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ABSTRACT 
 
 
This package aims to advance remote-sensing-based mapping of growing stock and stand 
delineation for tropical forests in an attempt to respond to the call for the methodological 
development of forest inventory by the collaborative initiatives on Reducing Emissions 
from Deforestation and forest Degradation (REDD) and on sustainable forest management 
by REDD +. Tropical forests in Laos were taken as the study area, and remote sensing 
materials were collected from ALOS AVNIR-2, airborne colour infrared (CIR) 
photography, and airborne laser scanning (ALS).  

In Study I, the relative efficacy of these three types of remote sensing materials was 
evaluated for mapping stem volume and basal area based on established methodologies that 
were originally developed for boreal forests. The results showed that ALS data processed 
with the conventional area-based approach (ABA) outperformed optical data in mapping of 
the stem volume (RMSE 36.9%) and basal area (RMSE 47.3%). Airborne CIR was built, 
with models performing slightly better than models based on ALOS AVNIR-2, although 
both remained at a similar level of accuracy and fell considerably behind ALS. In general, 
boreal methodologies proved effective for tropical forests, but the efficacy was far lower 
than that achieved in boreal conditions.  

In Study II, the focus was therefore put on how to adapt the conventional ABA to the 
tropics, where forest structures are much more diverse and complex. The adaptation relied 
on applying global or plot-adaptive cut-off thresholding to filter and denoise the raw 
normalized point cloud. By doing so, information on structural variability was enhanced. 
The results showed that the adapted ABA effectively improved to a new level the 
predictability of stem volume compared with the conventional ABA adopted in Study I. 
The thresholding height of the optimal global cut-off for filtering was detected at 3.6 m and 
the correspondingly extracted features helped to improve the RMSE by about 7% compared 
to the conventional ABA. The plot-adaptive cut-off thresholding further improved it by 
nearly another 2% compared to the optimal global cut-off height.  

In Study III, an empirical model-based segmentation approach was developed to extract 
forest stands of tropical forests from remote sensing materials and empirical models derived 
in Study I. The results showed that the homogeneity of the delineated stands mostly 
conformed to the quality of the corresponding empirical models obtained in Study I. With 
the cost-effectiveness of the tested remote-sensing materials corresponding well to the 
three-tier standard of IPCC, forest attributes used for segmentation can be generalized to 
any variable retrievable from an empirical model, such as stem volume, net present value of 
economic returns, amount of biomass, or even carbon stock for REDD +. 
 
Keywords: Airborne CIR, ALOS AVNIR-2, ALS, area-based approach, feature extraction, 
forest mapping, segmentation, stand delineation, tropical forest 
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1 INTRODUCTION 
 
 
1.1 Background 
 
Deforestation and forest degradation in the tropics account for a large share of global 
greenhouse gas emissions (World Bank 2014). The mechanism of Reducing Emissions 
from Deforestation and forest Degradation (REDD) was then developed to constrain the 
impact of climate change through creating financial returns for the carbon stored in forests 
as incentives for developing countries to reduce emissions from the forested lands (UN-
REDD 2014). REDD has recently evolved into REDD +, which goes even further by 
encouraging sustainable forest management, conservation, and enhancement of carbon 
stocks in tropical forests (UNFCCC 2009, FCPF 2014). At the operational level, the first 
and foremost prerequisite for achieving these objectives is to build baseline maps for forest 
attributes in the tropics. As for the mapping accuracy, the Intergovernmental Panel on 
Climate Change (IPCC) proposed a three-tier standard that could be satisfied by remote 
sensing materials collected from different platforms with a matching cost-effectiveness 
(IPCC 2006, GOFC-GOLD 2009). 
 
 
1.2 Optical data 
 
The optical data are obtainable from sensors embedded in spaceborne or airborne platforms. 
This type of sensing is passive because objects are illuminated by sunlight and sensors 
record the intensity of radiative energy of various frequency spectra. The spatial resolution 
of satellite images (or scenes) ranges from a few metres to a few hundred metres, while 
airborne photography is commonly of sub-metre resolution. Spatial coverage of one scene 
from the satellite is much larger, however. Cost-wise, satellite data are relatively cheap to 
purchase and archive, which partly explains why they are used so frequently in time series. 
Due to the varying atmospheric conditions such as shadows and bidirectional effects 
(Holopainen and Wang, 1998a, 1998b), optical images obtained from either type of 
platform often require a radiometric correction. Among the methods that can be used for a 
relative correction, a multivariate alteration detection transformation-based radiometric 
normalization proposed by Canty et al. (2004) and a local radiometric correction proposed 
by Tuominen and Pekkarinen (2004) appeared to be adequate for forestry applications (Xu 
et al. 2012). 

