
Dissertationes Forestales 224 
 

 

 

 

 

 

 

 

 

 

 

Effect of waterlogging on boreal forest tree seedlings 

during dormancy and early growing season 
 

 

 

 

 

 

 

 

 

Ai-Fang Wang 

 
 

School of Forest Sciences 
Faculty of Science and Forestry 
University of Eastern Finland 

 
 

 

 

 

 

 

 

 

 

 

 

Academic dissertation 

 
To be presented, with the permission of the Faculty of Science and Forestry of the 

University of Eastern Finland, for public examination in the auditorium Futura 100 of the 

University of Eastern Finland, Yliopistonkatu 7, Joensuu, on 16
th

 September 2016, at 12 

o’clock noon. 



2 

 

 

Title of dissertation: Effect of waterlogging on boreal forest tree seedlings during dormancy 

and early growing season 

 

Author: Ai-Fang Wang 

 

Dissertationes Forestales 224 

 

http://dx.doi.org/10.14214/df.224 

 

Thesis Supervisors: 

Docent Tarja Lehto 

School of Forest Sciences, University of Eastern Finland, Finland 

Docent Tapani Repo 

Natural resources and bioproduction, Natural Resources Institute Finland (Luke), Finland 

Docent Marja Roitto 

Natural resources and bioproduction, Natural Resources Institute Finland (Luke), Finland 

Professor Gang Zhang 

College of Horticulture, Agricultural University of Hebei, China 

 

Pre-examiners: 

Professor Kurt Fagerstedt 

Department of Biosciences, University of Helsinki, Finland 

Professor Heljä-Sisko Helmisaari 

Department of Forest Sciences, University of Helsinki, Finland  

 

Opponent: 

Docent Tytti Sarjala 

Bio-based business and industry, Natural Resources Institute Finland (Luke), Finland 

 

ISSN 1795-7389 (online) 

ISBN 978-951-651-538-3 (pdf) 

 

ISSN 2323-9220 (print) 

ISBN 978-951-651-539-0 (paperback) 

 

 

 

Publishers: 

Finnish Society of Forest Science 

Natural Resources Institute Finland 

Faculty of Agriculture and Forestry at the University of Helsinki 

School of Forest Sciences of the University of Eastern Finland 

 

Editorial Office: 

The Finnish Society of Forest Science 

P.O. Box 18, FI-01301 Vantaa, Finland 

http://www.metla.fi/dissertationes 

http://www.borenv.net/BER/pdfs/ber19/ber19-281.pdf


3 

 

 

 

 

Wang A.F. (2016).  Effect of waterlogging on boreal forest tree seedlings during dormancy 

and early growing season. Dissertationes Forestales 224. 41 p. 

http://dx.doi.org/10.14214/df.224 

 

ABSTRACT 

 

More precipitation in the form of rain in winter together with deteriorated ditch networks 

may expose drained peatland forestry to winter or spring waterlogging in boreal forests. 

The response of main boreal forest species on soil waterlogging is important for predicting 

forest productivity and justifying the demand for ditch network maintenance. In this study, 

the aim was to find out the physiological and growth responses of 1-year-old Norway 

spruce (Picea abies (L.) Karst.), silver birch (Betula pendula Roth) and pubescent birch 

(Betula pubescens Ehrh.) seedlings subjected to one-month waterlogging at the end of the 

dormancy phase, and to find out the morphology, physiology and growth of silver birch and 

pubescent birch seedlings subjected to one-month waterlogging at the beginning of the 

growing season.  

Two experiments were carried out in growth chambers. In experiment 1, Norway spruce 

seedlings were subjected to either no waterlogging or waterlogging for one month at 2
 o

C, 

after which a six-week follow-up growing season allowed the seedlings to recover. In 

experiment 2, silver birch and pubescent birch seedlings went through a four-week 

dormancy (weeks 1–4), a four-week early growing season (weeks 5–8), and a four-week 

late growing season (weeks 9–12). The treatments were 1) no waterlogging throughout the 

experiment (NW); 2) four-week waterlogging during dormancy (Dormancy waterlogging, 

DW); 3) four-week waterlogging during the early growing season (Growth waterlogging, 

GW); and 4) four-week dormancy waterlogging followed by four-week growth 

waterlogging during the early growing season (DWGW).  

Dormancy waterlogging reduced root volume and increased root mortality, but did not 

affect dark-acclimated chlorophyll fluorescence (Fv/Fm) or the biomass of leaves, stems and 

roots in Norway spruce. Root biomass and root hydraulic conductance (Kr) of silver birch 

was reduced but aboveground organs were not affected by dormancy waterlogging. On the 

contrary, in pubescent birch root morphology, biomass and Kr were not affected, but gas 

exchange was reduced by dormancy waterlogging. However, the biomass of leaves and 

stems was not negatively affected in pubescent birch. In conclusion, these tree species can 

tolerate a one-month winter waterlogging well. 

Growth waterlogging led to the reduction of stomatal conductance (gs), and thus the 

reduction of light-saturated photosynthesis rate (Amax) in both birch species, although 

recovery was seen during the follow-up growing season. It also led to lower leaf area in 

both birch species. Growth waterlogging led also to decreased the K, Ca, Mg, Mn and B 

contents of leaves in silver birch, whereas in pubescent birch only Ca and Mg contents were 

decreased. In pubescent birch, fine cluster roots, the incidence of non-glandular trichomes, 

and stem lenticels were increased by growth waterlogging. However, silver birch did not 

show such acclimation to waterlogging. In conclusion, growth waterlogging caused more 

negative effects to both birch species than dormancy waterlogging. The morphological 

differences explained why pubescent birch may grow better in wet soil than silver birch. 

 

Keywords: boreal forest, dormancy, waterlogging, hypoxia, root, biomass, photosynthesis, 

Fv/Fm, starch, nutrients, stomata, trichome  
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1. INTRODUCTION 

1.1 Background 

In Finland, one third of the land area is composed of peatlands (8.7 million ha), and half of 

them have been drained to improve forest productivity (Finnish statistical yearbook… 

2013). Peatlands are ecosystems with a high level of ground water and are further 

characterized by a naturally accumulated more than 30 cm thick peat layer on the surface 

(Joosten and Clarke 2002). Spruce swamp forests are boreal peatlands with a cover of 

Norway spruce (Picea abies (L.) Karst.), and also some pubescent birch (Betula pubescens 

Ehrh.). The water table is normally positioned well below the soil surface through most of 

the growing season, which allows the spruce to persist even without drainage. Spruce 

swamp forests have been commonly drained due to their large timber production potential 

(Päivänen and Hånell 2012). In Finnish  peatlands drained for forestry, the water table 

typically lies at -30 to -40 cm, which is considered deep enough to sustain a well growing tree 

stand by means of transpiration and canopy interception (Sarkkola et al. 2010; Sarkkola et al. 

2012). Lowering of the water table increases the rate of peat mineralization and CO2 

emissions; however, increased tree growth and litter production in conditions with a lower 

water table can fix more CO2 (Ojanen et al. 2013).  

Peatland forests account for about a quarter of the annual increment of the total growing 

stock in Finland (Hökkä et al. 2002). The standing volume in peatland forests is still 

increasing, since most of the forest drainage took place between 1960 and 1980, and these 

forests are beginning to reach their maximum growth rates (Minkkinen et al. 2008). Peatland 

forests are therefore an increasingly important resource for the forestry sector in Finland.  

Several decades after drainage the ditch network has deteriorated in many cases as a result 

of vegetation invasion in ditches, collapse of ditch walls and peat subsidence (Paavilainen 

and Päivänen 1995). The deterioration depends on ditch space, digging technique, peat 

composition, peat thickness and the texture of the mineral subsoil (Timonen 1983; Isoaho et 

al. 1993). Ditch network maintenance (cleaning the ditches or digging complementary ditches) 

aiming to ensure sufficient drainage is required after 20 years in the northern and after 25-30 

years in the southern part of Finland (Hökkä et al. 2000). Even though ditch network 

maintenance improves tree growth (Ahti 2005; Sikström and Hökkä 2016) it may impair 

water quality in receiving water courses, in addition of being a cost for the land owner, too. 

Therefore, unnecessary maintenance of ditch network should be avoided if it does not result in 

higher growth (Hökkä and Laurén 2014). Sikström and Hökkä (2016) pointed out that better 

understanding is needed of the relation between soil water and tree growth for the justification 

of ditch network maintenance.  

