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ABSTRACT 

 

 

Plant physiology concentrates on the study of plant internal processes, such as growth, 

nutrient uptake and photosynthesis. The quantification of photosynthesis regulation is 

significant in understanding how plants react to the changing climate. Spectral remote 

sensing methods, using both reflected light in the visible and near infrared wavelengths, as 

well as chlorophyll fluorescence, are used to gather information about plant physiological 

variables. These methods have developed rapidly, prompted by the advances in remote 

sensing platforms and sensors. 

However, interpretation of remote sensing signals can be challenging. Due to canopy 

heterogeneity, the signal is affected by various elements, such as scattering, soil background 

and canopy structural effects. Additionally, open questions remain linked to the underlying 

mechanistic processes in the leaf modulating the optical signal, such as nutrient contents and 

leaf photochemistry, and how these processes and the optical signals diverge in response to 

temporal variation. Through multi-scale measurements, this thesis aims to advance the 

interpretation of optical remote sensing signals as they are affected by spatial and temporal 

variation, while promoting the use of novel methods and devices. 

Results indicate that diurnal and long-term variation of solar induced fluorescence (SIF) 

is driven by photosynthetic and structural factors, causing possible misinterpretations in SIF 

data. Additionally, depending on the scale of observation, results show that the capacity of 

remote sensing to detect changes in foliar nutrients depends on the covariation of nutrients, 

pigments and canopy structure, underlining the need for both leaf and canopy level 

measurements. Finally, we advocate for the implementation of a novel miniaturized 

fluorometer, demonstrating the ability to track the seasonal regulation of photosynthesis 

using integrated measurements of chlorophyll fluorescence and gas exchange. The results 

from this thesis underline the need for simultaneous multi-scale measurements of leaf and 

canopy physiological factors to further our understanding of photosynthesis regulation. 

 

 

 

 

 

 

 

 

Keywords: Chlorophyll fluorescence, vegetation indices, photosynthesis, nutrients, carbon 

assimilation, multi-scale measurements 
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TIIVISTELMÄ 

 

 

Kasvien fysiologian tutkimus keskittyy kasvin sisäisten prosessien, kuten kasvun, 

ravinteidenottokyvyn ja fotosynteesin tutkimiseen. Fotosynteesin säätelyn mittaus on 

merkittävää ymmärtääksemme, miten kasvit reagoivat muuttuvaan ilmastoon. Valon 

spektriin perustuvia kaukokartoitusmenetelmiä, jotka käyttävät näkyvää ja lähi-infrapuna-

aallonpituuksilla heijastunutta valoa, sekä klorofyllifluoresenssia, käytetään keräämään 

tietoa kasvin fysiologisista muuttujista. Nämä menetelmät ovat kehittyneet nopeasti 

kaukokartoitusalustojen ja sensoreiden kehityksen myötä. 

Kaukokartoitustulosten tulkitseminen voi kuitenkin olla haasteellista. Latvuston 

heterogeenisuuden vuoksi mittaussignaaliin vaikuttavat erilaiset tekijät, kuten ilmakehästä 

johtuva hajonta, mitattavan kasvuston tausta ja kasvuston rakenteelliset ominaisuudet. 

Lisäksi optiseen kaukokartoitussignaaliin vaikuttavat lehden fysiologiset prosessit, kuten 

lehden ravinnetasapaino ja lehden valokemia, sekä miten nämä prosessit ja optiset signaalit 

muuttuvat ajallisen vaihtelun seurauksena. Tämän väitöskirjan tavoitteena on edistää optisen 

kaukokartoituksen signaalitulkintaa, edistäen samalla uusien menetelmien ja laitteiden 

käyttöönottoa. 

Tulokset osoittavat, että aurinkoinduktiivisen fluoresenssin (SIF) päivittäinen ja 

pitkäaikainen vaihtelu latvustossa johtuu sekä fotosynteettisistä ja rakenteellisista tekijöistä, 

mikä saattaa aiheuttaa virheellisiä tulkintoja SIF-mittauksista. Lisäksi tulokset osoittavat, että 

kaukokartoituksen kyky havaita muutoksia lehtiravinteissa riippuu ravinteiden, pigmenttien 

ja kasvustorakenteen yhteisesiintymisestä, korostaen samanaikaisten lehti ja latvustotason 

mittauksien tärkeyttä. Esittelemme myös uudenlaisen miniaturisoidun fluoresenssimittarin, 

joka demonstroi kyvyn seurata fotosynteesin kausittaista säätelyä klorofyllifluoresenssin ja 

kaasunvaihdon integroiduilla mittauksilla. Tämän väitöskirjan tulokset korostavat tarvetta 

samanaikaisille ja monimittakaavaisille lehtien fysiologisten tekijöiden mittauksille, jotta 

voisimme edistää ymmärrystämme fotosynteesin säätelystä. 
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1. INTRODUCTION 

 

 
1.1 Plant physiology and Remote Sensing 

 
The study of plant physiology refers to the investigation of the internal processes and 

functions of plants, or as Mohr & Schopfer (2012) refer to it: “Physiology is the science of 

regulatory and control processes”. These regulatory and control processes include, to name 

a few, photosynthesis, respiration, nutrient uptake, stomatal functions and growth. 

Furthermore, the study of ecophysiology concentrates on how changes in environmental 

conditions affect these processes. Research in ecophysiology can vary both in scale and in 

time, from the molecular level all the way to the ecosystem level, as well as from fractions 

of a second to years (Prasad, 1996, Larcher, 2003).  The study of photosynthesis is of distinct 

interest because of the inherently important role this metabolic process has for all life on 

earth. Photosynthesis, which is a key driver in the global carbon cycle, uses carbon dioxide 

(CO2) from the atmosphere, consequently converted into glucose using photosynthetically 

active radiation (PAR) as an energy source. Through nutrient uptake, photosynthesis and 

carbon sequestration, plant ecophysiology is intricately linked to the climate system via the 

carbon cycle and feedback processes (Heimann & Reichstein, 2008; Sellers et al, 2018). 

Advancing our knowledge of how plants respond to environmental changes is essential for 

quantification and modelling of global photosynthesis and is a vital part in understanding and 

adapting to the impacts of the changing climate. 

Remote sensing is the science of acquiring information from an object from afar. The use 

of remote sensing is widespread in fields such as geology, meteorology, glaciology, 

hydrocarbon exploration, as well as plant sciences. During the 20th century, remote sensing 

of Earth’s surface evolved from the first black and white aerial photographs at the beginning 

of the century to the vast drone and satellite network of the end of the century. Consequently, 

this has opened the opportunity for quantifying plant growth and photosynthesis from remote 

sensing platforms (Tucker et al. 1986; Myneni et al. 2002; Sun et al. 2017; Gu et al. 2019). 

The spatial information that remote sensing measurements provide allows for relatively 

affordable, fast and repeatable measurements that can reach locations not accessible to field 

research. In vegetation research, remote sensing has been used since the 1970’s to measure 

plant biomass (Rouse et al. 1974; Tucker, 1979), and has since seen a wide variety of uses in 

plant ecophysiology research, such as stress detection and photosynthesis research (Zarco-

Tejada et al. 2012; He et al. 2020; Wang et al. 2022).  

The development of new technologies and materials during the 20th century allowed for 

the proliferation of new kind of devices, such as the uncrewed aerial vehicles (UAVs) widely 

in use today (Everaerts, 2008; Pajares, 2015). Technology improvements have not only 

caused changes in the platforms used, but also in sensors. While the Landsat satellites, first 

launched in 1972, housed sensors capable of measuring in the visible, infrared, and thermal 

infrared range of the electromagnetic spectrum, the contemporary technology meant that the 

spatial resolution that was available to sensors ranged from 15 - 60 meters. Current satellites 

can reach a spatial resolution of < 1 m (Al Suwaidi, 2012) with multispectral sensors and can 

additionally be equipped with modern hyperspectral sensors. While multispectral sensors 

measure on a number of discrete spectral bands, positioned in specific parts of the 

electromagnetic spectrum, such as the visible and near-infrared, hyperspectral sensors 

capture data in hundreds of narrow and contiguous spectral bands, offering higher spectral 
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resolution data. While covering a wider portion of the electromagnetic spectrum, which 

allows for the detection of processes un-detectable by multispectral sensors, hyperspectral 

sensor have the trade-off of a lower spatial resolution when compared to lower spectral 

resolution sensors (Jia et al. 2020). 

Additionally, developments have also been made in the interpretation of the data 

gathered. Reflectance in the red and near infrared (NIR) regions of the spectrum is affected 

by vegetation structure and by the absorbance and reflectance of the chlorophyll a and b 

pigments in the leaves (Curran, 1989; Peñuelas & Filella, 1998; Gutman et al. 2021). Early 

remote sensing measurements of plants concentrated on developing vegetation indices (e.g. 

normalized difference vegetation index, NDVI) based on the differences between these 

regions (Rouse et al. 1974; Tucker 1979). The difference in reflectance between the red and 

NIR parts of the spectrum is caused by changes in absorption of photosynthetically active 

radiation (PAR) by chlorophyll. A wide range of vegetation indices have since been 

proposed, some of them relying on the same principle as the NDVI (e.g., soil adjusted 

vegetation index (SAVI) and the enhanced vegetation index (EVI)). Additionally, research 

has also focused on narrowband (e.g. the photochemical reflectance index, PRI) (Gamon et 

al. 1992) and hyperspectral vegetation indices concentrating on, for example, water and 

salinity stress (Hamzeh et al. 2013) and chlorophyll detection (Koh et al. 2022). 

Finally, in addition to measuring the light reflected from leaves, it is possible to measure 

chlorophyll fluorescence (ChlF) i.e., radiation emitted by chlorophyll molecules nanoseconds 

after being absorbed (Maxwell & Johnson, 2000; Baker, 2008). The use of ChlF allows for 

the investigation of the dynamics of leaf photochemical processes, such as photosynthetic 

linear electron transport leading to adenosine triphosphate (ATP) and nicotinamide adenine 

diphosphate (NADPH) production, making it a versatile tool in evaluating leaf 

photochemistry and CO2 assimilation (Genty et al. 1989; Lazár, 2015). Thus, combining ChlF 

and gas exchange measurements could further our understanding of the long-term regulation 

of photosynthesis, allowing us to quantify the physiological mechanisms driving the optical 

signals and offering advances in photosynthesis modelling and remote sensing. The 

connections between ChlF and photochemical processes can be quantified on the leaf level 

with the aid of pulse amplitude modulated (PAM) -fluorescence. While PAM-fluorescence 

measurements are limited to the leaf scale, ChlF can now be measured passively at the canopy 

scale and beyond using solar induced fluorescence (SIF). Although SIF measurements have 

been conducted since the 1980’s (McFarlane et al. 1980), measurements from remote sensing 

platforms are quite a recent development (Guanter et al. 2007; Meroni et al. 2009; Rascher 

et al. 2015). The value of SIF comes from its ability to serve as a proxy to plant photosynthetic 

activity (Yang et al. 2015; Sun et al. 2017), making it a very valuable tool in plant physiology 

research. 

