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ABSTRACT 
 
The global crises – climate change and biodiversity loss – have created a need for precise and 
wide-scale information of forests. Airborne laser scanning (ALS) provides a means for 
collecting such information, as it enables mapping large areas efficiently with a resolution 
sufficient for object-level information extraction. Deadwood is an important component of 
the forest environment, as it stores carbon and provides a habitat for a wide variety of species. 
Mapping deadwood provides information about the valuable areas regarding biodiversity, 
which can be used in, e.g., conservation and restoration planning.  The aim of this thesis was 
to develop automated methodology for detecting individual fallen and standing dead trees 
from ALS data. 

Studies I and II presented a line detection based method for detecting fallen trees and 
evaluated its performance on a moderate-density ALS dataset (point density approx. 15 
points/m2) and a high point density unmanned aerial vehicle borne laser scanning (ULS) 
dataset (point density approx. 285 points/m2). In addition, the studies inspected the dataset, 
methodology, and forest structure related factors affecting the performance of the method. 
The studies found that the length and diameter of fallen trees significantly impact their 
detection probability, and that the majority of large fallen trees can be identified from ALS 
data automatically. Furthermore, study I found that the amount and type of undergrowth and 
ground vegetation, as well as the size of surrounding living trees determine how accurately 
fallen trees can be mapped from ALS data. Moreover, study II found that increasing the point 
density of the laser scanning dataset does not automatically improve the performance of 
fallen tree detection, unless the methodology is adjusted to consider the increase in noise and 
detail in the point cloud. 

Study III inspected the feasibility of high-density discrete return ULS data for mapping 
individual standing dead trees. The individual tree detection method developed in the study 
was based on a three-step process consisting of individual tree segmentation, feature 
extraction, and machine learning based classification. The study found that, while some of 
the large standing dead trees could be identified from the ULS dataset, basing detection on 
discrete return data and the geometrical properties of trees did not suffice for acquiring 
applicable deadwood information. Thus, spectral information acquired with multispectral 
laser scanners or aerial imaging, or full-waveform laser scanning is necessary for detecting 
individual standing dead trees with a sufficient accuracy. 

The findings of this thesis contribute to the existing deadwood detection methodology 
and improve the understanding of factors to take into account when utilizing ALS for 
detecting dead trees at a single-tree-level. Although remotely sensed deadwood mapping is 
still far from a resolved topic, these contributions are a step towards operationalizing 
remotely sensed biodiversity monitoring. 
 
Keywords: deadwood, biodiversity monitoring, LiDAR, point cloud processing  
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PREFACE 
 

My journey in the wonderful world of forest sciences began in the end of 2017 when I was 
seeking for a topic for my Master’s thesis. I ended up contacting Markus Holopainen, as I 
knew his research group was working with LiDAR data – something I was interested in. After 
some discussion, Markus introduced me to Topi Tanhuanpää, who, at the time, was working 
with the monitoring of urban trees. Topi provided me with a topic related to LiDAR-based 
urban tree mapping, which I happily accepted. Little did I know, this marked the beginning 
of my journey as a researcher. 

Once finishing my Master’s thesis, Markus asked me whether I would like to continue 
my academic journey as a doctoral student. He had some funding from the Beetles LIFE 
project, which aimed at managing the habitats of several endangered beetle species, and he 
was searching for someone to produce the promised deadwood maps for the project. This 
role would be suitable for a doctoral student, as in addition to paying a salary, it would allow 
collecting LiDAR and field data that could be used in further studies. As I had considered 
pursuing a PhD, I accepted Markus’ offer. As a result, my research focus shifted from urban 
trees to something I knew very little about – dead wood.  

Now, several years into my doctoral studies, I have become very familiar with this key 
ecological indicator and improved my rather limited knowledge of forests in general. I have 
spent countless hours searching for dead trees in LiDAR point clouds, inspected the various 
forms of dead trees in the forest, and learned that their decay class is determined based on 
their penetrability (see, e.g., Heinaro et al. 2021). My journey amidst dead trees is finally 
reaching its culmination point once I defend this thesis in November. The journey has had its 
ups and downs, but most importantly, it has involved a large number of people without whom 
finishing this thesis would not have been possible. 

Firstly, I want to thank Markus for accepting the young engineering student to his research 
group and introducing me to the customs of forest sciences. Markus has provided me with 
valuable support throughout my doctoral studies and, in addition to pursuing my academic 
goals, encouraged me to continue chasing my goals in orienteering. Secondly, I am forever 
grateful for my supervisor Topi who has guided me through the somewhat mysterious 
customs of the academic world, helped me plan my studies, provided constructive feedback, 
and sometimes simply been there for me when reaching the finish line has felt too big a 
challenge. Thirdly, I want to express my gratitude to all the people that have been involved 
in my studies. This includes my co-authors Topi, Markus, Mikko Vastaranta, Tuomas 
Yrttimaa, Antero Kukko, Teemu Hakala, and Teppo Mattsson who have helped me improve 
the manuscripts, assisted in data analysis, and collected data for my studies. It also includes 
Ninni Mikkonen and Johanna Roiha whose studies I had a privilege to be a part of, and Osmo 
Suominen and Aleksi Ritakallio with whom I spent several weeks in Eastern Finland 
collecting field data for my studies. Finally, it includes my pre-examiners Eva Lindberg and 
Eduardo Maeda who provided valuable comments that helped to improve this thesis. 

I have had the privilege to work in a research group that, while taking science seriously, 
appreciates the other aspects of life as well. I have very much enjoyed being a part of a group 
that shares the same active lifestyle as I do. A morning run with Ville and Otto is perhaps the 
best way to start a workday, whereas going climbing with Otto, Topi, and Ninni is likely the 
best way to end it. I have also truly enjoyed our daily lunches with Jiri, Mohammad, Mikko 
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N, Otto, Markus, Topi, and two Villes. The culinary experiences offered by the restaurants 
around the campus would not have been the same without such good company. 

Conducting research would not be possible without funding. I want to thank the Doctoral 
Programme in Sustainable use of Renewable Natural Resources of the University of Helsinki 
for offering me a salaried position as a doctoral researcher. The position allowed me to fully 
focus on research instead of spending a large portion of my time applying for funding. I also 
want to thank the EU’s LIFE programme for enabling me to start my doctoral studies and to 
collect the majority of the datasets used in my studies. 

The orienteering club Helsingin Suunnistajat has been an important part of my life for 
more than twenty years. I have found many of my best friends from the club and shared some 
of the most memorable moments with my clubmates. The club community has been an 
important support group that has helped me get through the hardships in the life of a doctoral 
student. I am very greatful for that. 

Finally, I want to thank my parents Pauliina and Heikki for being the biggest supporters 
of me and my siblings Asko and Ellen. I am very lucky to have been brought up in a 
supportive environment and to still be able to share the ups and downs of my life with my 
parents. Having a mum who knows how to navigate the academic world and a dad who shares 
similar interests related to computing and artificial intelligence has also been pretty helpful 
during my doctoral studies. 
 
Helsinki, September 2023 
 
Einari Heinaro  
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1 INTRODUCTION 

 
 

1.1 Background 
 
Forests are a vital component of planet Earth. They are a home for the majority of species on 
our planet, provide food and other resources, and significantly contribute to the mitigation of 
climate change (FAO 2022). A long-sighted and sustainable use of forests and their resources 
is crucial for ensuring that forests continue to provide these ecosystem services in the future. 
Forest monitoring provides information that allows utilizing forests in a sustainable manner. 

Many countries inventory their forests to gain knowledge of national forest resources. For 
example, the Natural Forest Resources Institute Finland (Luonnonvarakeskus, LUKE) 
produces annual estimates of the resources and sequestered carbon in Finnish forests as well 
as information about forest health and biodiversity (see Luonnonvarakeskus). These 
inventories include sampling-based field campaigns that are used for estimating forest 
variables at a regional and national level. Remote sensing can be utilized as additional 
information in this process, as attributes measured from remotely sensed data can be 
compared against the field measurements, which allows estimating the resources of areas not 
covered by the field campaigns more accurately (see, e.g., Næsset 2002). Still, the accuracy 
of the information collected using this modeling-based approach is rather coarse and only 
suffices for large-scale decision-making. This is especially true for information regarding 
rare and scattered resources, as the presence of these resources in the field-sampled data is 
not sufficient for precise modeling.  

The developments in remote sensing technology and need for more precise forest 
information have driven a shift from area-level forest inventories (Næsset 1997b, 1997a, 
2002) to estimating attributes of individual trees (Hyyppä and Inkinen 1999). Laser scanning 
has proven useful for estimating such attributes, as it provides detailed three-dimensional 
(3D) information of the target. To estimate attributes of individual trees, trees need to first be 
identified and segmented from the remote sensing dataset. This process is called individual 
tree detection and delineation (ITD), and a multitude of algorithms exist for performing this 
task from different types of remotely sensed data (see, e.g., Ke and Quackenbush 2011; 
Kaartinen et al. 2012; Wang et al. 2016). Thus far, the majority of the applications utilizing 
ITD have focused on living trees. 

Biodiversity loss is one of the current global challenges. The European Commission has 
listed the degradation of biodiversity as a major threat to our planet and released a strategy 
for reversing this phenomenon (European Commission Directorate General for Environment 
2021). This strategy involves nature protection and restoration actions that must be focused 
on areas with high ecological significance. Thus, there is a need for detailed information 
regarding biodiversity hotspots. Biodiversity is a complex concept that can be inspected at a 
genetic, species, or ecosystem level (Gaston and Spicer 2004). As a result, directly observing 
and measuring biodiversity is challenging. Thus, in practice, large-scale biodiversity 
monitoring is based on indirect observations of biodiversity, i.e. biodiversity indicators, 
which can be identified from remotely sensed data. Deadwood is one of the most significant 
of such indicators in forests (Lassauce et al. 2011). 
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1.2 Deadwood mapping 
 
Deadwood or coarse woody debris (CWD) is a general term used for describing several types 
of decaying trees. It includes fallen and standing dead trees, stumps, and downed branches 
(Harmon et al. 1986). Deadwood has an important role in the forest environment due to 
multiple reasons. Perhaps the most notable reasons include its ecological value and its role 
as a carbon storage. Firstly, deadwood significantly contributes to the biodiversity in forests. 
A large variety of species rely on deadwood, as they use it as a habitat and feed on it (Stokland 
et al. 2012). The majority of these species are insects and fungi. In addition, a number of 
species indirectly depend on deadwood, as they feed on these insects and fungi (Siitonen 
2001; Jonsson et al. 2005; Lassauce et al. 2011). Secondly, deadwood contributes to 
approximately 8% of the carbon in forests and is thus a significant carbon storage (Pan et al. 
2011). The rate at which dead trees decompose and release carbon depend on various factors, 
including climate, fungi, and insects (Boddy et al. 2008; Bradford et al. 2014; Seibold et al. 
2021). Understanding the dynamics of deadwood contributes to the understanding of the 
global carbon cycle. 

