
Dissertationes Forestales 216 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Predicting vegetation characteristics in a changing environment by 

means of laser scanning 

 

 

 

Ninni Saarinen 

Department of Forest Sciences 

Faculty of Agriculture and Forestry 

University of Helsinki 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Academic dissertation 
 

To be presented with the permission of the Faculty of Agriculture and Forestry, University of 
Helsinki, for public criticism in the Walter Auditorium of the EE-building, Agnes Sjöbergin 

katu 2, Helsinki on April 22th, 2016 at 12 o’clock noon.  
  



2 

 

Title of dissertation: Predicting vegetation characteristics in a changing environment by means of laser scanning 

 

 

Author: Ninni Saarinen 

 

 

Dissertationes Forestales 216 

 

http://dx.doi.org/10.14214/df.216  

 

Thesis supervisors: 

Professor Markus Holopainen 

Department of Forest Sciences, University of Helsinki, Finland 

 

Professor Juha Hyyppä 

Finnish Geospatial Research Institute, National Land Survey of Finland 

 

Professor Hannu Hyyppä 

Research Institute of Measuring and Modelling for the Built Environment, Aalto University, Finland 

 

Adjunct Professor Mikko Vastaranta 

Department of Forest Sciences, University of Helsinki, Finland 

 

 

Pre-examiners: 

Associate Professor L. Monika Moskal 

School of Environmental and Forest Sciences, College of the Environment, University of Washington, USA 

 

Professor Sorin C. Popescu 

Department of Ecosystem Science and Management, Texas A&M University, USA 

 

 

Opponent: 

Professor (tenure track) Tuuli Toivonen 

Department of Geosciences and Geography, University of Helsinki, Finland 

 

 

ISSN 1795-7389 (online) 

ISBN 978-951-651-522-2 (pdf) 

 

ISSN 2323-9220 (print) 

ISBN 978-951-651-523-9 (paperback) 

 

 

 

 

Publishers: 

Finnish Society of Forest Science 

Finnish Forest Research Institute 

Faculty of Agriculture and Forestry of the University of Helsinki 

School of Forest Sciences of the University of Eastern Finland 

 

 

Editorial Office: 

The Finnish Society of Forest Science 

P.O. Box 18, FI-01301 Vantaa, Finland 

http://www.metla.fi/dissertationes 

 

 

http://dx.doi.org/10.14214/df.216


3 

 

Saarinen, N. 2016. Predicting vegetation characteristics in a changing environment by means of laser scanning. 

Dissertationes Forestales 216. 60p. 

http://dx.doi.org/10.14214/df.216. 

 
 
ABSTRACT 

 

 

Accurate and up-to-date information concerning vegetation characteristics is needed for decision-making from 

individual-tree-level management activities to the strategic planning of forest resources. Outdated information may 

lead to unbeneficial or even wrong decisions, at least when it comes to the timing of management activities. Airborne 

laser scanning (ALS) has so far been successfully used for applications involving detailed vegetation mapping because 

of its capability to simultaneously produce accurate information on vegetation and ground surfaces. The aim of this 

dissertation was to develop methods for characterizing vegetation and its changes in varying environments. A method 

called multisource single-tree inventory (MS-STI) was developed in substudy I to update urban tree attributes. In MS-

STI stem map was produced with terrestrial laser scanning and by combining the stem map with predictors derived 

from ALS data it was possible to obtain improved estimates of diameter-at-breast height but also to produce new 

attributes such as height and crown size. Boat-based mobile laser scanning (MLS) data were employed in substudy II 

to map riverbank vegetation and identify changes. The overall classification accuracy of 73% was obtained, which is 

similar to accuracies found in other studies. With multi-temporal MLS data sets changes in vegetation were mapped 

year to year. In substudy III, open access ALS data were combined with multisource national forest inventory (NFI) 

data to investigate the drivers associated to wind damage. The special interest was in ALS-based predictors to map 

areas with wind disturbance and apply logistic regression to produce a continuous probability surface of wind 

predisposition to identify areas most likely to experience wind damage. The results demonstrated that a combination 

of ALS and multisource NFI in the modelling approach increased the prediction accuracy from 76% to 81%. The 

dissertation showed the capability of ALS and MLS for characterizing vegetation and mapping changes in varying 

environments. The developed applications could increase and expand the utilization of multi-temporal 3D data sets as 

well as increase data value. The results of this dissertation can be utilized in producing more accurate, diverse, and 

up-to-date information for decision-making related to natural resources. 
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INTRODUCTION 
 
 
Background 

 

Vegetation and various vegetated environments, e.g. forests, play an important role in preventing and precluding 

erosion, in nature conservation, and climate change. Various vegetation provides products and services utilizable (by 

humans) to provide the living and increase our well-being. Information concerning vegetation and natural resources 

is gathered at several different scales from tree-level attributes to global-scale land cover types. Regardless of the 

inspection level and from where the information is collected from, the cognizance of natural resources is needed in 

decision-making, whether by urban planners for management activities concerning individual trees, by authorities 

locating flood risk areas, by private forest owners for handling their properties, or politicians and decision-makers for 

international conventions. Information used in decision-making is required to be accurate and up-to-date to avoid 

unfavorable decisions. Thus, a need exists for efficient and applicable inventory methods for different parts of the 

world to map natural resources, especially vegetation, accurately and often enough. There is an additional need to 

develop methods and applications for mapping different changes in varying environments. 

These environments may include urban surroundings with roadside trees, parks, and recreational forested areas, 

but also riverbanks with various vegetation types as well as larger managed forest areas. When characterizing 

vegetation, classification is the traditional means of describing it. A basic classification of vegetation can be based on 

land use or land cover species distribution, or more detailed information on height or density. Green urban areas are 

classified based on utilization purposes but also according to habitats, whereas riverine vegetation can be described 

based on species distribution. Definitions for vegetation from different environments usually follow the traditional 

forest-type theory (Cajander, 1909), where forest habitats are classified based on indicator species thriving in certain 

soil and moisture conditions of forest and mire types. According to the theory by Cajander (1909) similar vegetation 

will develop in equivalent habitats despite changes. Finland has been divided into three climatic zones and each habitat 

is represented by one or more forest type according to the indicator species and species distribution. This forest type 

theory has been applied in assessing vegetation productivity, but it is also important when functions of forest 

ecosystems are of interest since forest ecosystems follow the forest type classification. Biodiversity is one key element 

in nature conservation and forest type classification constitutes the basis for identifying important habitats (e.g. 

conserved by law in Finland). One example of vegetation characteristics is forest productivity, which can be assessed 

based on dominant stand height at a certain age. Traditional forest attributes include, e.g. basal area and volume, which 

are interesting in wood production, whereas biomass, leaf area index (LAI), canopy coverage, and forest health are 

characteristics that have become increasingly interesting in relation to climate change. In addition, features describing 

stand tolerance against natural disturbances, such as wind, could be included when depicting the stand. In this case 

the characteristic in question could be susceptibility to wind disturbance. Vegetation characteristics can determine 

upcoming management activities, thus information of these characteristics are needed. 

Changes in vegetation, e.g. growth, and biodiversity development, can happen gradually over time, or they can 

take place suddenly. Rapid changes can either be planned (e.g. forest management actions) or unexpected like erosion 

or natural disturbance events such as storms, flooding, drought, or fire. Changes in urban vegetation are related to 

removing vegetation because of constructing city infrastructure, but also because in cases where they pose danger to 

citizens (i.e. old and damaged trees). Flowing water causes erosion as well as the transportation and accumulation of 

sediments that may remove vegetation or impede its survival. Natural disturbances are viewed as a hindrance to the 

productivity of managed forests (e.g. Quine, 1995) because they usually modify forest structure by damaging trees 

but can also cause other disturbances such as diseases. For example in Finnish legislation requires fallen trees to be 

removed from forests during the following growing season to prevent pest outbreaks. These disturbance events are 

nevertheless part of the natural succession cycle of forests, thus increasing heterogeneity and biodiversity. Although 

one of the goals of current forest management activities is to ensure biological biodiversity (Lindemayer and Franklin, 

2002), they may also weaken the disturbance resiliency of managed forests (Holling, 2001). New management 

procedures are thus needed to maintain the heterogeneity and biodiversity of managed forests but also their resilience 

to natural disturbance, characteristics that might become more important with a changing climate and accompanying 

changes in disturbance regimes (Westerling et al. 2006; Seidl et al. 2011; Seidl et al. 2014).  Perspective thus affects 

how changes are seen, especially in relation to forests. On the other hand, gradual change such as vegetation growth 

takes place where vegetation exists, e.g. in urban environments, on river-banks, and in forests. 

Laser scanning is an active remote sensing technique providing three-dimensional (3D) information from objects. 

Nilsson (1996) presented the principles for the utilization of airborne laser scanning (ALS) in forest inventory and 

research in this field has been active ever since. ALS has proven to be a cost-efficient technique for retrieving accurate 

information of vegetation characteristics from large areas and it has been applied in operational use for predicting 

forest inventory attributes. This methodology is focused on predicting forest inventory attributes at the plot or stand 

levels, but methods producing single-tree-level information are still studied, although the first methods were presented 
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as early as 1999 (see e.g. Hyyppä and Inkinen, 1999). There is growing interest for providing more detailed 

information efficiently on the single-tree level. Recent research has therefore also focused on other laser scanning 

techniques for mapping vegetation characteristics, such as terrestrial and mobile laser scanning (TLS and MLS). The 

advantage of TLS and MLS compared to ALS is more detailed 3D data (even at a millimeter level of detail), although 

they are not suitable for the vegetation mapping of large areas.  

 

 

Inventory of vegetation characteristics 

 

National forest inventory (NFI) has been the traditional means of collecting forest resource information. In Finland, 

the first NFI was concluded in the 1920s and was based on systematic line sampling. Currently (NFI9–NFI12) clusters 

of field plots are placed systematically to cover the entire country, which enables the gathering of national- and 

regional-scale forest information. Nowadays approximately 20% of NFI field plots are measured annually, covering 

all of Finland and the measurements of roughly 81 000 field plots are executed in a period of five years. In addition, 

Landsat thematic mapper (TM) satellite images are applied to provide forest resource information of areas smaller 

than would be possible with the utilized sampling design of field plots. The other traditional means of collecting 

information on forest resources has been stand-wise field inventory (SWFI), which has been applied for forest 

management planning purposes in Finland for over 60 years. SWFI is based on field measurements where species-

specific information is determined using Bitterlich sampling for each compartment, thus including information about 

location contrary to NFI. In addition to forest inventory attributes, forest type, development class, and future 

management activities are determined. To distinguish compartments, aerial images have been applied before the actual 

fieldwork. Forest management planning is traditionally targeted at private forest owners to urge them in committing 

to timber production but also to self-active management to actuate private investments (Ollonqvist, 2001). In recent 

years, issues concerning biodiversity and its protection as well as recreational purposes have been included in the 

forest management plans, but also in strategic forest planning based on NFI information. Nowadays, the planning 

processes have enabled the participation of forest owners so as to take their perspectives more into account, but also 

to ensure sustainable wood production (Ingemarson, 2004; Hujala et al. 2008; Hujala, 2009). 

Uncertainty in forest resource information can result in unfavorable decisions, which can lead to economic losses 

for the forest owner (e.g. Holopainen et al. 2010b; Mäkinen et al. 2010). Precise measurements and accurate models 

are thus needed for predicting stand-level forest attributes. An inventory of forest attributes has been performed in 

ten-year cycles, but changes in these attributes are not usually recorded although growth is predicted by means of 

statistical models. Another challenge is that past management activities or disturbance events are not stored in the 

same place with forest inventory information. In other words, SWFI has not been applied to vegetation monitoring. 

Traditionally, NFI and permanent field plot distribution have been the means of long-term forest resource monitoring 

(i.e. growth, health, biodiversity, carbon balance) in Finland. Although the NFI field plot network is dense enough for 

mapping these changes on a national and regional level, the accuracy is not sufficient for stand-level monitoring.  

An inventory of recreational forests in urban environments has also been based on a ten-year SWFI cycle, but park 

and roadside trees have not been systematically inventoried. Urban trees usually mainly include roadside trees and 

some parks trees, and the information gained from them are managed through tree registers. A traditional tree register 

contains information of species, size, and location for each tree in the register. Tree registers for urban areas are used 

in city and environmental planning, locating old trees that are hazardous (for citizens), and biodiversity monitoring. 

Mapping roadside trees is particularly essential for allocating needed management activities for trees that are 

interfering with lamp posts, buildings, or driver visibility at road junctions, but also to reduce the costs of maintenance 

actions. In urban environments, trees and forests have less economic value through timber but their importance is in 

recreation, aesthetics, and biodiversity, and improving air quality (see e.g. Ode and Fry, 2002; Tyrväinen et al. 2005; 

Nowak, 2006; Bernath and Roschewitz, 2008). Plans for city parks are mainly thematic maps, where built and natural 

objects, detailed vegetation classification (e.g. grass, broad-leaved tree, high/low conifer/broad-leaved bush) as well 

as upcoming modifications and changes are presented. Citizens have the possibility to participate in the planning 

process, which is a common approach in management planning in urban or forested areas. With an up-to-date tree 

register containing roadside and park trees and stand-level attributes, maintenance activities in green urban areas could 

be better scheduled and allocated, and maintenance costs could thus be reduced. Tree registers strongly rely on the 

age of tree data, thus new updating procedures are needed to record the effects of frequent changes in urban trees.  

Vegetation acts as an interface between flowing water and the soil in riverine environments, thus increasing 

vegetation cover on the land is one of the most effective methods to prevent soil erosion. Mapping and monitoring 

riverside vegetation is important for improving the understanding of river channel evolution and fluvial modeling. 

Models of river dynamics have been limited to information on river channel topography, water level elevation, and 

river channel surface roughness (e.g. Dietrich and Smith, 1983; Brasington et al. 2000; Ferguson et al. 2003; Rumsby 

et al. 2008). Traditional means of collecting elevation information has included time-consuming field measurements 

(e.g. tachymeter) or inaccurate contour lines of topographical maps. Consequently regular vegetation inventory of 
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riverbanks is also scarce, despite the knowledge that river bends lacking vegetation can experience up to ten times 

greater erosion than vegetated banks (Beeson and Doyle, 1995). Information of the vegetation cover on riverbanks 

would therefore provide data for mapping and modeling erosion risk. Riverbank erosion processes are complicated in 

cold climate conditions, thus understanding these processes can be enhanced by accurate information of riverside 

vegetation and its changes. In Finland, areas of flood damage have been mapped but the requirements (i.e. EU 

directives) of updating flood maps and flood-risk maps obligate authorities to produce up-to-date and more detailed 

maps. Information of the vegetation characteristics on riverbanks could be used in improving the models applied in 

producing flood maps and flood-risk maps, thus enhancing the information provided by these maps.  

 

 

Laser scanning techniques 

 

Airborne laser scanning 

 

ALS is an active remote sensing technique typically based on time-of-flight (TOF) measuring. The sensor transmits a 

laser pulse to an object and the receiver measures the time spent for the laser to travel from the sensor to an object and 

back (Wehr and Lohr, 1999). The scanner includes a positioning system that relies on the global navigation satellite 

system (GNSS) and the location of the sensor is registered (Figure 1). In addition, an inertial measurement unit (IMU) 

also enables the documentation of a sensor’s position and orientation. These records produce a detailed 3D point cloud 

(x, y, z), permitting accurate recoding of the object’s location and position in this three-dimensional space.  

Specifications regarding ALS data acquisition include scan angle, pulse repetition frequency, flying altitude, swath 

overlap, and returns per pulse (Baltavias, 1999). In addition to these specifications, the structure of an object 

(vegetation in this case) has an effect on the produced point cloud. Discrete return systems used more commonly in 

ALS utilize the TOF measurement principle where single laser pulses are emitted and can register up to five returns 

from each laser pulse from objects without a well-defined surface. Another possibility is to record the shape of a 

returning laser pulse and convert it to digital waveform. However, methods associated with sensors recoding the full 

waveform of laser pulses are still under development compared to methods applying discrete laser data. The mapping 

range of the TOF measurement system is several thousand meters (e.g. ALS in forestry application is executed at 

altitudes between 400 m and 4000 m). The area illuminated by a laser beam is called a footprint, its diameter is 

normally 0.1–3.8 m, and it is calculated based on the aperture of the laser, range, and angular divergence of the beam. 