Spectral and textural features are typically employed to explore the relationships 
between forest attributes and optical data. Optical data are raster graphics comprised of a 
rectangular grid of pixels whose size does not necessarily match that of sample plots used 
in a forest inventory. Therefore, optical features are commonly extracted from a group of 
neighbouring pixels rather than from a single one (e.g. Hyvönen et al. 2005, Packalén 2009). 
Haralick et al. (1973) developed 14 types of textural features based on the principle of the 
spatial dependence matrix of pixel values, and some extended versions were examined for 
mapping boreal forests by Tuominen and Pekkarinen (2005) and Packalén and Maltamo 
(2007). The textural features are independent of the spectral features in terms of the spatial 
variation, so using both together should contribute to a better mapping accuracy than just 
using one type alone. 
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1.3 ALS data 
 
Airborne laser scanning (ALS) is an application of a LiDAR sensor embedded into an 
airborne platform. Light detection and ranging (LiDAR) is active sensing in that the sensor 
system showers the target with laser pulses and then receives the reflected laser returns. 
Each received laser return is positioned with coordinates in the 3D space, and a large 
number of them form the spatially registered point cloud of ALS data. The immediate 
capability of providing height information for forest stands distinguishes ALS data from 2D 
passive data. However, although the spectrum used in a LiDAR system designed for land 
surveys is mostly near infrared (1064 nm), which is sensitive to vegetation and safe for 
human eyes, the energy intensity of laser returns reflected from the same type of object is 
too inconsistent to be applied properly. However, it should also be noted that although the 
intensity values of laser returns are not correlated to forest variables directly, there is still 
useful information in the intensity texture for estimating stem volume and biomass 
(Tuominen and Haapanne 2013). Multispectral LiDAR systems are also under development. 
In this context, multispectral optical data are naturally expected to complement some 
spectral information for ALS data.  

The height information of ALS data forms the basis of two mainstream approaches 
developed for retrieving biophysical properties from boreal forests. One is known as the 
area-based approach (ABA) (Næsset 2002) and the other as individual tree detection (ITD) 
(Hyyppä and Inkinen 1999), which remains an area of active research due to the problem of 
identifying suppressed trees (Breidenbach et al. 2010, Kaartinen et al. 2012, Xu et al. 2014a, 
2014b). Maltamo et al. (2006) concluded that estimates of ABA in boreal forests are as 
good as the traditional design-based inventories at the plot and stand levels. For instance, 
Packalén and Maltamo (2006, 2007) reported a root mean square error (RMSE) of 20.51 to 
23.86% for stem volume and 17.15% for basal area by using hybrid models composed of 
ALS data and aerial photographs. Yu et al. (2010) mapped stem volume with an RMSE of 
20.9%. ABA was established so well that it was widely used in operational forest inventory 
and management in Scandinavia. 
 
 
1.4 Adapting ABA to tropical forests 
 
An adaptation of ABA to tropical forests is not only adequate but necessary. The vast 
majority of ALS studies were conducted under boreal conditions and apparently the 
accordingly established ABA will be best suited to boreal forests. Tropical forests are 
typically comprised of many species of different ages, so forest structures in the tropics can 
be much more diverse and complex than the boreal forests. Therefore, the well-established 
ABA will not necessarily be as effective in the tropics. It is also necessary to adapt ABA to 
tropical forests especially for those who deal with the output of an ALS campaign as part of 
a sampling strategy (McRoberts 2014, Næsset et al. 2013a, 2013b). Considerable 
uncertainties are associated with the up-scaling of predictions from local and regional to 
state level. These uncertainties at different spatial scales impact the level of carbon 
compensation and policy making, thus impairing progress in mitigating global warming as 
a whole. 

There is a niche in which the adaptation may take place in the low-level processing of 
the ALS point cloud. Since lasers can be reflected back from undesired objects such as 
boulders, shrubs, and other low-lying vegetation, these returns are noise and will thus affect 
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the extraction of ALS features (or metrics) from the point cloud. Conventionally, a global 
cut-off threshold must be selected empirically in a typical range of 0.5 to 2 m for boreal 
forests, and then this threshold will filter out point entries of the normalized point-cloud 
whose heights are lower than the threshold height. ALS features which are intended to be 
used as predictors in modelling forest attributes for prediction will be extracted from the 
normalized point cloud only after filtration (e.g. Gobakken and Næsset 2008, Gobakken et 
al. 2012, Næsset et al. 2013a, 2013b). We will refer to this threshold below as the 
vegetation height threshold (VHT). The VHT controls the feature extraction. Because the 
application of a VHT will substantially modify the original point cloud, the selection of a 
different VHT will cause the content of an extracted feature (a vector of loadings) to alter; 
that is, the resulting features vary as a function of VHT. Therefore, in practice the selection 
of a VHT value must comply with the vertical structure of forests and will be optimized on 
a data-specific basis. 
 
 
1.5 Stand delineation 
 
Sustainable forest management relies on management units such as forest stands, which are 
typically formed on an operational or biological basis (Leppänen et al. 2008, Tokola et al. 
2008). Traditionally, forest stands are delineated manually by expert foresters. 
Homogeneity is a primary criterion in delineation, so trees within a stand can be similar in 
terms of the size, age, species composition, and so on, which will facilitate the management 
and planning (Koivuniemi and Korhonen 2006, Leckie et al. 2003).  