Locational information of deadwood is important during the era of biodiversity loss and 
climate change. Due to its key role in maintaining biodiversity, deadwood can be used as a 
surrogate measure for estimating the ecological value of forests. Thus, deadwood mapping 
provides useful information that can be used for, e.g., conservation and restoration planning 
(see, e.g., Metsähallitus 2018). Conventional sampling-based forest inventory methods (Ståhl 
et al. 2001; Ståhl et al. 2010; Ducey et al. 2012) are rather inefficient and only provide coarse 
estimates of deadwood quantities in larger areas. This issue is highlighted by the scattered 
nature of deadwood occurrence, which places specific requirements for the sampling scheme 
(Kangas and Maltamo 2006) and limits the usability of deadwood information collected as a 
part of a larger field campaign, such as the Finnish National Forest Inventory 
(Luonnonvarakeskus).  

Remote sensing (RS) methods, such as aerial imaging and airborne laser scanning (ALS), 
have been used for addressing the issues related to sampling-based deadwood inventory due 
to their ability to efficiently monitor large areas on a continuous scale. Modeling-based 
approaches have used RS-derived features for estimating the quantity of deadwood (Bater et 
al. 2007; Pasher and King 2009) and for guiding the placement of deadwood field inventory 
plots (Pesonen et al. 2010a; Pesonen et al. 2010b). Furthermore, deadwood presence has been 
estimated via canopy gaps identified from RS data (Miura and Jones 2010; Tanhuanpää et al. 
2015). These approaches rely on proxy measures that are only weakly related to deadwood 
presence and thus the accuracy of deadwood information derived using such approaches is 
rather limited. To overcome this challenge, a growing number of studies have shifted from 
indirect observations to directly detecting deadwood. The resolution of current remote 
sensing datasets is not sufficient for detecting smaller deadwood components, such as stumps 
or downed branches, and thus the direct deadwood mapping approaches have mainly focused 
on detecting fallen and standing dead trees at a single tree level. Both aerial imaging and ALS 
have been utilized separately and in combination (Polewski 2017; Briechle et al. 2021; Huo 
et al. 2023). Especially with fallen trees, ALS has proven useful due to its unique ability to 
acquire information from below the canopy. In general, different types of approaches are 
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required for detecting fallen and standing dead trees. These approaches are discussed in more 
detail in section 1.5. 

 
 

1.3 Airborne laser scanning 
 
Airborne laser scanning (ALS) is an active remote sensing method in which a scanner, 
mounted on an aerial vehicle, sends laser pulses to a target, and observes returning signals 
reflected from the target. On a coarse level, a laser scanner consists of three components: The 
scanner, which sends and receives laser pulses, a global navigation satellite system (GNSS) 
receiver, which measures the location of the scanner, and an inertial measurement unit (IMU), 
which measures the orientation of the scanner (Wehr and Lohr 1999). These components 
allow converting the time or phase differences of transmitted and returning pulses into 3D 
coordinates. Transmitting a large number of pulses from different positions allows capturing 
a dense 3D point cloud of the target. 

Laser scanners can be divided into two types based on how they record the returning 
signal (Baltsavias 1999; Lim et al. 2003). A single laser pulse sent to the target will likely 
reflect from multiple objects located at different distances from the scanner. As a result, the 
returning signal will be a continuous waveform containing multiple intensity peaks. These 
peaks represent reflections from an object. Discrete return scanners use a cut-off intensity 
value and only record peaks with an intensity above this value. This allows storing the 
acquired data efficiently, but some information is lost as a downside. In contrast, full-
waveform scanners store the returning signal in full. This requires storing large amounts of 
data, but the advantage is that no information is lost. Certain properties of the full waveform, 
such as the widths of the peaks can be used for distinguishing different types of objects from 
each other (see, e.g., Heinzel and Koch 2011; Mücke et al. 2013). 

Laser scanners emit laser pulses to different directions using a scanning mechanism based 
on distinct types of moving mirrors. Due to the scanning mechanism, the distribution of 
points in the acquired point cloud is never exactly uniform, but rather contains patterns whose 
shape depends on the scanning mechanism used. These patterns might complicate the 
detection of certain objects, especially if the pattern resembles the shape of the object of 
interest. There are several frequently used scanning mechanisms. Most scanning 
mechanisms, such as oscillating and rotating mirrors generate somewhat linear patterns in 
the point cloud, whereas the Palmer and wedge prism scanners form circular scan patterns 
(Wehr and Lohr 1999).  

The most frequently used metric for comparing laser scanning datasets is the point 
density. The point density describes the number of laser returns per unit area and thus depicts 
the level of detail in the point cloud. The point density of an ALS dataset depends on a number 
of factors, including the flying altitude and speed during data acquisition, flight line overlap, 
and the pulse repetition frequency of the scanner (Baltsavias 1999; Wehr and Lohr 1999). In 
the forest environment, sparse point clouds (point density less than 1 point per m2) are mostly 
suitable for observing large-scale phenomena, whereas object-level observations require 
point densities of at least several points per m2 (see, e.g., Vauhkonen et al. 2008; Reitberger 
et al. 2009; Jakubowski et al. 2013a). The point densities of current large-scale laser scanning 
campaigns are reaching levels sufficient for object-level observations. For example, the point 
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density of the new nation-wide laser scanning dataset in Finland is 5 points per m2 (National 
Land Survey of Finland). 

The potential of ALS for monitoring forests is a widely studied topic. ALS has been used 
for forest inventory (see, e.g., Hyyppä et al. 2008), change detection (Gobakken and Næsset 
2004; Yu et al. 2006; Vastaranta et al. 2012), biodiversity assessment (Goetz et al. 2007; 
Clawges et al. 2008; Kim et al. 2009; Müller and Brandl 2009), and various other forest-
related applications. Generally, ALS-based forest monitoring can be divided into two 
approaches: the area-based approach (Næsset 2002), and the single-tree approach (Hyyppä 
and Inkinen 1999). The former is based on observing the relationship between field-measured 
forest attributes and ALS-derived metrics, whereas the latter is based on directly measuring 
attributes of individual trees from the point cloud. 

Conventionally, the platform on which the laser scanner is mounted has been an airplane 
or helicopter. However, recent developments in laser scanning technology have enabled 
mounting scanners on smaller platforms, such as unmanned aerial vehicles (UAVs). The 
main advantages of UAV-borne laser scanning (ULS) include its agility and ability to fly at 
low altitudes. Due to the latter advantage, ULS enables acquiring datasets with significantly 
higher point densities than those acquired using a larger platform. This is especially useful 
when the goal is to identify individual objects from the dataset. In the forest environment, 
UAVs can even be flown under the canopy (Hyyppä et al. 2020), which allows shifting from 
the bird’s-eye view to the eye level view. Thus far, forest-related studies regarding ULS have 
been rather scarce and have mainly focused on living trees. These studies have shown that 
ULS can be used for estimating the locations, heights, diameters at breast height (DBHs), 
and crown widths of individual trees relatively accurately (Jaakkola et al. 2010; Wallace et 
al. 2012; Chisholm et al. 2013; Wallace et al. 2014; Jaakkola et al. 2017). 
 
 
1.4 Object-level information extraction in point clouds 
 
Object-level information extraction can be divided into two categories based on whether the 
aim is to classify the whole scene or whether only objects of specific types are of interest. 
Segmentation methods (Figure 1a), such as semantic segmentation and instance 
segmentation (see, e.g., Landrieu and Simonovsky 2018; Wang et al. 2019; Xie et al. 2020), 
fall within the former category. When working with a point cloud, they aim to assign a label 
to each point, thus essentially identifying all objects in the point cloud. In contrast, object 
detection (Zhou and Tuzel 2017; Lang et al. 2019) focuses on identifying specific objects of 
interest, leaving all other objects as background (Figure 1b). Both categories fall within the 
field of computer vision, but require different kinds of approaches due to the fundamental 
difference in their objective. 
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Figure 1 Semantic segmentation (a) versus object detection (b) in a single scene. 
Segmentation aims at labeling the whole scene, whereas object detection aims at detecting 
specific objects of interest. In this case, the objects of interest are trees. Please note that the 
provided example is rather simplistic and real-world segmentation and object detection tasks 
are much more complex. Figure created with BioRender.com. 

 
 
Computer vision has conventionally focused on raster data (images) and raster data are 

still very widely in use. As a result, raster-based computer vision is a highly developed and 
ever-growing field. In contrast, point cloud based computer vision is a relatively new field, 
which heavily borrows from the more developed raster-based approaches. Two fundamental 
differences between these two types of data often prevent directly applying raster-developed 
methodology on point clouds. Firstly, as opposed to point clouds, rasters are a structured data 
type, which in many cases simplifies processing and the definition of certain properties. For 
example, defining the neighborhood in rasters is easy, as each raster cell has the same number 
of neighboring cells within a specific distance. In contrast, the density of a point cloud is 
often non-uniform, meaning that different points will have different numbers of points within 
a fixed distance around them. Secondly, point clouds are a 3D data type, whereas rasters are 
two-dimensional (2D) by nature. Even with these differences, raster-based approaches have 
proven useful for point clouds. The simplest way in which raster-based approaches can be 
used for point clouds is by converting the point cloud into one or more raster layers (e.g., 
Blanchard et al. 2011; Jakubowski et al. 2013b). The advantage of this approach is that the 
raster-based methods can be applied as is. However, such an approach induces a loss of 
information, as rasterizing the point cloud reduces the spatial resolution, and most 
importantly, loses one spatial dimension. To overcome the latter issue, point clouds can be 
converted into 3D rasters in which one cell – a voxel – is a cuboid taking a unit volume in 
space (see, e.g., Xu et al. 2021). Another option for using methods originally developed for 
rasters is by modifying them to handle unstructured data. Some methods, such as the Hough 
transform (Hough 1962; Duda and Hart 1972) naturally extend to unstructured data, whereas 
others require re-defining raster-defined concepts, such as neighborhood (Filin and Pfeifer 
2005) and morphology (Calderon and Boubekeur 2014). 
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Segmentation methods rely on the assumption that elements comprising a single object 
have similar properties. When thinking of spatial data, spatial similarity lies at the core of 
this assumption. In other words, spatial segmentation methods assume that an object consists 
of elements that are located close to each other. Hence, neighborhood is perhaps the most 
fundamental concept of segmentation methods. For a specific unit of data (e.g., a point cloud 
point), the neighborhood defines the other units of data that potentially belong to the same 
object due to their spatial proximity. Other similarity measures or specific criteria are used 
for determining whether the neighboring units of data in fact belong to the same object. For 
example, region growing methods are based on an iterative neighborhood search (Gonzalez 
and Woods 2008). Region growing starts with a set of seed points representing individual 
segments. The method inspects the neighborhood of each seed point and adds units of data 
to the same segment as the neighboring seed point if they fulfil certain criteria. These criteria 
might be based on the similarity of some properties or geometric relationships (see, e.g., 
Vincent and Soille 1991). This process is repeated iteratively until a stopping condition is 
reached. Another type of segmentation approach – clustering – aims at grouping units of data 
to individual segments by maximizing the similarity of units of data within each segment  
and, in some cases, also minimizing the similarity between different segments (Jianbo and 
Malik 2000). Perhaps the most well-known clustering method, k-means clustering (e.g., 
MacQueen and Neyman 1967), starts by randomly assigning each unit of data into a 
cluster/segment and computing the centroid of each cluster. The cluster assignment is then 
revised by assigning each unit of data into the cluster with the most similar centroid. The 
algorithm repeats this process iteratively until the cluster assignment stabilizes. 