The size of a footprint affects the spatial resolution of an object that can be detected, although laser returns can be 

detected from objects smaller than the footprint, e.g. electric power lines (Ackermann, 1999). Because of the large 

size of the footprint and heterogeneous surface of the vegetation, one laser pulse can penetrate through the canopy and 

thus result in several backscattered returns. The first return is expected to rebound from the top of the vegetation 

canopy and the last returns are considered to be hits from the ground. The receiver records 3D coordinates of these 

returns and the point cloud is generated based on these coordinates. Because the length of the laser pulse is longer 

than the needed accuracy (meters vs. centimeters) the precise measurement of a laser return in real time is required. 

In addition to the number of returns and their TOF, the intensity of a discrete laser beam is usually recorded. Intensity 

is the maximum amplitude of a discrete laser beam (Baltsavias, 1999). The data acquisition specifications affect the 

spatial coverage and density of the point data: a large scan angle and a higher flying altitude or speed will result in a 

lower density of measured points on the ground but enable larger area coverage (Petrie and Toth, 2009). High pulse 

repetition frequency, on the other hand, enables larger measurement density (i.e. density of measured points on the 

ground). In addition, the complexity of the target area (terrain type, flatness of terrain, and vegetation characteristics) 

also affects the quality of laser point clouds (Hyyppä et al. 2005).  

Straatsma and Middelkoop (2006) presented that during the leaf-off season a laser pulse is able to penetrate deeper 

through the vegetation compared to the leaf-on season but the intensity is higher during the growing season. In leaf-

on conditions the penetration rate of a laser pulse (i.e. transmittance of a laser pulse through the canopy to the ground) 

is approximately 20–40% in European coniferous and deciduous forests (Ackermann, 1999) and 20–50% in Finnish 

coniferous forests (Ahokas et al. 2011). Leaf-off conditions have been found suitable for classifying ground points 

from points emitted from the vegetation and thereby it is possible to generate a raster representing terrain and 

elevation, called a digital terrain model (DTM) (Raber et al. 2002). However, the difference between DTM from leaf-

on and leaf-off data in boreal coniferous-dominated forests has been reported to be less than 5 cm in a low-altitude 

ALS survey (Hyyppä et al. 2005). Several methods exist for generating DTM from the laser point cloud and a summary 

of these can be found in Hyyppä et al. (2005). Forest structure, i.e. forest canopy and the amount of understory 

vegetation, greatly affects DTM accuracy because most laser points are emitted from vegetation. As first returns are 

expected to hit the highest points of the vegetation, they are used in generating a raster of the digital surface model 

(DSM) representing the highest objects. 
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Figure 1. The principle of airborne laser scanning (ALS): A global navigation satellite system (GNSS) enables accurate 

positioning whereas the inertial measurement unit (IMU) measures and records scanner orientation. The sensor 

measures the time a laser pulse travels from the scanner to an object and back: the difference between the emitted 

and received pulse is the distance between the sensor and the object. These distances can be transformed into 

coordinates based on the position and orientation of the scanner, resulting in a three-dimensional point cloud. 

 

 

DSM is generated by classifying the uppermost reflections and interpolating missing points to a certain grid size. To 

find out the height of the vegetation, a canopy height model (CHM) is created by subtracting DTM from DSM, which 

can also be called a normalized digital surface model (nDSM). ALS has been put into operational use during recent 

years, and forest resource information has been gradually acquired throughout Finland using ALS. The National Land 

Survey of Finland (NLS) has acquired ALS for updating and improving the quality of the national elevation model 

while concurrently providing information of vegetation height. The NLS has provided ALS data operationally since 

2008. Openly available ALS data currently (2016) covers approximately 60% of Finland’s land area and according to 

the NLS ALS data covering the entire land area of Finland will be available by 2020. By then multi-temporal ALS 

data will be available in several areas, thus monitoring environmental changes will be possible. In addition, high-

density multi-temporal ALS data are obtainable from urban areas, e.g. the City of Helsinki has used ALS data for 

urban planning purposes such as the mapping of buildings, roads, and other built objects since 1999. However, 

applicable ALS data covering the entire city were available for the first time in 2015. Such 4D data are needed for 

various monitoring applications intended for change detection but also for predicting possible changes in the future.  
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Figure 2. Principles of terrestrial laser scanning (TLS): the scanner is place on a tripod and turns 360 degrees, while 

vertical coverage is slightly less (310–360 degrees) because the area beneath the tripod (50 degrees at the most) is 

not covered. The three-dimensional point cloud is produced based on the phase difference between the emitted and 

received continuous laser beam. 

 

 

Terrestrial and mobile laser scanning 

 

Terrestrial laser scanning (TLS) is usually performed from a fixed position, where a laser scanner is mounted on a 

tripod. It is therefore suitable for smaller areas than ALS (i.e. one forest stand), but on the other hand with TLS it is 

possible to gain more detailed information, even at the millimeter level. A laser scanner on a tripod can use the same 

TOF measuring technique as ALS or phase-shift ranging. Phase-shift ranging utilizes continuous amplitude modulated 

wave and detects the phase-shift between the emitted and received signal, thus enabling the calculation of distance. 

Commercial TLS scanners typically provide 360 degrees for a horizontal field of view and 310 to 360 degrees for a 

vertical field of view where only the ground below the instrument and the tripod is not covered (Figure 2). Footprint 

as a term is not used in relation to TLS, but spot size is applied. Spot size is a few millimeters (e.g. 3 mm for Leica 

HDS6100 and 3.3 mm for Faro Photon120) when a laser beam is emitted and the beam divergences are 0.22 mrad and 

0.16 mrad for Leica HDS2000 and Faro Photon 120, respectively. Angular resolution defines the angular difference 

between two laser beams and determines, along with beam divergence, the distance measurement accuracy and 

distance to an object, and how detailed observations from an object can be measured, i.e. the maximum number of 

points. TOF sensors usually have a longer maximum range compared to phase-shift measurements (up to 200 m), 

while the distance measurements in phase shift have been more accurate. However, the difference in distance accuracy 

between these two sensor types is decreasing. Point density compared to ALS sensors is clearly higher, e.g. it is 

possible to gain approximately 25 000 points per m2 at the scanner level with a single scan at a distance of 10 meters 

using the Leica HSD6100, which was used in this thesis. Point density decreases as the distance to the scanner 

increases.  

Instruments utilizing phase-shift ranging do not generate several returns compared to TOF, because the first contact 

to an object yields backscattering to the receiver. Thus, only objects that are directly visible by the sensor can be 

measured, hence vegetation cover, density, and measuring geometry affect the resulting point cloud and its 

applicability (Liang et al. 2012b). To avoid inaccuracies caused by blind spots (i.e. obstacles in front of the targets) 

multiple scans from different locations can be used to capture the entire area of interest. This way data gaps caused 

by other vegetation (e.g. tree trunks, branches or understory) can be minimized when multiple scans are combined 

and co-registered as one point cloud. The co-registration of multiple scans can be executed using artificial reference 

targets (spheres) that have been placed around the inventory area. Object-based registration was presented by Liang 

and Hyyppä (2013), where co-referencing is performed with no artificial reference targets but a stem-location map is 

created automatically from each individual scan and these maps are then merged together. 

It is also possible to mobilize a laser scanner by mounting it on an all-terrain vehicle (Figure 3), a boat, or backpack, 



14 

 

thus referred to as mobile laser scanning (MLS). MLS can utilize the same TOF or phase-shift measuring technique 

as TLS; the fundamental difference is the moving platform but also the evenness of data and the perspective. A mobile 

platform enables more spatial coverage and more even point clouds along the way of the platform, but the viewing 

direction to an object also remains fixed (e.g. Hyyppä et al. 2009). However, point density is similar compared to 

TLS. Like ALS, MLS also typically relies on GNSS and IMU for geo-referencing the data (Grejner-Brzezinska, 1999). 

However, one of the greatest challenges for MLS is that dense canopies can shade the positioning system (GNSS) and 

reduce position accuracy (Holopainen et al. 2013; Kaartinen et al. 2015). MLS data acquisition can be performed 

during continuous movement or by utilizing the stop-and-go method where data quality is closer to the data produced 

by TLS. With stop-and-go it is additionally also possible to improve mapping accuracy by avoiding data gaps. MLS 

was developed to capture features or objects invisible from above and to provide larger spatial coverage than TLS can 

reach.  

Both TLS and MLS provide a dense point cloud, and both methods have currently been used in research related 

to urban and managed forests (e.g. Holopainen et al. 2013; Kankare et al. 2014a; Kankare et al. 2014b). Other 

environmental applications for TLS and MLS have included measuring snow cover and depth where intensity has 

been utilized (Kaasalainen et al. 2008; Prokop, 2008; Prokop et al. 2008; Kaasalainen et al. 2011). Kaasalainen et al. 

(2008) demonstrated that TLS is capable of detecting even small changes in snow cover depth. Prokop et al. (2008) 

compared TLS to tachymeter measurements and gained an accuracy of 4.5 cm with a long-range scanner (capable of 

measuring up to 800 m). Kaasalainen et al. (2011) reported MLS applicability in the accurate profiling of snow surface 

roughness, which was supported by Jaakkola et al. (2014). MLS has been studied in mapping riverine environments, 

especially their topography and elevation (Alho et al. 2011; Bitenc et al. 2011; Glennie et al. 2013). Vaaja et al. 

(2011a) obtained a root-mean-square error (RMSE) between 2.3 cm and 7.6 cm for MLS-based DTM for non-

vegetated point bars, but the accuracy decreased for vegetated point bars (RMSE between 15.7 cm and 28.4 cm), 

whereas Lotsari et al. (2014) gained better results: the RMSE for non-vegetated point bars varied between 3.0 cm and 

4.2 cm with similar sensors. Vaaja et al. (2011b) combined MLS and panoramic images to detect changes in river 

topography, and they concluded that merged data improved the interpretation of land cover, thus provided more 

information on fluvial geomorphology and river dynamics and offering a good way of visualizing erosion and 

deposition areas.  

A clear difference between ALS, TLS, and MLS is the measuring geometry, which in ALS is almost directly from 

above (usually ± 20°) and nearly horizontal in TLS and MLS. ALS is thus more suitable for measuring height and 

height structure properties (i.e. density) while TLS and MLS provide information on the horizontal structure of 

vegetation, e.g. tree trunks, crowns, and lower vegetation. ALS provides a fairly even point cloud because all objects 

are more or less at the same distance from the sensor, whereas the point density in TLS and MLS varies drastically as 

the distance between the sensor and an object changes. An advantage of TLS and MLS compared to ALS is the high 

spatial accuracy for mapping and monitoring applications, but they work best where visibility is not an issue (e.g. 

open areas and mature stands without undergrowth). Different laser scanning techniques for characterizing vegetation 

are presented in more detail in the following sections. 

 

 

 
 

Figure 3. Laser scanner developed by the Finnish Geospatial Research Institute mounted on an all-terrain-vehicle.  
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Remote sensing data in predicting vegetation characteristics 

 

2D remote sensing data 

 

Remote sensing provides information on vegetation from large areas and has enabled shift from inventory to mapping 

where vegetation characteristics can be combined with knowledge of locations. Species is a basic vegetation 

characteristic, and visual interpretation of multispectral aerial images enables separating conifers and deciduous trees. 

However, this is slow and subjective, and algorithms for automatic species recognition have therefore been developed 

(Waser et al. 2010; Heikkinen et al. 2011; Korpela et al. 2011; Pant et al. 2013). Waser et al. (2010) compared five 

aerial cameras in classifying thirteen land cover and eight tree species classes. Heikkinen et al. (2011) concluded that 

88% classification accuracy for Scots pine (Pinus sylvestris L.), Norway spruce (Picea abies (L.) Karst.), and birch 

(Betula sp.) can be obtained if modeling the sunlit and shaded areas of trees and multiple measurements are taken for 

every tree. Pant et al. (2013) were able to reach 98% overall accuracy for the same study area with simulated 

multispectral bands. Gougeon et al. (1999) concluded that the spectral signature of closely related species and broad 

intra-species variations impede the classification. In addition, the applicability of hyperspectral imaging with tens of 

hundreds of bands has been investigated with regards to species classification (Yu et al. 1999; Becker et al. 2007; 

Dalponte et al. 2009). Becker et al. (2007) suggested that at least seven bands from visible and near-infrared 

wavelengths are needed to obtain a minimum 85% classification accuracy for coastal wetland vegetation. Dalponte et 

al. (2009) concluded that classification accuracy depends on the classifier because not all algorithms can exploit the 

extensive data from the hyperspectral sensors. Although capable of capturing more varying spectral information, one 

disadvantage of these hyperspectral images compared to multispectral images is their lower spatial resolution (cf. 

Clark et al. 2005; Korpela et al. 2011). In addition to species, aerial images have been applied in vegetation type 

(Holopainen and Jauhiainen, 1999) and habitat (Holopainen and Wang, 1998) mapping. In addition to aerial 

photographs, space-borne multispectral images have been studied for land cover classification (Hansen et al. 2003; 

Sedano et al. 2005) and vegetation mapping applications (Wang et al. 2004). Toivonen et al. (2007) applied Landsat 

TM satellite images for classifying river and waterbodies in Western Amazonian lowlands that are closely related to 

the forest classification system in the area (Junk and Furch, 1993). Wulder et al. (2000) applied aerial images in 

locating individual trees and concluded that the size of a tree crown and spatial resolution of imagery are the limiting 

factors in detecting individual trees. Hyyppä et al. (2000) compared various 2D aerial and space-borne sensors in 

estimating mean height, basal area, and volume at stand level and their results showed that it was possible to estimate 

mean height with lowest relative standard error. 

 

Airborne laser scanning 

 

Classification of vegetation type 

 

Vegetation class is one of the principal ways of characterizing vegetation, which can be done based on generally 

differentiated land cover types or broad species composition, but vegetation density, height, and species-distribution 

represent more-detailed classification criteria. Vegetation classification is needed for land use and environmental 

management. Rutzinger et al. (2008) applied object-based analysis and obtained over 90% accuracy in automatically 

classifying laser points reflected from urban trees and shrubs. Collin et al. (2010), on the other hand, applied ALS 

intensity to developing an ALS-based vegetation index for distinguishing salt-marsh habitats by way of a per-pixel 

Maximum Likelihood classifier. A semi-automatic image segmentation system for classifying short (<1.2 m), 

intermediate, and tall (>5.0 m) floodplain vegetation was presented by Cobby et al. (2001) and Mason et al. (2003). 

The vegetation density of deciduous lowland floodplain forests was mapped with ALS and a percentage index was 

calculated for the laser returns, which improved the accuracy compared to the ecotype approach that utilizes lookup 

tables for each ecotype (Straatsma, 2008). Korpela et al. (2009) reported that an ALS-based surface model correctly 

matched the actual mire surface patterns and using ALS the accuracy of mire habitat classification was improved 

compared to optical data. However, high standard deviation (Davenport et al. 2000) and large prediction error (Cobby 

et al. 2001) of the lowest vegetation cover types with ALS predictions may require other sources of information as 

well. For example, hydrodynamically relevant surface characteristics for land cover types are derived from lookup 

tables (Straatsma and Baptist, 2008). Aerial images in combination with ALS data have also been applied in mapping 

and classifying vegetation. Chust et al. (2008) applied Maximum Likelihood classification in mapping coastal 

vegetation habitats and concluded that a combination of ALS data and airborne multi-spectral images improved the 

reliability of habitat mapping compared to ALS alone. Nevertheless, Zlinszky et al. (2012) were able to detect non-

wetland features with 97% accuracy and identify 72–80% of six wetland vegetation classes correctly with ALS, also 

including reed health categories. 
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Species recognition 

 

One of the challenges with ALS is the adequate classification accuracy of tree species. Brandtberg et al. (2003) were 

able to distinguish three deciduous species groups with ALS data acquired in leaf-off conditions with accuracy varying 

from 41% to 50%. Moffiet et al. (2005) concluded that the proportion of single laser returns showed potential in 

species recognition and obtained a classification accuracy of 77% for recognizing poplar box (Eucalyptus populnea 

F.Muell.) and white cypress pine (Callitris glaucophylla F.Muell.). Kim et al. (2009) applied intensity from discrete 

ALS data and were able to distinguish broadleaved trees and conifers with 83.4% accuracy. ALS sensors recoding 

full waveform of the laser beam have been studied in recognizing tree species and results have indicated the 

applicability of full-waveform ALS in tree species classification compared to discrete ALS (Lindberg et al. 2014; 

Vaughn et al. 2012; Yu et al. 2014). Lindberg et al. (2014) demonstrated that including waveform variables in species 

identification improved classification accuracy from 53% to 71% compared to discrete ALS, whereas Vaughn et al. 