Climate change is predicted to increase the mean annual temperature by 2-5°C during the 

next century in northern Europe including Finland (IPCC 2001; Kellomäki et al. 2010), the 

warming being the largest in winter (IPCC 2007). Therefore, increased precipitation 

especially in winter months (IPCC 2007), and increased snow melt frequency, are expected 

to increase the groundwater table and soil waterlogging in winter and spring, especially on 

sites where ditches do not work efficiently.  

1.2 Waterlogging and roots 
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Waterlogging is characterised by the saturation of soil pores with water either in the short-

term or permanently (Alaoui-Sossé et al. 2005). The degree of tolerance of plants to soil 

waterlogging is often estimated according to survival or growth and productivity in forest 

stands after exposure to waterlogging conditions for different times (Kozlowski 1997). 

However, there is no standard method for waterlogging tolerance assessment. Tolerance to 

waterlogging varies greatly with the plant species, the plant’s age, the time and duration of 

waterlogging and the mobility of water (Kozlowski and Pallardy1997). The immediate 

consequence of soil waterlogging is oxygen deprivation in the root system. Therefore, roots 

have a key role in the waterlogging tolerance of trees. In waterlogging conditions, in root cells 

energy production through mitochondrial respiration may be replaced by ethanolic 

fermentation (Kreuzwieser et al. 2004). The oxygen affinity of the mitochondrial 

cytochrome c oxidase is very low in these circumstances, in the order of 1-10µM (Krab et 

al. 2011). Due to the low efficiency of this process to yield energy, the roots must compensate 

for the low yield by decreasing the demand for energy by a reduction of root growth or 

nutrient uptake, and by consuming more carbohydrates per unit time for the generation of 

energy equivalents (Kreuzwieser et al. 2004). In fact, flooding intolerant species tend to 

accumulate photosynthetic products in leaves and needles, but not transport them to roots 

(Sudachkova et al. 2009; Repo et al. 2016a). In a study on northern red oak (Quercus rubra 

L.) seedlings, downshifting of translocation of current photosynthates is the first 

physiological indication of flooding (Sloan et al. 2016).  

Growth of fine roots and production have been shown to correlate positively with the 

depth of the groundwater table (Finér and Laine 1998; Murphy et al. 2009), and thus with 

soil oxygen content accordingly. Precipitation in July has been found to correlate negatively 

with the diameter growth in drained peatland Scots pine (Pinus sylvestris L.), whereas in 

mineral soils the growth of trees correlated positively with the mean precipitation in May and 

June (Hökkä et al. 2012). This explains the different responses of annual growth to 

precipitation in drained peatlands and in mineral soil.  

In sensitive tree species e.g. Sitka spruce (Picea sitchensis (Bong.) Carr.), waterlogging 

results in dieback of fine root tips (Nicoll and Coutts 1998). Furthermore, waterlogging 

decreases root biomass and the root /shoot ratio in several other tree species (Megonigal 

and Day 1992; Lopez,and Kursar 1999; Possen et al. 2011). Although waterlogging causes 

injury to old roots, the tree root systems also have mechanisms of morphological and 

anatomical acclimation. Adventitious roots are formed commonly near the base of the stem, 

at the interface between the water saturated soil and atmosphere. They are commonly 

associated with improved tolerance to flooding (Mergemann and Sauter 2000; Steffens et 

al. 2006).  

Other adaptations of roots include the formation of hypertrophic lenticels and flood-

adapted roots with aerenchyma (Bertolde et al. 2010; Tanaka et al. 2011; Alves et al. 2013). 

Hypertrophic growth is the swelling of tissues at the stem base and is believed to result from 

radial cell division and expansion. Formation of hypertrophic lenticels is a common 

anatomical change observed in woody species (Kozlowski 1997). Hypertrophic lenticels are 

considered as entry points of oxygen from shoot to root (Armstrong 1968; Hook et al. 

1971). There is also evidence that hypertrophic lenticels serve as excretory sites to 

eliminate potentially toxic compounds such as ethanol, acetaldehyde and ethylene which 

result from anaerobic metabolism in the roots (Pangala et al. 2014).  
One of the most important responses to waterlogging is the development of aerenchyma 

in the root cortex. The enlarged gas spaces in tissues may enhance the venting of phytotoxic 

compounds produced in the roots toward the shoot and the atmosphere, and enhance the 
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longitudinal diffusion of gases in the roots, thus increasing their aeration (Evans 2004). The 

impairments and morphological adaptations in roots have been mostly studied during or 

after waterlogging in the growing season.  

1.3 Water relations and gas exchange 

Root water transport is divided into radial and axial transport. The axial transport consists 

of the water moving along the xylem vessels to the aerial parts. Radial water flow consists 

of water moving from the soil solution to the root xylem vessels which contribute the main 

resistance to root water transport (Doussan et al. 1998). Radial water transport involves the 

apoplastic path (through the cell walls and intercellular spaces) and the cell-to-cell path 

(through plasmodesmatal connections or across plasma membranes) (Steudle and Peterson 

1998). Root hydraulic conductance (water flux versus driving force, Kr) or conductivity 

(hydraulic conductance expressed on the root surface or volume basis, Lp) has been used 

widely for the estimation of water uptake capacity (Aroca et al. 2012). The change of Lp in 

hypoxic plants has also been linked to the radial water transport pathway of roots (Bramley 

et al. 2010; Calvo-Polanco et al. 2012). The reduction of Lp under flooding stress has been 

attributed to resistance to transmembrane water flow resulting from cytosolic acidification 

and inhibition of aquaporin activity (Tournaire-Roux et al. 2003). Flooding did not change 

Lp in lupins (Lupinus angustifolius L., Lupinus luteus L.) in which radial water transport is 

dominated by the apoplastic path, whereas it led to decreased Lp in wheat (Triticum 

aestivum L.) in which the cell-to-cell path dominates radial water transport (Bramley et al. 

2010). The root hydraulic conductivity of adventitious roots in tamarack (Larix laricina 

(Du Roi) K. Koch) subjected to flooding stress was higher than non-adventitious roots, in 

which flooded adventitious roots was found to have a higher ratio of apoplastic to cell-to-

cell water flow (Calvo-Polanco et al. 2012). Changes in Kr and Lp are related to root structure 

and anatomy. Suberization and the formation of Casparian bands in the endo- and exodermis 

of roots impede transport along the apoplastic pathway, thus contributing to a lower Lp of 

whole root system (Steudle 2000). Increase in Kr is connected to the growth in the number 

and diameter of xylem vessels in Lupinus species (Bramley et al. 2009).  

As a methodological consideration, heavily damaged roots probably also have high Kr 

values as measured by the High Pressure Flow Meter (HPFM) because in this apparatus, 

water is driven into roots in the opposite direction to normal water uptake. The water pressure 

driven to the root system at the root collar during measurement would be released more easily 

in damaged than in undamaged root systems. Therefore, a very steep increase in an HPFM 

result might be used as an indicator of damage. 

Stomatal closure is one of the earliest plant responses to soil inundation that affects 

assimilation rate by restricting CO2 diffusion into the leaf (Kozlowski 1982; Kozlowski 

1997; Folzer et al. 2006). Stomatal closure due to waterlogging has been shown to be 

mediated by different chemical signals, abscisic acid (ABA) transmitted from roots to 

shoots (Jackson and Hall 1987; Jackson et al. 2003; Else et al. 2006), reduced K uptake 

(Kozlowski and Pallardy 1984) and reduced root water uptake (Schmull and Thomas 2000). 

Stomatal size was reported to affect the rate of response and therefore stomatal conductance, 

i.e. the leaves built for higher rates of gas exchange have smaller stomata and faster 

dynamic characteristics (Drake et al. 2013).  
In addition to stomatal limitations, the photosynthetic rate can be reduced by non-

stomatal limitations (Ashraf and Harris 2013). Photosynthesis is affected by the capacity of 
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photosynthetic machinery under flooding stress, which can be seen as reduced chlorophyll 

content (Mielke and Schaffer 2010) and consequently also as reduced dark-acclimated 

chlorophyll fluorescence (Fv/Fm) (Baker and Rosenqvist 2004). In addition, mesophyll 

diffusion conductance of CO2 from sub-stomatal cavities to chloroplasts (gm) is a key trait 

affecting photosynthesis (Evans et al. 2009; Niinemets et al. 2009; Terashima et al. 2011). 

Leaf anatomical traits such as cell wall thickness and chloroplast distribution, which are 

affected by environmental stress, are determinants of mesophyll conductance (Flexas et al. 

2012; Tosens et al. 2012; Flexas et al. 2014).  