As opposed to segmentation, object detection methods do not aim at classifying the whole 
scene, but rather aim at identifying specific objects from a dataset. This requires different 
types of approaches than the ones used for segmentation. The core of object detection 
methods is identifying objects based on their geometric and/or other properties. In point 
clouds, these other properties could include, for example, intensity-related features. For 
objects with simple shapes, parametric shape detection is a viable option. Parametric shape 
detectors, such as random sample consensus (RANSAC) (Fischler and Bolles 1981) and 
Hough transform (Hough 1962; Duda and Hart 1972) aim to detect simple shapes, such as 
lines in an image or point cloud. These approaches assume a parametric form for the shape 
to be detected and find the parameter values that best fit the data. Template matching can be 
used for more complex objects that cannot easily be represented in parametric form. As the 
name suggests, template matching uses a template that resembles the object of interest and 
compares different parts of the dataset against this template (Brunelli 2009). If a part of the 
dataset matches the template, an object is detected at that specific location. At its simplest, 
the template used is manually crafted and used for matching as is. The more recent approach 
is, however, using machine learning (ML). This approach includes crafting a set of features 
(multiple templates) and using samples of the object of interest for teaching the ML model 
which of these features are useful for detecting the object (Zou et al. 2023). 

During the last decade, the developments in ML and especially deep learning have 
revolutionized computer vision (e.g., Voulodimos et al. 2018; Zou et al. 2023). Both 
segmentation and object detection have seen a wide variety of new algorithms. This has been 
mainly due to the increase in computational power, which has allowed approaching these 
tasks in a different manner. The main advantage of ML is that it removes the need for 
carefully crafted rules that solve a specific task. In ML, the model takes as input a set of 
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features and learns which of these features are most relevant for solving the given task. Deep 
learning takes a step further and, in addition to learning which features are relevant, learns 
the features themselves. This allows a more generic approach to object-level information 
extraction, as a unique algorithm is not required for each specific task. The disadvantage of 
ML is, however, that it requires training data and computational power. These issues are 
highlighted with deep learning models, which might include millions or even billions of 
parameters (see, e.g., Zaidi et al. 2022). Training such models require huge amounts of data 
and computational resources, which are often not available. Luckily, many of the state of the 
art ML models are openly available in online repositories (see, e.g., Hugging Face). These 
models can be used as is or fine-tuned to solve a new task for which only limited training 
data is available. The latter approach is called transfer learning (Weiss et al. 2016). The idea 
behind transfer learning is that state of the art ML models, such as deep convolutional neural 
networks, consist of a large stack of layers, each of which learns to detect specific types of 
features in a hierarchical manner. The first layers learn to detect simple features, such as lines 
or curves, which they then feed forward to the next layers. The next layers learn to combine 
these simple features into more complicated ones, and finally, the last layers learn to detect 
whole objects. Since the lower layers learn to detect features that are not specific to the task 
at hand, these layers can be utilized for another detection task, and only the last layers need 
to be retrained using new training data. 
 
 
1.5 Detecting individual dead trees from ALS data 

 
1.5.1 Single tree level information extraction in forests 
 
Forests are complex and dynamic environments, which makes object-level information 
extraction challenging. Trees come in many shapes and sizes, making them a complicated 
object to detect, as object-level information extraction requires that objects belonging to the 
same class are somewhat similar. Furthermore, trees have overlapping crowns and may 
sometimes be occluded by crowns of larger trees, which generates problems in distinguishing 
trees from each other. Other objects, such as boulders and shrubs add to these challenges. 
This is especially evident with fallen trees that may not be visible in ALS data due to lush 
ground vegetation or abundant undergrowth. Stems are the single most distinguishable part 
of trees, as their shape is approximately cylindrical. However, the problem is that the stems 
of standing trees are vertical and thus they might not be visible in ALS data collected from 
above the canopy. 

ITD is a widely studied topic, as it serves as the basis for most single tree level forest 
inventory applications. Such applications include tree species classification (Dalponte et al. 
2014; Amiri et al. 2019), forest mensuration (Hyyppä and Inkinen 1999; Popescu et al. 2003) 
,and standing dead tree detection (Yao et al. 2012; Casas et al. 2016). ALS-based ITD can 
roughly be divided into two main categories depending on whether individual trees are 
extracted from a canopy height model (CHM) derived from the point cloud (see, e.g., Hyyppä 
et al. 2001; Persson et al. 2002; Dalponte and Coomes 2016) or from the point cloud directly 
(Li et al. 2012; Lu et al. 2014). The CHM-based approach starts by detecting treetops as local 
maxima in a rasterized CHM. Individual trees are then segmented from the CHM using a 
segmentation algorithm, such as watershed segmentation (see, e.g., Vincent and Soille 1991), 
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which uses the treetop locations as seed points. Similarly, point cloud based approaches first 
identify tree locations as, for example, the highest point cloud points within their 
neighborhood. Individual tree segments are then delineated around these locations using a 
rule-based region growing algorithm. ITD algorithms may also combine CHM and point 
cloud approaches by first detecting treetops from a CHM and then using these as seed points 
for a point cloud based region growing method (Morsdorf et al. 2003; Reitberger et al. 2009). 
Forest characteristics vary significantly between different locations and even within a single 
area and thus there is no single ITD method that is guaranteed to work. Moreover, different 
ITD methods have different strengths and weaknesses. Generally, ITD is a compromise 
between over- and undersegmentation. For example, CHM-based ITD methods are generally 
less prone to oversegmentation (i.e., splitting single trees into multiple segments), but as a 
downside, are poor at detecting trees below the top-most canopy layer. In contrast, point 
cloud based approaches are better at detecting small trees, but tend to generate too many tree 
segments (Wang et al. 2016). Thus, the best choice for the ITD algorithm depends on the 
objective. 
  
1.5.2 Fallen tree detection 
 
Studies addressing ALS-based fallen tree detection have based the detection on the most 
distinguishable part of trees – the stem. Stems are cylindrical objects that can be detected 
based on their shape. Since fallen trees mostly lie on the forest floor, their stems are 
horizontal, which increases the chances of them being visible in ALS data. However, the 
challenge of fallen tree detection is that standing trees hinder the visibility to the ground and 
thus fallen trees located under dense canopy might not be visible in data collected from above 
the canopy. Laser scanners are able to penetrate canopy, but canopy limits the number of 
laser returns from the ground layer. Another challenge with fallen tree detection are other 
near-ground objects and ground vegetation, which might mistakenly be identified as fallen 
trees and which obstruct visibility to fallen trees. 

Laser scanning based fallen tree detection methods can roughly be divided into 
segmentation-based approaches, template matching methods and shape detection methods. 
Segmentation-based methods (Blanchard et al. 2011; Mücke et al. 2013) create raster layers 
from several laser scanning metrics, perform segmentation on these layers, and identify 
segments resembling fallen trees based on their geometry. Template matching methods 
(Lindberg et al. 2013; Nyström et al. 2014; Polewski et al. 2015b, 2018) utilize 2D or 3D 
templates for detecting fallen trees from either the point cloud directly or from a rasterized 
height model generated from the point cloud. Thus far, the only method utilizing shape 
detection was introduced by Yrttimaa et al. (2019), who first filtered a terrestrial laser 
scanning (TLS) point cloud by RANSAC-based cylinder fitting and used a segmentation-
based procedure for detecting fallen trees from the filtered point cloud. 

There are two main goals in fallen tree detection. The first one is to detect as large a 
proportion of fallen trees as possible. The latter is making as few false detections as possible. 
These two goals often contradict each other, as developing fallen tree detection methods 
includes a number of decisions that affect the sensitivity of the method. Such decisions could 
be, for example, how linear must a segment be, or how well does a subset of the point cloud 
have to match the template for it to be identified as a fallen tree. Increasing the sensitivity of 
the method will generally result in a larger number of true detections but also a larger number 
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of false detections and vice versa. To address this challenge, different forms of filtering have 
been used for reducing the number of false detections while keeping the number of true 
detections relatively constant. These filtering procedures can be applied before or after the 
actual fallen tree detection phase. The filters applied before the actual detection phase aim at 
removing as many laser points not originating from fallen trees as possible. The simplest such 
filter is the height-based filter, which limits fallen tree search to a specific height range close 
to the ground, as this is where most fallen trees are located. Other pre-detection filters aim at 
removing points not originating fallen trees based on their properties, such as return type 
(Mücke et al. 2013; Nyström et al. 2014), echo width (Mücke et al. 2013), or geometric 
characteristics of the point neighborhood (Polewski et al. 2015b; Yrttimaa et al. 2019). In 
contrast, the filters applied after detection aim at removing false detections by comparing 
them to known instances of fallen trees. ML can be used for automating this procedure 
(Nyström et al. 2014; Polewski et al. 2015b). 
 
1.5.3 Methods for detecting standing dead trees 
 
Most studies attempting to detect standing dead trees from laser scanning data have based 
detection on a three-step process consisting of ITD, feature extraction, and classification (Yao 
et al. 2012; Polewski et al. 2015c; Casas et al. 2016; Amiri et al. 2019). The ITD step aims 
at extracting as accurate an individual tree segmentation as possible. The feature extraction 
step aims at describing the geometric and intensity-related properties of each segment. Often 
a large number of features are extracted, and some sort of feature selection, such as sequential 
feature selection (Amiri et al. 2019) or a genetic algorithm (Polewski et al. 2015c) is used for 
finding the most useful feature set. The classification step uses the extracted features for 
determining whether a tree segment represents a standing dead tree. Some ML method, such 
as logistic regression (Amiri et al. 2019) or a support vector machine (Yao et al. 2012) is 
trained using positive and negative samples and used as the classifier. 