(2012) reported an improvement from 79.2% to 85.4% in species classification accuracy. Yu et al. (2014) obtained 

similar results with low-density waveform ALS data: classification accuracy improved from 52.3% to 73.4% when 

waveform features were applied. Hovi et al. (2016) also compared discrete ALS intensity and waveform ALS in 

identifying different tree species and concluded that waveform improved results (from 78% to 88% with automatically 

segmented trees), especially when the only returns were applied because their waveform intensity was the most 

important feature in tree species recognition. Reitberger et al. (2008) implemented the canopy height model (CHM) 

to identify trees and applied waveform intensity to distinguish conifers and deciduous trees and were able to obtain 

an overall accuracy of 85% with leaf-on data and even 96% accuracy for leaf-off conditions. Furthermore, a 

combination of multispectral aerial images and ALS has been proposed to overcome the challenges of tree species 

identification. Classification accuracies between 83% and 96% have been achieved in managed forests with this 

combination (Holmgren et al. 2008; Ørka et al. 2012). In addition, hyperspectral aerial imagery in combination with 

ALS has been used in managed forests (e.g. Ørka et al. 2013; Dalponte et al. 2014) and urban environments (Zhang 

and Qiu, 2012; Alonzo et al. 2014). In these studies ALS was applied for delineating individual trees and the spectral 

information from aerial imagery was utilized for species recognition, which has proven to produce more accurate 

results. A combination of aerial images and ALS has also been applied in retrieving species-specific forest inventory 

attributes (e.g. basal area, volume, diameter distribution) in managed forests (Packalén and Maltamo, 2006, 2007, 

2008; Packalén et al. 2009). However, promising results for species recognition have been obtained with discrete ALS 

data only: Holmgren and Persson (2004) were able to separate Norway spruce and Scots pine with 95% accuracy and 

Liang et al. (2007) obtained 90% overall classification accuracy in distinguishing conifers and deciduous trees when 

applying first and last returns.  

 

Detecting tree location 

 

Location is the main attribute for an individual tree, especially in urban environments. ALS has provided detailed 

enough information available for identifying, recognizing, and characterizing individual trees and therefore for 

recording tree location (Hyyppä and Inkinen, 1999). Various techniques exist for identifying and locating trees, but 

several studies (Hyyppä and Inkinen, 1999; Friedlaender and Koch, 2000; Ziegler et al. 2000; Hyyppä et al. 2001a; 

Koch et al. 2006; Vega and Durrieu, 2011; Yu et al. 2011; Kaartinen et al. 2012b; Vauhkonen et al. 2012) have used 

CHM for finding the local height maxima representing tree tops and delineating the crown. Persson et al. (2002) were 

able to link 71% of the crowns delineated by CHM to reference trees. The accuracy of finding all the trees depends 

on the measurement density to ensure returns from tree tops and the entire crown (e.g. Lefsky et al. 2002), thus larger 

measurement density (preferably 5–6 points per m2) has traditionally been required. However, when comparing 

several techniques, Kaartinen and Hyyppä (2008) found no significant differences between detection accuracies and 

point densities. When comparing different methods, Kaartinen and Hyyppä (2008) and Vauhkonen et al. (2012) 

discovered that the accuracy of detecting single trees also depends on forest structure and how well suppressed trees 

can be identified. One of the drawbacks of applying CHM in tree detection is that only trees contributing to the CHM 

can be detected (Kaartinen and Hyyppä, 2008). Thus, surface models from other return types could also be generated 

for detecting suppressed trees more accurately. Hyyppä et al. (2012) demonstrated the applicability of last returns in 

improving the detection accuracy by 6%. Maltamo et al. (2004a) predicted Weibull distribution parameters to detect 

suppressed trees and were able to decrease the relative RMSE from 74.4% to 49.2% for the stem number when 

comparing with trees detected using CHM-based segmentation. Other methods have applied a 3D point cloud 

(Morsdorf et al. 2004; Wang et al. 2008) to better discriminate nearby and suppressed trees, although the results are 

similar (Gupta et al. 2010; Vauhkonen et al. 2012) to those applying CHM. Tanhuanpää et al. (2014) developed a 

system for mapping roadside trees in the City of Helsinki, Finland and adding height information based on ALS data 

to the tree register. They were able to map 89% of all the trees automatically. Holopainen et al. (2013) applied ALS, 

TLS, and MLS for locating urban trees and concluded that TLS and ALS provided accuracies acceptable for 

operational urban tree mapping (from 65.5% to 73.3%), although manual tree detection from MLS point clouds gained 
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similar results with TLS (79.2% and 73.3%, respectively). However, it should be noted that these results are not fully 

comparable because canopy and forest structure as well as the acquisition specifications of laser scanning varied 

between different studies. 

 

Predicting forest inventory attributes 

 

ALS is already becoming a standard technique for mapping forest resources, especially for the purpose of forest 

management planning particularly in Nordic countries (Maltamo and Packalén, 2014; Næsset, 2014). The so-called 

area-based approach (ABA) has increasingly been used in practical forest inventory for forest management planning 

when predicting species-specific forest inventory attributes, such as basal area-weighted mean diameter (Dg) and 

height (Hg) (i.e. Lorey’s height), mean basal area per hectare, mean stem volume per hectare, and number of stems, 

based on stand-level ALS data. In ABA, forest inventory attributes are predicted based on statistical dependency 

between metrics derived from ALS data and response variables measured from field plots. The approach provides 

wall-to-wall predictions for the attributes of interest. Most studies apply either regression (e.g. Means et al. 2000; 

Næsset, 2002; Holmgren, 2004; Næsset et al. 2005) or non-parametric (e.g. Maltamo et al. 2006; Hollaus et al. 2007; 

Packalén and Maltamo, 2007; Hudak et al. 2008; Latifi et al. 2010) models when predicting forest inventory attributes 

with ALS, and selected ALS metrics are utilized as predictors in these models. Several imputation approaches have 

been developed, and Hudak et al. (2008) concluded that Random Forest was the most robust and flexible method when 

predicting forest inventory attributes compared to other imputation approaches (i.e. Euclidean distance, Mahalanobis 

distance, Independent Component Analysis, Most Similar Neighbor, or Gradient Nearest Neighbor), which has been 

supported by the results by Latifi et al. (2010). Regression modeling has also been applied in mapping riverine 

vegetation where ALS provided the predictor variables for estimating spatial distributions of forest vegetation density 

as well as vegetation height and the density of herbaceous vegetation (Straatsma and Baptist, 2008). 

One of the main interests related to the precision and accuracy of estimated forest/vegetation attributes has been 

in examining measurement density. Research has shown that the required measurement density for appropriate 

estimations of grid-level forest inventory attributes (e.g. 265 m2) is 0.5 points per square meter, and increasing the 

point density will not improve results considerably (Hyyppä et al. 2001b; Næsset, 2002; Holmgren, 2004; Næsset, 

2004b; Treitz et al. 2012). Tree height estimations vary more based on leaf-off data (Næsset, 2005), especially in 

deciduous stands (Wasser et al. 2013). Tree height based on ALS data is reportedly an underestimation (Rönnholm et 

al. 2004; Vauhkonen et al. 2012), because the laser pulse does not necessarily hit the tree top and/or the used elevation 

model is higher due to undergrowth vegetation. However, White et al. (2015a) compared leaf-on and leaf-off ALS 

data in modeling forest inventory attributes and concluded that leaf-off data can also be applied in estimating forest 

attributes for both coniferous and deciduous forests. 

Forest inventory attributes can also be predicted based on single-tree methods where individual trees are first 

detected and the metrics are extracted to predict tree-level attributes that are then compiled into plot- or stand-level 

predictions, similarly as in traditional field-plot measurements. Methods applying single trees as sampling units 

merely utilize metrics from a surface model (i.e. CHM) because it is also developed for detecting the trees. Greater 

point densities have enabled the extraction of more metrics (e.g. height percentiles of the canopy height distribution, 

mean height, standard deviation, and coefficient of height variation) (Yu et al. 2010) and utilization of geometrical 

features, representing the volume, shape, and structure of a crown (Chauve et al. 2009; Vauhkonen et al. 2010), that 

could be applied in improving tree attribute estimations. In addition, with techniques producing greater point densities 

the nearest neighbor (NN) approaches can also be applied to the single-tree level when predicting tree attributes: NN 

approaches improve single-tree attributes estimation (Maltamo et al. 2009; Vauhkonen et al. 2010; Yu et al. 2011). 

Most studies using individual trees as a sample unit (e.g. Friedlaender and Koch, 2000; Lefsky et al. 2002; Persson et 

al. 2002; Kaartinen and Hyyppä, 2008; Vauhkonen et al. 2012) have concentrated on detecting trees and estimating 

tree-level attributes (DBH, height, and volume of individual trees) but plot- or stand-level estimates are still scarce, 

thus comparison between different studies and methods is challenging. Results are also reported in various ways, 

which makes comparison even more difficult. One comparison of the accuracy of forest inventory attribute estimations 

based on ABA has been compiled by Næsset et al. (2004), where standard error (SE) or RMSE varied between 8.4% 

and 16.6% for stand-level stem volume, between 2.5% and 6.4% for mean tree height, and between 8.6% and 13.2% 

for basal area. Table 1 combines the assessment of traditional forest inventory attribute estimates from several studies 

utilizing different methods. It should be noted that results are very dependent on the data and methodology applied, 

thus not fully comparable. Hence international benchmarking studies on the same area are becoming increasingly 

important (Kaartinen, 2012b). After this reminder, it can be pointed out that although estimate accuracies vary between 

studies the variation is not considerable, especially when methods with different sampling units (i.e. grid vs. individual 

tree) are compared (Table 1). One of the biggest issues causing uncertainty in the estimations of forest inventory 

attributes when applying individual trees as sample units is the tree detection rate, i.e. plot- or stand-level estimates 

for volume or basal area are underestimations if not all trees in a plot or a stand can be detected (Hyyppä and Inkinen, 

1999). As for ABA, one critical point is the inaccuracy in georeferencing the field plots (Gobakken and Næsset, 2009; 
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Frazer et al. 2011). The effect of a possible error in co-registration of the positioned field plots and ALS metrics can 

be decreased with larger plot size (Gobakken and Næsset, 2009, Frazer et al. 2011), thus larger plots are typically used 

in estimating forest inventory attributes when applying ABA (e.g. Næsset et al. 2004; Packalén and Maltamo, 2007; 

Woods et al. 2011; White et al. 2013). 

Above-ground biomass (AGB), on the other hand, is associated with international conventions related to climate 

change as it can be converted into carbon storage. The main aim of the international programs (e.g. UN Collaborative 

Programme on Reducing Emission from Deforestation and Forest Degradation in developing Countries, REDD) is to 

reduce global carbon emissions, and a need exists for measuring and monitoring (forest) biomass effectively and 

accurately. Thus, several studies have concentrated on applying ALS for estimating AGB mainly in managed forests 

on the single-tree level (Bortolot and Wynne, 2005; Popescu, 2007; Zhao et al. 2009; Allouis et al. 2013; Kankare et 

al. 2013b), and plot level (Jochem et al. 2011; Popescu et al. 2004), and on a grid-level by applying ABA (Næsset, 

2004a; Latifi et al. 2010; Kankare et al.2013c). Studies have also been carried out in urban environments estimating 

urban green volume (i.e. the sum of individual tree and grassland object volumes) (Hecht et al. 2008; Huang et al. 

2013b). Not all results from abovementioned studies are comparable because they are not presented in a similar way, 

but Kankare et al. (2013c) and Latifi et al. (2010) applied analogous non-parametric approaches and Kankare et al. 

(2013c) gained a smaller relative RMSE (24.9%) than Latifi et al. (2010) (47.5%). Popescu (2007) reported the 

coefficient of determination (R2) varying between 0.58 and 0.95 for several regression models estimating biomass. 

Allouis et al. (2013) included waveform metrics in estimating AGB and perceived improvement in the estimates (mean 

percentage error from -15% to -4%). Kankare et al. (2013b) developed linear models to estimate single tree biomass 

with predictor variables extracted from ALS data, but they first estimated DBH and height based on ALS data and 

used these estimates in existing biomass models. Results suggest that single-tree biomass is more accurately estimated 

when predictors are derived directly from ALS data. Jochem et al. (2011) introduced canopy transparency parameters 

to estimate AGB and resulted in R2 between 0.64 and 0.71 whereas results by Popescu et al. (2004) demonstrated a 

better fit to a model for estimating AGB for pines (R2=0.82) than for deciduous trees (R2=0.33). 

 

Predicting biodiversity 

 

Biodiversity is commonly used to describe species diversity or species richness, which in ecological environments 

includes plants, animals, and other organisms. Biodiversity is an important feature in both urban and managed forests, 

and many species are dependent on dead wood (i.e. coarse woody debris, CWD), thus decaying wood is one of the 

key factors for biodiversity (e.g. Franklin et al. 1987; Siitonen et al. 2000) and it has been used as a measure for 

biodiversity. As other vegetation characteristic, ALS has also been applied in measuring woody debris and canopy 

gaps that are formed in old-growth forests after the death of an individual tree or a group of trees (Kuuluvainen, 1994; 

Siitonen et al. 2000). Woody debris has therefore been mapped in forested areas on a plot level (Pesonen et al. 2008), 

canopy-gap level (Vehmas et al. 2011), and single-tree level by applying object-based image analysis (Blanchard et 

al. 2011), surface models (Mücke et al. 2013; Nyström et al. 2014), or point clouds (Lindberg et al. 2013). Each 

method has proved to be appropriate for detecting CWD. The results obtained by Pesonen et al. (2008) affirm the 

applicability of ALS in CWD estimations as the model with ALS predictors only produced lower RMSEs (51.6% for 

downed and 78.8% for standing dead wood) than the model with field-measured predictors (RMSE 85.7%). Vehmas 

et al. (2011) concluded that a difference in ALS height structure can be applied in identifying canopy gaps from semi-

natural and managed forests, hence in assessing the amount of CWD. Nyström et al. (2014) applied a surface model 

generated from only or last returns in identifying downed windblown trees in managed forests. 
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Table 1. Assessment of estimates for forest inventory attributes with different techniques. Dg = basal area-weighted mean diameter, Hg = basal area-weighted mean height (Means 

et al. 2000 used term “mean height” which might not be basal area-weighted). ITD = individual-tree detection (i.e. sample unit is an individual tree), ABA = area-based approach 

(i.e. sample unit is a grid cell). Estimation is performed either at plot or stand level. SE = standard error, STD = standard deviation, RMSE = root mean square error. (Percentages 

are presented in brackets). 