Segmentation is a numerical way to achieve an automatic delineation of forest stands. It, 
in a spatially continuous fashion, clusters neighbouring pixels into individual segments 
based on similarity criteria of the digital number and texture (Meinel and Neubert 2004); 
that is, it is a technique for subdividing imagery into spatially continuous and homogenous 
regions (Haralick and Shapiro 1992, Baatz and Schäpe 2000, Cheng et al. 2001). A 
successful segmentation will minimize the heterogeneity within a segment and maximize it 
between segments. Segmentation algorithms can be categorized as the edge-based or area-
based approach (Muñoz et al. 2003). An edge-based approach detects abrupt changes and 
draws boundaries to form segments. An area-based approach forms a segment by allocating 
pixels according to similarity rules on intensity, spectral tone, neighbourhood texture, or 
other properties.  

Remote-sensing materials have been commonly used for delineating forest stands. 
Satellite and airborne imageries have been widely evaluated in studies using various 
segmentation algorithms for delineating forest stands automatically (e.g. Tomppo 1988, 
Hagner 1990, Mäkelä and Pekkarinen 2001, Sell 2002, Leckie et al. 2003, Hay et al. 2005, 
Radoux and Defourny 2007). ALS data after rasterization were also tested for the same 
purpose (e.g. Diedershagen et al. 2004, Mustonen 2007, Leppänen et al. 2008, Tokola et al. 
2008). Mustonen et al. (2008) also tried to combine a canopy height model derived from 
ALS data and airborne imaging together for segmentation. 
 
 
1.6 Objectives 
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The overall goal of the package was to contribute to the methodological advancement of 
mapping of growing stock and sustainable forest management in the tropics using remote 
sensing. The specific aims of the respective studies were as follows: 
I. To evaluate the relative efficacy of three types of remote sensing materials for mapping 

stem volume and basal area in the tropics using well-established methodologies 
developed in boreal studies. The materials were collected from the spaceborne ALOS 
AVNIR-2, airborne CIR, and ALS. 

II. To adapt ABA, which was originally developed for boreal forests, to the structurally 
more complex tropical forests. The adaptation focused on exploring the pros and cons 
of global VHT and on developing a new filter based on plot-adaptive VHT so as to 
improve the feature extraction from ALS data. 

III. To develop an empirical model-based segmentation approach to extract management 
units from tropical forests. The remote-sensing materials and the empirical models 
used for segmentation were derived from Study I. 

 
 
2 MATERIALS 
 
 
2.1 Study area and field data 
 
For all studies, the study area was situated in the Dongsithouane production forest in the 
province of Savannakhet (latitude 16° 33' N, longitude 104° 45' E) in Laos (Fig. 1). The 
average elevation of the terrain is 128 m. The region experiences two seasons: wet from 
May to October and dry from November to April, where the dry season comprises a cool 
dry period from November to February and a hot dry period during March and April. 
Annual average precipitation is 1490 mm/year, with the least precipitation occurring in 
February.  

A field campaign was undertaken in February 2009. The sampling design for the field 
plots was a mixture of random sampling and stratified sampling for the purpose of covering 
the distribution of growing stock as completely as possible. The aim of this design was to 
reduce error and variation inside one forest class. A total of 233 sample plots were surveyed 
(Table 1), with the coordinates of their centres being measured using a handheld GPS 
device. 
 
 
Table 1. Characteristics of the sample plots. Stem volume was based on a model by 
Pukkala (2005). 
 
Characteristics Mean Max Min SD 
Number of stems per hectare 1405.9 20575.0 25.0 2372.8 
Basal area median diameter (cm) 31.1 109.7 14.3 10.1 
Height of the basal area median tree (m) 12.1 23.5 5.0 3.9 
Stem volume (m3/ha) 110.1 1512.4 6.4 124.6 
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Figure 1. The Dongsithouane production forest area with its sample plots. 
 
 
2.2 Remote sensing data 
 
The remote sensing materials for this area were collected from ALOS AVNIR-2, airborne 
high-resolution digital infrared orthophotos (airborne CIR), and ALS (Table 2), with their 
cost-effectiveness expected to correspond well to the three-tier standard recommended by 
the IPCC. The ALS and airborne CIR data were obtained synchronously from a Piper PA-
31 Navajo aircraft over a period of three days: 6 to 8 February 2009. The cruising speed 
was 120 knots and the altitude 2000 m. The air route consisted of 20 optimal trajectories 
planned beforehand with Leica Flight Planning and Evaluation Software (Leica FPES 
2014). One flightline was acquired on a trajectory perpendicular to the rest and used for 
calibration. Ground control points were employed for the registration of ALS data with 
optical data. All the remote-sensing data and field measurements were projected into the 
WGS84/UTM zone N48 geo-reference system. 
 