The successful segmentation of individual trees is crucial for standing dead tree detection 
methods based on the aforementioned three-step process due to several reasons. Firstly, if the 
ITD method undersegments the point cloud, some standing dead trees are left undetected, 
whereas oversegmentation increases the probability for false detections. Secondly, features 
calculated for inaccurately segmented trees might be distorted, which will hinder the learning 
process of the ML classifiers and complicate the classification of tree segments. Accurately 
detecting and segmenting trees in all size groups is a challenging task, as small trees are often 
occluded by larger ones (Wing et al. 2015; Casas et al. 2016). Thus, when aiming to detect 
standing dead trees, it might make sense to focus on the larger trees that can be distinguished 
with relative ease. Another option is to develop methodology that does not rely on ITD. The 
only such standing dead tree detection method presented thus far is the one by Miltiadou et 
al. (2018; 2020), who created a dead tree probability layer from voxelized ALS data. In 
addition, Wing et al. (2015) aimed at mitigating the impact of ITD by performing intensity-
based point-level filtering for extracting all points originating from standing dead trees. These 
points were then input into a standard CHM-based segmentation procedure for extracting 
individual standing dead tree segments. 
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1.6 Objectives of the thesis 
 
Existing research has highlighted the benefits of ALS in remotely sensed deadwood mapping. 
The ongoing development in laser scanning technology has enabled acquiring nation-wide 
laser scanning datasets with point densities sufficient for object-level mapping. However, 
collecting precise and utilizable deadwood information using ALS is not yet possible at an 
operational level. This is due to limitations in the accuracy and scalability of existing 
methodology and datasets. To enable operational deadwood mapping in the future, there is a 
need for more information regarding the requirements for the methodology and datasets used 
for deadwood mapping. Furthermore, it is important to gain insights on the various factors 
affecting the accuracy of ALS-based deadwood mapping. This thesis aims to address these 
gaps in knowledge. 

The main objective of this thesis was to develop single tree level point cloud-based 
deadwood detection methodology. Furthermore, the objective was to gain an understanding 
of the various aspects affecting deadwood detection, including the properties of dead trees 
themselves, the characteristics of the forest surrounding them, and the properties of the 
datasets used for detecting dead trees. The thesis consists of three studies, each aiming to 
partly fulfil these objectives. Figure 2 presents a summary of the thesis and its substudies. 
 

Study I presents a method for detecting individual fallen trees from ALS point clouds. 
The study inspects whether fallen trees can be distinguished from point clouds based on their 
linear shape. Furthermore, the study inspects how the characteristics of fallen trees and their 
surrounding vegetation structure impacts the accuracy of fallen tree detection. The study aims 
to answer the following questions: 
 

1. Can individual fallen trees be mapped from point clouds?  
2. Which fallen tree characteristics impact their detection and how?  
3. How does the surrounding vegetation structure influence the detection of fallen 

trees? 
 

Study II extends on the methodology created in study I and inspects the differences in 
performance when the fallen tree detection method is applied on a moderate density ALS 
dataset and a high point density ULS dataset. The study aims to find out how the different 
properties of laser scanning datasets affect the performance of the line detection-based fallen 
tree detection method. Furthermore, the study performs a sensitivity analysis on the 
parameters of the fallen tree detection method to gain a deeper understanding of how the 
method should be tuned in different situations. The study aims to answer the following 
questions:  
 

1. How do the properties of the laser scanning dataset impact the performance of fallen 
tree detection?  

2. How can line detection-based fallen tree detection be adjusted for different datasets?  
3. Can machine learning-based filters be used for improving the performance of fallen 

tree detection? 
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Study III shifts the focus from fallen trees to standing dead trees and presents a pipeline 
for detecting standing dead trees from laser scanning data. The study aims to find out what 
types of standing dead trees can be identified from point clouds. Furthermore, the study 
inspects the effects of using samples manually labeled from UAV images (i.e., annotated 
data) instead of field reference data as training data for standing dead tree classification. The 
study aims to answer the following questions:  
 

1. How accurately can standing dead trees of different sizes be identified?  
2. Does annotated training data bias standing dead tree detection?  
3. Is it beneficial to focus on detecting large dead trees? 

 

 
 
Figure 2 A summary of the thesis and its substudies. The figure presents the main objective 
of the thesis and the questions each substudy aims to answer. The arrow between studies I 
and II demonstrates that study II extends study I. 
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2 MATERIAL 

 
 

2.1 Study site 
 

All studies presented in this thesis were conducted in an approximately 16 km2 area in the 
region of Kainuu in Finland (Figure 3). The study site can be characterized as typical boreal 
forest in which the main tree species are Norway spruce (Picea abies (L.) H. Karst.), Scots 
pine (Pinus sylvestris L.), silver birch (Betula pendula Roth), and downy birch (Betula 
pubescens Ehrh.). Some aspens (Populus tremula L.) could also be found within the site. The 
western and eastern parts of the study site were within Hiidenportti national park and Teeri-
Lososuo mire conservation area, respectively. These parts mainly consisted of old-growth 
forest. In contrast, the part between these two conservation areas was state-owned managed 
forest with varying forest maturity. The topography of the site varied from flat to steep with 
elevations between 190 and 250 meters above sea level.  

 
 

2.2 Airborne laser scanning datasets 
 

2.2.1 Moderate-density airborne laser scanning data (studies I-II) 
 
The moderate-density ALS dataset (solid black line in Figure 3) used in studies I and II was 
collected from within the whole study site using a Riegl VQ1560i laser scanner (RIEGL 
Laser Measurement Systems GmbH, Horn, Austria). The scanner collected data using two 
channels that scan the target in straight lines tilted 28 degrees against each other. As a result, 
the point distribution of the dataset was rather uniform with few patterns resulting from the 
scanning mechanism. The data were collected on May 17th, 2019 in leaf-off conditions to 
maximize the visibility of below-canopy objects. The data were acquired with five parallel 
flight lines with a 30% overlap and a single flight line perpendicular to the other lines. The 
point density of the dataset was around 15 points/m2, although the density varied depending 
on flight line coverage. 
 
2.2.2 High-density unmanned aerial vehicle -borne laser scanning data (studies II-III) 
 
The high-density ULS dataset (black dashed lines in Figure 3) used in studies II and III was 
collected from five subsites (total area 2.4 km2) within the study site using a Riegl miniVUX-
1DL laser scanner. The scanner collected data using a wedge prism scanner, resulting in a 
circular scan patterns in the dataset. The data were collected in the beginning of June 2020 
in mostly leaf-off conditions. Six to nine flight lines with 30% overlap were used for each 
subsite, depending on the shape and size of the subsite. The point density of the dataset was 
approximately 285 points/m2, although the density varied depending on flight line coverage. 
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Figure 3 The study site. Background maps: National Land Survey of Finland. 

 
 
2.3 Field reference data 

 
The field reference data were collected in two campaigns. The data in both campaigns were 
collected from circular sample plots with a 9 m radius. Campaign 1 was executed between 
July and September 2019 and was designed for capturing the full variety of forest conditions 
within the study site. The campaign consisted of measuring 103 sample plots (red and yellow 
circles in Figure 3) distributed evenly across the study site. Campaign 2 aimed to supplement 
the field reference data within the ULS subsites. 23 sample plots (blue triangles in Figure 3) 
were placed within the ULS subsites and measured in November 2020. These sample plots 
were placed in locations with known abundance of deadwood to ensure that the field data 
would contain a sufficient number of dead tree observations.  

The same measurement process was used in both campaigns. The locations of fallen trees 
and standing dead trees within the sample plots were measured using a Trimble R2 (Trimble 
Inc., Sunnyvale, California, USA) real-time kinematic (RTK) GNSS receiver. The locations 
of fallen trees were measured from both the top and bottom-end of the tree, whereas the 
locations of standing dead trees were measured by placing the receiver as close as possible 
to the tree stem. Fallen trees were measured in full even if they were only partly within the 
sample plots. Apart from the GNSS measurements taken at one sample plot, a fixed solution 
was acquired for all measurements and the positional accuracy of the measurement itself was 
within 30 centimeters. However, the placement of the GNSS device caused some further 
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positioning errors, as, for example, the receiver had to be placed on one side of a standing 
dead tree. Taking these factors into account, the positioning accuracy was still within one 
meter. The diameters of both fallen and standing dead trees were measured using steel 
calipers. Only fallen trees with a DBH over 100 mm and standing dead trees with a DBH 
over 45 mm were measured. However, the DBH could not be determined from some of the 
fallen trees, and in this case, the diameter was measured at the bottom-end of the tree. Lengths 
of fallen trees were determined based on the GNSS measurements, whereas lengths of 
standing dead trees were determined using a Vertex 5 measurement device (Haglöf Sweden 
AB, Långsele, Sweden). The species of both standing and fallen trees were determined based 
on visual inspection, whereas the decay state was measured on a scale of 1 (least decayed) to 
5 (most decayed) using the guidelines of the Finnish national forest inventory 
(Metsäntutkimuslaitos 2009).  

In addition to measuring dead trees, all living trees with a DBH over 45 mm located within 
the sample plots were mapped and measured to characterize the forest within the sample 
plots. The locations of living trees were determined based on the direction and distance from 
the sample plot center. The location of the sample plot center was measured using an RTK 
GNSS receiver. The DBH and species of each living tree were recorded. Furthermore, a 
representative sample of the living trees was selected from each sample plot and the heights 
of these sample trees were measured using a Vertex 5 measurement device. These heights 
were then used for deriving the heights of the other trees using the recorded DBHs and 
Näslund’s (1936) function. Moreover, the undergrowth at each sample plot was determined 
by counting the species-specific occurrences of trees with a DBH less than 45 mm and a 
height over 1.3 m located within 5.4 m from the sample plot center. The information about 
living trees was used for describing the vegetation structure at each sample plot. More 
specifically, the measurements of living trees and undergrowth were aggregated at the sample 
plot level to acquire the general as well as the species-specific mean DBH, mean height, tree 
count, amount of undergrowth, basal area, and volume. Furthermore, the canopy cover of 
each sample plot was estimated from ALS data using the method presented in Polewski et al. 
(2015b). 

Study I used the 103 sample plots measured in campaign 1, whereas studies II and III 
utilized all sample plots located within the ULS subsites. These consisted of the 23 sample 
plots measured in campaign 2 and 14 sample plots measured in campaign 1. Table 1 presents 
a summary of the field-measured fallen trees in studies I and II and the field-measured 
standing dead trees in study III. 
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Table 1 A summary of the field-measured dead trees used in each study. Note that for 
studies I and II, the table presents a summary of fallen trees, whereas for study III, the table 
presents a summary of standing dead trees. 