Study Dg, cm Hg, m Basal area, m2/ha Volume, m3/ha Method Unit 

Hyyppä and Inkinen 
(1999) 

 
SE: 2.3 (13.6%) 

Bias: -2.5 
SE: 1.9 (9.6%) 

Bias: 9.7 
SE: 16.5 (9.5%) 

Bias: -65.0 
ITD Stand 

Means et al. (2000)  RMSE: 1.7 RMSE: 5.4 RMSE: 73.0 ABA Stand 

Hyyppä et al. 
(2001a) 

 
SE: 1.8 (9.9%) 

Bias: -0.9 
SE: 2.0 (10.2%) 

Bias: -3.9 
SE: 18.5 (10.5%) 

Bias: -48.3 
ITD Stand 

Næsset (2002) 
STD: 1.4–1.6 

Bias: -1.0–-0.7 
STD: 0.6–1.2 
Bias: -0.4–0.1 

STD: 2.3–2.5 (8.6–11.7%) 
Bias: -0.7–0.9 

STD: 18.3–31.9 (11.4–14.2%) 
Bias: -8.2–-0.3 

ABA Stand 

Popescu et al. 
(2003) 

   RMSE: 47.9 ITD Plot 

Hollaus et al. (2007)    RMSE: 90.9 (21.4%) ABA Plot 

Holmgren (2004)  RMSE: 0.6–1.0 (3–5%) RMSE: 2.7–4.2 (10–15%) RMSE: 31–50 (11–19%) ABA Stand 

Næsset et al. (2005) 
STD: (5.5–15.8%) 
Bias: (-7.9–0.2%) 

STD: (3.1–7.3%) 
Bias: (-4.7–5.5%) 

STD: (7.1–13.6%) 
Bias: (-8.4–7.3%) 

STD: (8.3–14.9%) 
Bias: (-10.1–3.9%) 

ABA Plot 

Packalén and 
Maltamo (2007) 
 

RMSE: 2.6–3.4 (20.2–25.3%) 
Bias: -0.2–0.1 

RMSE: 1.4–2.3 (8.5–18.4%) 
Bias: -0.3–0.1 

RMSE: 1.6-3.3 (27.1–52.5%) 
Bias: -0.3–0.3 

RMSE: 13.7–27.7 (28.1–62.3%) 
Bias: -2.1–2.5 

ABA Stand 

RMSE: 4.4–5.3 (23.1–45.9%) 
Bias: -0.1–0.7 

RMSE: 2.6 - 4.1 (16.0–32.2%) 
Bias: -0.1–0.4 

RMSE: 2.6 -5.6 (46.6–87.8%) 
Bias: -0.2–0.2 

RMSE: 22.4 -50.3 (51.6–102.8%) 
Bias: -1.1–2.2 

ABA Plot 

Breidenbach et al. 
(2010) 

   
RMSE: 41.7 (20.6%) 

Bias: 4.4 (2.2%) 
ABA Plot 

   
RMSE: 34.6–42.1 (17.1–20.8%) 

Bias: 1.1–13.0 (0.5–6.4%) 
ITD Plot 

Latifi et al. (2010)    
RMSE: 61.2–121.3 (23.3–46.1%) 

Bias: (-2.9–3.1%) 
ABA Plot 

Yu et al. (2010) 
RMSE: (10.3%) RMSE: (6.4%)  RMSE: (20.9%) ABA Plot 

RMSE: (7.2–12.1%) RMSE: (4.4–9.3%)  RMSE: (15.4–56.5%) ITD Plot 

Peuhkurinen et al. 
(2011) 

RMSE: (13.0%) 
Bias: (1.1%) 

RMSE: (2.3%) 
Bias: (0.4%) 

RMSE: (15.0%) 
Bias: (-0.4%) 

RMSE: (13.5%) 
Bias: (-1.2%) 

ABA Plot 

RMSE: (15.7–19.5%) 
Bias: (-14.8–-10.8%) 

RMSE: (8.0–9.5%) 
Bias: (-3.1–-2.9%) 

RMSE: (11.4–14.7%) 
Bias: (2.9–6.7%) 

RMSE: (13.6–16.3%) 
Bias: (-8.2–-3.5%) 

ITD Plot 

Valbuena et al. 
(2014) 

  
RMSE: 0.1 (10.9%) 
Bias: -0.00 (-3.2%) 

 ABA Plot 

  
RMSE: 0.2 (23.1%) 
Bias:-0.00 (-19.1%) 

 ITD Plot 
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TLS and MLS in predicting vegetation characteristics 

 

The applicability of TLS and MLS in operational use for predicting vegetation characteristics is still studied but the 

vision is to apply TLS and/or MLS in the acquisition of reference data for large area vegetation mapping (Holopainen 

et al. 2014). TLS has been applied in detecting individual trees in urban environments (Holopainen et al. 2013) and 

managed forests (Maas et al. 2008; Liang et al. 2012b), where the detection accuracy of individual trees from TLS 

varied from 73% to 97.5%. TLS has been applied in predicting tree characteristics such as DBH, height, and height 

of crown base in managed forests (Hopkinson et al. 2004; Pfeifer and Winterhalder, 2004; Maas et al. 2008; Lindberg 

et al. 2012), AGB (e.g. Yao et al. 2011; Kankare et al. 2013a; Calders et al. 2015), but also canopy-related 

characteristics (Moorthy et al. 2008; Jung et al. 2011). Previous studies have showed that tree height is underestimated 

by TLS data, as the highest point is usually not visible to the scanner; underestimates have varied between 0.64 m and 

1.5 m (e.g. Hopkinson et al. 2004; Maas et al. 2008; Liang and Hyyppä, 2013). No such trend has been observed with 

DBH estimations but the RMSE has varied between 0.74 cm and 3.8 cm (Hopkinson et al. 2004; Pfeifer and 

Winterhalder, 2004; Maas et al. 2008; Lindberg et al. 2012; Liang and Hyyppä, 2013). TLS-based estimations for 

AGB have been reported to correlate very well with reference data, between 0.90 and 0.98 with individual trees 

(Kankare et al. 2013a; Calders et al. 2015) and between 0.85 and 0.98 at the plot and stand levels (Yao et al. 2001). 

Danson et al. (2007) applied TLS for estimating gap fractions and reported RMSEs between 5% and 11% 

demonstrating the high potential of TLS in estimating LAI. In urban environments traditional tree attributes such as 

DBH, height, basal area, and volume were estimated based on TLS data and results showed that with TLS-based 

metrics most of the variation in DBH (91.2%) can be explained, but only 18% of the total volume can be captured due 

to occlusion (Moskal and Zheng, 2012). Vonderach et al. (2012) applied TLS in estimating the volume of urban trees 

and the relative difference varies between -5.1% and 14.3% compared to field measurements. Dassot et al. (2012), on 

the other hand, reported a relative difference of ±10% between TLS-based tree volume estimations and manual 

destructive field measurements in the forest environment. 

Stem form and the number of branches affect wood quality and are thus interesting attributes regarding the 

decision-making of private forest owners and forest industry. Identification of big branches in urban areas could also 

be interesting as they can hinder drivers’ visibility or interfere with lamp posts. Predictions of stem curve based on 

TLS have been studied to feasibly model the stem form and volume (Pfeifer and Winterhalder, 2004; Thies et al. 2004; 

Liang et al. 2012b; Liang et al. 2014b). These studies have shown promising results in reconstructing stem curve 

accurately, which is important information for optimizing harvest operations. Kretschmer et al. (2013) used TLS data 

in measuring bark scars and branched knots of beech trees that affect wood quality. They demonstrated that in 58% 

of cases the differences in heights of branched knots between reference and TLS measurements were less than 1.0 cm. 

Raumonen et al (2013) presented a method for modeling tree stem and branches automatically from the TLS point 

cloud as Krooks et al. (2014) estimated branch size distribution from TLS data and concluded that tree height could 

be used in predicting branch size distribution for trees with similar growing conditions and topography. Branch size 

distribution has an effect on wood quality, but it is also used as bioenergy when information on branch amount and 

size are required. This is also true regarding stump-root systems used for energy production. Liski et al. (2014) used 

TLS data in modeling the 3D structure of uprooted stump-root systems for estimating indirect emissions (i.e. energy 

production emissions from stumps and roots that do not become a part of soil organic carbon because they are used 

as energy). 

As TLS has become a widely studied technique for retrieving tree-level attributes, applications for estimating 

vegetation characteristics with MLS are still scarce. The capability of MLS in mapping individual trees has been 

studied by Jaakkola et al. (2010), Lehtomäki et al. (2010), Rutzinger et al. (2010), and Holopainen et al. (2013), and 

the detection rates varied from 69.7% to 90%. Many MLS studies have concentrated on identifying trees in urban 

environments: Rutzinger et al. (2011) applied MLS in an urban environment and were able to detect 86% of the trees, 

whereas Pu et al. (2011) obtained a 63.5% detection rate for roadside trees. Puttonen et al. (2011) studied tree species 

recognition in urban environments with a combination of MLS and hyperspectral data and obtained 95.8% 

classification accuracy for separating coniferous and deciduous species. Wu et al. (2013) applied a voxel-based 

method for identifying trees in urban environments and estimating DBH, height, crown diameter, and crown base 

height with MLS data. They were able to detect over 98% of the trees correctly with an R2 over 0.9 for height and 

crown diameter and over 0.8 for DBH and crown base height when compared to reference data. However, MLS has 

also been evaluated in estimating single-tree-level biomass (Lin et al. 2010) and DBH in managed forest (Liang et al. 

2014a). Lin et al. (2010) compared MLS-based estimated to TLS and reported an R2 of 0.61 between these two 

estimates. Liang et al. (2014b) reported an RMSE of 2.36 cm, which is similar to results obtained with TLS 

(Hopkinson et al. 2004; Pfeifer and Winterhalder, 2004; Maas et al. 2008; Lindberg et al. 2012; Liang and Hyyppä, 

2013). 
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Alternative 3D techniques 

 

High-resolution aerial imagery can also provide 3D information when aerial images are applied in generating 3D point 

clouds which can then be transformed into DSM (St-Onge et al. 2004; St-Onge et al. 2008; Leberl et al. 2010; 

Honkavaara et al. 2012; Vastaranta et al. 2013; White et al. 2015b). In generating 3D point clouds from optical stereo 

imagery, an object needs to been viewed from at least two images with slightly different viewing angle.  St-Onge et 

al. (2008) combined digital stereo imagery (DSI) and ALS to the developed CHM: DSM was generated from DSI and 

ALS was applied in providing DTM, which was then subtracted from DSM to gain CHM. They concluded that DSI-

based CHM provides similar height values but is lacking in accuracy and resolution when compared to ALS-based 

CHM. Vastaranta et al. (2013) discovered that DSI-based CHM does not provide as much variation in canopy height, 

which suggests that ALS is more capable in penetrating the canopy and describing vegetation density. Generating 3D 

point clouds from aerial images collected by unmanned aerial vehicles (UAVs) has been studied in several 

environmental applications (Lelong et al. 2008; Hunt et al. 2010; Flener et al. 2013; Honkavaara et al. 2014; Näsi et 

al. 2015). Flener et al. (2013) applied UAV in generating a bathymetry model with an accuracy of less than 10 cm to 

generate a seamless wet-dry DTM for a riverine environment. Honkavaara et al. (2014) demonstrated the use of 

hyperspectral UAV photogrammetry for a forest inventory purpose and provided a hyperspectral point cloud that 

could be further applied in generating CHM. Hunt et al. (2010), as well as Lelong et al. (2008), applied UAV-imagery 

in an agricultural environment to monitor wheat farming and found a correlation between LAI and the green 

normalized difference vegetation index (GNDVI), and LAI and NDVI, respectively.  

An example of new and emerging 3D generating techniques from passive remote sensing, i.e. photographs, is to 

combine structure from motion (SfM) algorithms with photogrammetric principles. In SfM optical stereo imagery can 

be utilized in extracting 3D point clouds automatically. SfM algorithms do not require accurate positioning and inertial 

measurements of a camera, but enable 3D point cloud generation with overlapping but otherwise unordered images 

(Snavely et al. 2008). Puliti et al. (2015) utilized SfM technique for estimating plot-level forest inventory attributes 

and reported relative RMSE equal or smaller than 15.4% for Hg, dominant height, basal area, and stem volume 

(m3/ha). Lisein et al. (2013) utilized CHM generated from SfM-based 3D point cloud and received a relative RMSE 

of 8.5% (corresponding to absolute RMSE of 1.7 m) for plot-level dominant height and relative RMSE of 4.7% 

(absolute RMSE of 1.0 m) for tree-level heights. Rahlf et al. (2015) compared ITD and ABA in estimating forest 

inventory attributes and obtained similar relative RMSEs for stem volume (30%) and basal area (25% with ITD and 

26% with ABA) with both methods. SfM was also applied in developing a DTM for a river channel by Javernick et 

al. (2014) who reported vertical surface error of 0.1 m in non-vegetated areas. 

Spaceborn remote sensing data have traditionally been applied in large-scale inventory, which can also provide 

3D information. Synthetic aperture radar (SAR) images in particular have been used in deriving 3D data based on 

stereoscopic measurements (i.e. radargrammetry) (La Prade, 1963; Raggam et al. 2010), which is similar to stereo 

photogrammetry where the 3D coordinates of an object can be measured from two images taken from different 

positions. Another possibility is to apply interferometry, which utilizes the phase difference of two SAR images. SAR 

images have been applied in estimating growing stock volume and AGB as a comparison with other remote sensing 

data sets such as ALS (Hyde et al. 2007; Nelson et al. 2007; Holopainen et al. 2010a; Vastaranta et al. 2014a). The 

results of these studies indicate a higher prediction accuracy of ALS. The radar satellites offer data at short time 

intervals and are thus suitable for change detection although their spatial resolution is not comparable to ALS. Thus, 

they are not adequate in retrieving detailed forest resource information, but their best features are in monitoring. 

 

 

Table 2. Digital terrain model accuracies used in change detection studies reported as root-mean-square error 

(RMSE). 

Study Data source Smallest RMSE (m) Largest RMSE (m) 

Thoma et al. (2005) ALS 0.061 0.067 

Rosso et al. (2006) ALS 0.020 0.043 

Vaaja et al. (2011a) MLS 0.023 0.076 

Flener et al. (2013) MLS 0.015 0.018 

Blasone et al. (2014) TLS 0.036 0.080 
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Remote sensing in change detection 

 

Remote sensing provides a tool for inventorying large areas and performing repetition during data collection in a more 

affordable manner than traditional field measurements. In addition, requirements for monitoring vegetation and its 

changes have improved the accuracy of remote sensing data and increased multi-temporal 3D remote sensing data 

sets, i.e. the spatial and temporal resolutions of remote sensing data have increased. Landsat satellite images provide 

the highest temporal resolution of space-based Earth observation programs and they have been applied in mapping 

and monitoring vegetation characteristics especially after the data became accessible free of charge in 2008 (e.g. Borak 

et al. 2000; Wulder et al. 2008; Wulder et al. 2010; Banskota et al. 2014; White et al. 2014; Hermosilla et al. 2015). 

Banskota et al. (2014) reviewed the utilization of Landsat satellite images in forestry applications and concluded that 

two main approaches exist for detecting changes: classification and trajectory analysis, although methods in between 

have also been proposed (e.g. Lambin and Strahler, 1994a, b; Varjo and Folving, 1997; Häme et al. 1998). In 

classification analysis two or more images are classified and then compared to identify changes, whereas the variation 

in a single spectral value is analyzed in trajectory-based methods to detect changes in vegetation. The uncertainty of 

cloud-free products and the coarse spatial resolution are challenges faced when using optical 2D images. 

Bi- or multi-temporal laser scanning data sets have been used in detecting changes in varying environments and 

changes have been estimated directly or based on differences between the estimations from two or several time points. 

In urban recreational forest, bi-temporal ALS data were applied in creating a difference raster to map the downed 

woody debris on the single-tree, canopy-gap, and stand levels (Tanhuanpää et al. 2015). First, trees were delineated 

from both years and changes in the difference raster were detected, as they were expected to indicate new canopy 

gaps, i.e. fallen trees that were possible to detect with 97.8% accuracy. Hyyppä et al. (2009) applied MLS in urban 

environments for predicting changes in biomass at the single-tree level, and they concluded that by comparing the 

total number of laser points from different time points it would be possible to determine changes in the biomass of an 

individual tree, although the method requires further studies and development. 

Multi-temporal ALS data sets have been applied to observe erosion or deposition on shorelines, based on changes 

in DTM (White and Wang, 2003; Thoma et al. 2005) or in 3D profiles (Stockdonf et al. 2002; Shrestha et al. 2005). 

Alterations in riverbanks have also been investigated using TLS- (Blasone et al. 2014) or MLS-based (Vaaja et al. 