 
Table 2. Origins of the multisource data 
 
Data type Scenes Spatial 

resolution 
Acquisition time Supplier 

ALS n/a 1 pulse/m2 6-8 February 2009 Finnmap and Arbonaut 
Airborne CIR 989 0.25m 6-8 February 2009 Finnmap 
ALOS AVNIR-2 1 10m 13 September 2006 Savannakhet 
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For all studies, a Leica ALS 40 LiDAR scanner was used for collecting ALS data. The 
scanner was set at a field of view of 30° and a sidelap of 20%. A nominal sampling density 
of 1 pulse/m2 was acquired with up to 4 returns/pulse recorded. A digital terrain model 
(DTM) with a spatial resolution of 5 m derived from the ALS data was supplied by the data 
vendor (Finnmap 2014). The normalized point cloud representing the height above ground 
level was generated by subtracting the DTM height from each above-ground return. 

For Studies I and III, a Leica MP 39 digital camera was used for taking the aerial photos. 
A total of 989 images were photographed with a resolution of 0.25 m. Only the green, red, 
and near-infrared bands were used. All the images were orthorectified using DTM and geo-
referenced according to Finnmap commercial photogrammetric mapping standards 
(Finnmap 2014). Because an obvious colour difference between the days was found to be 
caused by bidirectional reflectance effects (Pellikka 1998), a relative radiometric correction 
was considered necessary. 

For Studies I and III, the AVNIR-2 sensor of the Japanese satellite ALOS was used for 
collecting multispectral optical imagery in four wavebands (blue, green, red, and near-
infrared) with a 10 m spatial resolution. Due to its sun-synchronous orbit at a height of 692 
km above the ground, the swath width of the image was 70 km at the nadir, so that one 
scene was sufficient to cover the entire region on a scale of 1:25,000. The quality of the 
image was satisfactory for direct application and did not need the radiometric calibration. 
 
 
3 METHODS 
 
 
3.1 Feature extraction from the optical data 
 
In Study I, a relative radiometric calibration for the airborne CIR data was implemented 
using the method introduced by Tuominen and Pekkarinen (2004), whose main idea lies in 
correction of the anomalies in airborne CIR by means of local adjustment with third-party 
imagery as a reference, given that the latter is less prone to the bi-directional reflectance 
effect. The only scene from ALOS AVNIR-2 was taken as the reference. Due to the 
different spatial resolutions of airborne CIR and ALOS AVNIR-2, local adjustment of the 
correction was based on a unit of the focal window representing one satellite pixel and 
several pixels in the aerial photo. In this instance, the focal window was set at 10 × 10 m so 
as to represent one ALOS AVNIR-2 pixel and 400 airborne CIR pixels, whose resolution 
was resampled to 0.5 m. The local adjustment was carried out separately for each 
corresponding band, green to green, red to red, and NIR to NIR. The advantage of this 
method is that it keeps the shape of the histogram unchanged within the focal window and 
only shifts its location. 
 
 
Table 3. Spectral and textural features extracted from the optical data. 
 
Optical data Spectral bands First principal component 

of spectral bands 
NDVI 

Airborne CIR Green/red/NIR Eight textual features Eight textual features 
ALOS AVNIR-2 Blue/green/red/NIR Eight textual features Eight textual features 
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Spectral and textural features were extracted from the optical data and were produced as 
wall-to-wall predictors for mapping the stem volume and the basal area (Table 3). Since 
vegetation characteristics are of more concern than other land-cover types in forestry 
applications, the normalized difference vegetation index (NDVI) and the first principal 
component were used instead of the original spectral bands for extracting the textural 
features. NDVI serves well to distinguish vegetation from other land-cover types, and the 
first principal component accounts for the most information contained in the original 
spectral bands and achieves the purpose of dimension reduction. Out of Haralick’s 14 
textural features, seven were used according to their higher correlations with forest 
attributes than others shown in previous studies (Holopainen and Wang 1998a, Tuominen 
and Pekkarinen 2005), and the maximum probability of the matrix was also extracted as the 
eighth textural feature. The extraction took the size of the plot and that of an image pixel 
into account, so that the extracted digital number could properly represent the forest 
information at the plot level. 
 
 
3.2 Feature extraction from the ALS data 
 
3.2.1 Conventional ABA examined in tropical forests 
 
In Study I, the area-based approach (ABA), which has been conventionally applied in 
boreal studies for processing ALS data (Næsset 2002), was examined in a tropical context 
for mapping the stem volume and the basal area. The last returns were classified into 
ground and aboveground returns. The ground returns were then employed to produce a 
triangulated irregular network that was later linearly interpolated for each point in order to 
produce the DTM for the area (Axelsson 1999). The normalized point cloud representing 
the height above ground level was generated by subtracting the DTM height from each 
above-ground return. An empirical global VHT of 2 m referred from works in the literature 
(see Næsset 2002, Næsset et al. 2013b) was then applied to the normalized point cloud so 
as to further exclude ground returns and other returns from stones, shrubs, and so on.  