1.4 Nutrients 

Waterlogging decreases the nutrient contents of leaves by affecting the availability of 

nutrients in the soil and nutrient uptake capacity. Waterlogging often decreases availability 

of the soluble potassium (K) and nitrate (NO3
-
) because of leaching, whereas it enhances 

the availability of reduced forms of manganese (Mn
2+

) and iron (Fe
2+

). Waterlogging 

reduces nutrient uptake capacity as a result of the reduction in the absorbing surface of 

roots, nutrient uptake rate, and expression of transporters (Kreuzwieser and Gessler 2010). 

The lack of ATP in waterlogged roots is a reason for the reduced nutrient uptake rate 

(Kreuzwieser et al. 2004).  

Nitrogen (N) is an important constituent of photosynthetic proteins and enzymes, so 

increased N-availability in plants results in increased net photosynthesis and foliage 

production. In boreal forests, conifers usually take up ammonium and amino acids, while 

the uptake of nitrate is generally low (Lupi et al. 2013). The concentrations of amino acids, 

particularly of aspartate, asparagine, glutamate and glutamine, were lower in the roots of 

flooded European beech (Fagus sylvatica,  sensitive to flooding),  Pedunculate oak 

(Quercus robur, moderately flood tolerant) and  Populus tremula ×  P. alba  (flood tolerant) 

trees than in controls (Kreuzwieser et al. 2002). After 36 days of treatment, the nitrogen 

content of flooded Carrizo citrange seedlings had decreased more than 2.3-fold compared to 

control seedlings, and reductions in nitrogen concentration ranged from 21 to 55% (in roots 

and leaves, respectively) (Martínez-Alcántara et al. 2012 ). Three and 8.5 weeks of soil 

waterlogging decreased the needle nitrogen content of five-week-old Scots pine seedlings 

but the N-content recovered after three weeks of stress when the soil oxygen content 

returned to normal level (Repo et al. 2016b). 

Phosphorus (P) exists in soil both in organic and inorganic forms (e.g. orthophosphates 

HPO4
2-

, H2PO4
-
). Phosphate ions generally react by adsorbing to soil particles or by 

combining with elements such as calcium (Ca), magnesium (Mg), aluminum (Al), and iron 

(Fe), and forming compounds that are solids in soil. Plants absorb soluble P in the soil 

solution mainly in the orthophosphate form (Brady and Weil 2007). When soil is flooded, 

soil pH moves toward neutrality (pH 6.5-7.5) both in acidic and alkaline soil and soil 

reduction levels increase. As a result, phosphorus can be released from insoluble, adsorbed 

and bound forms (Ponnamperuma 1972), thereby becoming more available for uptake by 

roots. However, soluble P is also liable to leaching losses.  
The single most consistent nutritional shift reported by plant hypoxia and flooding is a 

drop in leaf or plant K concentration (Fisher and Stone 1990). The loss of potassium ions 

from the leaves is thought to impair the function of the potassium ion pump responsible for 

maintaining the turgor of guard cells that open stomatal pores for gas exchange (Sojka 

1992).  
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In submerged soils, insoluble Fe
3+

 and Mn
4+

 are reduced to the soluble ferrous (Fe
2+

) 

and manganous forms (Mn
2+

) (Ponnamperuma 1972). Reduced forms of iron and 

manganese are more readily taken up by roots. High concentrations of Fe
2+

 and Mn
2+

 are 

toxic to plants, however. During waterlogging, toxic concentrations of Mn
2+

, Fe
2+

 may 

occur (Setter et al. 2009). Therefore, tolerance to one or more ion toxicities can be an 

essential trait to improve plant performance in waterlogged soils (Khabaz-Saberi et al. 

2006).  

1.5 Stage of annual development 

Tree responses to waterlogging stress are much dependent on the stage of annual 

development. The annual cycle of trees includes two main phases, i.e. dormancy and 

growth. Furthermore, dormancy has conventionally been divided into several consecutive 

physiological phases (Lang et al. 1987). In autumn, a few weeks after growth cessation, the 

buds enter endodormancy when growth is constrained even under favourable growing 

conditions. Endodormancy is triggered by a sufficient exposure to low chilling 

temperatures (-5 to +10 
o
C) during the autumn months and early winter (Nienstaedt 1966, 

1967; Sarvas 1974; Leinonen 1996). Under Finnish conditions, the chilling requirement for 

triggering of endodormancy is fulfilled by the end of the year (Sarvas 1974; Hänninen 

1990). The second period of dormancy is ecodormancy (post-dormancy or quiescence) 

during which the buds are capable of development but they are still suppressed by adverse 

environmental conditions such as low temperatures. This stage is typical of later winter and 

early spring. Ecodormancy is terminated by rising temperatures (e.g., T > 5
o
C), and finally 

budburst takes place when the accumulated temperature exceeds a specific threshold 

(Sarvas 1972; Campbell and Sugano 1975; Hannerz 1994). The growth phase starts at bud 

burst, and ends after growth cessation. The effect of waterlogging during the endodormancy 

and ecodormancy phase might be different due to the above-mentioned inner physiological 

variation of plants within and between the phases. Roots typically are never truly dormant 

but during the winter are in a quiescent state, with a high competence to start growing.  

Whether waterlogging occurred during the dormancy phase or the growth phase, the 

cause of possible injuries is the same, i.e. oxygen deprivation, but the response time is 

different. There are several studies on tree responses to waterlogging during the growing 

season (Dreyer et al. 1991; Nicolás et al. 2005; Rengifo et al. 2005; Mielke and Schaffer 

2010; Repo et al. 2016a). In that phase, the high rate of metabolic oxygen consumption 

makes oxygen shortage more acute than in dormancy. In the growing phase, plants have 

several acclimation mechanisms for alleviation of the dangers of hypoxia or anoxia. On the 

contrary, growth-dependent escape mechanisms may not operate in winter, but tolerance 

has to be based on prolonged adaptation to waterlogged conditions (Crawford 2003). 

However, the responses of trees exposed to waterlogging during dormancy and at the 

beginning of the growth season are much less studied compared to those in the middle of 

the growing season (Crawford 2003). 

1.6 Study species  

Norway spruce (Picea abies (L.) Karst.), silver birch (Betula pendula Roth) and pubescent 

birch (Betula pubescens Ehrh.) are economically and ecologically important tree species in 
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boreal forests. Norway spruce has a wide distribution ranging from the Pyrenees, Alps and 

Balkans northwards through Germany to Scandinavia and eastwards to west Russia. Norway 

spruce has a shallow root system. It is a relatively adaptive species but grows best on 

moderately fertile, moist mineral soils and fertile peatlands with shallow peat. It is regarded as 

a flood-intolerant species according to field observations (Glenz et al. 2006). In Finland, 

Norway spruce is the second most widely distributed conifer species after Scots pine and it 

grows in mixed forests with broad leaved species as well, mainly silver birch and pubescent 

birch.  

      Silver birch and pubescent birch have a wide distribution range on the Eurasian continent, 

ranging from the Atlantic Ocean to eastern Siberia. However, birches grow most abundantly 

in the temperate and boreal forests of Northern Europe (Hynynen et al. 2010). Birch species 

are light-demanding pioneers, which rapidly occupy open areas after forest fires and clear-

cuttings due to fast early growth (Fischer et al. 2002). The root systems of birch trees are 

often deep and intensive. Most of the birch stock occurs in mixed stands dominated by 

conifers, where they are very important for the biodiversity of mostly coniferous forests. 
However, silver birch is also grown in pure even-aged artificially regenerated stands. In the 

forest management of pure silver birch stands, the goal is typically to produce high-quality 

sawn timber or plywood. Silvicultural practices aim at the production of large-diameter, 

straight and defect-free birch stems (Viherä-Aarnio 2007). The timber of pubescent birch is of 

poor durability when untreated and it never reaches the larger, more financially attractive size 

classes, often showing poor stem form especially when growing on peatlands and other wet 

sites (Verkasalo 1997). Therefore, the main aim of growing pubescent birch is to produce 

pulp wood and fuel wood with low costs. Silver birch is generally associated with well-

drained but not dry and relatively fertile sites (Hynynen et al. 2010). Pubescent birch can 

survive also in compact soils and in wet peatlands (Niemistö et al. 2008).  The physiological 

and morphological adaptation mechanisms of pubescent birch to wet peatland in comparison 

to silver birch have not been addressed before.  

There is large variation in the waterlogging tolerance between tree species (Jones and 

Sharitz 1998; Johnson 2000; Küssner 2003). Those differences are explained by different 

acclimation and adaptation mechanisms to avoid or to tolerate hypoxic conditions (Kozlowski 

2002; Glenz et al. 2006). Survival may vary even among closely related species of the same 

genus (Kozlowski 1997; 2002).  