Despite advances in sensor and platform technologies, two inherent issues pertaining to 

signal interpretation still persist when relating spectral remote sensing with plant functional 

information and properties, such as plant nutrient contents and photosynthesis. Firstly, to be 

able to link plant physiological processes and remote sensing, such as SIF and 

photosynthesis, we need to be able to quantify the leaf level processes that link ChlF and 

photosynthesis together. This is done via the characterization of leaf level processes such as 

the diurnal and seasonal dynamics of photosystem II (PSII) energy partitioning and 

alternative energy sinks (Porcar-Castell et al. 2021). Quantification of these processes on the 

diurnal and seasonal scales would require long-term field measurements of photosynthesis 

regulation using both ChlF and gas exchange. Secondly, open questions still remain on how 

to relate plant functional information to remote sensing measurements when the signal is 
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affected by spatial change, e.g. from the leaf to the canopy scale. As it is propagated from the 

leaf to the canopy, the remote sensing signal is affected by various factors, such as 

chlorophyll reabsorption, measurement geometry, atmospheric effects, scattering, 

transmission and absorption of the signal. The variation in these factors is driven by sensor 

positioning, plant physiological processes, as well as canopy structure. As such, the effect 

that canopy structure has on the relationship between SIF and gross primary productivity 

(GPP) in varying canopy conditions still has unresolved issues (Study I, Yang & van der Tol, 

2018; Dechant et al. 2020). Similarly, the capabilities of various spectral remote sensing 

methods to detect a wide range of nutrients remain elusive when scaling the signal from the 

leaf to the canopy. The use of novel methods based on advances in platform and sensor 

technologies, such as UAV’s together with hyperspectral sensors, can aid resolve these issues 

and would help in the remote sensing of plant functional information, as well as 

photosynthesis modelling. The combined effects caused by the scaling and leaf physiological 

dynamics can work either as couplers, affecting the spectral signal and plant physiological 

variable in the same way, or decouplers, affecting them both differently, impeding the remote 

sensing signal interpretation. As such, more research is needed to disentangle the effects of 

these couplers and decouplers in variable temporal and spatial conditions. 

For these reasons, it is imperative to gain more knowledge on the influence of the variable 

mechanistic and spatial factors affecting the remote sensing – plant physiology relationship. 

In the context of photosynthesis and climate change research, this thesis provides new 

insights into the development of novel methods and instrumentation for the quantification of 

these factors, enhancing our understanding of the relationship between spectral remote 

sensing and photosynthesis on the canopy scale and beyond. 

 

 

1.2 Reflectance based remote sensing methods 

 
The non-destructive nature, as well as the versatility provided by spectral vegetation indices 

make them a popular remote sensing product. The underlying mechanism of remote sensing 

vegetation indices is the interaction of vegetation with light at different wavelengths. 

However, the quantitative interpretation of remote sensing information from vegetation is a 

complex task. When quantifying these interactions, we are able to assess changes, for 

example, in vegetation biomass (Silleos et al. 2006), Leaf area index (LAI) (Liang et al. 2015) 

and nutrient contents (Jay et al. 2017), as well as how various stressors affect vegetation 

(Hamzeh et al. 2013; Ihuoma & Madramootoo, 2019) at various spatial scales. This thesis 

focuses on techniques and technologies based on the visible and infrared (IR) regions of the 

electromagnetic spectrum. While other active and passive techniques exist, such as Lidar, 

Radar and microwave based remote sensing, they are beyond the scope of this thesis. The 

visible region of the spectrum (400 – 700 nm) can be divided by colors, such as blue, green 

and red regions, while the infrared region can additionally be divided into near IR (780 – 

3000 nm) and thermal IR (3000-10000 nm). Since the light that plants absorb to fuel 

photosynthesis (PAR) is situated in the visible region, this region is of particular interest to 

vegetation remote sensing. Similarly, while absorbed to a lesser degree, IR radiation is 

strongly reflected by plants, since they are unable to utilize the photon energy at wavelengths 

larger than 700 nm in photosynthesis due to chlorophyll pigments absorbance being very low 

above 700 nm. Between the red and NIR regions of the spectrum is the so-called red edge 

region of the spectrum, where a sharp increase in reflectance occurs. This region has been 
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found to be sensitive to the chlorophyll content of the leaves (Horler et al. 1983, Zarco-Tejada 

et al. 2002) and has been used in vegetation stress detection (Filella & Peñuelas, 1994). 

Additionally, previous remote sensing research has found that, for example, the reflectance 

in the shortwave infrared region (1100 – 2500 nm) is highly affected by plant water contents 

(Curran, 1989; Peñuelas et al. 1993) and can in addition be used to detect stress caused by 

nutrient deficiencies (Camino et al. 2018; Féret et al. 2021). 

To further understand the principle behind the most commonly used vegetation indices 

(VI), we must first understand what constitutes the reflectance signal from the leaves. Upon 

reaching the surface of the leaf, radiation can be either reflected, transmitted or absorbed 

(Figure 1). The fraction of photosynthetically active radiation (PAR) that is absorbed 

(fraction of the absorbed PAR, fAPAR) depends on the chlorophyll concentration of the leaf 

Figure 1 When radiation energy reaches the leaf surface, it can be either reflected, transmitted 

or absorbed. If reflected, from the spectra of the reflected light, it is possible to calculate 

vegetation indices detectable by remote sensing instruments. If absorbed, radiation energy 

has three possible fates: thermal dissipation, use in leaf photochemistry, or re-emission as 

ChlF. The ChlF spectra has two peaks: the red (~680 nm) and the far-red (~ 740 nm) peaks. 

Close to these peaks are the oxygen bands, used often in SIF retrieval. The distribution of 

reflected, transmitted and absorbed radiation depends on structure and pigment composition 

of the leaf. When measuring these signals at the canopy scale, the reflected and emitted 

radiation reaching the sensor on a remote sensing platform is additionally affected by 

atmospheric scattering and canopy structural properties. Spectra figures adapted from Study 

II. 
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(Asner et al. 1998, Peng et al. 2011) as well as a variety of other factors, such as leaf angle 

(Arena et al. 2008), chloroplast movement (Brugnoli & Björkman, 1992) and anthocyanin 

concentration (Merzlyak et al. 2008). At the leaf level, the reflectance spectra is primarily 

affected by the pigment composition (Asner et al. 1998), leaf morphology and additional leaf 

structural factors (Olascoaga et al. 2014). In turn, the pigment composition depends on 

several factors, varying seasonally in response to, e.g., environmental stress and nutrient 

availability (Zhang et al. 2003; Flexas et al. 2004). Four types of pigments make up the 

pigment composition of a leaf: chlorophylls, carotenoids, anthocyanins and flavonoids. All 

of these pigments have their own characteristic overlapping absorbance spectra, which 

together make up the leaf absorbance in the PAR region. Chlorophylls, which are further 

divided into chlorophyll a and b, are synthesized in the chloroplasts and are the drivers of 

photosynthesis in plants (Gates, 2012). Chlorophyll a has maximal radiation absorption at 

435 nm & 670-680 nm, while for chlorophyll b the maximum absorbance is at 392 nm & 626 

nm. Furthermore, carotenoids, which play an important role in photosynthesis as well as in 

protection against photo-oxidative damage (Young, 1991; Dey & Harborne, 1997), absorb 

radiation highly in the 400 – 500 nm region. Anthocyanins, which have an important function 

to protect the leaf from photoinhibitory damage (Gitelson et al. 2001), absorb light strongest 

between 490 nm and 550 nm and flavonoids mainly in the UV-region of the spectrum. 

Finally, flavonoids typically absorb around the 240-295 nm and 300-380 nm wavelengths 

and contribute to photosynthesis and play a protective role in plants against biotic and abiotic 

stressors (Samanta et al., 2011; Taniguchi et al., 2023). 
   Changes in leaf pigments are driven nutrient availability and stress factors such as drought 

(Gitelson & Merzlyak, 1994; Flexas et al. 2004; Zhang et al. 2003) as well as by seasonality, 

best exhibited during leaf development and senescence (García-Plazaola and Becerril, 2001). 

Drought can cause the plant to close its stomata to conserve water, leading to lower leaf 

internal CO2 levels, affecting photosynthesis and chlorophyll production. In the long term, 

this affects the pigment pools, subsequently mirrored in the reflectance spectra of the plant. 

Additionally, low water availability has been known to cause the plant to re-allocate nutrients 

to the top leaves (Yang et al. 2001), which are most often measured in remote sensing 

measurements (Munné-Bosch & Alegre, 2004), potentially leading to erroneous information 

about the nutrient status of the plant.  

Nutrients are needed by plants to function optimally, and they are divided into micro- and 

macronutrients, depending on the amount required by the plant. Nitrogen is the most common 

growth-limiting nutrient and used for vital processes in plants, such as chlorophyll and 

protein (e.g. RuBisCO) production (Hawkesford et al. 2012). In addition to nitrogen, 

macronutrients such as phosphorus and magnesium play crucial roles in regulating the 

photosynthetic process, and their availability can significantly impact a plant's CO2 

assimilation ability (Hawkesford et al. 2012). Furthermore, several micro- and 

macronutrients are needed for pigment production, such as nitrogen, magnesium and zinc 

(Natr, 1972). As such, inadequate nutrient availability will harm the pigment production of 

the plant (Abadía, 1992; Shah et al. 2017), affecting the reflectance and absorbance 

characteristics.  The changes in leaf chlorophyll concentration also alter the absorbance 

characteristics of the leaf, affecting both reflectance-based remote sensing, as well as ChlF 

emission. A positive but saturating relationship can be found between leaf chlorophyll 

concentration and absorbance (Adams et al. 1990, Gitelson et al. 1998) and that of leaf 

chlorophyll concentration and ChlF emission (Adams et al. 1990).  

Vegetation indices are a versatile tool for vegetation remote sensing, and the choice of VI 

used depends on the specific goals of the analysis, the types of vegetation and environmental 
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conditions being studied, as well as the characteristics of the remote sensing data available. 