Features of the ALS data were extracted from the normalized point cloud for a grid size 
of 5 × 5 m and stored as wall-to-wall maps. These features were height percentiles, canopy 
density metrics (CDMs), and other descriptive statistics. The height percentiles included 
quantiles corresponding to 5, 10, 20, 30, 40, 50, 60, 70, 80, 90, and 95% of the height 
distribution. CDMs were also calculated for these quantiles as a ratio of the count of first 
returns above a given height percentile to the count of all first returns above the global 
VHT. Other descriptive statistics referred to the mean, standard deviation, coefficients of 
variation of elevation and density.  
 
3.2.2 Adapted ABA developed for tropical forests 
 
3.2.2.1 Optimal global VHT method 
 
As shown in Study I, a global VHT has been conventionally applied for the purpose of 
denoising the raw point cloud in the ABA procedure. This is appropriate in structurally 
simple stands such as uniform plantations with a short, even understorey, and an 
empirically derived global VHT should be adequate to reduce the interference from ground 
objects in boreal forests, but it is questionable whether it is suitable in heterogeneous forests 
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under varying growing conditions, as is the case in the tropics. A global VHT may over- or 
under-denoise the returns in stands with different types of understoreys, and either situation 
will result in height distributions deviating from the overstorey response.  

In Study II, the optimum global VHT was sought by conducting a sensitivity analysis of 
the predicted stem volume to this parameter. A height range of 0 to 5 m was tested at 0.1 m 
intervals, resulting in 51 global VHT values and 51 sets of point clouds, from which the 
ALS features were extracted and used for modelling the stem volume. After thresholding, 
the ALS features (Table 4) were extracted at the plot level from the normalized first returns 
(Hosking 1990, Magnussen and Boudewyn 1998, Næsset 2002, Parker and Russ 2004). 
 
3.2.2.2 Plot-adaptive VHT method 
 
The global VHT is principally the outcome of a compromise between sample plots; that is, 
it neglects the structural diversity between plots and reduces the structural variability within 
each plot. Such a global VHT seems to suffice to describe all the data characteristics other 
than the vegetation structure. 

In Study II, a plot-adaptive VHT method was developed to maintain the structural 
variation between plots so as to tackle this problem. A floating VHT setup that 
corresponded to the specific vertical structure of each sample plot was adopted in which the 
VHT was determined by the maximum height of the last returns from each plot (LR.max). 
As the vast majority of last returns are reflected from the ground or understorey, these are 
best able to indicate the structural complexity of the sample plot. However, LR.max may 
occasionally be a reflection from the overstorey canopy and if this is used to determine the 
VHT for the plot, many of the canopy returns will be removed and some structural 
information on this plot will be lost. Therefore, two versions of the plot-adaptive VHT 
method were examined by considering whether or not LR.max came from the overstorey. 
ALS features extracted afterwards were in accordance with Table 4. 
 
 
Table 4. ALS features extracted from the normalized first returns. 
 

Type of features Metrics 
Height percentiles P(1st, 5th, 10th, 20th, 25th, 30th, 40th, 50th, 

60th, 70th, 75th, 80th, 90th, 95th, 99th) 
Order statistics Max, Median, Min 
Moment statistics Central tendency Mean, Mode 

Skewness and 
kurtosis 

Skewness, Kurtosis 

Dispersion SD, CV, IQR, AAD 
Robust statistics L-moments L1, L2, L3, L4 

L-ratios L.skewness, L.kurtosis, L.CV 
Canopy density metrics Proportional returns CDM.ratio at respective height percentiles 

Count of first returns CDM.count.above respective height 
percentiles 
CDM.count.below respective height 
percentiles 
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3.3 Modelling for predictive mapping 
 
Features extracted from remote sensing data were used as predictors for predicting the stem 
volume (m3/ha) and the basal area (m2/ha) in Study I and for predicting the stem volume in 
Study II. The stem volume and the basal area are two basic biophysical attributes required 
for evaluating present and future conditions in a forest. The stem volume is also a key 
variable relevant to mapping the biomass and the carbon stock by indirect methods that 
employ expansion factors. The basal area represents the structural condition of forests and 
provides an understanding of the variation of density. 

In Studies I and II, multiple linear regression was used for modelling. Although other 
popular alternative estimation approaches would be classification and non-parametric 
methods, these were rejected here due to difficulties in defining the classification categories 
and the insufficient number of sample plots for non-parametric methods. The estimated 
coefficients obtained in a parametric regression are useful for comparing models with 
identical predictors in Study II. The Akaike Information Criterion (AIC) evaluates the 
goodness of fit of a model and includes a penalty for model complexity so that the model 
with the smallest AIC score is preferred (Akaike 1974, Burnham and Anderson 1998, 
Venables and Ripley 2002). In practice, AIC was applied to the stepwise selection of 
predictors and the model with the lowest score was adopted. Parsimony in modelling was 
maintained, which made it possible to build a common basis for comparing models of 
different remote-sensing materials (Study I) and different feature extraction methods (Study 
II). This general rule also prevents the achievement of a subjective improvement by 
increasing the number of predictors. 
 