1.7 Study objectives and hypothesis 

In this study, three boreal forest species were selected to study their tolerance to 

waterlogging during different seasons. Boreal trees stay dormant or in an inactive phase at 

most of the time during their annual cycle but their responses to waterlogging in that phase 

are not well known. Waterlogging causes deprivation of soil oxygen content, which 

disturbs root function and consequently affects shoot growth. Knowledge of the effects of 

waterlogging in winter and spring on Norway spruce and both birch species in boreal areas 

is important also for the prediction of the future forest growth and production.  

The aim of this study was to find out the responses of boreal tree species to simulated 

waterlogging in late winter and early spring. The specific objectives were as follows: 

i. To explore the effects of soil waterlogging in late winter on the physiology and growth of 

1-year-old Norway spruce, silver birch and pubescent birch seedlings;  
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ii. To find out the effects of soil waterlogging in early spring on the morphology, 

physiology and growth of silver birch and pubescent birch seedlings;  

iii. To find out the differences in waterlogging responses between dormancy and the growth 

period and between two birch species. 

The hypotheses were as follows:  

i. Waterlogging in late winter has a negative effect on the physiology and growth of all of 

the three species during the follow-up growing season; 

ii. Waterlogging in early spring has more harmful effects than in late winter on the two 

birch species;  

iii. Pubescent birch has more morphological and physiological acclimation and adaptation 

mechanisms to waterlogging stress compared to silver birch.  

2. MATERIALS AND METHODS 

2.1 Materials 

There were two experiments (Exp. 1, Article I, and Exp. 2, Articles II and III) that were 

included in this study. In Exp. 1, one-year-old cold-stored dormant Norway spruce 

seedlings (Plantek-81F; pot volume 85 cm
3
; height 18-24 cm; origin Suonenjoki, Eastern 

Finland, 62º39' N, 27º03' E, 130 m a.s.l.) were transported to the Natural Resources 

Institute Finland (Luke), Joensuu unit (62°36' N, 29°45' E, 80 m a.s.l.) and stored in  

darkness at 2°C before the start of the experiment. The growing medium was peat. At the 

start of the experiment, the seedlings were in the second phase of dormancy, i.e. quiescence, 

where growth can resume whenever conditions become favourable. The seedlings were 

replanted, with the peat plugs intact, into black plastic pots (7  × 7  × 6 cm) with quartz 

sand (particle size 0.5-1.5 mm, Nilsiä Quartz, SP. Mineral, Finland) as the culture medium. 

Immediately after replanting, 128 seedlings were moved into a growth chamber (PGW36, 

Conviron, Winnipeg, Canada). They were distributed into eight containers (dimensions 33 

× 33 × 13 cm, 16 seedlings/container) and four replicate containers (n = 4) for the designed 

two treatments. The containers were placed in the growth chamber in a randomised order.  

       In Exp. 2, one-year-old silver birch (PL25, peat plug volume of 380 cm
3
, seedling 

height 40–72 cm) and pubescent birch (Ek28, peat plug volume of 280 cm
3
, seedling height 

40–66 cm) seedlings in containers were cultured at a commercial tree nursery in Saarijärvi, 

Central Finland (62º 46' N, 25º 37' E), with seeds from local seed orchards (Sv422 and 

Sv421, for silver and pubescent birch, respectively). The seedlings overwintered under 

snow cover. They were transported to Joensuu, Eastern Finland (62º 36' N, 29º 45' E, 80 m 

a.s.l.), at the end of March 2011 and stored for one day in a growth chamber at 2°C. Within 

the next two days, they were replanted in pots (11 × 11 × 12 cm) in mineral soil with the 

peat plugs intact. All told, 288 pots (144 per species) were distributed across 48 basins (35 

× 23 × 12 cm), with each basin containing six seedlings of the same species. The basins 

were placed in two growth chambers (PGW36, Conviron, Winnipeg, Canada). Each 

chamber contained 24 basins (12 per species), and they were allocated into three replicate 

blocks per chamber. In each block, there was one basin for each of the four treatments (see 

below) and each species. Thus, each treatment had six replicate basins with six seedlings 

for each species.  
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2.2 Waterlogging treatments 

Exp. 1 included a four-week dormancy period (weeks 1–4) and a six-week follow-up 

growing season (weeks 5–10). There were two treatments: (1) No waterlogging in the 

dormancy phase (NW) and (2) waterlogging in the dormancy phase (W).  

Exp. 2 included a four-week dormancy period (weeks 1–4), a four-week early growing 

season (weeks 5–8), and a four-week late growing season (weeks 9–12). The treatments 

were: 1) no waterlogging (NW; weeks 1–12), 2) waterlogging during dormancy (Dormancy 

waterlogging DW; weeks 1–4), 3) waterlogging during the early growing season (Growth 

waterlogging GW; weeks 5–8), and 4) dormancy waterlogging followed by growth 

waterlogging (DWGW; weeks 1–8). 

2.3 Growth conditions 

The water level was maintained at the soil surface of the pots in the waterlogging 

treatments. The seedlings that were not subjected to waterlogging treatment were irrigated 

as needed during the dormancy and the growing season. The chemical composition of the 

waterlogging and irrigation water was adjusted to match the precipitation in southern 

Finland (Sallantaus 1992). During dormancy, the air temperature was 2°C, air relative 

humidity (RH) 90%, photoperiod 6/18 h (day/night), and photosynthetically active radiation 

(PAR) 200μmol m
-2

 s
-1

. During the growing season, the air temperature was 22/15°C 

(day/night), air relative humidity 70/80% (day/night), photoperiod 18/6 h (day/night), and 

PAR 400μmol m
-2

 s
-1

. Incandescent lamps (Airam, 60 W, Airam, Finland) and fluorescent 

tubes (Sylvania Cool White, 215 W; Sylvania, Canada) were used for illumination. The 

changes in photoperiod, temperature, and RH from dormancy to growing season were made 

gradually over a one-week span and the changes in photon flux density over five days. The 

daily changes between day and night conditions took place gradually within two hours.  

2.4 Harvests and measurements 

Soil oxygen content was monitored during waterlogging and during the follow-up growing 

season. In Exp. 1 (Article I), harvests were carried out at the end of dormancy waterlogging 

(H0), after 14 days of follow-up growth (H14), after 28 days of follow-up growth (H28), 

and after 42 days of follow-up growth (H42) to assess the physiology, biomass and 

nutrients (leaf: Fv/Fm, soluble sugar and starch content, biomass, nutrients; stem: biomass; 

root: hydraulic conductance and conductivity, length, volume, biomass). 

In Exp. 2 (Article II, III), harvests were carried out at the end of dormancy waterlogging 

(week 4), at the end of growth waterlogging (week 8), two weeks after growth waterlogging 

(week 10) and four weeks after growth waterlogging (week 12). Physiological 

measurements were taken during growth waterlogging and the follow-up growing season 

by using the same seedlings at different sampling times for leaf photosynthesis, leaf 

chlorophyll content index (CCI), leaf dark-acclimated chlorophyll fluorescence, individual 

leaf area, and stem diameter. From harvested seedlings leaf carbohydrate content, leaf 

biomass; stem lenticel density, stem biomass, root hydraulic conductance/conductivity, root 

length, number of root tips, root surface area, root diameter, black root proportion and root 
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biomass were determined. Leaf stomata and trichome density was measured at the late 

follow-up growing season at week 12. Leaf nutrient contents were measured at two weeks 

after the end of growth waterlogging at week 10.  

2.4.1 Soil oxygen content (Exp. 1, 2) 

The oxygen content was measured by means of a 4-Channel Fiber-Optic Oxygen Meter 

(OXY-4, PreSens, Germany). An optical sensor (Oxygen Dipping Probe DP-PSt3-L2.5-

St10-Yop, PreSens, Regensburg, Germany) was inserted into the soil at the middle depth of 

the pot, and the air-saturated value, as a percentage, was noted after the reading levelled off.  

2.4.2 Gas exchange (Exp. 2) 

Starting before the end of growth waterlogging (at week 8), one seedling per basin was 

randomly taken to measure the gas exchange in saturated-light conditions at one-week 

intervals. The measurements were made for one leaf of each seedling with a photosynthesis 

measurement device (ADC-LCpro+, Portable Photosynthesis System, ADC-BioScientific 

Ltd. Hoddesdon, Herts, England) in a growth chamber with constant conditions. A leaf 

chamber (chamber area 6.25 cm
2
) was used for the measurements with the following 

conditions: leaf temperature of 24.0°C, PAR on leaf surface of 696 μmol m
-2

 s
-1

, ambient 

CO2 concentration of 394 μmol mol
-1

, and water vapour pressure into leaf chamber of 15.6 

mBar. For small leaves with a leaf area less than 6.25 cm
2
, the actual leaf area was 

estimated in order to correct for light-saturated net assimilation rate (Amax), transpiration 

rate (E) and stomatal conductance (gs) and water use efficiency (WUE=Amax/E).  