NDVI, for example, while being widely used, has its disadvantages: saturation in high LAI 

conditions (Van der Meer et al. 2001; Nguy-Robertson et al. 2012) and sensitivity to soil 

background noise (Liu & Huete, 1995). While the work of Sellers (1985) showed that NDVI 

is linearly related to fAPAR, this relationship is tempered by the saturation of NDVI in 

moderate leaf chlorophyll amounts (Gitelson et al. 1996). As a response to these limitations, 

additional VI’s, such as the Enhanced Vegetation Index (EVI) (Huete et al. 2002) and Soil 

Adjusted Vegetation Index (SAVI) (Huete, 1988) have been formulated. To answer the need 

of a growing scientific community measuring a variety of plant species in a wide range of 

environmental conditions, an expansive list of vegetation indices have been composed. While 

Table 1 only covers a small part of the VI’s in use, it aims to show the multitude of ways that 

VI’s are used in reflectance based vegetation remote sensing and the progress that has been 

made in remote sensing measurements over the last 70 years. A comprehensive list of 

significant vegetation indices used in remote sensing of vegetation can be found in the study 

by Xue & Bu (2017). In this thesis, we used indices such as the photochemical reflectance 

index (PRI), the chlorophyll – carotenoid index (CCI) and the MERIS terrestrial chlorophyll 

index (MTCI). Chlorophyll pigments are the main drivers of the reflectance indices based on 

the red edge region (Horler et al. 1983) and as such, MTCI, calculated using a band in the 

red edge, has been used for vegetation chlorophyll (Dash & Curran, 2004) and phenology 

(Boyd et al. 2011) studies, as well as canopy nitrogen level detection on wheat (Bronson et 

al. 2017) among others. Additionally, vegetation indices can be used to detected canopy 

structural dynamics, such as the near infrared reflectance of vegetation (NIRv) index, which 

represents the fraction of NIR originating from vegetation and used in calculating the canopy 

structural parameter, fesc. Furthermore, and in addition to NIRv, this thesis uses the 

Fluorescence correction vegetation index (FCVI), which is a reflectance index used to 

separate the physiological from the non-physiological information in canopy SIF 

measurements. 
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Table 1 Reflectance based vegetation indices used in this thesis, as well as commonly used 
vegetation indices presented together with their formulas and original reference. 

Vegetation 
index 

Formula Reference 

NDVI 
 
𝑅860 − 𝑅660

𝑅860 + 𝑅660
 

Rouse et al. 1974 

SR 𝑅800

𝑅670
 

Jordan, 1969 

SAVI (𝑅860 − 𝑅660)

(𝑅860 +  𝑅660 + 𝐿)
+ (1 + 𝐿) 

Huete, 1988 

MCARI 
 
1.5 × [2.5(𝑅800 − 𝑅670) − 1.3 (𝑅800 − 𝑅550)]

√(2𝑅800 + 1)2 − (6𝑅800 − 5𝑅670) − 0.5
 

Haboudane et al. 
2004 

PRI 𝑅531 − 𝑅570

𝑅531 + 𝑅570
 

Gamon et al. 
1992 

CCI 
 
𝑅531 − 𝑅645

𝑅531 + 𝑅645
 

Gamon et al. 
2016 

MTCI 
 
𝑅753 − 𝑅709

𝑅709 − 𝑅681
 

Dash & Curran, 
2004 

 
PRI was originally formulated to follow the dynamics of the xanthophyll cycle in plants 

(Gamon et al. 1992) by measuring reflectance at 531 nm and 570 nm. Reflectance at 531 nm 

has been found to correlate with the epoxidation state of xanthophyll pigments, involved in 

the dissipation of excess energy from plants (Adams & Demmig-Adams, 1992) and has been 

noted to be well correlated with NPQ (non-photochemical quenching, described in section 

1.3) in stressed conditions (Evain et al. 2004, Porcar-Castell et al. 2012). This is due to the 

xanthophyll pigments being associated with diurnal reductions in leaf photosynthetic 

efficiency as well as increased heat dissipation (Gamon et al. 1992, Panigada et al. 2014). 

However, the relationship between PRI and NPQ is not straightforward. While short term 

variation of PRI is linked to changes in NPQ (Porcar-Castell et al. 2012), long term changes 

in PRI are linked to seasonal changes in carotenoid and chlorophyll pigments (Filella et al. 

2009). Additionally, the relationship between PRI and canopy photosynthetic light use 

efficiency (LUE) has been investigated (Garbulsky et al. 2008). LUE is a parameter often 

used in photosynthesis modelling, which incorporates environmental and biophysical 

constraints of the process of converting light energy to plant biomass. While having shown 

potential as a proxy for LUE (Garbulsky et al. 2008; Middleton et al. 2009), PRI has been 

shown to be sensitive to canopy structural parameters such as LAI and leaf angle distribution 

(LAD) (Barton & North, 2001; Goerner et al. 2011), causing the quantification of the 

relationship to be difficult. Additionally, PRI has been used for nutrient (Peñuelas et al. 1994) 

and drought stress (Suárez et al. 2009; Zhang et al. 2017) detection. Thus, similarly to ChlF, 
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PRI offers a deeper understanding of the response of vegetation to changing environmental 

conditions. The CCI-index, originally developed as an adaptation to PRI to measure 

photosynthesis dynamics in evergreen forests (Gamon et al. 2016), has been similarly found 

to be correlated with changes in the xanthophyll cycle. 

To summarize, reflectance based vegetation indices can be used to detect changes in plant 

biomass and leaf area (Silleos et al. 2006; Liang et al. 2015), as well as to quantify the changes 

to vegetation caused by stress factors such as drought or nutrient limitation (Jay et al. 2017; 

Ihuoma & Madramootoo, 2019). Additionally, as a part of complementary data inputs, 

reflectance based vegetation indices can be used to help support SIF interpretation by 

measuring canopy leaf amounts (Malenovský et al. 2017), related to the to the absorbed PAR 

by photosynthetic pigments (APARg, where g stands for the greenness of the pigments). 

However, the saturation of spectral reflectance due to canopy structure, as well as 

susceptibility to background, non-vegetated surfaces affect the retrieved signal. Reflectance 

based vegetation indices are mainly driven by leaf pigment contents and canopy structural 

variables and as leaf pigment pools have been found to react relatively slowly to 

environmental stressors (Song et al. 2018; Chen et al. 2019), these indices might not always 

be the correct tool for timely detection of stress factors affecting vegetation. 
 

 

1.3 Chlorophyll Fluorescence – theoretical background and optical measurements 

 
After being absorbed, the radiation energy has three pathways inside the leaf: photosynthesis, 

thermal dissipation and chlorophyll fluorescence (Butler, 1978). These three pathways are 

complementary to each other, and as such, the energy used in either photochemistry or 

thermal dissipation affects the amount of ChlF emitted by the leaf. The energy used in the 

photochemistry of the leaf is termed photochemical quenching (PQ) of ChlF, while thermal 

dissipation is named non-photochemical quenching (NPQ) of ChlF. According to the Butler 

model (Butler, 1978), when NPQ is assumed constant, ChlF allows for the estimation of the 

photochemistry of the leaf. Research has shown, however, that NPQ is rarely constant, but 

changes with environmental conditions (Kramer et al. 2004; Porcar-Castell et al. 2014), thus 

requiring estimation of the quenching mechanisms to investigate the true relationship 

between ChlF and photosynthesis. At the leaf level, quenching mechanisms can be estimated 

with the use of pulse amplitude modulated (PAM) fluorescence, helping to resolve the factors 

affecting the photochemistry of plants (Maxwell & Johnson, 2000). 

While most of ChlF originates from photosystem II (PSII), photosystem I (PSI) also 

contributes to the signal (Farooq et al. 2018). ChlF is emitted from the leaf between the 

wavelengths of 650 – 850 nm and it has two maximum emission peaks: the red peak at 685 

– 690 nm and the far-red peak at 740 – 750 nm (Lichtenthaler & Rinderle, 1988). Leaf 

pigment composition not only affects the reflectance characteristics of the leaf, but also the 

ChlF emission. Increased chlorophyll levels in leaves lead to a rise in absorbed PAR (APAR), 

which in turn increases the ChlF emission from the leaf. Chlorophyll levels in leaves not only 

vary seasonally, but also diurnally (García-Plazaola et al 2017), between species (Li et al. 

2018), as well as between sun and shade leaves (Niinemets et al. 2002). Although higher leaf 

chlorophyll levels increase the ChlF emission, the relation is complicated by (i) the 

chlorophyll distribution within the leaf, (ii) the escape probability (fesc) of the photon emitted 

by the chlorophyll molecule and (iii) chlorophyll re-absorption present when Cab levels are 

high. The fesc value estimates the escape probability of the ChlF emission escaping the leaf 
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and reaching the sensor, affected both by leaf chlorophyll concentration and leaf architectural 

properties (Buschmann, 2007).  In chlorophyll re-absorption, the red ChlF emission is 

partially re-absorbed by the leaf chlorophyll when leaf chlorophyll contents increase. This is 

due to the absorption maxima of a leaf being near 680 nm, close to the red ChlF emission 

peak. This absorption quickly decreases with increasing wavelength and as such affects the 

far-red ChlF emission to a much lesser degree (Buschmann, 2007). The level at which this 

re-absorption overtakes the overall increase in ChlF signal due to higher leaf chlorophyll 

content is dependent on the concentration of chlorophyll molecules within the leaf (Liu et al. 

2019). 

 

1.3.1 Spectral- and PAM-fluorescence 

 
At the leaf level, ChlF can be measured using active or passive techniques, depending on the 

light source; active techniques use a known source of illumination (i.e. a halogen or LED 

light), while passive techniques use radiation from the sun. Leaf-level active techniques 

include spectral fluorescence and PAM –fluorescence, while solar induced fluorescence 

(SIF) is measured passively. At the canopy scale, fluorescence is often measured using SIF, 

but other techniques, such as LED-induced fluorescence (LEDIF) exist (Atherton et al. 

2019a). Additionally, laser induced fluorescence (LIFT) techniques can be used at variable 

scales from the leaf up to 50 meters (Ananyev et al. 2005; Pieruschka et al. 2010), but are not 

the focus of this study. While PAM-fluorescence measurements integrate the ChlF signal of 

around 60 nm, from 720-780 nm (Schreiber, 2004), spectral fluorescence allows for the 

measurement of the whole fluorescence emission spectra (Rajewicz et al. 2023). 

Furthermore, in contrast to spectral and PAM-ChlF measurements, SIF is retrieved using 

narrow, atmospheric absorption of Fraunhofer (solar) bands (Meroni et al. 2009, Aasen et al. 

2019). 