  
3.4 Segmentation for stand delineation 
 
Study III focused on extracting forest management units from remote-sensing materials for 
tropical forests. The segmentation approach differed from many others, because the input 
layers were output maps of the stem volume and the basal area which were predicted with 
various remote-sensing materials in Study I. The algorithm of multi-scale region merging 
developed by Baatz and Schäpe (2000) was used for delineating forest stands in the 
software environment of eCognition (eCognition 2014). This algorithm starts with objects 
or regions at the single-pixel level and then merges them pairwise with objects in the 
vicinity to generate larger objects, following local spectral or textural homogeneity criteria. 
 
 
3.5 Assessment methods 
 
In Studies I and II, the prediction accuracy was assessed by RMSE and its relative form. 
The regression model is normally unbiased, but a bias may be introduced by applying 
transformation to the response. This bias and its relative form were therefore calculated. In 
order to prevent over-fitting and to check the stability of the models, all error metrics were 
calculated on the basis of leave-one-out cross-validation.  

In Study III, a non-supervised method denoted by AICvar was developed for assessing 
the homogeneity of delineated forest stands in the form of segments. For each set of 
segmentation, AICvar quantified the overall homogeneity of delineated segments by 
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evaluating the variance of field measurements contained in the corresponding segment. The 
smaller the value of AICvar, the more homogenous this set of segmentation. 
 
 
4 RESULTS 
 
 
4.1 Summary of models 
 
The models obtained in Studies I and II are summarized in Table 5. In Study I, ALS 
processed with the conventional ABA outperformed optical data in mapping the stem 
volume and the basal area in a tropical context. Airborne CIR was built with models 
performing slightly better than models based on ALOS AVNIR-2, although both remained 
at a similar accuracy level and fell considerably behind ALS. Although the hybrid stem 
volume model based on ALS and airborne CIR improved the RMSE%, this improvement of 
1.9% was not considered cost-effective. 

Study II shows that the adapted ABA developed for tropical forests effectively 
improved the ALS predictability to a new level compared with the conventional ABA. The 
optimal global VHT was found to be located at a height of 3.6 m and the correspondingly 
extracted ALS features helped to improve the RMSE% by about 7% compared to the 
conventional ABA method. But both versions of the plot-adaptive VHT method further 
improved the RMSE% by almost another 2% compared to the optimal global VHT method. 
 
 
4.2 Adapted ABA 
 
In the optimum global VHT method, a total of 51 models were established for mapping the 
stem volume, each corresponding to a global VHT in the range of 0 to 5 m at 0.1 m 
intervals. It was found that the way in which the global VHT denoises the raw point cloud 
had a significant effect on the final models, whose accuracy was very sensitive to the 
selection of the global VHT. The global VHT of 3.6 m led to the lowest RMSE%, which 
was about 30% and was accepted as the optimum with respect to the raw ALS data. 

In the plot-adaptive ABA method, both versions of this method provided similar 
accuracies, with an RMSE% of about 28%. Both models outperformed that based on the 
optimum global VHT because of the improved explanatory power of the ALS predictors, 
which reflected the structural diversity between plots and restored the structural variability 
within each plot. 
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Table 5. Accuracy of models used for mapping stem volume (SV, m3/ha) and basal area (BA, m2/ha). 
 
Source Feature extraction Models Response Predictors Model SE R2 R2

adj RMSE RMSE% Bias Bias% 
Study I Conventional ABA ALS SV 2 0.4 0.9 0.9 42.2 36.9 0.1 0.1 

BA 7 6.3 0.8 0.8 8.0 47.3 0.0 0.1 
Optical ALOS AVNIR-2 SV 7 0.4 0.8 0.8 78.3 68.6 0.3 0.3 

BA 7 9.2 0.6 0.6 11.2 66.1 0.0 0.3 
Airborne CIR SV 6 0.4 0.8 0.8 75.2 65.8 0.2 0.2 

BA 6 8.0 0.7 0.7 9.7 57.1 0.1 0.4 
Hybrid ALS + ALOS AVNIR-2 SV 5 0.4 0.9 0.9 55.0 48.1 -0.2 -0.2 

BA 4 7.1 0.8 0.8 8.5 50.0 0.0 0.3 
ALS + Airborne CIR SV 3 0.4 0.9 0.9 40.0 35.0 0.0 0.0 

BA 4 7.0 0.8 0.8 8.8 52.1 0.0 0.1 
Study II Adapted ABA Optimal global VHT 3.6 m SV 2 0.4 0.9 0.9 34.4 30.1 0.1 0.1 

Plot-adaptive VHT: version 1 SV 2 0.4 0.9 0.9 32.4 28.4 0.2 0.2 
Plot-adaptive VHT: version 2 SV 5 0.3 0.9 0.9 32.9 28.8 0.1 0.1 
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4.3 Residual analysis 
 
The two best models, which were based on the optimal global VHT 3.6 m and the plot-
adaptive VHT version 1, were used in the following analysis. Thirty sample plots, 
comprising the 10 most over-estimated ones, the 10 most under-estimated ones, and the 10 
with the most accurate estimates, were selected and categorized into three groups according 
to their residuals. The non-parametric Kruskal-Wallis test was used to examine whether the 
predictors of the respective models were able to distinguish between these three groups, 
showing that only the CDM.ratio.P80 adopted in the optimal global VHT 3.6 m model 
failed to discriminate between these drastically different groups. This illustrates a need for 
novel types of CDMs to be extracted from the ALS data. 