2.4.3 Dark-acclimated chlorophyll fluorescence (Exp. 1, 2) 

In Exp. 1, five previous-year needles were picked from each seedling (40 needles per 

treatment) for the Fv/Fm measurements at each harvest time. Five needles were attached on 

a tape side by side and measured at room temperature with a portable chlorophyll 

fluorescence meter (MINI-PAM, Heinz WalzGmbh, Effeltrich, Germany). In Exp. 2, after 

two weeks of growth waterlogging (week 6), two leaves were randomly selected from the 

upper part of the shoots from each seedling for Fv/Fm measurements at one-week intervals 

until the end of the experiment.  

2.4.4 Soluble sugar and starch content (Exp. 1, 2) 

In Exp. 1, eight Norway spruce seedlings (one per container) were used for soluble sugar 

and starch content measurements. The needles were dried at 40°C to constant weight and 

then ground into a powder. In Exp. 2, six leaves were sampled during the growing season at 

two weeks intervals from the long shoots in the middle height of one seedling per basin for 

carbohydrate analyses. The leaves were weighed for their fresh mass, packed in tinfoil, 

inserted briefly in liquid nitrogen and stored in -80˚C. The leaves were dried and milled to 

powder before the analyses.  

The analyses followed the protocol of Hansen and Møller (1975). The soluble sugars 

were extracted using 80% aqueous ethanol and the concentration was determined 

spectrophotometrically at 630 nm after reaction with anthrone using D-glucose as a 

standard. The starch was extracted from the residue using 30% perchloric acid. The starch 



18 

 

content was determined spectrophotometrically at 625 nm with anthrone using starch in 30% 

perchloric acid as a standard. 

2.4.5 Leaf area (Exp. 2)                                                                                                                                                                                                                     

After bud burst, two leaves were randomly selected at the same height in one seedling from 

each basin for measurement of leaf expansion. The leaves were photographed twice at week 

6 and from then on at one-week intervals. Coordinate paper was used as a background for 

calibration. The image analysis for leaf area was performed with Adobe Photoshop CS6 

(Adobe Systems Nordic AB, Kista, Sweden). In the analysis, the leaf area was measured as 

the number of pixels (n1), translated to metric units (Aleaf in unit mm
2
) on the basis of the 

number of pixels in the calibration area (100 mm
2
) (n2) on the coordinate paper by means 

of the equation Aleaf = (n1/n2)*100. In addition, the leaf area used in the calculation of the 

number of stomata and trichomes was measured in a procedure similar to that outlined 

above.                                                                                                                                                                                                 

2.4.6 Stomata, glandular trichome, and non-glandular trichome density in leaves (Exp. 2) 

When leaf expansion was completed, one leaf was sampled midway along a long side shoot 

in the middle of the main stem of one seedling per basin, for calculation of the density of 

stomata, glandular trichomes, and non-glandular trichomes (at week 12). The area from the 

leaf edge up to the central vein between the two side veins in the middle of each leaf was 

copied to transparent tape from both sides of the leaf (II, Figure 1a). The replicas were 

placed on an objective glass, and the area from the edge up to the central vein was evenly 

divided into three areas. Photographs were taken from each set of three areas with a digital 

camera (Leica Microsystems CD Camera, Heerbrugg, Switzerland) under a light 

microscope (Leica DM2500, Germany) with 20x objective magnification for counting the 

stomata and with 2.5x objective magnification for counting the glandular and non-glandular 

trichomes (II, Figure 1b, c, d). The number of stomata was counted from the entire image 

area of 2.3 mm
2
 for calculation of stomatal density (number of stomata per unit surface area) 

in each of the three photographed sections. The densities of glandular and non-glandular 

trichomes were calculated from a 4 mm
2
 area of each the three photographed sections. In 

addition, the total numbers for the whole leaf area were approximately evaluated.  

2.4.7 Stem lenticel density (Exp. 2) 

The number of stem lenticels was calculated at the three last harvests from the plants that 

were used for scanning of root systems. One centimetre of stem was cut from above the 

uppermost root at the root collar. Photographs were taken from opposite sides of the stem, 

always in horizontal orientation in relation to the picture frame to assure the same length of 

the stem in the picture (Leica Microsystems CD Camera, Heerbrugg, Switzerland) under a 

stereo microscope (Wild, Heerbrugg, Switzerland) at 6x objective magnification and 

analysed with Adobe Photoshop CS6 (Adobe Systems Nordic AB, Kista, Sweden). The 

number of lenticels was counted per unit surface area of each photograph. The mean value 

between the two opposite sides from three samplings was used for statistical analysis. 

2.4.8 Root hydraulic conductance/ conductivity (Exp. 1, 2) 
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One seedling per basin was harvested at each sampling time for the measurement of root 

hydraulic conductance (Kr, expressed in mg MPa
-1

 s
-1

) using a High Pressure Flow Meter 

(HPFM, Dynamax, Inc., Houston, Texas, USA). The shoot was cut at about 15 mm above 

the root collar while the root system remained intact. The cut surface was attached to the 

HPFM. The measurement is based on monitoring the flow of water by gradually increasing 

pressure (ranging from 0 to 0.5 MPa) (Tyree et al. 1995). The root hydraulic conductivity 

(Lp) was obtained by dividing of the root conductance by the root surface area as 

determined by scanning (see below). 

2.4.9 Root morphology and biomass (Exp. 1, 2) 

In both experiments, the roots that were used for root hydraulic conductance measurements 

were separated from soil by washing with tap water. In Exp.1, dead roots were separated 

from live ones by visual and microscopical assessment of cross sections. The live roots, 

including brown and black roots, were scanned (STD4800 scanner, Régent Instruments Inc., 

Sainte-Foy, Canada), and the root volume, root length, root surface area, and number of 

root tips were assessed by means of a WinRHIZO program (WinRhizo, Régent Instruments 

Inc., Sainte-Foy, Canada). The black roots’ proportions were not calculated in this 

experiment. Both dead and live roots were dried at 40°C, and weighed. 

In Exp. 2, the dead roots were not collected, but the live roots were scanned (Epson 

Expression 1640Xl scanner, Quebec, Canada), and the length, surface area, volume, 

number of tips, mean root diameter, and proportion of black roots relative to total length 

were analysed (WinRHIZO Pro (2012b), Régent Instruments, Inc., Quebec, Canada). The 

viability of black roots was checked in a sample by means of a stereo microscope and they 

were characterised in terms of the white colour of the xylem tissue under the cortex. In 

addition, the black roots in our material were firm instead of very fragile typical for dead 

and decomposing roots. For biomass measurements, the roots were dried at 40 °C to 

constant weight. In both experiments, the leaves and stems were collected at each harvest 

time for assessing dry weight.  

2.4.10 Nutrients (Exp. 1, 2) 

In Exp. 1, previous-year and current-year needles of all seedlings from each harvest (12 

seedlings per treatment) were used for N and other nutrients analyses. In Exp. 2, the dried 

leaves used for biomass measurements at the late growing phase (week 10), were used for 

N and other nutrients analyses. For N analyses, a LECO CHN-1000 elemental analyser was 

used (LECO Corporation, St. Joseph, MI, USA). Powder samples were digested with 

HNO3–H2O2 and analysed with an inductively coupled plasma atomic emission 

spectrophotometer (ICP/AES) (TJA Iris Advantage, Thermo Jarrell Ash Corporation, 

Franklin, MA, USA) for phosphorus (P), potassium (K), calcium (Ca), magnesium (Mg), 

iron (Fe), manganese (Mn), boron (B), copper (Cu), and zinc (Zn) measurements. All the 

nutrients were expressed based on the dry mass. 

2.5 Statistical analyses 

The effects of waterlogging on all of the variables in both experiments were analysed by 

means of a mixed linear model (procedure MIXED in SPSS 15.0.1, SPSS, Inc., Chicago, 
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Illinois, USA). In Exp. 1, the significance of the difference between the treatments at 

different sampling times was tested by the Bonferroni method at a 95% confidence level. In 

Exp. 2, the average effect (main effect) of dormancy waterlogging (DW) which contrasts 

the average for NW and GW plots against the average for DW and DWGW plots and the 

average effect of growth waterlogging (GW) which contrasts the mean for NW and DW 

plots against the mean for the GW and DWGW was estimated by the Bonferroni method. 

The significance of the difference between the treatments (DW, GW, and DWGW) and the 

control (NW) at various sampling times was tested via the least significant difference (LSD) 

method. For each variable, the mean value for the basin was used in the statistical analyses. 