2011a; Flener et al. 2013) multi-temporal DTMs, where changes have been detected by identifying differences 

between the DTMs from different time points. The accuracy of change detection is a result of the accuracy of the 

produced DTMs, thus these studies merely reported the DTM accuracies that seem to be similar to each other (Table 

2). However, Vaaja et al. (2011a) reported a standard deviation (STD) of 3.4 cm in the error for change detection 

while RMSEs for DTMs varied between 0.023 m and 0.076 m after removing systematic error. Vegetation changes 

along water systems have been monitored using ALS-based DSMs from different years by subtracting them from each 

other and creating a difference raster (Rosso et al. 2006).  

This type of analysis based on difference rasters has also been applied in predicting forest growth (Yu et al. 2006; 

Yu et al. 2008), detecting harvested trees (Yu et al. 2004), mapping snow-induced disturbance (Vastaranta et al. 

2012b), as well as estimating change in the AGB (Hudak et al. 2012) of managed forests using ALS. Yu et al. (2008) 

also presented several methods for estimating plot-level forest growth and concluded that differencing individual tree 

tops from point clouds obtained from different years provided most accurate results for mean height growth 

estimations (an R2 value of 0.86 and an STD of residuals of 0.15 m). For volume growth, on the other hand, a difference 

raster produced the best results: the R2 value was 0.58 and the STD of residuals was 8.39 m3/ha (35.7%). Yu et al. 

(2004) were able to detect 73.5% of harvested trees correctly whereas, Vastaranta et al. (2012b) identified 66.3% of 

damaged trees accurately with a difference raster. One of the challenges related to single-tree-level change detection 

(Yu et al. 2004; 2006; 2008; Vastaranta et al. 2012b) is the uncertainty in matching the trees from different data sets. 

However, Yu et al. (2006) concluded that ALS-based location and tree heights together are adequate for tree-to-tree 

matching. Hudak et al. (2012) predicted the AGB for two separate time points and created biomass maps as well as a 

difference image to produce change predictions. Based on stand-level validation, the RMSEs of estimated AGB for 

2003 and 2009 were 45.1 Mg/ha and 57.1 Mg/ha, respectively. 

Another way of distinguishing alterations is to predict attributes of interest for several years based on multi-

temporal ALS. Huang et al. (2013a) used large footprint ALS data to predict AGB for 2003 and 2009 and to obtain 

change predictions. They concluded that a plot size of 1.0 ha produced the most accurate results for AGB with RMSE 

varying between 22.4 Mg/ha (15.6%) and 23.1 Mg/ha (16.1%). Andersen et al. (2014) monitored selective logging 

with bi-temporal ALS data through AGB predictions. They reported a change of -9.1 Mg/ha and demonstrated an 

increase of roads, skid trails, and large tree gaps as a result of logging activities. Using model-based (MB) statistical 

approach Andersen et al. (2014) were able to assess the uncertainty of the change, which was reported to be 1.9 Mg/ha. 

Magnussen et al. 2015) compared model-assisted (MA) and MB estimations in assessing AGB changes with ALS and 

concluded that results were similar for both: the relative STD for the change estimate using MA was 2.5 Mg/ha 

(93.1%) and 2.6 Mg/ha (96.7%) using MB. Næsset et al. (2013) and Skowronski et al. (2014) compared direct 

estimates of changes in AGB (i.e. a change in ALS metrics was applied) to the change estimates of AGB based on 
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different regression models from various years. Both studies gained better results when change was estimated directly 

compared to separate estimates for different years that are then differenced to obtain change: standard error (SE) 

decreased from 3.7 Mg/ha to 1.6 Mg/ha in Næsset et al. (2013) and from 1.6 Mg/ha to 0.1 Mg/ha in Skowronski et al. 

(2014). Kaasalainen et al. (2014) applied TLS in a laboratory environment to detect detailed changes in branches and 

gained underestimations for TLS-based volume and length. Liang et al. (2012a), on the other hand, tested the 

applicability of TLS in distinguishing harvested trees and obtained 90% accuracy in mapping removed stems. 

Srinivasan et al. (2014) used TLS in estimating tree-level changes in AGB and obtained best results when estimating 

change directly, although an R2 value of only 0.5 was obtained corresponding to an RMSE of 10.09 kg. 

Natural disturbances have traditionally been considered a risk for forest ecosystems and yield value, although they 

could be perceived as introducing biodiversity. Even without multi-temporal data, it has been possible to predict snow 

accumulation and ablation (Varhola et al. 2010), and fire severity (Montealegre et al. 2014) using ALS. Varhola et al. 

(2010) concluded that an ALS-derived variable of forest cover was the most significant explanatory variable resulting 

in R2 values of 0.70 and 0.59 with snow accumulation and snow ablation, respectively. Motealegre et al. (2014) used 

logistic regression modeling and were able to obtain 85.5% accuracy when estimating fire severity. On the other hand, 

Honkavaara et al. (2013) applied surface models based on both ALS and digital aerial imagery to automatically detect 

wind-blown trees by distinguishing differences between the two surface models obtained before and after a storm. 

They were able to automatically map clearly damaged (more than 10 fallen trees per ha) and undamaged forest stands 

with an accuracy of 100%, whereas the accuracies for minor damage (1–5 fallen trees per ha) and low damage (6–10 

fallen trees per ha) were 52% and 36%, respectively. Näsi et al. (2015) further advanced the method developed by 

Honkavaara et al. (2014) for mapping bark beetle damage in urban forests and were able to detect single trees with an 

accuracy of 74.7% from which the best overall accuracy of 90% was obtained when trees were classified as healthy 

or dead. A combination of ALS and satellite images can be utilized for monitoring large-scale disturbances (Wulder 

et al. 2007). 

One of the challenges in monitoring any types of changes lies in the registration of several data sets relative to 

each other. Different remote sensing data acquisition systems may result in imprecisions when data from different 

times are compared. The accuracy in observing changes thus decreases and may cause biased changes (e.g. Næsset, 

2009), although ALS data accuracy is very high. Næsset and Gobakken (2005) used bi-temporal ALS and concluded 

that a two-year period is not enough for accurately predicting forest growth as sensor-specific acquisition specification 

may affect the metrics applied in predictions. To avoid this, a reported flight trajectory should be repeated when data 

acquisition for monitoring purposes is planned, especially when a widely applied differencing technique is concerned 

(Yu, 2007). One possibility, suggested by Hopkinson (2007), is to develop calibration models that could include the 

variation of different survey settings. 

 

 

Study objectives 

 
There is a need for accurate and up-to-date vegetation information for deciding on appropriate management activities 

or mitigating the possible effects of disturbances. Current systems for collecting information on vegetation (e.g. forest 

data systems) are inflexible for reacting to rapid changes in vegetation characteristics, thus new methods for updating 

this information are needed. Updated and improved knowledge of vegetation characteristics can be employed in 

observing changes in vegetation, for which increased temporal resolution of laser scanning data sets are required. 

Moreover, up-to-date materials are then available for decision-makers whether for preventing accidents in urban areas 

because of hazardous trees, providing protection against floods and erosion in riverine environments, or answering 

the objectives of private forest owners by means of forest management planning. Multi-temporal laser scanning data 

sets enable the development of accurate updating procedures for various environmental applications. 

Information on occurred changes can be expected to be required annually, depending on the nature of the change. 

The type of information needed also varies between changes, e.g. when a disturbance event occurs, location and extent 

as well as effects (e.g. amount of damaged timber) of the event would be reported as soon as possible whereas 

improvement in the amount and quality of key habitats would be interesting when monitoring biodiversity during a 

certain time period. A real-time database for forest resource information would be an ideal situation where updated 

information could be stored. Compared to managed forests, the growth of urban trees and forests is not updated or 

predicted using statistical models, i.e. frequent inventories are required and cost efficient methods are needed. 

Knowledge of riverine vegetation is required to better understand fluvial hydrodynamics, geomorphology, bank 

erosion, and channel migration for improving flood risk mapping. Mapping and modeling disturbance events, 

especially wind, which has been the main cause of losses in forest yield values, is important to better understand and 

quantify drivers of wind damage risk.  

The main aim of this dissertation was to develop techniques for predicting vegetation characteristics in varying 

environments (Figure 4). In more detail, substudy I aimed to develop a method for updating urban tree attributes. In 

substudy II, we developed a boat-based MLS method for mapping and monitoring vegetation changes in riverine 
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environments. To advance methods for providing for changes in forests due to natural disturbances, we generated a 

risk map for wind damage in substudy III with open access ALS and multi-source NFI data sets to identify areas that 

are liable to wind-induced disturbance. The specific objectives of studies I–III were: 

 

I To test a method called multisource single-tree inventory (MS-STI) in an urban environment for updating 

tree attributes. In our demonstration a TLS-based stem map is combined with an ALS data set that is further 

used in improving the accuracy of existing and in producing new tree attributes.  

 

II To investigate the capability of MLS in developing an approach for mapping riverbank vegetation and 

applying the developed method for monitoring changes in vegetation.   

 

III To analyze the applicability of open access ALS data especially for mapping the predisposition to wind 

disturbance in forests. The main emphasis was to investigate variables derived from ALS data that explain 

the probability of wind-induced forest disturbances. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Different vegetation characteristics can be predicted using laser scanning on various platforms. However, 

predictions can be interpreted in various ways: i) ALS-based predictors were used and predictions provided updated 

tree attributes for urban green environments; ii) a vegetation class for riversides was predicted with MLS data for 

several years to enable the monitoring of occurred changes; and iii) mapping areas susceptible to wind disturbance 

was enabled with predictions based on ALS data.  
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MATERIALS 
 
 
Study areas 

 
Data for this thesis were acquired from three separate study areas (Figure 5). The study areas included a recreational 

urban park Seurasaari in Helsinki (I), Pulmanki River on the border of Finland and Norway (II), and an area of mainly 

managed forest in southwestern Finland near Huittinen (III).  The study areas and data collected from these areas are 

presented here. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Locations of the three separate study areas used in this thesis. 

 

 

 

 

 

 

 

 

 

  



26 

 

Seurasaari 

 

Seurasaari is a wooded island with rocks, hills, wetlands, and herb-rich forests covering ca. 46 ha, located 

approximately five kilometers from the Helsinki city center in Finland. The Seurasaari study area was used in substudy 

III. Seurasaari is a popular outdoor recreation area: it was made a public park in 1890, quickly became a popular place 

for recreational activities, and currently receives hundreds of thousands of visitors per year. Our study area in 

Seurasaari comprised of two parts, covering approximately 2.7 ha in total.The northern part is a well-managed urban 

park comprised mainly of sparsely situated old oaks with grass as the only understory vegetation, while the southern 

part more resembles a natural unmanaged forest park with varying understory vegetation. The distribution of tree 

species was diverse and consisted of 11 different species (Table 3), which describes the heterogeneity of the research 

area. The area has a dense network of artificially constructed outdoor paths that can also be used by vehicles. 

 

Pulmanki 

 

Pulmanki River is a 58-km tributary of the subarctic River Tenojoki (Tana) and flows across the border of Finland 

and Norway at a latitude of 69.95 °N and a longitude of 28.10 °E, where Lake Pulmanki divides the river into two 

parts. A study area of 3.5 km along the Pulmanki River was used in substudy II. The river has eroded a channel 30 m 

deep and 20–50 m wide. The river is characterized by steep banks, is highly sensitive to erosion, and has large point 

bars. Snowmelt causes spring floods, whereas the water level is lowest and point bars are maximally exposed in late 

summer. During snowmelt and the spring flood period, the water level can be several meters higher than during low-

flow periods in summer and autumn. Flooding causes remarkable sediment transport, including heavy erosion and 

deposition along the riverbanks and point bars. 

 

Huittinen 

 

The study area of substudy III is located in southwestern Finland with center coordinates 61°4′33″N, 22°52′3″E and 

covers approximately 173 km2 (Figure 5). The area is comprised primarily of managed boreal forests and agricultural 

fields. The main tree species are Scots pine, Norway spruce, and silver and downy birches. The area has a flat 

topography with a terrain height range of approximately 50 m to 111 m above sea level (STD 12 m). On 26 th and 27th 

December 2011, the area was subjected to a heavy winter storm. The storm caused extensive damage to the study area, 

with the most damaging west and northwest winds blowing on the morning of December 26th 2011 at an average speed 

of 18.3 m/s and a maximum speed of 28.7 m/s. 

 

 

Reference data 

 

Seurasaari 

 

Steel calipers were used to measure the DBH of 389 trees. The average DBH for the entire study area was 268 mm 

and varied between 31 and 482 mm. Because the two detached areas differed from each other, the mean DBH was 

determined for both areas separately: DBH was 371 mm in the park and 261 mm in the forest. The number of trees 

was 27 in the park and 362 in the forest. More specific statistics on DBH are presented in Table 4. 

 

 

 

Table 3. Relative tree species distribution in the study area of Seurasaari. 

 

Species % 

Acer platanoides 2.64 

Alnus sp. 9.13 

Betula sp. 7.30 

Picea abies 25.96 

Pinus sylvestris 19.88 

Populus tremula 9.94 

Quercus robur 6.69 

Salix caprea 0.81 

Sorbus aucuparia 14.60 

Tilia cordata 2.43 

Ulmus sp. 0.61 
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Pulmanki 

 

In substudy II aerial images were applied as reference data and they were acquired using an unmanned aerial vehicle 

(UAV) helicopter to provide additional information on vegetation. The images were taken in 2012 at the same time 

as MLS data were acquired. The images were taken with a Samsung NX1000 micro-DSLR camera equipped with a 

16- mm F2.4 lens mounted onboard a T-Rex 700E RC helicopter. As the UAV helicopter was controlled manually, 

the flying altitude varied, with most of the images taken between 20 and 70 m above ground level, and with an average 

flying altitude of 47 m. A total of 1687 images from six flights were used in the production of the orthophoto, which 

was generated using the Agisoft PhotoScan software. The images were geo-referenced with 84 signals or spherical 

targets placed around the target area, and the accuracy of the bundle adjustment was 7.3 cm. 

 

Huittinen 

 

Aerial images were also used as ground truth in substudy III. They were acquired using a Microsoft UltraCamXp 

(Microsoft UltraCam 2013) large-format mapping camera after a wind damage event on January 8th 2012. The 

average flying height was 5370 m above ground level, which provided a ground sample distance of 32 cm. The images 

were taken in a block structure, with 16 image strips and approximately 30 images per strip; the forward overlap of 

the images was 65%, whereas the side overlap was 30%; the distances of the image strips were approximately 3900 

m. The atmosphere was clear, and the solar elevation was as low as 5° to 7°. The data were collected between 11:56 

am and 2:11 pm local time (UTC +2). The first snow had fallen prior to the collection of the aerial images, so there 

was approximately 10 to 20 cm of snow cover on the ground. It is likely that there was also some snow on the trees, 

but the visual evaluation of the images indicated that snow levels were tolerable for delivering accurate data of the 

study area. 

 

 

Laser scanning data 

 

Airborne laser scanning 

 

ALS data were used in substudies I and III.  For substudy I an Optech 3100 laser scanner (Optech Inc., Vaughan, ON, 

Canada) was used with a flying altitude of 400 m. The measurement density was at least 20 points per m2 (the pulse 

density was approximately 20 pulses per m2), and the return type was recorded (first-of-many, single, intermediate, 

last). The dense ALS data for substudy I were acquired in May 2011. The ALS data set used in substudy III was open 

access data obtained from the NLS. The specifications for the data collections provided by the NLS include a flying 

altitude of 2000 m, a maximum scan angle of ± 20° and a footprint of 50 cm; preferential collection occurred during 

the bare-ground season or during spring time, when trees have small leaves. The minimum measurement density of 

the NLS ALS data is half a point per square meter and the elevation accuracy of the pulses in well-defined surfaces is 

15 cm with a horizontal accuracy of 60 cm. The ALS data used in substudy III were collected in the spring of 2008. 

 

 

 

Table 4. DBH statistics (presented in cm) calculated from the field measurements.  