The full fluorescence spectra recorded by spectral fluorescence measurements allows the 

investigation of the shape of the fluorescence emission, specifically the shape of the two 

fluorescence emission peaks. The shape of the fluorescence spectra is modulated through PQ 

and NPQ dynamics (Rajewicz et al. 2023), PSI contribution to the ChlF emission (Pfündel 

1998, Franck et al. 2002) and changes in the partitioning of energy between PSI and PSII 

(Porcar-Castell et al. 2014; Franck et al. 2002). The relationship between red and far-red ChlF 

emission can vary on the diurnal (Agati et al. 1995) and seasonal scales (Zhang et al. 2019; 

Rajewicz et al. 2023). The diurnal changes in the red to far-red peak ratio are affected most 

by NPQ and photosynthetic downregulation, while at the seasonal scale the changes are 

driven by leaf area and chlorophyll concentration (Zhang et al. 2019; Rajewicz et al. 2023). 

Finally, the fluorescence emission shape is also affected by the chlorophyll content of the 

leaf affecting both the absorption characteristic of the leaf as well as ChlF reabsorption (Agati 

et al. 1993; Cordón & Lagorio, 2006; Buschmann, 2007). Re-absorption alters the ChlF 

emission shape by decreasing the red peak emission, while having a minimal effect on the 

far-red emission peak, thus decreasing the red to far-red peak ratio. 

Using the PAM-ChlF measurement method, it is possible to estimate the quenching 

parameters of the leaf, allowing us to connect PAM-ChlF measurements directly to the 

photochemistry of the leaf. The PAM-measurements are conducted by measuring both the 

minimum level (F0) as well as the maximum level (FM) of ChlF from the leaf. This is done 

by dark adapting the leaf, which causes the quinone acceptors in the leaf to be maximally 

oxidized, and the PSII reaction centers are considered to be open (Schreiber 2004). In this 

state, F0 is recorded with a weak, non-actinic measuring light. The leaf is then given an 
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intensive pulse of light, which reduces the quinone acceptors, allowing for the recording of 

FM, the maximum level of ChlF. Variations in the levels between F0 and FM can be used to 

convey information on the photochemistry of the plant, i.e. the lower the difference between 

these two values, the more stressed the plant is. This information is conveyed in the FV/FM 

parameter, the maximum quantum yield of photochemistry, which has been found to be lower 

in stressed plants (Kitajima & Butler, 1975; Demmig-Adams & Adams, 2006). The FV/FM 

parameter is calculated as the direct ratio between variable fluorescence (FV = FM – F0) and 

FM (Kitajima & Butler, 1975). Additionally, based on the F0 and FM values measured with 

PAM fluorescence, Genty et al. (1989) presented the quantum yield of photochemistry, the 

Y(II) parameter (Y(II) = 1 – (F / FM), where F is steady state fluorescence), which was 

developed as an indicator of the amount of energy used for photochemistry in PSII. Related 

to the Y(II) is the linear electron transport rate (ETR), which can be linked to the production 

of ATP and NADPH in the Calvin cycle, and is calculated as: 

 

𝐸𝑇𝑅 = 𝑃𝐴𝑅 × 𝑌(𝐼𝐼) × 𝐴𝑏𝑠 × 𝛼𝐼𝐼 Eq. 1 

 

Where αII stands for the partitioning of energy into PSII, PAR for photosynthetically active 

radiation at the leaf surface and Abs for the absorption by the leaf. Together, PAR and Abs 

form APAR, although generally in ETR calculations the true APAR is not known and an 

absorption coefficient of 0.84-0.85 is used instead (Baker, 2008). However, PAR absorption 

does not stay constant in variable pigment compositions (Blache et al. 2011), possibly 

affecting ETR calculations. Additionally, while αII is assumed to have a constant value of 

0.5, αII has been shown to vary due to the relative amounts of PSI and PSII (Laisk & Loreto, 

1996) as well as different absorbance spectra of PSI and PSII (McClain & Sharkey, 2020). 

These assumptions provide a source of error for the ETR calculation in variable 

environmental conditions (Maxwell & Johnson, 2000).  

Through ETR and its connection to ATP and NADPH production, PAM-fluorescence 

measurements form a link between the light and carbon reactions of photosynthesis (Krall & 

Edwards, 1992, Klughammer & Schreiber, 1994). As such, the concurrent measurements of 

ChlF and gas exchange have been used to formulate a more complete view on the 

relationships between carbon and light reactions of photosynthesis (Cornic & Briantais, 

1991; Laisk & Loreto, 1996). Further research has been done on the partitioning of electrons 

to RuBisCO carboxylation/oxygenation reactions and alternative energy sinks (Laisk & 

Loreto, 1996; Morfopoulos et al. 2014), dynamics of mesophyll conductance (Flexas et al. 

2007) and respiration (Yin et al. 2009). Measurements of both ChlF and gas exchange 

parameters, allow for the calculation of the ETR/ANET (where ANET stands for net carbon 

assimilation) proxy, which is used to estimate the rate of energy conversion between light 

and carbon reactions of photosynthesis (Krall & Edwards 1992; Flexas et al,. 2002; Perera-

Castro & Flexas 2023). 

While PAM-fluorescence techniques have seen widespread application in investigating 

the energy partitioning and estimating the quantum yield of photochemistry in leaves, due to 

the measurement process requiring high-intensity light pulses, PAM-measurements are 

limited to the leaf scale. However, SIF methods are opening new opportunities in ChlF 

measurements, allowing for measurements across variable scales from the leaf to the canopy 

and beyond. While the connection of photosynthesis with PAM-fluorescence has been well 

documented, its connection with SIF is not straightforward. Relating the PAM and SIF 

measurements would require the quantification of the processes that connect the measured 

ChlF emission to photosynthesis, such as energy partitioning in PSII, distribution of energy 
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between PSI and PSII and the dynamics of alternative energy sinks. Additionally, spectral 

fluorescence measurements, with the information it carries on the changes of red and far-red 

fluorescence, could be used to connect PAM and SIF measurements. 

 

1.3.2 Solar induced fluorescence 

 
ChlF can be measured passively on the leaf and canopy scales using SIF. SIF is often 

measured using hyperspectral systems or systems specifically built for SIF measurements 

(Meroni et al. 2009; MacArthur et al. 2014). What makes SIF such a valuable tool in 

vegetation remote sensing is its potential to monitor both evergreen vegetation and gross 

primary productivity (GPP) (Porcar-Castell, 2014; Sun et al, 2017; Gu et al. 2019) at large 

scales. However, reflected light from the vegetation makes disentangling the reflectance and 

ChlF signals difficult, complicating SIF measurements. For this reason, SIF retrieval was 

first conducted using the Fraunhofer line depth (FLD) method, while more recent research 

has used the more complex spectral fitting method (SFM) (Meroni et al. 2009). The FLD 

methods, used in satellite remote sensing, made use of the different relative contribution of 

ChlF to the irradiance inside and outside of the absorption features (Theisen, 2002), while in 

SFM, mathematical models are used to disentangle ChlF and reflectance from radiance 

emerging from the vegetation (Meroni & Colombo, 2006) over a selected spectral range. 

The retrieval of SIF is very relevant in the current photosynthesis research to be able to 

utilize SIF as a proxy of photosynthesis (Frankenberg et al. 2011; Sun et al. 2018) and plant 

stress (Helm et al. 2020; De Cannière et al. 2022). While taking into account both 

photosynthetic and canopy factors (Guanter et al. 2014), SIF can be presented as: 

𝑆𝐼𝐹 = 𝐴𝑃𝐴𝑅 ×  𝜙𝐹  ×  𝑓𝑒𝑠𝑐 Eq. 2 

where APAR is the absorbed photosynthetically active radiation, 𝜙F the canopy level 

fluorescence quantum efficiency and fesc, the escape probability of the ChlF emission in the 

direction of the sensor (Huang et al. 2007; Guanter et al. 2014). It is worth mentioning that 

fesc can be approached both from the leaf level and canopy level perspectives, affected by 

different factors. The relationship between remotely sensed measurements of photosynthesis 

and SIF is mediated by changes in absorbed solar radiation (APAR) and photosynthetic light 

use efficiency (LUE) (Peng et al. 2011). These relationships are quantified in Monteith’s 

(1972) LUE model (LUE = GPP/APAR), which we can combine with the SIF model (Eq. 2) 

to establish the equation describing the relationship between gross primary production and 

SIF (Martini et al. 2019; Dechant et al. 2020; Zhang et al. 2020): 

𝐺𝑃𝑃 =  
𝐿𝑈𝐸

𝜙𝐹
 ×  

1

𝑓𝑒𝑠𝑐
 × 𝑆𝐼𝐹 Eq. 3 

 

Importantly, the relationship between GPP and SIF depends both on structural factors, 

such as the escape probability of the ChlF emission, and mechanistic factors, such as 

fluorescence efficiency (Eq. 3). While the LUE parameter integrates the responses across the 

whole photosynthetic process, changes in 𝜙F are modulated through radiation energy 

partitioning within the leaf, as it is affected by changes PQ and NPQ. In low light conditions, 

when a plant is in a “normal” state, i.e. not suffering from sustained stress, 𝜙F is controlled 

by PQ and is inversely related to the quantum yield from PSII (Van der Tol et al. 2014; 

Porcar-Castell et al. 2014). In a combination of high light conditions and low temperatures, 

such as on a cold and sunny winter day, NPQ decreases both the quantum yield, as well as 
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𝜙F. In this case, since photosynthesis is affected by winter downregulation, the decreased 

utilization of absorbed radiation energy leads to an increase in NPQ (Demmig‐Adams and 

Adams, 2006). The relationship between LUE and 𝜙F is also affected by alternative energy 

sink dynamics, which compete for electron transport with GPP, thus reducing LUE, but 

affecting 𝜙F to a much lesser degree (Porcar-Castell et al. 2014). Whether measuring spectral, 

PAM-ChlF or SIF, the origin of the ChlF signal is always the same. The light is first absorbed 

by chlorophyll molecules, after which it can either be used to power photosynthesis, 

dissipated as heat or re-emitted as chlorophyll fluorescence. Since these processes are 

complementary to each other, changes in one of these pathways affect the other pathways as 

well (Butler, 1978; Maxwell & Johnson, 2000). For this reason, it is important to understand 

the processes that affect both PQ and NPQ and the partitioning of light inside leaves. As 

excess light energy absorbed by the photosystems can damage the photosynthetic machinery 

(Tyystjärvi, 2013), plants continuously regulate the energy balance between light and carbon 

reactions via regulatory mechanisms (Demmig-Adams & Adams, 2006). This regulation of 

energy results in the performance of light reactions of photosynthesis following closely that 

of the carbon reactions, which forms the basis of remote sensing of photosynthesis through 

ChlF measurements (Porcar-Castell et al. 2014). Through this connection to plant 

photosynthesis, the measuring of SIF is of great value, as it allows for large-scale 

measurements of photosynthesis. However, when measuring SIF at the canopy and 

ecosystem scale, the ChlF emission of individual leaves is not resolved and as such, numerous 

factors, as well as their variability on temporal and spatial scales, must be taken into account, 

looked at more closely in the following chapters. 