The number of replicate containers was four in Exp.1 and the number of replicate 

containers was six in Exp. 2. 

3. RESULTS 

3.1 Effects of dormancy waterlogging on roots of spruce and birch seedlings 

DW reduced the root volume of Norway spruce at the end of waterlogging and during the 

following growing season (Article I, Figure 3). However, there were no differences between 

the treatments in root length, root surface area, number of root tips, biomass (I, Figure 2) or 

root hydraulic conductance (I, Figure 1d).  

Similar to Norway spruce, DW had no significant effect on root length, root surface 

area, number of root tips, root biomass or root hydraulic conductance in pubescent birch 

either. On the contrary, in silver birch seedlings, DW led to decreased root length, number 

of root tips, root surface area and biomass during the follow-up growing season at 4 weeks 

and 6 weeks after completion of DW treatment (Article II, Figure 2), and decreased Kr 

throughout the follow-up growing season (II, Figure 4). DW led to increased black root 

proportion during the follow-up growing season in silver birch but the effect on pubescent 

birch was not significant (II, Figure 3).  

3.2 Effects of growth waterlogging on roots of birch seedlings 

Root length, surface area and number of tips were not affected by GW in either birch 

species. A significant negative effect of GW on root biomass was found in both species 

during the growing season (II, Figure 2i, j, Table 3). Furthermore, root length, number of 

root tips and root surface area were higher for GW than NW seedlings at the end of GW in 

pubescent birch seedlings (II, Figure 2b, d, f). At the same time, temporary enhanced 

formation of fine cluster roots was observed in GW seedlings in pubescent birch. GW led to 

increased black root proportions in both species during the growing season (II, Figure 3). 

During the growing season, the Kr and Lp values were significantly higher in pubescent 

than in silver birch and increased in both species with the progress of the growing season 

(II, Table 3 and Figure 4). GW caused decreased Kr only in silver birch.  

3.3 Effects of dormancy waterlogging on foliage 
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DW did not affect Fv/Fm in Norway spruce (I, Figure 1a) and silver birch seedlings (Article 

III, Figure 2c). In pubescent birch, DW-treated seedlings had lower Fv/Fm than the control 

seedlings, however (III, Figure 2d). DW led into slightly increased sugar and starch content 

in the needles of Norway spruce (I, Figure 1e, f), however, it did not have any effect on 

starch content in either birch species. On the contrary, sugar content decreased in pubescent 

birch seedlings after DW during the follow-up growing season (III, Figure 3b, Table 2). 

DW did not affect leaf or stem biomass in Norway spruce (I, Figure 2), moreover, DW led 

to decreased stem biomass temporarily in silver birch (III, Table 3). The only effect of DW 

on pubescent birch was a temporary increase in leaf biomass (III, Table 2 and 3).  

DW did not have any effect on leaf area, stomatal density, or glandular trichome density 

in either birch species (II, Table 3 and 5). CCI was reduced during the follow-up growing 

season by DW treatment in pubescent birch seedlings (III, Figure 2b, Table 1). Water use 

efficiency (WUE) was also reduced by DW in pubescent birch seedlings (III, Figure 1f, 

Table 1). Non-glandular trichomes in leaves were slightly increased by DW in pubescent 

birch seedlings (II, Table 4, 5). DW led to decreased the Ca content of needles in Norway 

spruce (I, Figure 5d) and the Mg and K content of leaves in silver birch during the follow-

up growing season (III, Table 4).  

3.4 Effects of growth waterlogging on leaves of birch seedlings 

In silver birch, GW had effects on Amax and gs (III, Table 1) that were significantly lower in 

GW and DWGW compared to NW seedlings at weeks 8 and 11 (III, Figure 1 a, c). In 

pubescent birch, lower values were found in GW and DWGW compared to NW in Amax and 

gs at week 8 (III, Figure 1 b, d).  

In silver birch, WUE was lower in GW and DWGW seedlings, significantly so in GW 

than in NW seedlings at week 8 and were then increased being higher in GW and DWGW 

seedlings compared to NW at weeks 9 and 10 (III, Figure 1e). In pubescent birch, WUE 

was lower in DW, GW and DWGW seedlings than in NW seedlings at week 8. Moreover, it 

was lower in DW than NW seedlings at weeks 9 and 11(III, Figure 1f). 

The CCI of the leaves was significantly affected by GW in both birch species (III, Table 

1). In silver birch, GW and DWGW seedlings had significantly higher CCI compared to 

NW seedlings during the whole growing season (III, Figure 2a). In pubescent birch, the 

CCI of the leaves in GW and DWGW did not differ from that in NW seedlings at certain 

sampling times (III, Figure 2b).  

Fv/Fm of the leaves was significantly affected by GW in both species (III, Table 1). In 

silver birch, Fv/Fm was significantly higher in GW and DWGW seedlings than in NW 

seedlings at weeks 10 and 11 (III, Figure 2c). Furthermore, it was higher in GW than in NW 

seedlings at week 9 and higher in DWGW than in NW seedlings at week 7 (III, Figure 2c). 

In pubescent birch, Fv/Fm was somewhat lower in GW than in NW seedlings at week 9 (III, 

Figure 2d). 

The sugar content of leaves was not affected by GW in either birch species (III, Table 2, 

Fig. 3a, b). GW significantly affected the starch content in silver birch (III, Table 2). 

Significant treatment effects were seen in silver birch as lower starch contents in GW 

seedlings at week 8 and in DWGW seedlings at weeks 8, 10 and 12 compared to NW 

seedlings (III, Figure 3c). In pubescent birch, significantly lower starch content compared 

to NW seedlings was found in DWGW treatment at week 12 (III, Figure 3d). 
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GW decreased individual leaf area similarly in the two birch species (II, Table 3 and 

Figure 5). The leaf area was about 1.4 times larger in NW than in GW and DWGW 

seedlings in both species during the growing season. Stomatal density on the lower side of 

the leaves was significantly higher in silver than in pubescent birch (II, Tables 4 and 5). 

GW increased the stomatal density in silver birch only (II, Table 5). However, no 

differences were found between the treatments in the mean total number of stomata per 

individual leaf area.  

In silver birch, the density of glandular trichomes increased during GW (II, Table 5). 

The density of glandular trichomes was 1.6 and 2.2 times higher in GW and DWGW than 

in NW seedlings on both sides of the leaves respectively (II, Table 4). In addition, the mean 

total number of glandular trichomes per individual leaf area was significantly higher in 

DWGW than in NW seedlings on both sides of the leaves. The density of non-glandular 

trichomes was not affected by GW.  

In pubescent birch, DWGW seedlings showed twice as high a density of non-glandular 

trichomes on the upper side of the leaves in comparison to NW seedlings (II, Table 4). The 

mean total number of non-glandular trichomes (±SE) per individual leaf area in DWGW 

seedlings was higher than in NW treatment.  

3.5 Effects of waterlogging on stem lenticel density of birch seedlings 

Based on the average value across the last three sampling times, the density of stem 

lenticels was significantly higher in pubescent than in silver birch (II, Tables 4 and 5). The 

effects of dormancy and GW were not significant for stem lenticel density in either species 

(II, Table 5). Instead, an interaction effect was found for silver birch (II, Table 5). The GW 

silver birch seedlings had significantly lower stem lenticel density than NW seedlings (II, 

Table 4). 

4. DISCUSSION 

The first hypothesis that waterlogging in late winter has negative effects on the physiology 

and growth of the three species’ seedlings during the follow-up growing season is supported 

by the present data (Table 1). The physiological and growth responses varied between 

species. However, all three species showed recovery by the end of the experiments. The 

roots of silver birch were most sensitive to DW, whereas Norway spruce and pubescent 

birch were less affected. According to the earlier field observations, silver birch prefers the 

well-drained sites (Hynynen et al. 2010) but the root response of silver birch to 

waterlogging at late winter had not been studied before. Norway spruce is classified as a 

flood-intolerant tree species (Glenz et al. 2006), however, the results showed that Norway 

spruce seedlings could tolerate one month winter waterlogging well.  

The second hypothesis that waterlogging in the early growing season has more harmful 

effects than in late winter in two birch species is supported with the findings in this thesis 

(Table 1, Table 2). However, low oxygen use in winter may mitigate the harmful effects of 

DW (Crawford 2003).  

Proof for the third hypothesis that pubescent birch has higher potential for acclimation 

and adaptation to waterlogging stress compared to silver birch was seen especially in  
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Table 1. Comparison between the three tree species studied on the effects of DW on 

physiological, morphological and growth parameters at the end of DW and during the follow-

up growing season. Stomata density and trichomes were measured at week 12 only. The 

other parameters were measured several times at the end of DW (roots and stems) and 

during the follow-up growing season (roots, stems and leaves). 

