even in the case of storage C, has 

the age of C been as much as a decade (Gaudinski et al. 2009). The organs that trees can 

utilize as primary C reservoirs include boles (Sakai & Sakai 1998), burls (James 1984), 

rhizomes (Lacey 1974), lignotubers (Mesleard & Lepart 1989), thick roots (Rodgers et al. 

1995) or intermediate roots (Woods et al. 1959), but the remobilization of C in these 

storage organs as well as in other organs is not clear – it may be as dynamic as other plant 

resources such as N and P in stressed individuals (Langley et al. 2002). Taking into account 

aboveground disturbance such as fire, extreme weather or massive herbivore attack, the 

belowground C storages are more plausible than the aboveground storages.  

One more dimension regarding C storage is that in deciduous species the use of storage 

C is a common practice to fuel winter- and spring root growth and bud break in the spring 

(McLaughling et al. 1980, Trumbore et al. 2002), but in conifers the capability to 

photosynthesize persists throughout the year if light and temperature do not restrict and thus 

there is less need for great storage. Nevertheless, the highest 
14

C values were measured in 

maximally three months or two years old fine roots in Norway spruce (studies IV and V). 

The fourth interpretation is that trees growing in less fertile sites might deposit older C to 

their roots via organic N uptake (amino acids), which has been shown to contribute, at least 

to some extent, to plant N nutrition especially in the less fertile, northern sites (Nordin et al. 

2001, Persson & Näsholm 2001, Kielland et al. 2007, Näsholm et al. 2009, Whiteside et al. 

2012) – although our Norway spruce and Scots pine seedling studies did not support this 

(study V). We conclude that more research should be oriented towards improving our 

understanding of possible internal redistribution and uptake of C in trees. 
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5 CONCLUSIONS 

 
In C cycle models the longevity of fine roots together with their mycorrhiza has for long 

been one of the factors causing greatest uncertainty. The fine roots contribute significantly 

to net primary production and their incorrect quantification may thus cause a great error. In 

this thesis the longevities of Norway spruce and understory fine roots were estimated with 

the MR method and the C input into the soil via below- and aboveground litter production 

was determined in three boreal Norway spruce stands – and for the regressions the data was 

augmented with four additional sites in Sweden. Long-term effects of temperature, nutrient 

availability and growing season length on fine root dynamics and litter production were 

investigated. Aboveground foliage and understory litter C input were also quantified and 

compared with the belowground. Furthermore, a contribution was made to the on-going 

discussion concerning determination of the age of C in fine roots by using the radiocarbon 

method, and the way in which the C age differed from the root age was analysed with the 

MR method. 

Fine roots, and specifically EcM fine root tips (1
st
 and 2

nd
 order short roots), were 

shown to be highly adaptable to changes in environmental conditions. Both higher soil 

temperature and increased nutrient availability enhanced fine root turnover significantly 

and altered the EcM short root morphology compared to the non-warmed and/or 

unfertilized treatments. The shortest fine root lifespan was in the warming-fertilization 

combination treatment. Morphological changes in EcM short root and high fine root 

biomass per ba in the warming treatment showed that trees had increased the absorptive 

surface of EcM short roots, i.e. improved their ability to forage nutrients, whereas short root 

morphology in the fertilized plots gave no such indications. In the warming treatment the 

enhanced turnover of fine roots together with the increased fine root biomass deeper in the 

mineral soil led to threefold higher belowground fine root litter production compared to the 

reference treatment where the foliage litterfall and ba were the same. In fact, fertilization 

was the only treatment which increased the aboveground tree growth and litter production. 

Therefore, the observed increment in tree growth in the soil-warming plots at the same site 

a few years after the soil-warming initiation (Jarvis & Linder 2000) has been only a short-

term response, ending after a few years. Our results indicate that without nutrient addition 

the increasing MAT alone will not be sufficient to increase forest growth, but could 

increase the fine root litter C input into the soil. Sigurdsson et al. (2013) reached the same 

conclusion regarding the aboveground forest growth at the same site after increasing air 

temperature and CO2 concentration. Only the trees in the fertilized plots were mature with 

great foliage, ba and a high amount of fine root biomass. Thus, both the below- and 

aboveground litter production were greater in the fertilized treatments than in the 

unfertilized ones. 

At natural Norway spruce stands in Finland fine root longevity was longer in the 

northern site than in the southern site, whereas there was no difference in the longevity of 

understory fine roots between these sites. When comparing the above- and belowground 

litter production at these sites, the proportion of aboveground litter increased more in the 

more fertile southern site – and the proportion of litter C input produced by understory 

diminished. Expanding the data with four Swedish Norway spruce stands revealed that the 

aboveground:belowground litter production -ratio was more related to the organic layer 

C:N -ratio than to latitude. The less productive sites produced relatively more litter 

belowground than aboveground and a substantial part of the litter originated from the 

understory. Overall, longer lifespan of fine roots, thinner roots, more fine root biomass per 
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ba, and number of EcM root tips in the north compared to the south, all point to great 

adaptation of spruce to climatically harsh Nordic conditions to improve acquisition of 

nutrients. 

The results demonstrate that Norway spruce fine root litter C input into the soil at least 

equals the aboveground input, which endorses the notable role of belowground litter 

production in the boreal forest C cycle. The shift in the litter production pattern from 

above- to belowground together with the higher contribution of understory vegetation in the 

less fertile sites may also have an impact on litter C quality and soil C storage and should 

be taken into account in C models. 

The analysis of 
14

C concentration in fine roots showed great variability in root C age 

regardless of the root age, and the root C age was in some cases several years older than the 

known root age. The ‘old’ C in the roots may have been storage C or have originated from 

the soil. In order to investigate this, we determined the root C age in fine roots of a few 

years old pine and spruce seedlings. At least the seedlings do not appear to take up 

substantial amounts of C from the soil by fine roots and mycorrhiza, as the C age in the fine 

roots was in all cases less than 2 years old (study V). However, treatment effects of fine 

root C age in the soil warming experiment were qualitatively pointing to the same direction 

as the MR results, fine roots having younger C and shorter longevity in the warming 

treatment compared to the reference. The fine root lifespan was around one and two years, 

and fine root C age 4.5 years and 6.5 years, in the warming and reference treatments, 

respectively. In future, focus should be targeted on determining the ecological conditions in 

which root growth uses stored or recycled C, as this may have a significant effect on 

terrestrial C budgets. 

As demonstrated in this thesis, the below- and aboveground components of litter 

production are strongly connected and should always be studied in conjunction with each 

other. As rather small changes in the environmental conditions led to a substantial change 

in fine root dynamics and even in the relations of below- and aboveground litter production, 

more emphasis should be put on studying the belowground processes for obtaining holistic 

understanding of the role of roots in C budgets in boreal forests. 
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