 

 

1.4 Interpretation of the physiological mechanisms affecting leaf spectral emission 

 
The emission of spectral signals originating from leaves are modulated by the physiological 

properties and mechanisms of the leaf, such as pigment composition (Gitelson et al. 2005), 

APAR, and ChlF quenching dynamics (Porcar-Castell et al. 2014). Thus, co-registering of 

the short- and long-term changes of these mechanisms, in tandem with optical measurements, 

is key to understanding the mechanistic processes underlying the spectral signals.  In 

reflectance based vegetation indices, such as NDVI, PRI and CCI, the signal is driven both 

by chlorophyll and carotenoid pigments as well as leaf and canopy structure. As such, the 

pigment composition and distribution of the leaves dictate the absorption and reflectance 

characteristics and spectra of the leaf (Maas & Dunlap, 1989; Datt, 1998), which, together 

with canopy structural effects, form the spectral signal reaching the sensor. This makes it 

important to understand both the seasonal variation of pigments, as well as the role of nutrient 

uptake in pigment formation. While CCI was originally formulated to track evergreen 

photosynthesis dynamics, both PRI and CCI have been found to correlate with changes in the 

xanthophyll pigments (Gamon et al. 1992; Gamon et al. 2016). The link between these two 

indices and the xanthophyll cycle, which in turn has been associated with leaf heat dissipation 

(Panigada et al. 2014), forms a link with NPQ dynamics (Evain et al. 2004, Porcar-Castell et 

al. 2012). While the seasonal dynamics of this relationship still has open questions, PRI and 

CCI, through their coupling to leaf dissipation and APAR dynamics, can help resolve some 

of the uncertainties related to changes in vegetation on a temporal scale. In addition to 

chlorophyll pigments, the ChlF emission is affected by the photochemistry of the plant 
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(Baker, 2008; Porcar-Castell et al. 2014). This makes the quantification of photosynthesis 

regulation a point of interest in remote sensing research. 

Photosynthesis at the leaf level can be measured using, for example, shoot gas exchange 

chambers (Hari et al. 1999, Kolari et al. 2014) and open gas analyzer systems (Cornic & 

Briantais, 1991) in combination with PAM-fluorescence measurements. Portable infrared gas 

analyzer (IRGA) -systems exist for combined gas exchange and ChlF measurements, 

however, they are not suitable for long term field observations. While gas exchange chambers 

cannot directly be scaled up to the ecosystem level, eddy covariance techniques provide a 

powerful technique to study ecosystem-atmosphere interactions and GPP (Aubinet et al. 

2012). However, eddy covariance measurements can be complex to setup, while being prone 

to data gaps and requiring ecosystem-specific assumptions (Hollinger & Richardson, 2005). 

A need for novel methods for resolving the seasonal dynamics of photosynthesis regulation, 

using simultaneous measurements of carbon and light reactions of photosynthesis would thus 

be required. 

PAM-fluorescence measurements have been proven to be a valuable tool in plant 

physiology and photosynthesis studies (Schreiber 2004), however the relationship between 

SIF and photosynthesis is not so straightforward and is affected by various factors. These 

factors include APARg, PSII energy partitioning, distribution of energy between PSI and 

PSII, alternative energy sinks and canopy structural factors, as well as the temporal dynamics 

of all these factors. While SIF has the potential to be used in large scale monitoring of plant 

photosynthesis, the SIF measurement itself does not contain enough information to calculate 

the quantum yield of photochemistry. The link between PAM and SIF measurements of ChlF 

is complicated by the different methodology used, as well as the different spatial and 

temporal domains where the information is gathered from (Porcar-Castell et al. 2014). 

Combined, integrated measurements of ChlF and gas exchange could thus help in gathering 

information about the long-term regulation of photosynthesis and could help bridge the gap 

between PAM and SIF measurements. Consequently, the important link connecting SIF 

measurements to photosynthesis is disentangling the information that the SIF signal contains 

about APAR and photosynthetic light use efficiency (LUE) (Porcar-Castell et al. 2014). 

Consequently, SIF could be used to estimate APAR since it does not suffer from the same 

limitations as reflectance based vegetation indices (Frankenberg et al. 2011, Yang et al. 

2021). While SIF has been found to contain information on both APAR and LUE (Yang et 

al. 2015; Gu et al. 2019), disentangling these effects has proven to be problematic and 

quantification of the link between SIF, APAR and LUE is needed. Both the fluorescence 

emission (measured by SIF) and photochemical yield are affected by PQ and NPQ and have 

been shown to react similarly to water stress, for example (Flexas et al. 2000).  

To conclude, spectral remote sensing signals are driven by leaf level mechanisms that 

change with environmental conditions. To be able to disentangle the effects of these 

underlying mechanisms on the remote sensing signal, it is important to understand and 

quantify them. As such, to aid understanding these physiological processes, simultaneous 

measurements of spectral data and plant functions, such as photosynthesis, are required. The 

leaf level physiological processes are propagated at higher scales, and without comprehensive 

understanding of the underlying processes, it will be challenging to draw relevant, 

quantitative conclusions from the remote sensing data. 
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1.4.1 ChlF imaging systems aid in the mechanistic understanding of the leaf physiology 

and ChlF relationship 

 
As mentioned, the capability to measure photosynthesis at the leaf and ecosystem-levels 

already exists when using IRGA’s and the eddy covariance techniques. These methods, 

however, lack the ability to resolve the spatial variability of photosynthetic dynamics at the 

leaf and canopy levels. Resolving this variability would help in the mechanistic 

understanding of the relationship between leaf physiological processes, such as 

photosynthesis and growth, and spectral remote sensing signals. Imaging systems based on 

ChlF sensors have the potential to fill this gap (Thomas et al. 2018). ChlF imaging is a rather 

recent advancement, where instead of a single spectrum, the sensor gathers images (Kaiser 

et al. 2013). ChlF imaging instruments, such as the Imaging-PAM (Heinz Walz GmbH, 

Effeltrich, Germany), provide a robust tool for resolving heterogeneity of the plant 

photosynthetic performance on a spatial scale in variable conditions, providing information 

on various scales (Rofle & Scholes, 2010). Fluorescence imaging has seen wide use in plant 

physiology, such as in pathogen detection (Rolfe and Scholes, 2010), mapping the dynamics 

between photosynthesis and growth (Walter et al. 2004), investigating spatiotemporal 

variation of photosynthesis (Rascher et al. 2001) and monitoring leaf diseases (Chaerle et al. 

2007). When used in combination with IRGA-systems, the measurement of fluorescence 

imaging and gas exchange parameters allow for the direct comparison between ETR and the 

rate of CO2 assimilation as key indicators of in situ photosynthetic performance of plants 

(Berger et al. 2007). This allows for the mapping of the relative contributions of the different 

parts of the leaf to the CO2 assimilation (Chou et al. 2000; Swarbrick et al. 2006). An 

additional caveat for the ChlF imaging system comes from the restrictive pricing of these 

systems. 

Consequently, while not addressed in the three studies forming this thesis, the author has 

additionally contributed to the development of a novel, low cost fluorescence imaging device. 

The device, named “Low cost chlorophyll fluorescence imaging solution for precision plant 

stress and yield application" has been registered with the University of Helsinki with the 

invention disclosure number 1158/2021. The device integrates a miniature camera to a pocket 

computer, and by recording images, allows for the measurement of spatial variation of 

reflectance and ChlF emission. The capabilities of the sensor have been established in two 

different tests, where the emission measured by the sensor was compared to simultaneously 

gathered results from an Imaging-PAM system, as well as a PAM imaging setup at the Viikki 

Plant Phenotyping (NaPPI) facility. The development of this prototype sensor will continue 

in the future with potential applications in stress detection in vertical farming and plant 

phenotyping in tree nurseries. Originally, the object of the development was to add published 

articles about the invention to this thesis, but due to a conflict between potential future 

patenting and scientific publications, the development of the sensor was left out of the thesis 

publications. 

 
 

1.5 Spatial variation affecting remote sensing signal interpretation  

 
The leaf level mechanisms presented in the previous section set a foundation upon which to 

interpret the remote sensing signals (Malenovský et al. 2009). As such, when the remotely 

sensed signal containing plant functional information is propagated from the leaf to the 
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canopy scale, it is affected by spatial variability. The issue of scale in remote sensing has 

been a subject of discussion since the end of last century, coinciding with the proliferation of 

remote sensing measurements (Quattrochi & & Goodchild, 1997; Marceau & Hay, 1999). 

One of the key strengths of spectral remote sensing of vegetation lies in its ability to examine 

how information changes with scale, and thus allows for the gathering of information about 

leaf physiological and ecosystem functions at variable temporal and spatial scales (Gamon et 

al. 2007). The intensity and spectral properties of the remote sensing signal are affected by 

changes in different factors, such as measurement geometry, atmospheric effects, 

reabsorption and canopy structure, making the remote sensing measurements dependent on 

the observer location and viewing geometry (Van der Tol et al. 2009). As these factors can 

work as either couplers or decouplers between the measured variable and the remote sensing 

signal, it is important to contextualize and quantify the effects that the variables have. Thus, 

to help us interpret the spatial scaling of the remote sensing signal requires understanding of 

the canopy-atmosphere radiative transfer properties of the spectral signal. 

Remote measurements of ChlF and reflectance are affected by the canopy structure of the 

measured area. This includes leaf area, often measured by the leaf area index (LAI), as well 

as leaf inclination, often measured by leaf angle distribution (LAD), average leaf angle 

(ALA) or mean tilt angle (MTA). New technologies allow for the quantification of these 

parameters by combining satellite data and machine learning algorithms (Zou et al. 2022). 

Additionally, multi-scale data has been combined to measure fractional cover of green 

vegetation from UAV’s and satellites (Riihimäki et al. 2019). Variation in these structural 

parameters is affected by environmental conditions, such as drought (Lahlou et al. 2003; 

Valladares & Pearcy, 1997) and nutrient availability (Yin et al. 2003), underlining the 

importance of quantifying the effects that these factors have on the canopy structure. 

In addition to canopy structural factors and leaf amount and arrangement, spectral remote 

sensing measurements at the canopy level are affected by the amount and distribution of 

chlorophyll within a leaf. These factors are also the drivers of APARg, which connects SIF 

to photosynthesis at both leaf and canopy scales. When ChlF is emitted from the leaf, some 

of it is reabsorbed, either within the leaf, or within the canopy. The amount of ChlF emission 

reaching the remote sensing sensor (fesc) thus depends on the leaf physiological variables 

(chlorophyll amount, morphology), as well as canopy structural variables. These factors act 

as decouplers between the SIF – photosynthesis relationship. In addition, independent of the 

object measured, the measurements are affected by viewing and illumination geometry, as 

well as the ratio of direct and diffuse radiation (Wu & Li, 2009). The radiation and 

illumination geometry effects are captured in the bidirectional reflectance distribution 

function (BRDF), which can help quantify the scattering of light in different canopy 

structures (Lucht & Roujean, 2000; Montes & Ureña, 2012). These directional scattering 

properties should be taken into account when comparing data from different observation 

geometrics. The problems caused by scattering (Chen et al. 2003) as well as the sun-sensor 

geometry (Zeng et al. 2023) can be alleviated using multi-angle reflectance data, which can 

also be used to gather canopy structural information.  