 Park Forest 

Minimum 8.6 3.1 

Maximum 

Mean 

48.2 

37.1 

48.1 

26.1 

Standard deviation 11.0 12.5 
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Terrestrial laser scanning 

 

The TLS data for substudy I were collected with a Leica HDS6100 TLS system (Leica Geosystems AG, Heerbrugg, 

Switzerland) from the Seurasaari study area (I) in September 2010. The HDS6100 is a 690-nm phase-based 

continuous-wave laser scanner with a 360° × 310° field of view (FOV) upward, and its data acquisition rate is 508000 

points per second. The distance measurement accuracy is ±2 mm at a distance of 25 m. The circular-beam diameter 

at the exit and the beam divergence are 3 mm and 0.22 mrad, respectively. The point spacing is 6.3 mm at 10 m. 

Further detailed specifications are presented in Table 5. 

TLS measurements in Seurasaari were collected in multi-scan mode. The park areas were scanned as-is. Pre-scan 

preparations, e.g., removal of low vegetation, were not performed, as this is not permitted in the city forests of 

Helsinki. The measurement objective was to obtain good point coverage. The data were collected in five to seven 

scans per group; a total of 52 scans were performed to cover the entire study area. The center scan station and at least 

one reference target (sphere) of each scan group using a GNSS virtual reference station and a tachymeter to ensure 

accurate co-registration. The center scans were placed so that the canopy layer did not block GNSS satellite visibility. 

We subsequently transformed the scans into global coordinates (ETRS-35TMFIN) using reference target locations 

and scanning locations.  

 

Mobile laser scanning 

 

MLS data were used in substudy II and were acquired to measure riverine topography and characterize vegetation at 

the Pulmanki River study area. The data were acquired in late summer (late August to early September) in 2009, 2010, 

2011, and 2012. The ROAMER -mobile mapping system (MMS) was employed and it was mounted on an inflatable 

boat with a motor. The ROAMER MMS utilizes the FARO Photon 120 (for data acquisition in 2009 the FARO Photon 

80 for a previous ROAMER version was used) terrestrial laser scanner to acquire 3D measurements (Alho et al. 2009; 

Kukko et al. 2007). The FARO Photon 120 achieves a maximum mapping range of 120 m, a measurement rate of 

120–976 kHz, a FOV of 320°, and a beam divergence of 0.16 mrad. The system parameters used each year are 

summarized in Table 6. The navigation solution for the MMS is generated by the NovAtel Synchronized Position 

Attitude Navigation (SPAN) technology, which integrates a Global Positioning System (GPS) and inertial data for 

applications that require greater functionality and reliability than traditional stand-alone GPS is capable of offering. 

The SPAN system also operates in real-time kinematic mode with an internet-based application (Kukko et al. 2007). 

The GPS receiver is a NovAtel DL-4plus containing an OEMG2 engine and a GPS-702 antenna that offers access to 

the GPS L1 and L2 frequencies. The IMU is a tactical-grade, ring-laser gyro-based unit manufactured by Honeywell. 

The laser-acquired point data were geo-referenced during post-processing using raw laser scanning data, laser 

scanning trajectory data, and synchronization data. Waypoint Inertial Explorer software was used to compute the laser 

scanning trajectory, combining IMU and GPS data logged by the SPAN and data logged at the GPS reference station 

on the site. Under good conditions the elevation accuracy of the ROAMER point cloud is better than 3.5 cm up to a 

range of 35 m, and the planimetric accuracy is better than 5 cm with a range of 45 m (Kaartinen et al. 2012a). 

 

 

Table 5. Leica HDS6100 TLS system and specifications. 

 Leica HDS6100 

Field of view 310◦ × 360◦ 

Range 79 m 

Speed points/s 508000 

Spot size 3 mm + 0.22 mrad 

Distance measurement accuracy at 25 m ±2 mm 

Max resolution Hor × Ver 0.009◦ × 0.009◦ 

Max points 360◦ Hor × Ver 40 000 × 40 000 

Laser wavelength 690 nm 

Laser power 30 mW 

Weight 14 kg 

Operating temperature −10 to 45 ◦C 
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Multisource national forest inventory data 

 

We did not use field data as such in substudy III, but openly accessible forest attribute data provided by the Natural 

Resources Institute Finland based on multisource NFI. Data from Finnish 11th NFI were utilized to obtain information 

of tree species-specific stem volumes and biomasses (per hectare). The field plot measurements for the 11th NFI were 

conducted during five years, starting in the summer of 2009 (VMI11, 2009). Sample plots (492 m2), utilized in the 

multisource NFI, are arranged into clusters, and the distance between clusters is 6 × 6 km in the southernmost part of 

Finland where the study area of Huittinen is located. In addition to field measurements, Landsat TM satellite images 

were utilized in multi-source NFI to predict forest attributes using a k-nearest neighbor approach (Tomppo et al. 2008). 

The results are presented as thematic maps (a resolution of 20 m x 20 m) picturing site type, canopy cover, age, mean 

DBH and height, basal area, as well as species-specific stem volume and biomass per hectare. The expected accuracy 

of the estimated forest attributes at the sample plot level varies between 50–80% (RMSE) in stem volume, height, and 

basal-area (Tuominen and Haakana, 2005). Information from the thematic maps of site type, species-specific volume, 

and biomass were used in this study. In Finland, site types are classified based on soil fertility and identified by means 

of surface vegetation by adopting indicator species (e.g. Vaccinium myrtillus) which are also applied when naming 

the site types. 

 

 

 

Table 6. System parameters for the mobile laser scanning acquisitions at different time points (fs = scanning 

frequency, fp = point measurement frequency, hs = sensor altitude from the water surface, and ra = angular 

resolution). 

Date fs (Hz) fp (kHz) hs (m)  ra (°) 

2009 September 3 30 120 2.5  0.090 

2010 August 31 49 244 2.5  0.072 

2011 September 8 49 244 2.5  0.072 

2012 September 13 49 488 2.5  0.036 
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METHODOLOGY 
 
 
Methods used in several substudies 

 

Generating terrain, surface, and canopy height models 

 

Laser scanning provides 3D point clouds that are used to generate surface models for various purposes. One laser 

pulse can produce several echoes and these echoes and their differences are utilized in surface model generation. The 

last returns are assumed to come from the ground, and thus these returns are used in generating DTM. On the other 

hand, the first recorded returns are applied in generating DSM to develop CHM. ALS data were used in substudies I 

and III in generating DTM, whereas DTM was generated from MLS data in substudy II. The method developed by 

Axelsson (2000) was applied to classify as ground and non-ground laser points. The method creates a sparse 

triangulated irregular network (TIN) from seed points that are confident hits from the ground. The seed points form 

the initial DTM and laser points are then added one at a time if they fit within specified constrains (i.e. maximum 

distance and maximum angle between a point and the triangle plane, projection of a point on the triangle plane, and 

closest triangle vertex). The iteration continues until no points are left below the thresholds. Above-ground point 

heights (normalized height or canopy height) were then calculated by subtracting the ground elevation heights from 

the maximum point heights. A CHM with a resolution of 0.5 m (I) and 1 m (III) was then created from normalized 

ALS point-height data by assigning the maximum ALS point height from first-of-many or single echoes to each CHM 

cell. Cells with no data were filled with the mean height value from a window of 3 x 3 neighboring cells. MLS data 

based on phase-shift measurements in riverine environments include false points in the air and below ground that are 

mainly reflections from the water surface and have to be filtered out before further processing. Typically these noise 

points have relatively low intensity values, thus points with less intensity than a specified threshold can be removed. 

Noise points in the air can be removed by detecting isolated points, i.e. points with empty space around them within 

a certain radius. The appropriate thresholds for intensity and density values were determined in substudy II based on 

test samples of points from each year. The intensity threshold used in substudy II for the filtering varied from 500 to 

700 between years, whereas the threshold for the density-based method varied between 10 and 15 points within a 

spherical radius of 30–50 cm for different years.  

 

Extracting metrics from laser scanning data 

 

Metrics for predicting vegetation characteristics can be extracted from created surface models, usually from CHM, or 

from normalized point clouds. The unit for extracting metrics can vary depending on the method used and the 

objectives of the study. The most common units are a grid cell, tree crown segment, or micro stand. In this study, a 

grid cell of different sizes and tree crown segments were used as units for the metrics extraction. In individual-tree 

detection CHM is segmented in a way that allows individual tree crowns to be delineated from each other. Micro 

stands are produced automatically or semi-automatically from CHM, producing continuous and homogenous areas 

that correspond with the natural boundaries of a stand. Information on CHM height and density can be used when 

micro stands are segmented. Tree crowns were delineated in substudy I with watershed segmentation, where the local 

maxima of CHM are detected and segments describing tree crowns are considered as basins (Kankare et al. 2013c; 

Vastaranta et al. 2012a; Yu et al. 2011). In the grid-based approach, metrics from laser scanning data are usually 

extracted from normalized point clouds (Næsset, 2002; Woods et al. 2011) because they are as close to the original 

data as possible. Several tools exist for extracting metrics, but Fusion software was applied in substudy II to derive 

metrics from MLS point clouds. The height values were normalized to above-ground height using DTM generated 

from the MLS data. Metrics are usually extracted for grid cells with size corresponding to the size of the field plots 

used as a reference (Magnussen and Boudewyn, 1998; Næsset, 2002). In substudy II, the grid cell size was 2 m x 2 m 

to incorporate small-scale variability of vegetation, whereas in substudy III the grid cell size was 16 m x 16 m, 

corresponding the resolution used in ALS-based forest inventory information in Finland. In substudy II, the reference 

data covered the entire study area and all vegetation classes were included in the reference data set. 

Nowadays, as the ALS pulse frequency has increased, similar metrics can be extracted for a grid cell and crown 

segment, and thus the extracted metrics of different substudies were also similar. The metrics extracted from CHM in 

substudies I and III included maximum, minimum, and mean values, as well as STD and the coefficient of variance. 

The metrics in substudy II included minimum, maximum, mean, and STD of point heights as well as the 1st, 5th, 10th, 

…., 90th, 95th, and 99th percentiles of laser heights. In addition, in substudy I heights at various percentiles (from the 

10th to the 90th) from the height distribution of CHM and crown-cover density metrics as a proportion of heights below 

a certain relative tree height were calculated. To ensure the predicative power of the developed models, the relationship 

between the attributes of interest and laser scanning metrics is expected to be as strong as possible. In forestry 

applications, this relationship relies on the ALS data and how well the characteristics from canopy height and density 
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can be derived from it (Næsset, 2011). As a result, research has shown (Nilsson, 1996; Nyström et al. 2012) that a 

threshold height could be used to separate canopy and non-canopy returns to ensure the predicative power of the 

models. Two meters has been a widely applied value for the threshold (Nilsson, 1996; Næsset, 2002; Packalén and 

Maltamo, 2008; Latifi et al. 2010; Frazer et al. 2011; Maltamo et al. 2011; Hyyppä et al. 2012; Bouvier et al. 2015), 

i.e. returns below that threshold, which were not classified as ground returns, were excluded from the point cloud 

metric calculations. This idea was thus also applied in substudies I and III: in substudy I the heights within a tree 

segment above 0.5 m were classified as originating from the vegetation (i.e. tree) and therefore included in the analysis, 

whereas a threshold value of 2 meters was applied in substudy  III; heights below the thresholds were left out from 

further analyses. Vegetation density ratio was a metrics used to describe vegetation density, and it was calculated as 

a ratio between vegetation heights (i.e. heights above 0.5 m) and all heights within a tree crown, in substudy I. In 

substudy III, vertical canopy cover was expected to represent forest density and it was derived from CHM by including 

all points higher than 2 meters (CHM > 2 m).  

 

Selection of predictor variables and prediction of vegetation characteristics  

 

Attributes of interest are predicted for the same units where the metrics were extracted from. One of the most used 

methods in predicting forest or tree attributes is the nearest neighbor (NN) approach, where variables measured from 

the field (substudy I) or from other references (substudy II) are used as target observations and metrics extracted from 

remote sensing data are used as predictors. In recent years, the Random Forest approach (Crookston and Finley, 2008) 

has been applied widely in NN predictions of forest variables (Hudak et al. 2008; Yu et al. 2011) and it has proved 

more robust and flexible than other NN approaches such as Euclidian distance, Mahalanobis distance, or canonical 

correlation analysis (Hudak et al. 2008). It was therefore also used in substudies I and II.  

In the Random Forest method, several regression or classification trees are generated by drawing a replacement of 

two-thirds of the data for training and one-third for testing each tree (i.e. out-of-the-bag samples). A regression tree is 

a sequence of rules that splits the metrics space into partitions that have values similar to the response variable. The 

measurement of nearness in a random forest is defined based on observations of the probability of ending up in the 

same terminal node during classification. The output is the percentage increase in the misclassification rate as 

compared to that of the out-of-bag rate (with all variables intact). 

Usually the amount of metrics extracted from remote sensing data is large, thus the number of predictors is 

decreased before further modeling the attributes of interest. Haapanen (2014) presented that an automatically selected 

subset of all features resulted in better estimates for forest inventory attributes and smaller estimation error compared 

to including all possible features. This is due to a reduction of noisy features and dimensions. In substudy I, random 

forest was also used to reduce the number of predictor variables, discarding the least important of the candidate 

variables after each iteration based on the importance of the variable, until only one predictor variable remained. 

RMSEs for each predictor-variable combination were calculated, and a minimum number of predictors were selected 

before the out-of-the-bag estimation accuracy (i.e. RMSE) increased notably. In substudy II, on the other hand, 

predictor variables were chosen based on biological relevance and previous experience, thus predictors that were 

sensitive to single errors were left out. The selection process in substudy III began with stepwise logistic regression, 

but the final selection included analyses of the data, correlations, and on preliminary modeling results, i.e. the 

predictors were chosen on the basis of biological plausibility as well as statistical significance. The methods used in 

different substudies are described in more detail in the following chapters. 

 

 

More detailed descriptions of methods used in different substudies 

 

Multisource single-tree inventory (I) 

 

MS-STI is a method where tree mapping on the ground and above the canopy are combined, i.e. species-specific stem 

map and remote sensing data are conjoined in predicting tree attributes. This stem map can be either produced by 

traditional tachymeter measurements or it can be a tree register from urban trees, the important aspect is that tree 

locations are known. Remote sensing data from ALS or aerial images then provide predictor variables for modeling. 

The principle of MS-STI is presented in Figure 6, where reference data are envisioned to be produced by TLS or MLS, 

not only through traditional field measurements using calipers and a clinometer. Compared to other methods 

identifying individual trees, MS-STI attempts to avoid two major bottlenecks of the current ALS-based single-tree-

level inventory, namely tree detection and tree species recognition. 
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Figure 6. Overview of multisource single-tree inventory. 

 

 

 

A stem map was created from TLS data in substudy I: tree detection was performed manually from processed TLS 

point clouds using visual interpretation. The tree detection from TLS data was performed through the following steps: 

(1) the point cloud of each scan group was imported into TerraScan and thinned by 50%; (2) points at a height of 

approximately 1.3 meter were separated from the remainder of the point cloud as a horizontal “slice”; (3) tree stems 

were identified and marked within the slice (see Figure 7); and (4) location and DBH information were recorded for 

all the identified trees. 

CHM segments presenting tree crowns were linked to the trees in the stem map and predictor variables (i.e. 

statistical metrics) describing tree crown density and tree height from the ALS data were extracted to these segments. 

Random forest was applied in selecting nearest neighbors for predicting DBH, 1200 regression trees were generated 

in substudy I, and the square root of the number of predictor variables was randomly picked at the nodes of each 

regression tree. Randomness was taken into account by running the random rorest method 100 times. The final result 

was the average of these runs. The number of neighbors varied between 1 and 5. Prior to the modeling, random forest 

was used to reduce the number of predictor variables. A step-wise looping procedure was used to iterate random rorest, 

discarding the least important of the candidate variables at each iteration, based on the variable importance, until only 

a single predictor variable remained. RMSEs were calculated for each predictor variable combination and analyzed 

before the final modeling. As the study area in substudy I consisted of two very different parts (urban park and semi-

natural forest) ALS-derived predictors were selected and results calculated separately for both parts.  
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Figure 7. Example of the tree detection method (substudy I) from the TLS point clouds. © MDPI. 