 
Study I II III 

Tree type fallen trees fallen trees standing dead trees 
Sample plots 103 37 37 
Number of trees 273 197 75 
Height (m) 

   

min 1.5 1.6 1.5 

mean 10.7 11.9 11.2 
max 23.1 28.8 27.1 

standard deviation 4.9 5.1 5.7 

Diameter (mm) 
   

min 100 100 92 

mean 176.3 193 194 

max 450 450 660 

standard deviation 60.4 72.9 93 

Decay class 
   

min 1 1 1 

median 2 1 1 
mode 1 1 1 
max 5 5 3 

 
 
2.4 Annotated data (study III) 
 
Study III utilized an annotated standing dead tree dataset as training data. The dataset was 
collected by digitizing the crowns of all visually identifiable standing dead trees within 
several bounded areas in red, green, and blue (RGB) aerial images (i.e., virtual sample plots). 
The aerial images were collected in July 2019 using a UAV. The annotated dataset was 
collected by another research group and covered parts of the ULS subsites. Crown polygons 
located within the reference sample plots (see section 2.3) were excluded from the dataset. 
In total, the annotated dataset used in study III consisted of 148 standing dead trees. Table 2 
presents a summary of the annotated trees, whereas Figure 4 shows their locations.  
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Table 2 A summary of the annotated standing dead trees. The tree heights were determined 
from ULS data. 

 
Number of trees 148 
Height (m)  
min 6.2 
mean 18.1 
max 28.6 
standard deviation 4.5 

 
 

 
 
Figure 4 The locations of the annotated standing dead trees. Background map: National 
Land Survey of Finland. 
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3 METHODOLOGICAL OVERVIEW 

 
 

3.1 Pre-processing of laser scanning point clouds 
 
The deadwood detection methods used in the studies required height-normalized laser 
scanning point clouds. Thus, as a first step, both the ALS and ULS dataset were height-
normalized by subtracting the corresponding digital terrain model (DTM) height from the z-
coordinate of each point cloud point. As a result, the z-coordinates of the points represented 
heights above ground. The DTMs used for height-normalization were generated from the 
points classified as ground. In study I, the ALS dataset was ground-classified using a slightly 
modified version of Axelsson (2000) in the Terrascan software (Terrasolid Ltd., Espoo, 
Finland). In study II, the ALS and ULS datasets were ground-classified with the method by 
Zhang et al. (2003). In study III, the ULS dataset was ground-classified with the method by 
Zhang et al. (2016). The ground classification in studies II and III was performed using the 
functions in the lidR package (Roussel et al. 2020; Roussel and Auty 2022) developed for 
the R programming language. 
 
3.2 The method for detecting fallen trees (studies I-II) 
 
A method for detecting individual fallen trees in laser scanning point clouds was developed 
in study I and further inspected in study II. The method consisted of the following steps: 
 

1. Filtering the height-normalized point cloud based on height and projecting the 
remaining points onto the xy-plane (step 3 in Figure 5). 

2. Filtering the projected points based on the shapes of point groups (connected 
components) and an ML-based classifier (step 4a in Figure 5). 

3. Placing a rectangular grid (cell size 20 × 20 m) on top of the projected point cloud 
and detecting line segments within each grid cell separately using iterative Hough 
transform (step 4b in Figure 5). 

4. Merging the line segments detected in neighboring grid cells using distance-, angle-
, and overlap-based criteria (step 4b in Figure 5). 

5. Extracting fallen tree segments from the point cloud using a region growing 
algorithm that assigned nearby points to each detected line segment (step 5 in 
Figure 5). 

6. Classifying the fallen tree segments as true or false fallen tree segments using a ML-
based classifier (step 6 in Figure 5). 

 
Each of these steps is discussed in more detail in the following subsections. In study I, 

the fallen tree detection methodology was applied on the ALS dataset, whereas in study II, 
the methodology was applied on both the ALS and the ULS dataset to inspect how the 
performance of the method differs between the two datasets. The fallen tree detection method 
was developed using the MATLAB programming language and is available in GitHub (see 
Heinaro 2021). 
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Figure 5 The fallen tree detection method. 

 
 
3.2.1 Height-based filtering and point projection 
 
As fallen trees mostly reside close to the ground, the height-normalized point cloud was first 
filtered based on height (i.e., only points falling within a specific height interval were retained 
for further analysis). This seemingly simple step is rather crucial for the performance of fallen 
tree detection, as it determines how large a fraction of fallen trees are visible and how much 
noise is present in the filtered point cloud. A suitable height interval should retain most of 
the fallen trees while filtering out as large a number of other point cloud points as possible. 
In both studies, the upper threshold for the height interval was set to 1 m, as this was 
empirically found to be a suitable interval. Ideally, the lower height threshold would be set 
to exactly 0 m, as this would retain all points close to ground. However, due to points 
originating from ground vegetation and errors in ground classification, setting the lower 
height threshold to exactly 0 m results in a very noisy point cloud from which the fallen trees 
cannot be identified. Thus, in practice, the lower height threshold must be set to a value 
slightly larger than 0 m. In study I, the lower height threshold was set to 0.2 m based on trial 
and error, whereas study II experimented with different threshold values. After height-based 
filtering, the points falling within the specified height interval were projected onto the xy-
plane to simplify further analysis. 
 
3.2.2 Connected component analysis 
 
The height-filtered and projected point cloud contained points originating from fallen trees, 
but also a large number of points originating from other near-ground objects, such as 
undergrowth. Furthermore, even after height-based filtering, the point cloud contained 
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uniform point patches originating from errors in ground classification. To reduce the number 
of false fallen tree detections, the points not originating from fallen trees needed to be 
removed. Connected component analysis was used for this task. First, the point cloud was 
converted into a binary image with a cell size of 0.2 m. Each pixel in the image was assigned 
the value 1 if it contained at least one point cloud point. Otherwise, the pixel was labeled as 
a 0. Next, the binary image was segmented into connected components, which consisted of 
all pixels with a value 1 that were connected to each other through other pixels labeled as 1. 
8-neighborhood was used for determining adjacency between pixels. Then, several shape 
descriptors describing geometrical properties were calculated for each connected component. 
Finally, the connected components were classified as originating or not originating from 
fallen trees based on the shape descriptors. Only point cloud points located within connected 
components originating from fallen trees were retained for further analysis. A shallow neural 
network consisting of one hidden layer was used as the classifier. The classifier was trained 
on manually labeled connected components that were extracted from the ALS dataset. The 
manually labeled components were extracted from outside the field-measured sample plots 
to ensure that the same components would not be used for training and testing. 
 
 
3.2.3 Line detection using iterative Hough transform 
 
Due to the linear shape of fallen trees, they can be detected as line segments in a point cloud. 
Thus, the core of the fallen tree detection method was a line detection algorithm. The 
projected and filtered point cloud was first split into 20 × 20 m rectangular regions. Then, 
line detection based on iterative Hough transform was applied to each region separately. 
Hough transform (Hough 1962; Duda and Hart 1972) searches for lines in a point cloud by 
transforming the coordinates of each point into all possible parameters of lines passing 
through the point. The outputs of Hough transform are the parameters of the line that passes 
through the largest number of points in the point cloud. After applying Hough transform, the 
infinite output line was cut into a finite line segment by searching for large gaps between the 
points falling on the line. The line segment was placed in the position of the largest 
continuous group of such points. All points located within 0.5 m from the line segment were 
then removed, and Hough transform was applied repeatedly until a stopping criterion was 
reached. Hence the name iterative Hough transform. The stopping criterion was based on the 
minimum number of points falling on a detected line. In study I, the threshold value was four 
points, whereas several different threshold values were tested in study II. 
 
3.2.4 Merging line segments 
 
The output of the iterative Hough transform algorithm was a set of line segments detected in 
each of the 20 × 20 m rectangular regions. As some fallen trees crossed the boundaries of 
these regions, it was possible that several line segments in neighboring regions represented 
different parts of the same fallen tree. Thus, line segments likely representing the same tree 
were merged using a merging scheme based on distance, angle, and overlap thresholds. 
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3.2.5 Extracting point cloud representations of fallen tree segments 
 
A region growing algorithm was applied for extracting the point cloud representations of 
fallen trees. The line segments were used as the skeleton around which the segments were 
grown. First, all points within 0.5 meters from a line segment were assigned to the segment. 
Then, all points located within 0.2 meters of any point already assigned to the segment were 
added to the segment. This step was repeated until no further points were added. 
 
3.2.6 Classifying segments as true or false detections 
 
As a last step, the point cloud representations of fallen trees were input into a convolutional 
neural network (CNN) that determined whether each segment truly represented a fallen tree 
or not. The ones classified as false detections were removed. A pretrained AlexNet 
(Krizhevsky et al. 2012) was used as the base model and its weights were tuned using transfer 
learning. The training data consisted of manually labeled segments extracted from areas 
outside the sample plots. 
 
 
3.3 The method for detecting standing dead trees (study III) 
 
 
A method for detecting standing dead trees was developed in study III. The method consisted 
of five steps: 
 

1. Extracting individual tree segments from the point cloud (step 3 in Figure 6) 
2. Calculating features for the individual tree segments (step 4 in Figure 6). 
3. Matching individual tree segments with known locations of dead trees to generate 

training data (step 5 in Figure 6). 
4. Training binary classifiers aiming to detect standing dead trees (step 6 in Figure 6). 
5. Classifying individual tree segments as dead or non-dead segments using the 

classifiers (step 7 in Figure 6). 
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Figure 6 The standing dead tree detection process. 

 
 

Step 1 was executed using R’s lidR package (Roussel et al. 2020; Roussel and Auty 2022), 
whereas steps 2 and 3 were implemented in MATLAB. The last two steps were performed 
using the Python programming language and the scikit-learn machine learning library 
(Pedregosa et al. 2011).  

As a first step, individual tree segments were extracted from the height-normalized ULS 
point cloud using a canopy height model (CHM) based algorithm. First, a CHM with a 
resolution of 0.5 m was generated using the method by Khosravipour et al. (2014). The 
method filters the point cloud using multiple height thresholds and generates a CHM using 
each subset of points. These CHMs are then combined to acquire the final CHM. Next, 
treetops were detected from the CHM with a method that uses a variable-sized search window 
whose size is based on the heights of surrounding point cloud points (Popescu and Wynne 
2004). Finally, tree segments were delineated using the detected treetops as seed points. A 
region growing algorithm developed by Dalponte and Coomes (2016) was used for this task. 

After extracting individual tree segments, various features were calculated for each 
segment. Most features described the geometry of the segment as a whole as well as the 
geometry of the estimated tree crown of the segment. Furthermore, several features described 
the intensity and point type (single, first, intermediate, last) distributions of the points 
belonging to the segment. 

As a third step, annotated and field-measured standing dead trees (see sections 2.3 and 
2.4) were matched with the extracted individual tree segments based on their location. 148 
and 75 individual tree segments were matched with annotated and field-measured data, 
respectively, and labeled as standing dead trees. As binary classifiers require training samples 
from both classes, all non-matched segments located within the field reference sample plots 
were labeled as non-dead segments. Furthermore, 592 segments located in proximity of the 
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annotated dead trees, but not matched with them, were selected randomly and labeled as non-
dead segments to be used together with the annotated standing dead trees. As a result, there 
were two datasets: one consisting of the 148 annotation-based dead tree segments and 592 
non-dead segments (referred to as the annotation-based dataset), and another consisting of all 
segments located within the sample plots and labeled as dead or non-dead (referred to as the 
field-based dataset). Note that we labeled the segments as dead or non-dead instead of dead 
and living, as this described the segments not matched with known locations of dead trees 
more accurately. 