Figure 2 shows the size and the number of all trees in an example plot from each group 
and the plot falls into an identical group in all the respective models. A plot with a large 
number of stems tends to be underestimated and these stems have a large variety of sizes, 
whereas a plot with a few giant stems tends to be overestimated. Valid tree-density 
information is difficult to obtain from ALS data in tropical forests, which again emphasizes 
the need to develop novel CDMs to capture the horizontal variation in vegetation structures. 
 
 
4.4 Assessment of delineated stands 
 
Based on models derived in Study I, a total of 96 sets of segmentations were generated and 
indexed with AICvar. The larger the segment, the more field measurements will be included 
in it, so a greater variance will result, causing a larger AICvar reading. As a grouping 
criterion, the mean area of the delineated segments was employed to categorize the AICvar 
indices for comparison purposes, amounting to six groups of approximately 5, 8, 10, 15, 20 
and 25 hectares, respectively. 
 
 

 
 
Figure 2. Trees in example plots from the three groups. 
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Figure 3. Samples at a mean segment size of about 5 ha for visual verification: (a) sample 
area; (b) ALS segmentation based on basal area; (c) airborne CIR segmentation based on 
basal area; (d) ALOS AVNIR-2 segmentation based on basal area; (e) ALS segmentation 
based on stem volume; (f) airborne CIR segmentation based on stem volume; (g) ALOS 
AVNIR-2 segmentation based on stem volume; (h) hybrid segmentation of ALS and airborne 
CIR based on stem volume; (i) hybrid segmentation of ALS and ALOS AVNIR-2 based on 
stem volume. 
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These results show that the homogeneity of the delineated stands mostly conforms to 
the quality of the corresponding empirical models obtained in Study I. Delineations based 
on maps of basal area conformed to the accuracies of the models, especially for mean 
segment sizes below 10 ha. Most delineations based on maps of stem volume also 
conformed to the performance of the corresponding model. A visual verification coincided 
well with the assessment of AICvar (Figure 3). 
 
 
5 DISCUSSION 
 
 
This work package shows that the experience gained in boreal forests in mapping forest 
attributes and extracting forest stands from remote sensing data is also applicable in a 
tropical context, but it is still highly desirable to adapt these methods to tropical forests 
which are structurally more complex. Among the remote-sensing materials employed here, 
ALS turned out to be the most competent for the applications presented so far. 
 
 
5.1 Mapping growing stock 
 
ALS outperformed the passive optical sensors for mapping the stem volume and the basal 
area in a mixed-species tropical forest. ALOS AVNIR-2 and airborne CIR data performed 
less well. Optical data were found to be more accurate for estimating basal area than stem 
volume, although they still fell behind ALS. Tropical forests have a more complicated 
vertical structure and a greater variety of tree species, and this presents challenges when the 
aim is to obtain such good results as under boreal conditions. Especially, tropical forests 
may pose a challenge to the successful detection of tree crowns due to the density and the 
overlay of neighbouring tree crowns. The systematic underestimation of tree numbers and 
forest attributes mentioned by Gonzalez et al. (2010) would be even worse with tropical 
forests. Despite this, the greatest limitation on using optical data to estimate tropical forest 
attributes arises from the fact that optical sensors record mainly the tree crown surface, 
while the suppressed understorey often remains undetectable. This also helps to explain the 
relatively large estimation error of passive optical sensors. 

ALS point clouds are products of a sampling process and contain two sources of 
sampling error in forest areas. One error arises from the low sampling intensity, resulting in 
incomplete variation in the trees sampled, while the second is introduced by noise, mainly 
from objects above the bare ground but also from the canopy. As a way to enhance the 
sampling intensity, increasing the pulse density must help to capture the diversity of forest 
structure in more detail. Selecting pulse density should depend on the general complexity of 
the vegetation. For boreal forests, low-density ALS data have been proved suitable for 
providing satisfactory mappings (e.g. Næsset 2006, 2007), whereas higher-density data 
should be adequate for tropical forests which are structurally more complex. However, 
increasing the pulse density is not always effective for especially young and dense stands, 
due to the saturation problem, which means that the information regarding the structural 
variability cannot be enriched any further (Jakubowski et al. 2013).   

VHT thresholding is a simple way to remove noises from above the bare ground by 
finding a threshold that clearly distinguishes understorey objects from the canopy layers. A 
global VHT which has been used in Scandinavia is determined on the basis of foresters’ 
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knowledge and experience, but it is impractical to do this in the tropics where a forest can 
be over-heterogeneous or simply peppered with land mines as a legacy of past wars. 
Objective measurements must be made of the ground vegetation and understorey, which 
can be used as proper indicators. The last returns from the ALS pulses serve the purpose 
just in time. These are usually deemed to be mainly reflected from the ground and are 
therefore used for producing DTMs. This further explains why the last returns were used 
here to determine the plot-adaptive VHT. 