 

 

Area-based approach in mapping and monitoring riverine vegetation (II) 

 

To map riverine vegetation four vegetation classes were defined according to a common woodland sequence structure 

found in Finnish forests. Areas with no vegetation were called bare ground. The field layer was composed of grasses, 

ferns, and low-growing shrubs, (e.g. blueberry (Vaccinium myrtillus) and heather (Calluna vulgaris)), whereas the 

shrub layer contained small trees and larger shrubs. The dominant tree canopy was determined as the canopy layer. 

Vegetation class was determined for 230 training grid cells using the visual interpretation of aerial images. Training 

cells were selected systematically over the study area to include approximately equal samples from each vegetation 

class.  

The area-based prediction of vegetation was based on a statistical dependency between the vegetation classes 

defined from the aerial photos and predictor metrics extracted from MLS point clouds acquired in 2012. A total of 

twenty metrics were extracted from MLS data, three of which were chosen for further predictions. The selected metrics 

were: mean height, height at 95th percentile, and standard deviation of height. The selected metrics characterized 

vegetation height and density, but were not oversensitive to single erroneous points. The random forest method was 

used where the number of nearest neighbors (parameter k) was defined as five based on previous knowledge 

concerning the optimal number of k in regards to reducing relative RMSE (Vastaranta et al. 2014a). A total of 1000 

regression trees were used in each run to increase the consistency. The model developed with the random forest 

method was trained with the data from 2012; the same model was also used to predict vegetation classes in 2009, 

2010, and 2011. 

 

 

Logistic regression in mapping and modeling wind damage risk (III) 

 

Before wind damage probability could be modeled the damaged areas were mapped based on aerial imagery. 

Altogether 500 sample grid cells (16 m x 16 m) were selected and verified visually, from which 70 were deleted 

because they were located somewhere else than a forest (i.e. on an agricultural field, a road) or they were adjunct to a 

field, road, house, or other infrastructure. After visual inspection 430 sample grid cells remained: 196 were classified 

as damaged and 234 as undamaged. Predictor variables for logistic regression were extracted for these sample cells 

from ALS and multisource NFI data. Variables related to topography and elevation, such as slope and aspect, as well 

as general statistics (i.e. minimum, maximum, mean, and STD) of the elevation values were derived from the DTM. 

Mean elevation (also mean value of DTM), slope, and aspect as well as mean value of CHM were extracted for each 
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sample unit (16 m x 16 m grid cell), but also for a window of nine 16 m x 16 m grid cells centered by the sample cell, 

to take in more information of conditions surrounding the sample cells. Furthermore, aspect was calculated as a 

categorical variable corresponding to half-cardinal points (i.e. northeast, southeast, southwest, and northwest) to 

correspond to the direction of the destructive winds, namely northeast. CHM was also applied in extracting 

geographical variables describing distance and proximity of the sample unit to the closest open area. Open areas were 

identified as areas with no canopy cover based on information from the CHM, and contiguous areas were larger than 

1 ha. Distance was determined as the shortest distance from each sample cell to an adjacent open area. Conversely, 

proximity was a categorical variable characterizing whether a sample cell was located next to an open area or not. A 

total of 31 continuous and four categorical predictor variables were extracted. 

Logistic regression is used in estimating binary dependent variables, thus, the discrete dependent variable (i.e. 

damage, no damage) in substudy III was-well suited for applying logistic regression for modeling the probability of a 

wind damage event. Logistic regression calculates changes in the logit variable, not in the dependent variable itself 

(Hosmer and Lemeshow, 2000) and thus logistic regression is not subjected to many of the restrictive assumptions of 

ordinary least squares regression (OLS) (i.e. normal distribution of the dependent variable and error terms, 

homogeneity of variance, interval or unbounded independent variables) (Press and Wilson, 1978; Rice, 1994). The 

logistic regression coefficients (β0, β1, etc.) are presented in logarithmic scale, which means they can be interpreted as 

a change in the probability of the event in interest (wind damage) when the predictor variable changes by one unit. 

Logistic regression was applied to form two separate models, one with predictors only from ALS data (LRALS) and 

another where ALS derived predictors were combined with multi-source NFI variables (LRALS+NFI). Thus, the effect 

of including information of tree species could be assessed. Potential predictor variables were assessed by using logistic 

regression analysis in R (v. 3.1.1, R Core Team, 2007), with stepwise elimination of variables where both forward 

and backward elimination was applied. The maximum number of steps to be considered was set to be 1000. The final 

predictors for the models were selected based on previous studies (Peltola et al. 1999; Jalkanen and Mattila, 2000; 

Hanewinkel et al. 2008), by analyzing the sample, correlations, and on preliminary modeling results. Preliminary 

models were also compared separately using Akaike’s information criterion, AIC (Akaike, 1974).  

Final models were applied to generate maps indicating predisposition to wind disturbance. These maps allowed 

the identification of areas with a high probability of susceptibility to disturbance caused by wind across the study area. 

A cell size of 16 m x 16 m was used in the maps to correspond to the cell size of the sample cells. 

 

 

Accuracy assessments and model validation 

 

Predictors and target observations were available for all trees in substudy I. The accuracy of the predicted variables, 

namely DBH, at the tree level were therefore evaluated by calculating RMSE (Eq. 1) and bias (Eq. 2) using out-of-

the-bag samples. The relative bias and RMSE were calculated according to the sampled mean of the DBH.  
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(2)  

 

where n is the number of observations, yi the true value from the field data for observation i, and �̂�𝒊 the estimated 

value for observation i.  

Stem diameter distributions were compiled from the tree-level estimations and compared to the field measurements 

in substudy I. The estimated stem diameter distributions were evaluated by the error index (EI) introduced by Packalén 

and Maltamo (2008): 
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(3)  

where fi is the true and fî is the estimated stem number in class i, k is the number of classes or bins, and N is the true 

and N̂ the estimated stem number of all diameter classes. The error index is modified from the one suggested by 

Reynolds et al. (1988). A weight of 0.5 was used to scale the error index between 0 and 1, where 0 means a perfect fit 

and 1 means that distributions do not overlap at all. The used bin size was 2 cm for DBH.  
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To evaluate the accuracy of vegetation mapping in substudy II, an independent testing set of 212 grid cells was 

selected: vegetation class was determined for this testing set again using the visual interpretation of aerial images. 

Aerial images were only available for the year 2012, thus this kind of evaluation was only possible to perform with 

the MLS data from 2012. Cohen’s kappa values (Cohen, 1960) were calculated (Eq. 4) in addition to classifying the 

accuracy as a percent. As the acquisition parameters varied from year to year, a random sample (n = 27) from 

unchanged grid cells was chosen to validate the effect of the parameters on classification accuracy in 2009-2011. 

 

𝐾 =  
Pr(𝑎) − Pr(𝑒)

1 − Pr (𝑒)
 

(4) 

where Pr(a) is the overall agreement among raters, and Pr(e) is the expected chance agreement (if agreement occurs 

by chance only). If the raters are in complete agreement then k = 1. If there is no agreement among the raters other 

than what would be expected by chance (as defined by Pr(e)), K = 0. 

Model validation in substudy III was performed by calculating the overall prediction accuracy and fit statistics: 

Nagelkerke’s R2 was applied to evaluate the goodness of fit of the logistic regression models; Wald z-statistics and 

their associated p-values were applied when validating the significance of each predictor variable for the model (p-

values for the selected variables were set to have a maximum value of 0.01 to be sufficiently strong); and a likelihood 

ratio test (LRT) was employed to measure the overall significance of the model. 

To assess the accuracy of produced risk maps, the risk maps produced with the two final models (LRALS and 

LRALS+NFI) in substudy III were compared to the reference acquired by visual interpretation of aerial images. If the 

predicted risk probability for a sample cell was over 0.5, the cell was interpreted as damaged and two-scheme 

classification accuracy percentage and Cohen’s kappa values (Eq. 4) were calculated for the produced risk maps. 
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RESULTS 
 
 
Multisource single-tree inventory in updating tree attributes (I) 

 

When the relative RMSE was calculated for each predictor-variable combination, the minimum number of predictors 

was chosen before the out-of-bag prediction accuracy began increasing notably. However, the relative RMSE values 

varied between 18.8% and 20.1% in the park and between 25.0% and 33.8% in the forest; the estimation accuracy 

was thus not oversensitive to the number of used predictor variables. Eventually, six and seven predictors were 

selected for further modeling the park and forest, respectively, and they are presents in Table 7. 

Although study area in substudy I was highly heterogeneous and forest conditions varied considerably, relatively 

reliable accuracies for the DBH estimations were obtained, particularly for the park, although the biases were, in 

general, smaller for the forested part (Table 8). Greater variation was observed in the forested part of the study area, 

which may be one reason for the larger relative RMSEs. Despite the forest conditions being somewhat different 

compared to the managed forest, and not fully comparable with previous research, the results were promising, 

particularly from the park as they are similar to the results obtained earlier (Peuhkurinen et al. 2007; Maltamo et al. 

2009; Yu et al. 2011; Holmgren et al. 2012; Lindberg et al. 2012). It was additionally possible to produce more 

attributes for the existing tree register such as height and crown size. Moreover, more detailed information on DBH 

was produced as the existent tree register only included approximated DBH class estimation for each tree. 

Consequently, with the developed MS-STI method it was possible to update several attributes for all the trees and the 

estimated size distributions were close to the actual ones: relative error indices varied between 0.1 and 0.21 in the 

forested part (0 is a perfect fit). The goodness of fit between the actual and estimated diameter distribution decreased 

when the number of neighbors was more than one, in part because the extreme bins of the DBH classes were omitted 

when the number of neighbors increased. Nevertheless, the results were superior compared to previous studies 

(Packalén and Maltamo, 2008; Vauhkonen et al. 2013).  

 

 

Table 7. Selected predictor variables for both arts of the study area in Seurasaari (substudy I) in order of importance. 

hi = height percentile, pi = proportion of heights below a certain relative tree height. 

Park Forest 

h90 h50 

p80 hmean 

h70 h60 

h60 h70 

p90 h40 

hmax h20 

 p10 

 

 

Table 8. DBH estimation accuracy with different number of neighbors in substudy I. 

Number of 

neighbors 

Forest  Park 

BIAS, 

cm 

BIAS 

% 

RMSE, 

cm 

RMSE 

% 
 

BIAS, 

cm 

BIAS 

% 

RMSE, 

cm 

RMSE 

% 

k = 1 −0.66 −2.53 7.58 29.11  0.67 1.81 3.97 10.70 

k = 2 −0.17 −0.64 7.15 27.45  −0.15 −0.41 5.63 15.18 

k = 3 −0.22 −0.85 7.06 27.08  −0.39 −1.05 6.63 17.90 

k = 4 −0.15 −0.58 6.93 26.62  −1.06 −2.86 6.77 18.27 

k = 5 −0.11 −0.41 6.85 26.29  −1.56 −4.21 7.09 19.12 
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Mapping and monitoring riverine vegetation (II) 

 

Riverine environments are vulnerable to floods and erosion, and vegetation plays an important role in preventing or 

at least hindering their effects. MLS was used to map riverbank vegetation and detect changes in them. MLS data 

were combined with reference measurements in developing predicative models for vegetation classes at a resolution 

of 4 m2. The predictor variables selected for the classification, namely mean height (Hmean), standard deviation of 

heights (Hstd), and 95th height percentile (H95), differed between the four vegetation classes within the grid cells used 

to train the random forest classification derived from the 2012 data. This result indicated that vegetation classes could 

be separated using the selected MLS metrics. The differences between vegetation classes for the mean values of Hmean, 

Hstd, and H95, were all statistically significant using the Student’s t-test (p < 0.001). For bare ground, Hmean was 0.01 

m on average. The respective mean values for field layer, shrub layer, and canopy layer were 0.7, 0.52, and 2.52 m, 

whereas the mean values for Hstd were 0.01, 0.07, 0.40, and 1.90 m, and H95 were 0.02, 0.20, 1.19, and 5.59 m for the 

respective vegetation classes. 

With a separate test set (n = 212) it was possible to classify vegetation cover with an overall classification accuracy 

of 72.6% by using the nearest neighbor approach based on MLS data from 2012. Classification accuracies for 

vegetation classes varied between 35.0% and 100.0%, where the field layer was most inaccurately classified whereas 

correctly classifying the canopy layer was possible (Table 9). Bare ground was misclassified as vegetated areas in 

20.5% of occasions and vegetated areas were misclassified as bare ground in 0.7% of the instances. It was not possible 

to verify the accuracy of vegetation mapping for 2009–2011 since no ground truth data were available. Nevertheless, 

the random sample from unchanged grid cells (n = 27) attested the robustness assumption of classification and further 

that the selected metrics were not overly sensitive to variation in MLS acquisition parameters. The classification of 

vegetation was additionally rather simple. It can thus be assumed that the classification accuracy for 2009–2011 and 

through that the reliability of change detection was similar to the classification accuracy obtained with the 2012 data. 

Vegetation class was predicted to each year using the selected predictors and the random forest model based on data 

from 2012 and vegetation map for each year was produced. A vegetation map for each year was produced based on 

these predictions (Figure 8). Changes between data acquisition years were detected by subtracting the predicted 

vegetation maps from each other. Some variations were observed in the amount of change from year to year: from 

2009 to 2010 changes occurred in 25.0% of the study area, whereas the respective figures from 2010 to 2011 and from 

2011 to 2012 were 25.2% and 21.2%. Changes were detected all the way through the study area, not only on banks 

but also in meander bends and straight channel sections. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8. Predicted vegetation maps based on MLS data and random forest modelling for Pulmanki River in 

substudy II. © MDPI. 



38 

 

Modeling wind damage risk with multi-source data sets (III) 

 

There is growing interest in utilizing openly accessible data sets especially in forest and environmental applications 

to increase data value and to develop new potential applications utilizing open access data from different sources. The 

Finnish NLS provides nationwide ALS data sets for public use. Natural Resources Institute Finland, on the other hand, 

produced forest attribute data for the entire country based on multisource NFI. These data sets were applied in 

predicting the predisposition to wind disturbance using logistic regression.  

Scots pine and Norway spruce dominated the entire study area and 82.1% of the sample was dominated by conifers. 

Wind damage occurred in 45.6% of the sample, 94.4% of which was conifer-dominated. The mean volume per hectare 

was larger in damaged sample cells than in undamaged ones. CHMmean and CHMmax were also higher in damaged 

plots, and it can thus be expected that mature conifer stands are most exposed to wind damage. 

The mean CHM value from nine grid cells (including the sample cell) produced better results than the mean CHM 

value within the sample cells alone, and therefore CHMbuf was used over CHMmean when predicting wind disturbance 

probability. The selected predictor variables included mean elevation (DTMmean) and mean height of the surrounding 

forest (CHMbuf) when only ALS-derived variables were used in the logistic regression (LRALS). When adding 

information from the multi-source NFI in the modeling, the selected variables included pine and spruce stem volume 

(VOLpine, VOLspruce) in addition to DTMmean and CHMbuf. Based on the Wald test, the significance level of 0.01 was 

reached in both models with the selected predictors. The model with a combination of ALS- and multisource NFI-

derived variables (LRALS+NFI) was discovered to explain 52% of the variation related to wind damage; hence it was 

best suited to address the probability of wind disturbance. A prediction accuracy of 73% was obtained with the LRALS 

whereas the LRALS+NFI produced an accuracy of 81%. Per unit change resulted in an increase in the odds ratios (damage 

probability) in any parameter (Table 10). 

The output from the logistic regression is the probability of wind damage occurring and we used that to produce a 

continuous probability surface to present the likelihood that any given grid cell has wind damage. These surfaces can 

also be interpreted as maps indicating each cell’s susceptibility to wind disturbance (Figure 9). For our results to be 

useful to forest practitioners, at resolution of 16 m was selected because this is the commonly used grid cell resolution 

for providing forest resource information from privately owned forests in Finland. The resulting maps could also be 

included in the forest management plans to assist in the decision-making of forest owners. In addition, forest managers 

could also incorporate the knowledge concerning forest predisposition to wind damage into their strategic and 

operative planning when allocating management activities for preserving biodiversity and maintaining the sustainable 

use of ecosystem services. This approach is most appropriate for mapping and modelling disturbance events associated 

with drivers related to topography as well as forest height and density because these attributes can easily be obtained 

from ALS data. 