Correctly segmenting small trees from the point cloud is a challenging task due to small 
trees often being occluded by larger trees surrounding them. Thus, the individual tree 
segments extracted for small trees might not accurately represent the true dimensions of the 
tree. Using such non-representative segments as training data might hinder the performance 
of standing dead tree classification. To inspect this effect, the annotation-based dataset and 
field-based dataset were further divided into three overlapping subsets using three segment 
height thresholds: 0, 7, and 14 meters. Thus, the total number of training sets was six. Each 
training set was used for training a classifier aiming to classify individual tree segments as 
dead or non-dead segments. Each classifier consisted of a feature normalization step, an 
analysis of variance (ANOVA) based feature selection step, and a logistic regression step. 
Due to the large number of possibly redundant features, L1 regularization was used within 
the logistic regression model. The number of features to be selected during the ANOVA 
based feature selection step, and the strength of L1 regularization were hyperparameters 
optimized using cross-validation. The area under the precision-recall curve was used as the 
optimization metric, as it places emphasis on both minimizing the number of false detections 
and maximizing the number of true detections. 
 
 
3.4 Performance assessment 
 
3.4.1 The performance of fallen tree detection (studies I-II) 
 
The performance of the fallen tree detection method used in studies I and II was evaluated 
against the fallen trees on the field-measured sample plots (see section 2.3). Fallen tree 
segments detected by the method were first matched with the field-measured fallen trees. 
Manual matching was used in study I, whereas automatic matching based on distances and 
angles was used in study II. Detected fallen tree segments that were matched with a field-
measured tree were labeled as true positives (TPs), whereas non-matched segments were 
labeled as false positives (FPs). Field-measured trees that were not matched with a segment 
were labeled as false negatives (FNs). The total numbers of TPs, FPs, and FNs were used for 
calculating the main evaluation metrics – precision and recall (equations 1 and 2). Precision 
represents the fraction of true detections from all detections, whereas recall represents the 
fraction of trees that were detected. 
 

 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
#𝑇𝑃𝑠

#𝑇𝑃𝑠 + #𝐹𝑃𝑠 (1) 
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 𝑟𝑒𝑐𝑎𝑙𝑙 =
#𝑇𝑃𝑠

#𝑇𝑃𝑠 + #𝐹𝑁𝑠 (2) 

 
In study I, the general precision and recall of the ALS-based fallen tree detection method 

were calculated using data from all of the 103 sample plots measured during campaign 1. 
Furthermore, to inspect the performance of the method for different types of fallen trees, 
recall was determined for trees of different lengths, diameters, decay classes, and species. 
Note that tree characteristic specific precisions could not be calculated, as determining the 
length, diameter, decay class or species of false positives was not possible. 

In addition to evaluating the performance of the fallen tree detection method on different 
types of fallen trees, study I inspected how the surrounding vegetation structure affects the 
detection of fallen trees. Logistic regression models were fitted using sample plot specific 
vegetation characteristics as independent variables, and sample plot specific precisions and 
recalls as dependent variables. The coefficients of the fitted models were then used for 
determining the relationship between each vegetation characteristic and the performance of 
fallen tree detection. Moreover, the difference in performance was compared between plots 
located in old-growth forests and plots located in managed forests. 

Similarly to study I, study II evaluated the general precisions and recalls as well as tree 
characteristic specific recalls. The evaluation was applied separately for ALS- and ULS-
based fallen tree detection. The performance metrics were calculated using the 37 sample 
plots located within the ULS subsites. 
 
3.4.2 Sensitivity analysis (study II) 
 
The fallen tree detection method used in studies I and II included several modifiable 
parameters. In study I, the values of these parameters were selected based on knowledge 
gained during method development. In study II, a sensitivity analysis was carried out to 
evaluate the impact of these parameters more comprehensively and to reveal the pros and 
cons of the method. To limit the computational and analytical complexity, four parameters 
were selected for sensitivity analysis. Table 3 presents a description of the parameters. The 
sensitivity analysis was based on applying the fallen tree detection multiple times - each time 
changing the parameter values - and evaluating the performance against the field-measured 
data. Sobol’s method (Sobol' 1990, 1993) was used for inspecting the contribution of each 
parameter to the total variance in performance. 
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Table 3 A description of the parameters included in sensitivity analysis. 

 
Parameter Description Tested values 
HR The height range from which 

fallen trees are searched 
(see section 3.2.1) 

Lower limit: 0.1, 0.2 and 0.3 
m 
Upper limit: 1 m 
 
In total, 3 different height 
ranges. 

CCC Whether to use connected 
component classification or 
not (see section 3.2.2). 

0 – connected component 
classification is not used 
1 – connected component 
classification is used 

MNP The minimum number of 
point cloud points that must 
fall on the same line for a 
line to be detected (see 
section 3.2.3).  

3, 6, 9,…, 30 points. 
10 different values in total. 

FTR Whether to use the 
convolutional neural 
network that aims to remove 
false fallen tree detections 
(see section 3.2.6)  

0 – false tree removal is not 
used 
1 – false tree removal is 
used 

 
 
3.4.3 The performance of standing dead tree detection (study III) 
 
In study III, the performance of the standing dead tree classifiers was assessed using 100 
repeats of stratified 5-fold cross-validation on the field-measured data. First, a standing dead 
tree classifier was trained using the annotated data. Then, at each iteration of cross-validation, 
4/5ths of the field-measured data was used for training a classifier. The remaining 1/5th of field 
data was used for evaluating the performances of the field data trained classifier and the 
classifier trained on annotated data. Finally, the results of each iteration were averaged to get 
the final performance metrics. This process was repeated for all height-thresholded subsets 
of training data. The evaluated performance metrics were precision (equation 1), recall 
(equation 2), and Cohen’s kappa (equation 3-5).  
 

 𝐶𝑜ℎ𝑒𝑛!𝑠	𝑘𝑎𝑝𝑝𝑎 =
𝑝" −	𝑝#
1 − 𝑝#

, (3) 

where po, the relative observed agreement among raters is 
 

 𝑝" =
#𝑇𝑃𝑠 + #𝑇𝑁𝑠

𝑁  (4) 

and pe, the probability of chance agreement is 
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 𝑝# =
#𝑇𝑃𝑠 + #𝐹𝑃𝑠

𝑁 ×
#𝑇𝑃𝑠 + #𝐹𝑁𝑠

𝑁 +
#𝑇𝑁𝑠 + #𝐹𝑁𝑠

𝑁 ×
#𝑇𝑁𝑠 + #𝐹𝑃𝑠

𝑁  (5) 

In the equations, #TNs denotes the number of true negatives (i.e., non-dead segments 
correctly classified as non-dead segments), and N = #TPs + #FPs + #TNs + #FNs. 

All three performance metrics were calculated for trees of different heights, whereas only 
recalls were calculated for trees of different diameters, decay classes, and species, as 
determining these characteristics from the individual tree segments would have been 
challenging. 
 
 
4 RESULTS AND DISCUSSION 

 
 

4.1 Summary of the results in the original articles 
 

4.1.1 The performance of fallen tree detection (studies I-II) 
 
The fallen tree detection method found 30% of all field-measured fallen trees in study I. In 
addition, the method generated a significant amount of false detections, as only 31% of all 
detections could be linked with a field-measured tree. The probability of detection (recall) of 
a fallen tree was highly dependent on the size of the tree. For example, the method detected 
75% of all fallen trees over 20 m long (Figure 7a) and 73% of all fallen trees with a diameter 
larger than 250 mm (Figure 7b).  

In addition to tree size, the species of a fallen tree impacted its detection probability. It 
seemed that deciduous trees were less likely to be detected than coniferous trees (Figure 7d). 
One reason for this phenomenon could be the differences in the vegetation structure in areas 
dominated by coniferous trees versus areas dominated by deciduous trees. Study I found that 
the amount of undergrowth was generally smaller in coniferous-dominant areas, allowing 
more favorable conditions for detecting fallen trees. A further reason could be the branch 
structure of coniferous versus deciduous trees. Nyström et al. (2014) reported similar results 
regarding the detection of fallen coniferous and deciduous trees and suggested that one reason 
for the high detection rate of pines could be their scarce branch structure, as the branches do 
not prevent laser pulses from hitting the trunk of a fallen tree. 

Generally, the tree decay process seemed to reduce the probability of a fallen tree being 
detected (Figure 7c). A likely explanation for this is that as a fallen tree decomposes, its 
trunk loses its form and settles closer to the ground. Eventually a decomposed tree is covered 
by moss and other ground vegetation, and becomes very difficult to distinguish from the 
terrain. Note, however, that the recall of trees in decay class 5 was actually higher than that 
of less decayed trees. The reason for this anomaly could be that the reference trees in decay 
class 5 were larger than the trees in other decay classes. 
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Figure 7 Recall by fallen tree type. Plots a, b, and c show the change in recall when the 
reference data was filtered using various length, diameter, and decay class thresholds, 
whereas plot d shows the recall by tree species. 

 
 
The performance of the fallen tree detection method varied depending on the type of 

forest in which it was applied. Inspecting the relationship between different vegetation 
characteristics and performance revealed that the structure of vegetation significantly 
impacted performance. Firstly, the size (height, and diameter) of surrounding living trees was 
positively correlated with both precision and recall (Table 4), indicating that the method 
achieved a higher performance in areas with large trees. Secondly, the amount of 
undergrowth had a notable negative correlation with precision (Table 4), indicating that 
abundant undergrowth hindered the performance of the method. Thirdly, the performance of 
the fallen tree detection method was significantly higher on sample plots located in old-
growth forest as opposed to those located in managed forest. The precision and recall for old-
growth sample plots were 0.36 and 0.34, respectively. In contrast, the same metrics for 
sample plots located in managed forest were 0.02 and 0.04. The reference trees measured on 
sample plots located in managed forest were, on average, smaller than those located in old-
growth forest, which partly explains this phenomenon. 
 
Table 4 Correlation between different vegetation characteristics and the precision and recall 
of the fallen tree detection method. 