In an attempt to resolve the effects of plant structure on its ability to capture light and 

perform photosynthesis, functional-structural plant models (FSPMs) have been formulated 

(Sievänen et al. 2014). FSPM’s are however unable to resolve canopy level fluxes due to 

heterogeneity in radiation interception in complex canopies (Bailey & Kent, 2021). Radiative 

transfer models (RTM), which are mathematical and computational tools to simulate and 

study the interactions of light with vegetation as it propagates through a canopy, have been 

developed to study these complications. They are used to interpret measurements of reflected 
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and emitted radiation from vegetation. RTM’s take into account how radiation is influenced 

by interactions with vegetation, including absorption, multiple scattering, and emission, 

while considering wavelength of the radiation, as well as the geometry of the canopy 

(Gastellu-Etchegorry et al. 2004; Van der Tol et al. 2009). In vegetation remote sensing, 

radiative transfer models exist for the leaf (e.g. PROSPECT, Feret et al. 2008), canopy (e.g. 

Flight, North, 1996) and combined scales (e.g. SCOPE, van der Tol et al. 2009). While 

advancing our knowledge of the scattering of light in various physical environments, they 

require accurate input data to produce reliable results, not yet readily available due to limited 

multiscale field campaigns.  

With the use of multisource data, such as combined RTM-modelling and multi-scale 

spectral measurements, it would be possible to quantify the effects that scaling the remote 

sensing signal from leaf to canopy has. Novel methods, based on versatile and affordable 

UAV platforms, allow for simultaneous multiscale measurements, potentially helping 

connect leaf and satellite level measurements. With these advances, it would be possible to 

contextualize the effects of scaling, helping bridge the gap between plant physiological 

functions – such as photosynthesis – and remote sensing measurements, offering advances 

for not only remote sensing, but also photosynthesis modelling. 

 

 

2. AIM OF THE STUDY 

 

 

Through the use of novel methodology, this thesis aims to facilitate the interpretation of 

multiscale optical remote sensing measurements of spectral reflectance and SIF, connecting 

them to photosynthesis across variable spatial and temporal domains. This aim is reached 

with the following two distinct goals:  

Goal 1: Quantify the physiological processes, as well as the regulatory mechanisms affecting 

them, that connect spectral measurements to photosynthesis and nutrient contents at the leaf 

level. (Studies II & III) 

Goal 2: With the use of novel methods, investigate the impacts that spatial factors have on 

the spectral remote sensing of photosynthesis and leaf nutrients when scaling the signal from 

leaf to canopy (Studies I & II). 

These goals are considered in the context of the three Studies included in this thesis. 

Consequently, we hypothesize that in water stressed conditions, the spatial and diurnal 

variation in SIF is controlled by both leaf (ΦF_PSII) and canopy (LAD) level processes (Study 

I). Additionally, we postulate that photoprotection-related indices (PRI, CCI), along with 

ChlF will be more strongly correlated with foliar nutrients due to their close connections with 

leaf level physiological processes, when compared to vegetation indices based on vegetation 

greenness in Study II. Finally, in Study III, we introduce a novel instrument capable of 

tracking long term photosynthesis regulation in situ in variable environmental conditions, 

allowing for advances in photosynthesis modelling and remote sensing. 
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3. MATERIALS AND METHODS 

 

 

3.1 Study sites and plant materials 

 
The measurements described in this thesis were performed on two distinct sites. Firstly, for 

Studies I & II, an agricultural site on the Viikki Campus area in Helsinki, Southern Finland 

(60°23’N, 25°02’ E) was selected for the cultivation of potato plants (Solanum tuberosum L., 

variety ‘Lady Felicia’) in the summer of 2018. The experiment included 16 nutrient 

fertilization plots with four different fertilization regimes: N1A1, N2A0, N2A1, 

N2A2(control) (Figure 2). The letter describes the fertilizer used (N= nitrogen fertilizer, A= 

fertilizer with micro- and macronutrients) and the number the amount of fertilizer used (0 = 

none, 1 = half the typical amount, 2 = typical fertilization level). In addition to the nutrient 

treatments, ten plots with control level nutrients were used as a water stress experiment, 

organized as a split plot design using five replicates of both irrigated and non-irrigated plots 

(I+ & I-, Figure 2). Planted at the end of May in 6 x 6 m plots, all the plots were irrigated 

until 2.7., when the water stress experiment started, after which only half the water stress 

experiment (I+) and all the nutrient experiment plots were irrigated with a combination of 

sprinkler and furrow irrigation. Data collection for Studies I & II were conducted on the 10.-

11.7.2018, 17.-18.7.2018 and 25.-25.7.2018. For the leaf level measurements in Studies I and 

II, fully developed, top canopy leaves were randomly sampled for both field and laboratory 

measurements. Top canopy leaves were chosen for an optimal match with the canopy level 

measurements conducted from the UAV and hydraulic lift (See section 3.3).   

Figure 2 Overview of the plot distribution used in Studies I & II. I+ & I- refer to the water stress 

experiment plots located inside the blue area, while the plots inside the green area refer to the 

nutrient fertilizer experiment plots and the variation of the fertilizer treatment, detailed in section 

3.1. Figure adapted from Study II.  
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Furthermore, in Study III, wherein we introduce a first demonstration of integrated PAM-

ChlF and gas exchange field measurements, we chose a 60-year-old silver birch (Betula 

pendula, Roth) tree located at the SMEAR-II station (Station for Measuring Forest-

Ecosystem-Atmosphere Relations) in Southern Finland (61°51′ N, 24°17′ E). The 

measurements were conducted between 29.6. – 9.8.2021 on two top canopy shoots, facing 

towards south or south-west for optimal lighting conditions. These shoots were used for the 

combined measurements of ChlF and gas exchange parameters, as well as additional 

benchmarking measurements.  

 

 

3.2 Leaf level measurements 

 
3.2.1 Leaf optical measurements 

 
Measurements of reflectance (Study II) and spectral fluorescence (Study II) were performed 

in laboratory conditions, while PAM fluorescence measurements (Study I & Study III) were 

performed in field conditions.  

To estimate a range of vegetation indices, we measured the leaf directional-hemispherical 

reflectance spectra in laboratory conditions using a RTS-3ZC Integrating Sphere (ASD Inc., 

Boulder, CO, USA) connected to an ASD Hand-Held Spectrometer (ASD Inc., Boulder, CO, 

USA). The spectrometer has a range (R) of 325-1075 nm, sampling interval (SI) of 1.6 nm 

and a full width at half maximum (FWHM) of 3.5 nm. A dark current was subtracted from 

the measurements, and leaf direction-hemispherical factors were calculated with the aid of a 

Spectralon® panel (Labsphere, North Sutton, NH, USA). To measure spectral fluorescence, 

we used a USB-2000+ spectrometer (Ocean Optics Inc., Orlando, FL, USA) (R: 300-1100 

nm, SI: 0.5 nm, FWHM: 1.5-1.8 nm) together with a halogen light source (HL-2000, Ocean 

Optics Inc.). Connected to the spectrometer was a bifurcated reflectance probe (R600-7-VIS-

125F, Ocean Optics Inc.), which we used to conduct the spectral measurements from a nadir 

position. Furthermore, the probe was connected to a filter carrier, which held an optical 

Figure 3 The Micro-PAM fluorometer fitted inside a shoot chamber system. This novel system 
allowed for the concurrent measurements of PAM-ChlF and gas exchange parameters. 
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density 4 short-pass 650 nm filter (Edmund Optics, Barrington, NJ, USA), blocking over 

99% of radiation above the 650 nm wavelength. 

For Study I, in order to measure steady state (F) and maximum fluorescence (FM), PAM 

measurements were conducted in field conditions with the PAM-2500 (Heinz Walz GmbH, 

Effeltrich, Germany) fluorometer. These measurements used saturating pulses of 800 ms and 

ca. 8000 μmol and were synchronized with concurrent canopy level UAV and hydraulic lift 

measurements (section 3.3). Furthermore, for Study III, PAM-fluorescence was 

simultaneously measured using the MICRO-PAM (Heinz Walz GmbH) and MONI-PAM 

(Heinz Walz GmbH) systems in field conditions. Both of the above-mentioned measurements 

for Study III were conducted on different top canopy shoots, situated no more than 1 m from 

each other. To provide a more comprehensive view of photosynthesis regulation, we aimed 

for simultaneous co-registering of gas exchange and ChlF parameters, and so the ChlF 

measurements with the MICRO-PAM were performed just as the shoot chamber lid started 

to close. The MICRO-PAM device, used here for the first time fitted inside a dynamic shoot 

chamber system (Figure 3), used a blue measuring light. This measuring light, in addition to 

the saturating pulses (800 ms and ca. 6700 μmol) and the ChlF emission, were transmitted 

through a 10 cm long light guide, the tip of which was placed ca. 3-5 mm from the leaf 

surface, at a 35° angle from the leaf plane. Co-registering PAM-ChlF with the MICRO-PAM 

was a MONI-PAM device, which, unlike the MICRO-PAM, does not use a light guide. 

Instead, the measuring light is positioned 25 mm away from the measured leaf, which is 

attached to the device with a clip. In addition, the MONI-PAM is larger, preventing it to be 

fitted inside a shoot chamber. Both of these devices were operated through a MONI-DA data 

acquisition system (Heinz Walz GmbH) and measured F and FM, used to calculate the 

quantum yield of effective photochemistry of PSII (Y(II)) and, subsequently, electron 

transport rate (ETR) (see section 1.3). 

 

3.2.2 Foliar pigment, nutrient and leaf area analysis 

 
To study the temporal and spatial variation in foliar chlorophyll and carotenoid contents, 

pigment contents of fully developed, top canopy leaves were estimated for Studies I & II. 