 

Organ          Attribute Dormancy waterlogging effect 

  Norway spruce Silver birch Pubescent birch 

Roots Length  No Decrease No 

 Surface area No Decrease No 

 Number of tips No Decrease No 

 Volume Decrease Decrease No 

 Biomass  No Decrease No 

 Black root proportion _ Increase Increase (week 

4) 

 Hydraulic conductance (Kr) No Decrease No 

 Hydraulic conductivity (Lp) No No No 

Leaves 

/needles 

Light-saturated net 

assimilation rate (Amax) 
_ No Decrease (DW-

week 8) 

 Stomatal conductance (gs) _ No Decrease (DW-

week 8) 

 Water use efficiency 

(WUE) 

_ No Decrease 

 Chlorophyll content index 

(CCI) 

_ No Decrease 

 Dark-acclimated 

chlorophyll fluorescence 

(Fv/Fm) 

No No No 

 Soluble sugar  Increase (slightly) No Decrease 

 Starch  Increase (slightly) No No 

 Leaf area _ No No 

 Biomass No No Increase  

 Stomata density _ No No 

 Glandular trichome _ No No 

 Non-glandular trichome _ No Increase (slightly) 

Stems Biomass No Decrease (week 

10) 

No 

 Lenticel density _ No No 

 

 

morphological characteristics (Table 1, Table 2). Pubescent birch may grow in compact soils 

and in wet peatlands (Niemistö et al. 2008). The results partly explained the mechanism of 

the better tolerance of pubescent birch compared to silver birch to waterlogging. They will be 

explained specifically in the following chapters. 
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Table 2. Comparison between the two birch species studied on the effects of GW on 

physiological, morphological and growth parameters during the follow-up growing season. 

Stomata density and trichomes were measured at week 12 only. The other parameters were 

measured several times at the end of GW and during the follow-up growing season (roots, 

stems, leaves). Leaf area, CCI and Fv/Fm was measured during the GW. 

 

Organ Attribute Growth waterlogging effect 

  Silver birch Pubescent birch 

Roots Length  No Increase (week 8) 

 Surface area No Increase (week 8) 

 Number of tips No Increase (week 8) 

 Volume No Increase (week 8) 

 Biomass Decrease Decrease 

 Black root proportion Increase Increase 

 Hydraulic conductance (Kr) Decrease No 

 Hydraulic conductivity (Lp) No Decrease (week 8) 

Leaves Light-saturated net assimilation rate 

(Amax) 

Decrease Decrease (week 8) 

 Stomatal conductance (gs) Decrease Decrease (week 8) 

 Water use efficiency (WUE) Decrease (week 8) Decrease (week 8) 

 Chlorophyll content index (CCI) Increase No 

 Dark-acclimated chlorophyll 

fluorescence (Fv/Fm) 

Increase No 

 Soluble sugar  No No 

 Starch  Decrease No 

 Leaf area Decrease Decrease 

 Biomass Decrease Decrease (week 12) 

 Stomata density Increase No 

 Glandular trichome Increase No 

 Non-glandular trichome No Increase (DWGW 

treatment) 

Stems Biomass Decrease  Decrease (week 12) 

 Lenticel density Decrease No 

4.1 Root morphology and biomass 

DW affected the roots of Norway spruce and silver birch, but not pubescent birch seedlings. 

In silver birch, root length, root surface area, number of root tips and root biomass in 

dormancy waterlogged seedlings was lower during the early follow-up growing season. 

This indicated some root damage that did not fully recover in the early growing season. It 

seems that the damaged roots disintegrated during the follow-up growing season in a 

manner similar to that noted earlier in Scots pine (Sutinen et al. 2014). In Norway spruce, 

waterlogging led to decreased root volume during the next growing season, but biomass did 

not change. Moreover, the proportion of dead roots which was increased at the beginning of  

the growth phase, reduced later. Therefore, it is suggested that the roots were damaged 

slightly in waterlogging treatment, but they could recover. The result is in accordance with 

post-drainage recovery of several conifer species after waterlogging during dormant phase 



25 

 

 

 

(Coutts and Philipson 1978; Pelkonen 1979; Coutts and Nicoll 1990). When Sitka spruce 

and lodgepole pine (Pinus contorta Douglas ex Louden) rooted cuttings were grown in  

Perspex tubes with peat as growing substrate and the lower part of root system was flooded 

for 28 days at 6˚C, both species survived and growth took place after drainage (Coutts and 

Philipson 1978). Scots pine and Norway spruce seedlings that were kept in ditches with a 

slow stream of water for their root systems before the onset of root growth, showed slight 

decrease in growth but the seedlings survived well after planting (Pelkonen 1979). When 

clones of Sitka spruce root cuttings were grown in 2 m tall transparent acrylic tubes of peat 

and exposed to waterlogging of the lower part of the roots after completion of growing 

season, the roots had little increase in dieback but the seedlings survived in the following 

spring (Coutts and Nicoll 1990). 
GW decreased root biomass in both birch species which is in accordance with the 

results for other broad-leaved tree species (Tsukahara and Kozlowski 1986; Mielke et al. 

2003; Alaoui-sossé et al. 2005). Previously, waterlogging during the growing season caused 

more damage to roots than during the dormant phase (Coutts and Philipson 1978; Pelkonen 

1979; Coutts and Nicoll 1990). This is probably related to the high root respiration rate and 

thus high oxygen demand.  

Enhanced fine cluster root formation was temporarily observed in GW seedlings of 

pubescent birch at the end of GW. A similar increase and later rapid disappearance of 

adventitious and fine cluster roots has been reported for Hakea species exposed to 

waterlogging (Poot and Lambers 2003). Root clusters are well known for their role in 

mineral acquisition in nutrient-poor soils (Dinkelaker et al. 1995). GW caused a reduction 

in Ca and Mg content in the leaves of pubescent birch which may have triggered cluster 

root formation to compensate for nutrient deficiency. Their rapid disappearance indicates a 

short life span for the cluster roots, however. Either DW or GW did not stimulate the 

formation of these kinds of roots in silver birch seedlings. Therefore, this phenomenon 

seems to be an adaptation of pubescent birch to wet sites. According to a previous study, 

pubescent birch has been found to form hypertrophic tissue and adventitious roots in 

waterlogged roots (Rinne 1990), moreover, aerenchyma normally forms in the cortex of 

young adventitious roots (Armstrong et al. 1994) and is also found in the secondary tissue 

of some woody plants (Kozlowski 1997).  

4.2 Water relations, photosynthesis and carbohydrates 

DW did not affect the root hydraulic conductance (Kr) or conductivity (Lp= Kr /root surface 

area) in Norway spruce during the following growing season. Both DW and GW led to 

decreased Kr, (but not Lp) in silver birch but not in pubescent birch, however. The change 

in Kr is related to root morphology and anatomy. Increase in Kr is connected to the 

increased number and diameter of xylem vessels in Lupinus species (Bramley et al. 2009). 

On the other hand, the decreased Lp is suggested to be due to increased resistance of 

transmembrane water flow resulting from cytosolic acidification and inhibition of 

aquaporin activity (Tournaire-Roux et al. 2003). The decreased Kr took place 

simultaneously with the decreased root surface area both in dormancy and growth 

waterlogged silver birch seedlings. Therefore, it is suggested that the decreased rate of 

water transport in silver birch roots was partly due to root impairment and consequently the 

reduced size of the root system. The decreased Lp of roots of pubescent birch seedlings 

caused by GW at week 8 may be explained by a temporary increase in fine root surface 
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area. Some flood-tolerant species like tamarack are able to develop new adventitious roots 

with high Lp values when exposed to flooded conditions (Islam et al. 2003; Calvo-Polanco 

et al. 2012). It seems that the Lp of temporary fine roots is not very high, however, and their 

role may be greater for nutrient uptake.  

DW did not affect Amax, gs and WUE in silver birch but it decreased WUE in pubescent 

birch. The decreased WUE in pubescent birch may imply that even though the roots were 

not visibly damaged the leaves got a signal from the roots affected by waterlogging and 

adjusted their photosynthesis machinery accordingly. GW led to decreased Amax, gs, and 

WUE at the end of GW in both birch species but this effect did not last after drainage. 