 
Vegetation 
characteristic 

Correlation with 
precision 

Correlation with 
recall 

Living tree height 0.452 (p < 0.05) 0.128 (p < 0.05) 
Living tree DBH 0.474 (p < 0.05) 0.164 (p < 0.05) 
Amount of undergrowth -0.374 (p < 0.05) -0.004 (p > 0.05) 
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The sensitivity analysis carried out in study II revealed that several dataset- and 

methodology-related factors impacted the performance of fallen tree detection. Firstly, the 
recalls of ULS-based fallen tree detection were generally higher than those of ALS-based 
fallen tree detection when no ML-based filters (CCC, FTR, see Table 3) were used. This 
implies that increasing the point density increases the proportion of fallen trees that can be 
detected. However, the tradeoff was that the higher point density resulted in a significant 
increase in the number of false detections. This issue was amplified by the circular scan 
pattern of the ULS dataset, which generated linear groups of points in the point cloud. The 
minimum number of points parameter (MNP, see Table 3) could be adjusted for balancing 
the tradeoff between precision and recall, but the false positive issue remained even with 
large values of MNP. Another factor affecting both precision and recall was the height range 
from which fallen trees were searched (HR, see Table 3). Using a higher value for the lower 
limit of HR increased precision, but decreased recall. Lastly, ML-based filters were able to 
reduce the number of false detections while also reducing the number of true detections. 
These filters worked reasonably well for the ALS dataset on which they were originally 
trained, but their performance on the ULS dataset was poor. 
 
4.1.2 The performance of standing dead tree detection (study III) 
 
The general performance of the standing dead tree detection method developed in study III 
was rather poor. This was, for a large part, due to challenges with individual tree 
segmentation, which resulted in a large fraction of the segments not representing individual 
trees. Based on kappa scores (Figure 8), the performance of the classifiers was close to 
random guessing for small trees, but the performance improved as tree height increased. This 
was especially evident with the classifiers trained using annotated data. For the largest tree 
class (trees taller than 14 meters), the best classifier trained on annotated data was able to 
achieve a cross-validated precision, recall, and kappa score of 0.23, 0.48, and 0.17, 
respectively. The corresponding values for the best classifier trained on field data were 0.17, 
0.37, and 0.08. 

Filtering training data based on height did not improve the performance of the standing 
dead tree classifiers. For annotated data, performance decreased while for field data, 
performance remained similar. This implies that, for annotated data, the reduction of the 
number of training samples had a more significant negative effect than the increase in the 
assumed representativeness of the segments.  
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Figure 8 The performance of the standing dead tree classifiers on trees taller than 0, 7, and 
14 meters. Each row of plots shows the results for classifiers trained using segments with a 
height above a specific threshold. For example, the plots on the third row show results for 
the classifiers trained with segments taller than 14 meters. AnnotX and FieldX denote the 
classifiers trained using segments taller than X meters in the annotated and field datasets, 
respectively. DummyX denotes a classifier making random predictions based on the 
proportion of dead and non-dead segments taller than X meters in the field dataset. κ 
denotes Cohen’s kappa. 

 
 

4.2 Major findings of the thesis 
 
4.2.1 The majority of large fallen trees can be identified from airborne laser scanning point 
clouds based on their linear shape (study I) 
 
Study I found that the length and diameter of fallen trees were the most significant 
characteristics affecting their detection probability. The detection rate (recall) of large trees 
was high, whereas the majority of small trees were left undetected. This result is likely due 
to large fallen trees standing out from the forest floor, as they are not as likely to be occluded 
by other near-ground objects as their smaller counterparts. In the point cloud, this means that 
large trees generate a sufficient number of laser returns for them to be detected. Similar 
results were reported by Mücke et al. (2013), Nyström et al. (2014), and Polewski et al. 
(2015b). This phenomenon is rather fortunate from an ecological viewpoint, as large trees 
have the most ecological significance (Andersson and Hytteborn 1991; Bader et al. 1995). It 
also raises a question on whether ALS-based fallen tree detection should focus on large trees, 
considering that detection methods always include a tradeoff between precision and recall. 
Focusing detection on large trees would allow decreasing the sensitivity of the method, which 
would reduce the number of false detections. 
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4.2.2 The structure of the surrounding vegetation impacts the detection of fallen trees 
(study I) 
 
The performance of the fallen tree detection method was highest on sample plots with large 
living trees and scarce undergrowth. Two main reasons likely explain this result. Firstly, 
living tree size is an indicator of fallen tree size, as fallen trees have at some point been part 
of the living forest. Thus, in general, fallen trees are larger in areas where living trees are 
large. Large trees, in turn, are more likely visible in the point cloud. Secondly, as fallen trees 
reside close to the ground, other near-ground objects greatly affect their detection. Dense 
undergrowth and lush ground vegetation occlude fallen trees thus preventing their detection.  
Furthermore, line detection is rather sensitive to noise and thus other near-ground objects 
will generate false fallen tree detections. Similar challenges arising from undergrowth and 
ground vegetation were identified by Lindberg et al. (2013) and Mücke et al. (2013). In our 
study, these challenges were especially evident with the sample plots located in managed 
forests, on which the performance of the fallen tree detection method was very poor. The 
managed forests in the study area had abundant undergrowth and significant amounts of 
logging residue (branches and treetops), which resulted in the near-ground portion of the 
point cloud being full of points not originating from fallen trees (i.e., noise). The fallen tree 
detection method was not able to separate these points from the fallen tree points, which 
resulted in the method missing most of the fallen trees while generating a very high number 
of false detections. One possible solution for addressing the method’s inability to separate 
points originating from fallen trees from other near-ground points would be to use full-
waveform laser scanning data. Such data was already used for fallen tree detection by Mücke 
et al. (2013), who found that the waveform properties of points originating from fallen trees 
differ from those originating from other near-ground objects. 
  
4.2.3 Fallen tree detection methodology should be adjusted to the properties of the laser 
scanning dataset available (study II) 
 
Study II found that the performance of the fallen tree detection method was sensitive to the 
dataset used. The method was originally generated for the ALS dataset, and clearly favored 
this dataset compared to the denser ULS data. The main issue was the method’s sensitivity 
to noise. Hough transform detects a line at any location where a sufficient number of points 
fall on the same line. It does not consider whether these points form an elongated object by 
themselves or are rather a part of a non-elongated point patch (see, e.g., Grompone von Gioi 
et al. 2008). Thus, any sufficiently large uniform point patches will result in line detections 
regardless of their shape. Hence, large point patches not originating from fallen trees should 
be removed before applying Hough transform on the point cloud. Already with the sparser 
ALS dataset, Hough transform’s inability to distinguish elongated point patches from non-
elongated ones was an issue. This issue was highlighted when the method was applied on the 
denser ULS data.  

The ML-based filters applied before and after the iterative Hough transform step aimed 
at addressing the method’s sensitivity issue and reducing the number of false detections. 
These filters were trained on samples extracted from the ALS data and seemed to work 
relatively well on this dataset. However, the filters seemed to lose their discriminative power 
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when applied on the ULS dataset, as in addition to reducing false detections, they 
significantly reduced the number of true detections as well. This implies that the two laser 
scanning datasets were too different to share common ML filters and highlights the 
importance of using dataset-specific models when utilizing ML. 

Most forest inventory-related methods utilizing laser scanning data start by normalizing 
the heights of the point cloud. This allows a natural way of inspecting the point cloud, as e.g., 
the heights of different objects are easily measurable and comparable. Normalizing point 
heights requires extracting the ground from the point cloud (i.e., determining which point 
cloud points represent ground returns). When standing trees are of interest, the accuracy of 
ground extraction is not that big a concern, as minor inaccuracies in ground extraction do not 
significantly distort the properties of the trees. However, when inspecting fallen trees, an 
accurate ground extraction becomes essential, as it should be able to distinguish near-ground 
objects from the ground layer. The same observation was made by Mücke et al. (2013) and 
Polewski et al. (2015b), who  highlighted the importance of the ground extraction phase and 
noted that the sensitivity of the ground extraction algorithm should be adjusted to balance 
two contradicting factors. Firstly, the algorithm should be sensitive enough to be able to 
separate near-ground objects from the terrain, as otherwise the objects will be left undetected. 
Secondly, the algorithm should not be too sensitive, as this might lead to small variations in 
the terrain being mistakenly identified as fallen trees. Finding a suitable balance between 
these factors is rather challenging, as the small undulations in the terrain might be of the 
magnitude as fallen trees. In practice, finding a suitable ground extraction algorithm is based 
on trial and error, as the suitability of a specific algorithm depends on various properties of 
the dataset and the area of interest.  

Our line detection based fallen tree detection method required that the ground layer be 
removed in full before detecting fallen trees, as otherwise the ground points would have 
generated a very high number of false detections. As ground extraction is never perfect, the 
method used a cutoff height slightly above zero to ensure that the majority of ground points 
would be removed even if they were incorrectly labeled. Similar cutoff heights were used by 
earlier studies (Lindberg et al. 2013; Polewski et al. 2015b; Yrttimaa et al. 2019). The value 
of this cutoff height must be carefully considered, as setting it too high will result in fallen 
trees being removed from the point cloud, whereas setting it too low will result in a noisy 
point cloud. Study II found that the best cutoff heights were 0.1 m for ALS data and 0.2 for 
ULS data. 
 
4.2.4 Discrete return ULS data is not sufficient for mapping standing dead trees (study III) 
 
The results of study III revealed that discrete return high density laser scanning data does not 
suffice as the only dataset for standing dead tree detection. The three-step detection process 
consisting of ITD, feature extraction, and classification relied heavily on the geometric 
shapes of trees, which introduced several issues. Trees, including living and dead ones, come 
in a wide variety of shapes and sizes. Furthermore, trees may intertwine and grow beneath 
each other, which makes a forest a complex environment. This makes extracting individual 
trees from point clouds a challenging task. This issue is highlighted with standing dead trees. 
ITD methods have mostly been developed for living trees whose crowns are more 
homogeneous compared to those of dead trees. Furthermore, the crowns of standing dead 
trees are often scarce or non-existent. As a result, standing dead trees might not generate a 
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sufficient number of laser returns for being clearly visible in the point cloud. Moreover, dead 
crowns do not compete for light and thus living crowns can grow over and around them. Our 
standing dead tree detection method was based on the assumption that the majority of 
individual trees can be accurately delineated from the point cloud. This assumption turned 
out not to be true. As a result, a significant fraction of standing dead trees were not identified 
in the first place, and the ones that were identified, were not accurately delineated. The latter 
issue resulted in distorted segments whose geometric features did not represent the true 
geometric properties of the trees in the forest. Using such segments as training data prevented 
the ML-based classifiers from learning to distinguish standing dead trees from living ones, 
and complicated the classification of unseen samples. Combining the ULS data with a 
spectral dataset (Polewski et al. 2015a; Briechle et al. 2020) or using full-waveform laser 
scanning (Yao et al. 2012; Amiri et al. 2019; Miltiadou et al. 2020) would have provided 
additional information that could have helped in correctly segmenting the trees and 
identifying dead trees. 
 