Three plants were sampled from each plot (N = 3 replicates) on the 10.7., 16.7. and 25.7. The 

samples were placed in cryotubes and frozen in liquid nitrogen directly after sampling to 

prevent pigment deterioration. Before pigment determination, the samples were thawed, and 

1.8 mL of dimethyl sulfoxide (DMSO) was added into the tubes. The samples were placed 

in a 50° C oven for eight hours to extract, and after cooling down, were centrifuged for 10 

minutes at 3600 rpm (5810-R, Eppendorf, Hamburg, Germany). The resulting extract was 

analyzed with a spectrophotometer (Shimadzu UV-1800, Shimadzu Corporation, Kyoto, 

Japan). Chlorophyll and carotenoid pigment values were estimated from the absorbance of 

the extract at specific wavelengths, measured by the spectrophotometer, using equations from 

Wellburn (1994). 

To determine the effects the different treatments had on the foliar nutrient contents, and 

how these different foliar nutrient levels were reflected in plant optical signals in Study II, 

we estimated the foliar nutrient contents of top canopy leaves. Plant material was gathered 

and stored similarly to the pigment estimation (see above) on 10. & 25.7.2018. Samples were 

then subsequently thawed and dried in an oven at 50° C. After homogenization, 200-300 mg 

(dry weight) of each sample was mixed with 10 mL of HNO3 and 1 mL of H2O2. The samples 

were digested in a MARS 5 – microwave digestion system (CEM Corporation, Matthews, 
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NC, USA) for 10 minutes at 175° C and consequently analyzed with an ICP-MS mass 

spectrometer (Thermo Fisher Scientific, Waltham, MA, USA), following the method by 

Thomas (2008). The nitrogen and carbon concentrations were studied separately, so that after 

drying and homogenization, 250 mg of each sample was analyzed using a Variomax CN 

Analyzer (Elementar Analysensysteme, Hanau, Germany), using the dry combustion method, 

detailed in Bremner et al. (1996). 

Finally, to investigate changes in leaf morphology, we calculated the specific leaf area 

(SLA) for each plot, calculated as projected leaf area (cm2) divided by leaf dry weight (g). 

Fresh leaves (N = 9) from each plot were scanned on top of a white paper including a ruler 

for scale, which allowed for the calculation of the leaf area using the GNU image 

manipulation software (GIMP development team, 2021). After scanning, the leaves were 

dried in a 50° C oven until dry and weighed. 

 

3.2.3 Leaf gas exchange measurements 

 
Photosynthetic gas exchange measurements were performed in Studies I & III. In Study III, 

the net assimilation rate was calculated directly by the gas exchange system. In Study I, leaf 

stomatal conductance (gs) was measured with a leaf porometer (AP4 Porometer, Delta-T 

Devices, Cambridge, U.K.) from 10 randomly sampled top canopy leaves. Additionally, light 

responses and A-Ci curves were measured from three replicates from the control and water 

stress plots using the GFS-3000 (Heinz Walz GmbH). Using results from these 

measurements, ANET (µmol m-2 s-1) was estimated based on the Ball-Berry model (Ball et al. 

1987) as follows: 

𝐴𝑁𝐸𝑇 =  
𝐺𝑠 × 𝐶𝑠

𝑚 ×𝑅𝐻
  Eq. 4 

Where Gs (mmol m-2 s-1) stands for the measured stomatal conductance, Cs for the air CO2 

concentration (assumed here to be 415 ppm), RH (%) for relative humidity, and finally m for 

the slope of the relationship between Gs and A x RH/Cs (the Ball-index) (Ball et al. 1987). 

With the addition of daytime respiration (Rd), assumed to be the rate of CO2 measured at zero 

PAR at similar temperatures, GPP was calculated. It is worth noting that this assumption in 

daytime respiration may lead to a small overestimation of GPP due to the Kok effect (Sharp 

et al. 1984). 

𝐺𝑃𝑃 = 𝐴𝑁𝐸𝑇 +  𝑅𝑑 Eq. 5 

In Study III, gas exchange measurements were performed with a dynamic shoot chamber 

cuvette connected to a nearby IRGA system (LI-840A, Li-Cor Inc., Inc., Lincoln, Nevada, 

USA). The measurements were conducted with a top canopy silver birch shoot. Inside the 

chamber the birch shoot, arranged on a 2D plane, was kept in place by transparent fishing 

lines. The shoot chamber cuvette, which additionally housed a MICRO-PAM fluorometer 

(see section 3.2 & Figure 3), is a see-through acrylic box with a sliding lid. The chamber was 

kept open most of the time to expose the shoot to ambient conditions and closed only to 

measure gas concentrations for 60 seconds every 20 minutes. Through fluorinated ethylene 

propylene (FEP) tubing, the cuvette was connected to the central gas analyzer unit, which 

measured CO2 and H2O concentrations sent by the cuvette system. In addition to gas fluxes, 

the chamber system housed a quantum sensor for PAR readings, as well as a thermocouple 

for temperature readings. Additional technical details on the cuvette can be found in Kolari 

et al. (2014). Data used to calculate environmental variables was gathered from the nearby 
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SMEAR-II station: pressure readings from a barometer (Druck DPI 260, Baker Hughes, 

Houston, Texas, USA) and precipitation data from a weather sensor (Vaisala FD12P, Vaisala, 

Vantaa, Finland).  

These added environmental measurements allowed us to calculate stomatal conductance 

(gS), saturated vapor pressure (SVP) and vapor pressure deficit (VPD). The Magnus-Tetens 

equation (Tetens, 1930; Monteith & Unsworth, 1994) was first used to calculate SVP (kPa) 

relative to temperature: 

𝑆𝑉𝑃 = 0.61078 exp 
17.27 × 𝑇

𝑇 + 237.3
 Eq. 6 

where T is the temperature inside the chamber (°C). Additionally, following the ideal gas 

law, vapor pressure (VP) (kPa) was calculated using the ambient H2O concentration and 

temperature inside the chamber. Having calculated both SVP and VP allowed us to calculate 

VPD (kPa) as: 

𝑉𝑃𝐷 = 𝑆𝑉𝑃 − 𝑉𝑃 Eq. 7 

This in turn allowed us to estimate gs, calculated as: 

𝑔𝑆 =  
𝐸

𝑉𝑃𝐷
 × 𝑃 Eq. 8 

where gs stands for stomatal conductance (mmol m-2 s-1), E for the transpiration rate (mmol 

m-2 s-1 ) measured by the gas exchange system and P for atmospheric pressure (kPa).  

 

 

3.3 Canopy level measurements 

 

3.3.1 Canopy level optical measurements 

 
To study how spectral signals scaled from the leaf to the canopy scale, canopy level 

measurements of reflectance and SIF were performed (Studies I&II). The measurements were 

conducted using an UAV (Studies I & II), as well as a hydraulic lift system (Study I). The 

UAV measurements were conducted on five different occasions: 10.7 & 11.7.2018 (Study 

II), 17.7 & 18.7.2018 (Study I) and 25.7.2018 (Study II). Both the UAV and the hydraulic 

lift were in turn fitted with the Piccolo Doppio dual field-of-view system (Atherton et al. 

2018; Porcar-Castell et al. 2015; MacArthur et al. 2014), as well as a GoPro camera, mounted 

in nadir position into a gimbal stabilization system (Photohigher, Wellington, New Zealand), 

allowing for the verification of correct measurement position. The UAV, which was based 

on a Gryphon Dynamics frame, flew ca. eight meters above the canopy, and collected data 

with a 25° field-of-view, cosine corrected bifurcated fiber, resulting in a 1.77 m radius 

footprint. The UAV hovered for approximately one minute above each plot. This resulted in 

25 measurements per plot, which were then averaged for further data analysis, after 

correcting for the dark current. 

The dual field-of-view Piccolo Doppio housed two spectrometers, the QE Pro (Ocean 

Insight Inc., Dunedin, FL, USA) (R: 640-800 nm, SI:0.16 nm, FWHM: 0.31 nm) and the 

Flame (Ocean Insight Inc.) (R: 340-1000 nm, SI: 0.33 nm, FWHM: 1.3 nm). Due to its wider 

range, the Flame spectrometer was used for estimating canopy reflectance in the visible and 

near-infrared range in Study II, while the QE Pro was used for estimating canopy SIF in both 
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Studies. The integration times of the measurements were automatically set by the system 

based on illumination conditions. Vegetation indices were estimated according to the 

calculations presented in Table 1. 

Data on the diurnal dynamics of SIF in Study I was additionally gathered with the Piccolo 

Doppio attached to a hydraulic lift system. These measurements were collected at the same 

height as the canopy optical measurements, resulting in the same measuring footprint. These 

measurements were conducted on 18.7. and only on the water stress experiment plots, 

measuring each plot for 20 minutes.  

 

3.3.2 SIF retrieval and processing 

 
In both studies, SIF was retrieved using the Spectral Fitting Method (SFM) using the Earth’s 

two O2 absorption features, the O2β (687 nm) and O2α (760 nm) bands, situated in the spectral 

proximity of the two fluorescence emission peaks (Pérez-Priego et al. 2005; Meroni & 

Colombo, 2006). A small offset of 0.03 nm was found at the O2α feature, which was corrected 

using an interpolation-based technique described in Atherton et al. (2019b). Additionally in 

Study II, to factor in the potential variation in irradiance caused by changing illumination 

conditions during various measurements, SIF yield was estimated as follows: 

𝑆𝐼𝐹𝑌𝐼𝐸𝐿𝐷 =  
𝑆𝐼𝐹

𝐸𝑃𝐴𝑅
  Eq. 9 

Where EPAR is the irradiance (W / m2) integrated from the PAR region, between 400 and 700 

nm. 

 

3.3.3 Estimation of canopy structural parameters 

 
To study how canopy structure affects the scaling of spectral signals when moving from the 

leaf to the canopy scale, structural parameters were estimated both from ground 

measurements and from the UAV from a height of 50 m. From the ground, the LAI in Study 

I was calculated using the pin-point method (Jonasson, 1988), in which lines are drawn 

diagonally through a plot and sampled at 50 cm intervals. At these 14 randomly distributed 

points, we calculated the number of leaves that were intercepted if a sharp weight was 

dropped from each point towards the ground. The canopy LAI was the average number of 

interceptions calculated from all these points. However, it is important to note that the pin-

point method tends to underestimate the total projected LAI. Due to logistical difficulties, the 

pin-point method was unavailable to use in Study II. 

 In Study II, the remote estimation of structural parameters was conducted by gathering 

multispectral data with the MicaSense RedEdge M (AgEagle Sensor Systems Inc., Wichita, 

Kansas, USA) multispectral sensor. In Study I, two Sony A7R II digital cameras fitted with 

Sony FE 35 mm f/2.8 Carl Zeiss Sonnar T* lenses were used to gather point cloud data. The 

cameras were placed at 15° oblique angles from the vertical plane and the data gathered was 

used to build a detailed 3D reconstruction of the canopy. Consequently, different structural 

parameters were estimated. In Study I, canopy structure dynamics were estimated using Leaf 

area index (LAI) and leaf angle distribution (LAD), while in Study II, fractional vegetation 

cover (FVC) was used to track the development of the canopy structure.  