Waterlogging has been found to lead to decreased gas exchange in other tree species but the 

rate and strength of response depends on the species and the phase of annual development 

(Kozlowski 1997; Repo et al. 2016a). It has been suggested that the reduction of root 

hydraulic conductance may contribute to the decrease of stomatal conductance (Schmull 

and Thomas 2000). However, it seems that the stomatal closure of leaves in silver birch and 

pubescent birch seedlings during GW is mediated by chemical signals (Araki 2006; Else et 

al. 2006).  

DW did not affect Fv/Fm in Norway spruce, and Fv/Fm and CCI in silver birch seedlings 

during the following growing season. Fv/Fm and CCI was expected to decrease by the 

waterlogging treatment (Baker and Rosenqvist 2004; Mielke and Schaffer 2010). However, 

the results of this study indicated that the photosynthetic machinery of these two species 

was not affected by one month DW. By contrast, DW led to decreased CCI compared to the 

control at most sampling times in pubescent birch. This reduction took place 

simultaneously with reduced sugar content in DW. The explanation for the temporary 

increase in leaf biomass in that phase remained unclear, however. GW did not reduce the 

Fv/Fm or CCI in either birch species. In silver birch, instead of reduction, a higher level of 

CCI following GW than NW and DW was observed in the recovery period. This might be 

connected with the higher nitrogen content of the leaves, as reported previously (Evans 

1989).  

Starch content was slightly increased in needles of dormancy waterlogged Norway 

spruce seedlings during the early follow-up growing season. This might be associated with 

declined phloem transport and the inhibited sink effect of roots for carbohydrates in 

stressed plants (Palomäki et al. 1994; Sudachkova et al. 2009) and low N availability at the 

end of DW (Utriainen and Holopainen 2001). Limited N supply is reported to promote 

starch accumulation in chloroplasts in Scots pine needles (Palomäki and Holopainen 1995). 

In contrast, the starch content in the leaves of both birch species was not affected by DW, 

but was decreased during GW in silver birch, unlike the increase seen in conifers (Norway 

spruce, black spruce (Picea mariana (Mill.) BSP), Scots pine) (cf. Islam and Macdonald 

2004; Sudachkova et al. 2009; Repo et al. 2016a) and broad-leaved species (White oak 

(Quercus alba L.), river red gum (Eucalyptus camaldulensis) (Gravatt and Kirby 1998; 

Kogawara et al. 2006). In addition, the starch content in the leaves of pubescent birch was 

not affected by GW. The conclusion is that the hypoxia stress in the birch seedlings was not 

severe, therefore allowing the allocation of carbohydrates to roots as well.                              

4.3 Leaf and stem morphology  

The leaf areas were significantly smaller in GW and DWGW than in NW in both birch 

species. Similar results have been reported previously for other tree species as well (Lopez 
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and Kursar 1999; Mielke et al. 2003; Mielke et al. 2005). This is explained by water 

deficiency in the above-ground parts with low transpiration rate under waterlogging (Parent 

et al. 2008). Compared to NW the leaf biomass in the GW and DWGW conditions were 

reduced in silver birch whereas those in pubescent birch were mainly similar to NW during 

the whole follow-up season. Thus it is possible that the leaves of growth waterlogged 

pubescent birch seedlings were thicker compared to the controls but this kind of thickening 

did not occur in silver birch. The thicker and smaller leaves have less intercellular areas and 

increased amount of palisade or spongy mesophyll cells that tolerate stressful conditions 

like high irradiation, cold weather, drought and flooding (Guerfel et al. 2009; Tosens et al. 

2012; Zhang et al. 2012). Contrary to pubescent birch, a smaller leaf area in silver birch 

was accompanied by smaller biomass, which is probably connected to root damage in DW 

and DWGW. 

The increase in the density of trichomes in growth waterlogged birch seedlings is partly 

related to the reduced leaf area. However, in light of the significantly higher total number in 

the leaves after DWGW treatment, it is probable that DWGW treatment induced an increase 

in glandular trichomes in silver birch seedlings and an increase in non-glandular trichomes 

in pubescent birch seedlings. It has been suggested that both types of trichomes are 

involved in protection against water loss by reducing air movement at the leaf surface and 

by increasing the thickness of the boundary layer of leaves (Tattini et al. 2000). Moreover, 

both types of trichomes were mainly on the veins (II, Figure 1b, c) so they can also be 

physically bound to the water movement between the inner and outer parts of the leaves as 

suggested by Fernández et al. (2014). The increase in density of stomata in silver birch was 

accompanied by the reduction in leaf area by GW. Moreover, the estimated total number of 

stomata per leaf in different treatments was the same which suggests that apparently the 

increase is related to the reduction in leaf area. 

GW treatment showed a significantly lower lenticel density than NW in silver birch. 

Formation of new lenticels has been reported to occur simultaneously with stem diameter 

growth in flood conditions (Pangala et al. 2014). In this study, the stem diameter of 

seedlings in both species increased but without treatment difference (II). Accordingly, the 

lower density indicates that fewer or no new lenticels were formed in silver birch during the 

diameter growth in GW treatment. In contrast, the density of stem lenticels in pubescent 

birch remained the same irrespective of the treatment, indicating that new lenticels were 

formed during stem diameter growth.  

4.4 Nutrients 

The contents of N, K, Ca, Mg, Mn and Zn of previous-year needles were lower in 

waterlogged than in control seedlings of Norway spruce at the end of DW. This is either 

caused by the reallocation of nutrients to new needles or the inhibition of nutrient uptake 

after waterlogging (Kreuzwieser and Gessler 2010). Boreal conifers rely much on the stored 

N in stem, roots and older needles and its internal translocation to sustain the development 

of new tissues, especially at the beginning of the growing season (Gezelius 1986; Näsholm 

and Ericsson 1990; Millard and Proe 1992). However, all the nutrient concentrations of 

previous-year needles in waterlogged seedlings recovered to the same level with non-

waterlogged seedlings quickly during the follow-up growing season.  

In silver birch, the K and Mg content of leaves of dormancy waterlogged seedlings was 

reduced at week 10, i.e. 6 weeks after completion of the DW. This is likely due to the 
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reduction of the absorbing surface of roots as a result of the reduction of root length, 

surface area, number of root tips and root biomass in those seedlings at weeks 8 and 10.  
GW led to reduced the content of K, Ca, Mg, Mn, and B in silver birch leaves as well as 

of Ca and Mg in pubescent birch leaves at week 10 (two weeks after completion of GW 

treatment). This might be connected to the impaired function of the roots, which had not yet 

fully recovered from GW. P content did not change but Fe content increased in the leaves 

of waterlogged silver birch seedlings which might indicate higher availability of Fe and P 

due to waterlogging (Ponnamperuma 1984; Rubio et al. 1997). The uptake of Mn under 

waterlogged conditions can also be reduced by high Fe concentrations (Khabaz-Saberi and 

Rengel 2010). The manganese content was high especially in DW treated pubescent birch 

seedlings but it did not exceed toxic levels (Rikala 2012). The increase in the N content of 

growth waterlogged silver birch seedlings was accompanied with a smaller leaf area and 

lower leaf biomass, leading also to a concentration effect. 

5. CONCLUSIONS 

The aim of this study was to find out the response of the seedlings of Norway spruce, silver 

birch and pubescent birch to waterlogging at the end of the dormancy phase (simulated late 

winter) and to explore the differences of two birch species in their responses to 

waterlogging in the early growing phase (simulated early spring). Waterlogging during the 

end of the dormancy phase (DW) induced root impairment in Norway spruce and silver 

birch seedlings which became evident during the following growing season. In addition, the 

roots of silver birch were more strongly affected than those of Norway spruce. In contrast, 

DW had little negative effect on aboveground physiology, growth and nutrient status on 

Norway spruce and silver birch seedlings. This indicates that both species are potentially 

tolerant to short-term winter waterlogging. It is known that pubescent birch may tolerate 

wet soils. Therefore, it is understandable that the morphology of the roots of pubescent 

birch were not as strongly affected as those of silver birch. However, physiological 

attributes, i.e. gas exchange, CCI and sugar content in pubescent birch was decreased by 

DW without the decrease of leaf, stem and root biomass. The explanation for this remains 

unknown. The results indicated that these three species have different reactions to late 

winter waterlogging but that biomass production would not be reduced significantly. 

Waterlogging during the early growth phase affected gas exchange, starch content, the 

accumulation of biomass and nutrient concentrations more in silver birch than in pubescent 

birch. Morphological traits, such as trichomes in leaves, stem lenticels and fine root growth, 

were related to the better waterlogging resistance of pubescent birch compared to silver 

birch. If the waterlogging events in late winter and early spring increase in future, the 

growth of silver birch may be affected on some sites that are suitable for growth in the 

current climate. More studies are needed with adult trees to get a more comprehensive view 

of overall responses.  
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