4.2.5 Annotating dead trees from aerial images provides an efficient means for collecting 
training data for dead tree detection (study III) 
 
ML-based computer vision methods require that the samples used for training capture the full 
variety of the objects of interests. When standing dead trees are the objects of interest, a 
relatively large dataset is needed for fulfilling this requirement due to the complexity of these 
objects. Annotating dead trees from aerial images provides a means for collecting such a 
dataset efficiently, but it also introduces a bias, as the bird’s eye perspective and inability to 
collect information from below the canopy only allows identifying standing dead trees that 
are relatively large and have a crown. The results of study III showed, however, that this 
limitation in the variability of training samples does not actually impact performance, as, 
even with its canopy penetration capabilities, laser scanning does not allow identifying a 
wider variety of standing dead trees. Thus, using annotated samples is a viable option, which 
could be further utilized for eliminating the need for an error-prone rule-based ITD phase. 
Collecting a training dataset significantly larger than the one used in study III would allow 
shifting to state of the art object detection approaches, which detect objects of interest from 
an unsegmented point cloud (see Zhou and Tuzel 2017; Lang et al. 2019). 
 
 
4.3 Constraints and future perspectives 
 
4.3.1 Technological and methodological constraints 

 
This thesis aimed at developing laser scanning based deadwood detection methodology, 
keeping in mind the operational applicability of these methods. This meant that factors, such 
as efficiency, large-scale applicability, and generalizability were considered when making 
methodology-related decisions. It would likely have been possible to improve the 
performance of the methods by adding complex rules and fine-tuning the parameters of the 
methods for each sample plot separately, but this would have hindered the operational 
applicability of these methods and distorted the results. Furthermore, operational 
applicability was considered in the datasets used, as the methods solely utilized discrete 
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return laser scanning data, which is the type of laser scanning data most widely available. 
Unfortunately, it turned out that such data was not sufficient for standing dead tree detection, 
and spectral information (Polewski et al. 2015a; Amiri et al. 2019) or full-waveform data 
(Yao et al. 2012) would have been a requirement for a method that could be utilized in 
practice. 

The datasets used in the studies were collected within a two-year time period for practical 
reasons. Within this time period, new dead trees might have appeared on the study site. As a 
result, there might have been some differences between the dead trees visible in the RS 
datasets and the collected reference data. Furthermore, fallen and standing dead tree detection 
have contradicting requirements regarding the optimal time for data acquisition. Fallen tree 
detection benefits from a maximized visibility to the ground and thus the laser scanning data 
should be collected in leaf-off conditions. In contrast, standing dead trees can be more easily 
identified from living ones in leaf-on conditions, as dead trees do not grow leaves. This is 
especially true for deciduous trees that died recently, as their only notable difference to living 
trees might be their inability to grow leaves. The ALS dataset, which was only used for fallen 
tree detection, was collected during spring 2019, before trees had grown leaves. In contrast, 
the ULS dataset was collected during the early summer of 2020, when leaf growth was in 
progress. This data acquisition time was neither optimal for fallen tree detection nor optimal 
for standing dead tree detection, but aimed at being a suitable compromise for both tasks. 
Coniferous trees dominated the majority of the sample plots and thus the impact of this 
compromise was relatively small. However, it is likely that the detection of fallen trees was 
slightly impaired, as the ground vegetation and deciduous undergrowth were in a more lush 
state. 

The field reference data was collected using a standardized scheme that aimed at 
acquiring consistent data throughout the study area. However, since the collection of field 
data involved several people, and some of the measured attributes were not easily 
quantifiable, there might have been some inconsistencies in the field data. As an example, 
determining the decay state was based on how easily a knife was able to penetrate the wood, 
which largely depended on how much pressure was applied on the knife. In addition, the state 
at which a decaying tree is considered a part of ground is somewhat subjective, and thus 
similar trees might have been measured at some sample plots, whereas on others they might 
have been left unmeasured. These slight inconsistencies in the field reference data might have 
had minor impacts on the results. 

The non-dead training segments in the annotation-based dataset used in study III were 
selected as a random set of segments located in the proximity of the annotated dead trees, but 
not matched with them. Selecting the non-dead samples in such a way likely introduced some 
errors in the results, as it was possible that some of the non-dead samples actually represented 
standing dead trees. The reason for using this non-optimal selection approach was that the 
annotated dataset was collected and provided by another research group, and we did not have 
access to the UAV imagery from which the standing dead trees were annotated. However, as 
the annotated data were collected by digitizing the crowns of all visually identifiable dead 
trees within virtual sample plots, it is safe to assume that the number of erroneous samples in 
the non-dead class was rather small.  
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4.3.2 Applicability of the methods and future insights 
 
The methods presented in this thesis were developed for and tested in boreal forests. 
Although the methods were tested on a study site with varying forest characteristics, the 
suitability of the methods for other forest biomes cannot be guaranteed. Even within the 
boreal forest zone, applying the developed methodology will likely require some parameter 
tuning to optimize the performance for the area of interest. Nevertheless, the main principles 
of the presented methods should be generalizable for most types of forest. Although the 
methods include some tunable parameters, their development did not involve plot-level 
calibrations  or complex study-specific rules that limit their generalizability. While this might 
impair the performance of the methods, it does not restrict their operational applicability. 

Future research concerning ALS-based fallen tree detection could address two topics. 
Firstly, one key question highlighted by the findings of this thesis is how to reduce the 
number of false detections. The fallen tree detection method presented in this thesis aimed at 
addressing this question by applying ML-based filters before and after the actual fallen tree 
detection phase. However, the performance of these filters left room for improvement. The 
performance could potentially be improved by using intensity- or waveform-related features 
in addition to geometric features. Secondly, fallen tree detection itself only provides 
information about the location and number of fallen trees. Estimating further properties, such 
as the volume of the detected trees is not a trivial task, but would be highly beneficial for 
many applications of deadwood data. 

This thesis highlighted the difficulty of ALS-based standing dead tree detection. There 
are several ways in which future research could advance this field and overcome the 
difficulties. Firstly, it would be beneficial to shift to object detection approaches that 
eliminate the need for the error-prone ITD phase. Secondly, acknowledging that such 
approaches require large amounts of training data, further research could focus on optimizing 
ITD for dead tree detection. Thirdly, more research is needed on how full-waveform and 
multispectral laser scanning can be utilized for detecting standing dead trees.  
 
 
5 CONCLUSIONS 

 
 

During the recent decades, remote sensing has achieved an increasingly important role in 
forest monitoring due to its ability to efficiently acquire information at large scales. Together 
with aerial and satellite imagery, ALS has been one of the widely utilized RS methods, as it 
provides detailed 3D information of the target. ALS-based forest inventory methods have 
largely focused on measuring forest attributes relevant for forestry, whereas ecological 
applications of ALS have not received as much focus. The global crises – climate change and 
biodiversity loss – have introduced an increasing need for accurate and up-to-date 
information related to forest ecology and biodiversity hotspots.  

The goal of this thesis was to contribute to the methodology used for collecting accurate 
and timely information regarding the ecological status of forests. The thesis focused on 
developing laser scanning based deadwood detection methodology. Furthermore, the thesis 
provided insight on dataset-, methodology-, and forest structure-related factors that affect the 
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accuracy of deadwood mapping using laser scanning. The thesis aimed at approaching the 
topic with an operational mindset. Thus, the methodological decisions favored efficiency and 
large-scale applicability. Furthermore, the methods were evaluated against ground truth, thus 
providing unbiased estimates of their operational accuracy. 

Studies I and II confirmed that current ALS devices are capable of collecting information 
with a level of detail sufficient for mapping individual fallen trees. The studies found that, 
while small fallen trees are often not visible in ALS data, the majority of large fallen trees 
can be identified based on their linear shape. However, undergrowth and other near-ground 
objects generate false detections, the number of which depends on the sensitivity of the 
detection methodology used. The aforementioned  results suggest that ALS-based fallen tree 
mapping should focus on the detection of large trees, as aiming to detect trees of all sizes 
requires overly sensitive detection methodology that is prone to false detections. This would 
ensure that deadwood information collected using ALS is, although incomplete, as correct as 
possible, which would allow using such information in decision-making. This conclusion is 
supported by the fact that large dead trees have the most ecological significance. 

Study III found that discrete return ALS data does not suffice for mapping individual 
standing dead trees, even if the data has a high point density. The bird’s eye perspective limits 
the information about the vertical structure of trees, which complicates the identification of 
individual trees and prevents observing their true geometrical properties. This is especially 
true for dead trees, whose crowns are often scarce or non-existent. Spectral information 
would help in distinguishing individual trees, but the problem is that imagery collected from 
the bird’s eye perspective only captures the top-most canopy layer. Multi-spectral and full-
waveform laser scanning are viable options, as they provide detailed information about the 
reflectance of targets while retaining the ability to capture information from below the top-
most canopy layer. These laser scanning methods have already been successfully utilized for 
tree species classification and the detection of dead trees (Yao et al. 2012; Mücke et al. 2013; 
Amiri et al. 2019). As these methods become more common, we may see a rapid development 
in individual tree level applications of ALS data.  

The detection methods used in this thesis were a combination of rule-based approaches 
and machine learning. The advantage of rule-based approaches is that it is easy to incorporate 
domain knowledge into these approaches. However, the disadvantage is that rule-based 
approaches involve a number of human-made decisions and a set of parameters that need to 
be tuned. These decisions and parameters greatly affect the performance of the whole method 
and often need to be adjusted when applying the method to different areas. Furthermore, a 
single poorly made decision or poorly tuned parameter may result in the performance of the 
whole method being drastically reduced. For example, the main reason for the poor 
performance of the standing dead tree detection method was that the rule-based ITD was not 
able to delineate individual trees accurately enough. Shifting to fully ML-based object 
detection approaches would largely reduce the need for manually crafted rules that are highly 
sensitive to changes in the characteristics of the forest. The field of computer vision has 
undergone a paradigm shift and almost all state of the art object detection approaches are 
fully based on ML and deep learning. This paradigm shift has already revolutionized some 
fields, such as autonomous driving, and can be expected to land into forest-related 
applications as well.  

ML-based object detection approaches require large amounts of training data. Collecting 
sufficient amounts of training data using conventional field inventory methods is not feasible, 
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and more efficient approaches are required. Annotating training samples from RS datasets 
improves the efficiency of training data collection significantly. The efficiency of annotation 
can be further improved by introducing semi-automatic annotation procedures in which, for 
example, the annotator identifies a part belonging to an object of interest and an automatic 
segmentation procedure determines the other parts belonging to the object. 

This thesis investigated ALS-based deadwood mapping at an individual tree level. The 
thesis contributed to the understanding of the applicability of ALS for deadwood mapping 
and provided insight on the challenges related to such a mapping approach. The thesis 
showed that individual fallen trees can be identified from discrete return ALS data, whereas 
standing dead trees require different types of datasets. The results of this thesis showed that 
ALS-based deadwood mapping is far from a fully resolved topic. However, further 
developments in laser scanning technology and deadwood detection methodology could 
enable mapping deadwood with an accuracy sufficient for operational purposes. 
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