The plot-adaptive VHT is a function of vegetation structures other than data 
characteristics as is the case of the global VHT. A unified global VHT for all sample plots 
is at best a compromise between plots and serves to adjust the statistical relationship 
between the response and the ALS predictors. If the global VHT is employed, there is still 
some doubt as to whether the optimal global VHT for predicting the stem volume will 
result in the most accurate estimates of basal area or other forest attributes. As a result this 
concern poses another question as to how one can adequately impute several responses 
simultaneously by a non-parametric multiple-imputation method. Conversely, the plot-
adaptive VHT is customized for each sample plot and thus by nature is able to portray the 
variability between plots and within plots, making features extracted in this way suitable for 
the multiple imputation. 

In short, the global VHT method is more suitable for forests that have a simple, 
consistent vertical structure, while the plot-adaptive VHT method should be favoured for 
forests characterized by large variation of forest structures. However, this difference should 
not prevent the plot-adaptive VHT method from performing well even in situations where a 
global VHT would also be applicable. 
 
 
5.2 Stand delineation 
 
The potential of ALS, airborne CIR, and ALOS AVNIR-2 was examined for their 
performance in delineating forest stands in the tropics. The distinguishing feature of an 
empirical model-based segmentation method is that the delineation is fully automated, 
homogeneous, and adjustable in size. The areas produced by such segmentation can serve 
as managerial units in forest management and planning. 

A common concern relates to the randomness of the segments produced by the multi-
scale region merging. It has been observed that even with identical parameter settings, 
minor discrepancies may appear between segments that represent the same cartographic 
location but are generated in different runs. The reason for these discrepancies is ascribed to 
the random positions at which the initial seeding was planted. Alternatively, recent 
segmentation algorithms on the basis of “level sets” or “graph cuts” (Szeliski 2010) can 
also be examined for the present purpose. 

In forestry, automatically extracted stands are usually evaluated by a reference 
delineated by an expert (Hyppänen et al. 1996, Radoux and Defourny 2007, Mustonen et al. 
2008). Although the difference can be assessed quantitatively as a local measure, methods 
of this type are qualitative, because the outcome is fully contingent on the reference, which 
is subjective. The use of the AICvar index as an objective, unsupervised measurement is 
adequate for quantitative comparisons of both diverse parameterizations of a particular 
segmentation method and fundamentally different segmentation methods.  

The process of segmentation duly reflected the performance of empirical models based 
on ALS, airborne CIR, and ALOS AVNIR-2 data. The resulting spatially homogeneous and 
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disjunct segments would correspond reasonably well to forest stands (Mäkelä and 
Pekkarinen 2001, Leppänen et al. 2008). In addition to homogeneity, delineations are 
expected to meet the required size and shape for the forest management, which in turn must 
comply with the clearly defined goal of forest planning.  

The empirical model-based segmentation is compatible with planning from the 
operational to the strategic level subject to the goal in question, which often entails a 
management unit based on cutting or other silvicultural operations (Tokola et al. 2008). 
Depending on this goal, forest attributes used for segmentation can be generalized to any 
variable retrieved from an empirical model, such as stem volume as a biological indicator, 
net present value of economic returns, amount of biomass, or even carbon stock for REDD 
+. 

Apart from delineating forest stands, the segmentation of remote sensing data has been 
previously tested for applications to many other aspects of forestry such as tree-crown 
delineation (Kaartinen et al. 2012, Vauhkonen et al. 2012) and change detection (Clark and 
Pellikka 2009, Maeda et al. 2010). In an ITD system, the crown delineation allows the 
extraction of information regarding the dimensions and shapes of tree crowns, which 
favours the modelling of tree-level attributes. This work typically involves two sequential 
steps: the detection of individual trees and then the delineation of respective trees. While 
the algorithm of multi-scale region merging used in this study is admittedly also applicable 
to delineating individual tree crowns, Vauhkonen et al. (2012), after comparing six sets of 
detection and delineation algorithms, concluded that the structure and spatial pattern of 
trees rule the efficacy much more than the algorithm itself.  

Proceeding one step further from the change detection, the empirical model-based 
segmentation approach could be interesting for quantifying deforestation and forest 
degradation in connection with REDD +, as it allows a level of cost-effectiveness that 
corresponds to the remote-sensing data. Having established the initial forest stands by 
validated segmentation, one can conduct all future detection and quantification steps using 
the same material and based directly on the initial segments and zonal statistics. 
Deforestation or forest degradation, in the sense of either stem volume or basal area, is 
therefore reflected in the magnitude of the variations between the situations before and after 
such events. If accurate expansion factors are introduced into the stem volume statistics, 
both aboveground and belowground biomass can be expressed, thus facilitating carbon 
monitoring. 
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