 

 

 Table 9. Accuracy of vegetation classification into four vegetation classes in substudy II.  

 
Training 

Accuracy (%) 

Testing 

Accuracy (%) 

Kappa 

Training 

Kappa 

Testing 

Bare Ground 100.00 79.45 0.99 0.82 

Field Layer 88.00 35.00 0.91 0.39 

Shrub Layer 97.83 45.16 0.93 0.29 

Canopy Layer 97.40 100.00 0.98 0.72 

Average 97.39 72.64 0.96 0.61 
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Table 10. Parameters and fit statistics for the logistic regression models with DTMmean and CHMbuf (LRALS), and 

combination of these two with pine and spruce stem volume per hectare (LRALS+NFI) developed in substudy III. 

Predictors for  

LRALS 
Estimate 

Std. 

Error 
z value Pr(>|z|) eβ 

% 

change 

in odds 

Wald 
Wald 

sig. 

Intercept -6.974414 0.923 -7.559 0.000   57.1 0.000 

DTMmean 0.051753 0.010 5.326 0.000 1.053 5.31 28.4 0.000 

CHMbuf 0.358002 0.042 8.611 0.000 1.431 43.05 74.2 0.000 

Predictors for 

LRALS+NFI 
Estimate 

Std. 

Error 
z value Pr(>|z|) eβ 

% 

change 

in odds 

Wald 
Wald 

sig. 

Intercept -7.567191 1.091 -6.935 0.000   48.1 0.000 
VOLpine 0.021675 0.003 6.548 0.000 1.022 2.19 42.9 0.000 
VOLspruce 0.011135 0.002 5.631 0.000 1.011 1.12 31.7 0.000 
DTMmean 0.049585 0.011 4.352 0.000 1.050 5.08 18.9 0.000 
CHMbuf 0.194245 0.048 4.024 0.000 1.2144 21.44 16.2 0.000 
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Figure 9. Maps indicating predisposition to wind disturbance derived from two models developed in substudy III. 

LRALS on the left-hand side panel (using only DTMmean and CHMbuf) and LRALS+NFI on the right-hand side (combined 

model with DTMmean, CHMbuf, VOLpine, and VOLspruce). © Taylor & Francis. 
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DISCUSSION AND CONCLUSIONS 
 

 

Vegetation plays an important role in upholding different ecosystem services: it hinders the effects of pollution in 

urban environments and the erosion of steep slopes and river bends, offers recreational possibilities, and provides raw 

materials for forest industry, but also berries and other goods for personal/private use, to name a few functions. 

Decision-making related to managing natural resources requires updated and accurate information of vegetation 

characteristics, whether deciding on the removal of an individual roadside tree or on the management activities for 

larger forest areas. The development of 3D remote sensing has brought new methods for collecting accurate 

information on vegetation characteristics at varying scales. Laser scanning has increased data dimensionality and 

improved spatial resolution. Especially laser scanning has proved an accurate technique for mapping vegetation from 

terrestrial, mobile, and airborne platforms. Increasing demand will exist in the future for detailed vegetation 

monitoring, which will require improved temporal resolution in addition to spatial resolution. 

The aim of this thesis was to develop laser scanning -based methods for updating vegetation characteristics, 

monitoring vegetation changes, and modeling the probability of a disturbance event. Results demonstrate the 

applicability of airborne and mobile laser scanning (ALS and MLS) in predicting divergent vegetation characteristics 

in varying environments. Although the methods developed in this dissertation are in their early stage, they proved to 

be applicable despite additional ground-measured validation data being potentially useful for gaining solid 

verification. Before transferring the developed methods to operational use, validation in larger practical tests are 

required to further develop the methods and ensure their working capability.  

Changes occur constantly in urban areas and these changes also affect green environments and vegetation 

characteristics. More efficient and accurate methods for updating information concerning urban vegetation are 

therefore required. The aim of substudy I was to tackle this challenge by developing a method called MS-STI, where 

several data sources could be used and the sampling unit was an individual tree. Substudy I was conducted to test the 

method and gain experiences on this detailed forest-inventory process of attribute updating in urban parks and 

recreational forests. TLS was used in producing a stem map in substudy I with an expected location accuracy less than 

0.1 m. Others have obtained similar location accuracies with 2D or 3D laser scanners (Forsman and Halme, 2005; 

Öhman et al. 2008; Hellström et al. 2009; Liang et al. 2012b; Holopainen et al. 2013; Ringdahl et al. 2013). The stem 

map enabled the identification of all trees in the study area and ALS data were employed in updating tree attributes. 

Most studies concentrated on predicting tree attributes on the single-tree level also including the detection of trees, 

whereas MS-STI implicitly deals with this, although obtaining an accurate stem map is one of the challenges of MS-

STI. The comparison between results from substudy I and other studies is not straightforward because the study was 

conducted in very heterogeneous conditions that differ considerably from managed, single-species forests. However, 

the results were promising: DBH estimation accuracies were similar for the park and only marginally lower in a very 

heterogeneous forest when compared to other studies (Peuhkurinen et al. 2007; Maltamo et al. 2009; Yu et al. 2011; 

Holmgren et al. 2012; Lindberg et al. 2012). The study also demonstrated the generation of new attributes: it was 

possible to produce accurate height and crown size predictions for urban tree registers as ALS-based height estimations 

have proved close to field-measured height data (Rönnholm et al. 2004; Maltamo et al. 2009; Yu et al. 2011; Shrestha 

and Wynne, 2012; Tanhuanpää et al. 2014). The developed method proved suitable for updating purposes in urban 

environments. When trees are accurately located, MS-STI can be applied for updating tree attributes over time with 

new remote sensing data (ALS or digital stereo images). Although a species-specific stem map is a demanding 

prerequisite, existing tree registers could be a means for overcoming this by providing information of individual trees 

especially in urban environments. MS-STI could thus initially be applied for updating roadside and park tree attributes, 

where tree registers exist. The method has also been tested in managed forests (Vastaranta et al. 2014b), but the 

production of cost-efficient detailed stem maps still requires more research before the method would be applicable in 

large forest areas. The development of TLS and MLS methods in tree recognition in particular, and through that stem-

map production, are needed for MS-STI to be applicable in managed forests. However, further investigations 

concerning the capabilities of the developed method are needed in both urban and managed forests. Other applications 

apart from updating, where MS-STI could provide detailed tree-level information for both urban and managed forests 

include optimizing management activities, spatial growth modeling, and identifying potentially hazardous trees for 

citizens or infrastructure. 

As vegetation can prevent soil erosion, it is anticipated that future riverine models could include vegetation 

information. When vegetation classes and changes in vegetation are known, a variable for erosion rates can be 

incorporated into the models, which would improve the prediction of river dynamics and flood risks. MLS data from 

a boat were used in substudy II for mapping riverine vegetation. The main focus in studying riverine environments 

has traditionally been measuring flow velocity, depth, and fluvial geomorphology, i.e. river-related characteristics and 

not vegetation. However, studies applying ALS in mapping the characteristics of floodplain vegetation cover do exist 

(Farid et al. 2006; Zlinszky et al. 2012). Farid et al. (2006) were able to obtain an overall accuracy of 78% for 

classifying three age classes of riparian vegetation, whereas Zlinszky et al. (2012) reported an accuracy of 82.5% 
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when classifying wetland vegetation with ALS. However, extensive field data were collected for these studies, while 

we obtained 72.6% overall classification accuracy without a need for field reference. The results of substudy II show 

that vegetated areas could be detected with very high accuracy: only 0.7% of the vegetated areas were classified as 

bare ground. This is in line with a previous study that used TLS in classifying vegetated areas on riverbanks (Brodu 

and Lague, 2012). Even though the accuracy of MSL-based DTM is better on non-vegetated point bars (Vaaja et al. 

2011a; Lotsari et al. 2014) compared to ALS-based DTM in riverine environments (French, 2003; Thoma et al. 2005), 

the errors in DTM may affect the accuracy of vegetation classification as a results of the survey angle and close range. 

MLS is very well-suited for riverine mapping due to the close range of the interest area, which is limited by the 

riverbed and occlusion does not hinder mapping. With the developed classification model and multi-temporal MLS 

data sets, it was possible to map changes in the vegetation of riverbanks and bend bars. The acquisition parameters 

for MLS data varied from year to year, which may have affected the classification. However, robust classification 

metrics (mean, standard deviation, and 95th percentile) were selected to minimize this effect. Based on the STD of 

these metrics in four vegetation classes from a random sample of unchanged grid cells, we assumed that selected 

metrics were not overly sensitive to the variation of MLS acquisition parameters. However, temporal variation caused 

by different months of collection and yearly weather variations might have played a role in change analysis. With 

appropriate reference data this could have been addressed. The aim of substudy II was to apply multi-temporal MLS 

data sets when monitoring changes in riverbank vegetation. Although MLS has mainly been applied in object-based 

analysis (Lehtomäki et al. 2010; Holopainen et al. 2013), the results proved that it could also be applied in mapping 

vegetation on a raster level, which is a commonly used sampling unit for retrieving forest resource information. The 

results of substudy II provided new information regarding how MLS data can be used for mapping and especially 

monitoring riverbank vegetation. Stream habitat analysis could benefit from this kind of research as it might provide 

a bridge between conservation-based policies of riverbank management. In environmental management, vegetation 

monitoring is of increased interest. New and emerging 3D techniques, such as SfM, could serve a role there as the 

cost of optical stereo imagery is lower compared to laser scanning data, especially in small areas. Therefore SfM is an 

interesting option for updating riparian information where remote sensing data sets with high spatial and temporal 

resolution are required. In addition, e.g. UAVs can be utilized even under cloud cover because the flying altitude can 

be less than 150 m (Jaakkola et al. 2010). However, optical stereo imagery does not provide as large height variation 

as laser scanning, especially the lack of ground points can be a limiting factor (Niethammer et al. 2012). In the substudy 

II, mapping distance of MLS system varied between 2.5 m and 32.6 m depending highly on terrain topography, system 

trajectory, and vegetation. With stereo imagery acquired with UAV it is possible to obtain continuous coverage of the 

area of interest. However, steep river banks cause shadowing and occlusion and therefore observations from the 

ground, especially below vegetation, can be challenging to acquire (Niethammer et al. 2012). 

There is a growing need to develop methods for identifying areas susceptible to various natural disturbances that 

are becoming more frequent (e.g. Westerling et al. 2006; Seidl et al. 2011, 2014). Therefore, especially connections 

between vegetation characteristics and different kinds of disturbance events need to be better understood and 

predisposition to these events quantified. Many vegetation characteristics that have been used to predict the wind 

damage risk of forests such as tree height, crown size, stem density, and topography (Lohmander and Helles, 1987; 

Wright and Quine, 1993; Peltola et al. 1999; Jalkanen and Mattila, 2000) can be derived from ALS data.  Drivers to 

wind predisposition were studied in substudy III by utilizing openly accessible ALS and multisource NFI data sets for 

developing a risk model to identify areas liable to wind disturbance. Topography was not find to be a major contributor 

to the wind risk models, but the study area was not comprised of wide topographic variations. However, the approach 

should be tested in a more complex terrain and environment to assess the wide applicability of the approach in 

producing wind risk maps. Then these risk maps could be of interest of forest practitioners and forest owners especially 

if the maps are included in the forest attribute information database provided by the Finnish Forest Centre. Forest 

managers could then incorporate this knowledge of wind damage susceptibility into their strategic planning when 

assessing the operational environment and determining which management practices should be used to preserve 

biodiversity and maintain the sustainable use of the ecosystem services provided by the forests. Compared to other 

studies related to forest disturbance modeling (Stadelmann et al. 2013; Thom et al. 2013; Pasztor et al. 2014) our 

approach provides detailed 3D information concerning topography and forest structure, but also the spatial resolution 

of our model output (16 m) is advantageous. Furthermore, the use of ALS enables the inclusion of predictor variables 

characterizing forest structure, such as mean height and vertical canopy cover that act as drivers of wind disturbance 

(Fridman and Valinger, 1998; Peltola et al. 1999; Jalkanen and Mattila, 2000; Hanewinkel et al. 2008). Other possible 

drivers, for instance forest health, may also be related to wind damage susceptibility, but are difficult to objectively 

quantify and are not often available over large areas. 

One of the implications of this thesis is the added value of laser scanning data, although it was not the purpose of 

the studies as such. Despite the fact that the research questions were there, the data of each substudy were also acquired 

for other purposes besides the studies included in this thesis. However, this is most probably the real-life situation as 

well. In urban environments, laser scanning and other remote sensing data are acquired for other urban planning 

purposes and the results of the substudies showed that such data are also suitable for updating tree attributes. The MLS 
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data could be used in accurate analyses processes of the river channel, especially regarding geomorphology and 

hydrology producing information for flood-risk modeling purposes. However, the multi-temporal MLS data sets 

proved capable of distinguishing different vegetation classes and detecting changes over the years. The Finnish NLS 

has provided open access ALS data for public use since 2012 and the purpose of the data have been to improve DTM 

accuracy. As demonstrated in substudy III, these data are also suitable for predicting vegetation characteristics in 

relation to mapping and modeling forested areas susceptible to wind disturbance. Another application for ALS could 

be forest conservation planning as it produces more accurate information than openly accessible multisource NFI data 

(Lehtomäki et al. 2015). Consequently, these studies provide additional beneficial applications for these data sets and 

through that increase the value of the data.  

Vegetation characteristics in urban and managed forests are quite similar (e.g. DBH, height, volume) but the scale 

has traditionally been different, which is also one reason why techniques concentrating on individual trees could first 

be applied in urban environments at the operational level. Another reason is that techniques developed for predicting 

forest inventory attributes in managed forests may not be suitable for urban environments. Although the area-based 

approach could be applied in urban forests for predicting forest inventory attributes, as cities tend to have ALS data, 

the main objective of urban forests is not in wood production because management activities are aimed at maintaining 

recreational possibilities for citizens. Therefore more detailed and updated information of forests are merely needed 

for locating and removing hazardous trees. The relative value of an individual tree is bigger in an urban environment 

because of their planting and maintenance costs, thus the interest in individual trees has traditionally been higher in 

urban areas. However, interest for individual-tree level information is also increasing in relation to managed forests 

to improve estimations of stem-diameter distribution as well as stem form and quality. Compared to traditional field 

measurements, where DBH is the easiest attribute to measure, tree height and crown diameter are easier to obtain from 

ALS data (e.g Maltamo et al. 2004b). Allometric models (Kalliovirta and Tokola, 2005) have therefore been used in 

DBH predictions (e.g. Tanhuanpää et al. 2015). A need therefore exists for new models incorporating predictor 

variables that are easily extracted from laser scanning data to fully utilize the potentials of 3D remote sensing data. 

Although the temporal resolution of laser scanning data sets is increasing and they are more and more applied in 

environmental mapping and monitoring applications, the temporal resolution can be a limiting factor when applying 

the developed methods in practice. In urban environments ALS data are most probably acquired for various purposes 

once a year, which would enable the utilization of MS-STI for tree-attribute update with an accurate tree register. 

Monitoring of riverine environments by means of laser scanning has not been regular, but the utilization of boat-

mounted MLS could provide a feasible means of mapping rivers after floods, at least those of high importance. 

Compared to traditional techniques of mapping river channel, MLS additionally affords improvement in spatial and 

temporal resolution. Our method would then offer the possibility of also monitoring vegetation changes. Most 

managed forested areas are already covered by ALS data, whereas high temporal resolution would be required to map 

sudden changes such as wind or snow damage. If ALS or digital stereo imagery -based surface models are only 

available in cycles of five or more years these data sets could merely be applied in risk modeling rather than change 

mapping. 

This thesis developed new methods for predicting vegetation characteristics in divergent environments, with 

specific emphasis on various changes. With laser scanning data sets it was possible to update urban tree attributes 

using remote sensing data (I), detect changes in riverbank vegetation (II), and produce risk maps for forested areas 

vulnerable to wind-induced damage (III). Different application environments offered varied test beds for developing 

these methods and focus on future research can be directed to assess the accuracy in operational applications. As a 

result, this thesis provides more knowledge concerning the applicability of laser scanning on different platforms for 

various environmental applications. 
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