Furthermore, LAD was estimated using two methods; a ground based photographic 

method (Pisek et al. 2011), as well as a new method (Xu et al. 2020) based on estimating 
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LAD from point clouds. In the first method, a diurnal dataset of LAD was gathered from 

plots W7 & W8 using a cell phone camera (Honor 9, Huawei Technology Co., Ltd., 

Shenzhen, PRC) secured to a tripod. The camera was placed perpendicular to the ground, ca. 

50 cm outside the plot edge. Using one-hour intervals, we took pictures of three different 

sections of plants. From these pictures, the average leaf inclination angle (ALA) was 

determined with the aid of the ImageJ software (http://rsb.info.nih.gov/ij/), after Pisek et al. 

(2011). To model changes in LAD on the diurnal scale, a two-parameter leaf inclination 

distribution function (LIDF) was used after Verhoef (1998): 

 

𝐿𝐼𝐷𝐹𝑎 =  
(45°−𝐴𝐿𝐴)× 𝜋2

360
  Eq. 10 

Subsequently, using Verhoef’s leaf angle algorithm, LAD was estimated using LIDFa, as 

well as LIDFb, which was fitted with LAD estimated from point cloud data. In the new 

method, LAD data was gathered using the Structure from Motion (SfM) photogrammetric 

method, collected using the UAV fitted with digital cameras for spatial dimension 

information. In the SfM method, as described in more detail in Xu et al. (2020), LAD was 

retrieved directly from the point cloud data by classifying leaf and soil from each plot 

separately according to point height.  

Finally, we estimated the canopy fluorescence escape probability (fesc), which affects the 

relationship between SIF and GPP. The factor fesc, which is dependent on LAD, was estimated 

using near infrared of vegetation (NIRv) and the fluorescence correction index (FCVI), 

according to Zeng et al. (2019). This estimation requires the knowledge of fAPAR, which in 

our case was estimated through a Rededge_NDVI proxy (Viña & Gitelson, 2005). 

In Study II, to track the development of the crop canopy, FVC was estimated from 

multispectral images collected with the RedEdge M sensor on 10.7 and 25.7. The images 

collected by the sensor were processed to orthomosaics using the Agisoft PhotoScan 

Professional commercial software (AgiSoft LLC, St. Petersburg, Russia) with a ground 

sample distance of 3.55 cm. Using the histogram-based segmentation method with the QGIS-

program (QGIS Geographic Information System, QGIS Association, http://www.qgis.org 

(accessed on 1 September 2022)), we classified each pixel in the plot areas to 0 s and 1 s 

according to their reflectance in NIR-band (center wavelength 842 nm, bandwidth 57 nm). 

This segmentation allowed us to subsequently estimate the FVC for each plot, calculated as 

the ratio of the canopy pixels (1 s) to the total pixel amount (0 s+1 s). Although aware of the 

problems the NIR band could have in full canopy conditions (Gitelson et al. 2002) due to 

uncertainties in the gathered visible wavelength data, we decided to use the NIR-band only.  

 

3.3.4 Radiative transfer model 

 
In order to separate the causes of SIF variation on the temporal and spatial scales in our 

canopy level measurements, a sensitivity-based analysis was performed in the combined 

radiative transfer model SCOPE (v 1.73). This analysis was focused on LAD and the quantum 

efficiency of PSII, since they were assumed to be the main drivers of the SIF signal. We 

generated several scenarios where LAD and quantum efficiency of PSII were either kept 

constant or were following the measured dynamics. The scenarios had three objectives: To 

quantify the importance of LAD and of quantum efficiency of PSII on the 1) diurnal and 2) 

spatial variation of canopy level SIF, and 3) their relative contribution to the relationship 

between SIF and GPP. Furthermore, a sensitivity index was calculated based on differences 

http://rsb.info.nih.gov/ij/
http://www.qgis.org/
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in SIF under different scenarios, thus quantifying the influence of LAD and quantum 

efficiency of PSII on diurnal and spatial variation. Diurnal variation scenario predictions 

were validated against measurements from the lift platform, while spatial variation scenario 

predictions were validated against the SIF measurements from UAV observations. 

 

 

4. RESULTS 

 

 
This thesis investigates two inherent issues concerning the remote sensing of photosynthesis 

and nutrients. Firstly, In Section 4.1, we connect the leaf spectral signals to the leaf 

physiological processes by quantifying these processes and their changes on a temporal scale. 

In Study I these interactions are investigated by exploring the relationship between SIF and 

GPP with leaf and canopy level measurements. In study II, we investigate how differences in 

a variety of micro- and macronutrient levels, brought on by nutrient and water stress, affect 

the pigment composition of the leaf and consequently their spectral signature. Finally, in 

study III we measure both PAM-fluorescence and gas exchange parameters simultaneously, 

looking into the distribution of energy into carbon and light reactions within the leaf in the 

context of long-term regulation of photosynthesis. We explore how the responses of these 

reactions differ in changing environmental conditions and underline some of the important 

factors modulating leaf photochemistry and fluorescence quenching dynamics. 

Secondly, in Section 4.2, we investigate the spatial factors affecting the spectral remote 

sensing measurements, when the signal is scaled from leaf to the canopy. In Study I, SIF was 

both measured and simulated to investigate the spatial and diurnal variation of SIF in 

response to water stress. Additionally, we investigated how water stress affected the 

relationship between SIF and GPP through changes in LAD and LAI. In Study II, both 

reflectance based vegetation indices and canopy level SIF were used to investigate how 

different leaf nutrient levels were detected in spectral measurements on both the leaf and 

canopy scales when affected by both fertilizer and water stress treatments. 

 

 

4.1 New methods to connect physiological processes to spectral signals at the leaf level 

 
Through Studies I, II and III, we aimed to investigate the physiological processes that connect 

leaf level spectral measurements to photosynthesis and leaf nutrient contents. In Study I the 

aim was to investigate how water stress affects the relationship between structural and 

photosynthetic factors and SIF, connecting spectral measurements and photosynthetic factors 

at the leaf level. We hypothesized that the diurnal and spatial variation of SIF would be 

controlled by quantum yield of fluorescence in PSII (ΦF_PSII) and LAD. Thus, both leaf and 

canopy level data were gathered with the goal of quantifying the relative effects that canopy 

structural and leaf photosynthetic dynamics have on the temporal and spatial variation of SIF 

in potato crops. At the leaf level, as was expected, the measured photosynthetic parameters 

ΦF_PSII, FV/FM and operating quantum yield of photochemistry in PSII (ΦP) were higher in 

control plots relative to the treatment plots suffering from water stress. The SIF emission was 

found to be higher in the control plots, as stressed treatment plots had higher average leaf 

angle (ALA) and NPQ. Additionally, we estimated the influence of leaf angle distribution 
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(LAD) and the quantum yield of fluorescence in (ΦF_PSII) on the SIF-GPP relationship. 

According to our simulation results, after considering changes in APAR caused by sun angle, 

both ΦF_PSII and LAD were of similar importance (44-58 % and 42-56 %, respectively) when 

determining their effect on the diurnal response of SIF to water stress (Study I, Figure 7). 

The effects of water stress on canopy structure are further discussed in Section 4.2.   

In Study II, we aimed to characterize the relationship between reflectance based 

vegetation indices, SIF and changes in foliar contents of a variety of micro- and 

macronutrients. The novelty of the research stemmed from using combined UAV and leaf 

level spectral measurements of 11 different micro- and macronutrients. A fertilization 

treatment using a variety of micro- and macronutrients was combined with a water stress 

experiment to investigate the spatial variation of nutrients in potato crops. We hypothesized 

that due to their more direct link to leaf physiology and PAR dynamics, the photoprotection-

related indices PRI and CCI, as well as ChlF, would be more strongly correlated with leaf 

nutrients than more traditional, greenness-based indices, such as NDVI.  

From the results of Study II, we found that the measured nutrients could be divided into 

two groups, based on whether they increased or decreased during the study period. Group 1 

nutrients (potassium, magnesium, phosphorus and nitrogen) decreased in all treatments over 

Figure 4 Correlation matrix comparing leaf (L) and canopy (C) level spectral indices to leaf 

level nutrient and pigment contents. If the color of the correlation between the leaf and 

canopy stays the same when moving from the leaf to the canopy, it indicates that the sign 

of the correlation scales up. If the color changes between the scales, the correlation is 

reversed when moving from one scale to another. The data used in the matrix is a 

combination of early and late measurement points (n = 52). Color denotes the Pearson 

correlation coefficient R-value, which is explained in the color chart on the right. All colored 

(non-white) squares are significant at the p 0.05 level. Figure adapted from Study II. 
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time as a response to canopy development, while Group 2 nutrients (sulfur, copper, 

manganese and zinc) increased. Leaf chlorophyll contents in top leaves remained stable 

between the treatments as well as during the measurement period, with chlorophyll content 

only decreasing in the water experiment control plots. Leaf chlorophyll and nitrogen contents 

were found to be positively correlated throughout the study, which is in line with the well-

established role of nitrogen as an important building block of the chlorophyll molecule 

(Evans, 1989). At the leaf level, strong correlations could be noted between leaf red edge 

reflectance, MTCI and Group 1 nutrients, stemming from the connection red edge has to the 

leaf chlorophyll contents (Horler et al, 1983). Expectedly, the PRI was negatively correlated 

with the increased levels of protective carotenoid pigments compared to leaf chlorophyll 

(Car/Cab – ratio), while the CCI, however had a weak positive correlation with it. On the leaf 

level, the PRI was only weakly positively correlated with changes in Group 1 nutrients, 
while CCI had a strong negative correlation with nitrogen (Figure 4). 

The red fluorescence peak emission (F685) and the fluorescence peak ratio (Fratio) were 

both negatively correlated with foliar chlorophyll contents and Group 1 nutrients. The far-

red fluorescence peak emission was not correlated with any of the nutrients or pigments at 

the leaf level. While nitrogen has been known to be detectable in leaf level measurements of 

PAM, red, and the red to far-red peak ratio fluorescence (Wang et al. 2022; Jia et al. 2018; 

Agati et al. 2013), the relationship can change due to re-absorption and leaf physiological 

process dynamics (Ač et al. 2015). We extend on previous research, showing that, in addition 

to the widely researched N, red fluorescence and the red to far-red peak ratio fluorescence 

peak ratio are able to track phosphorus, potassium, magnesium, sulfur, copper, manganese, 

and zinc in potato plants. 

To visualize what effect the temporal variation had on the relationships between spectral 

indices and foliar nutrients, we analyzed the correlations separating the results by measuring 

point. This allowed us to identify those relationships that remained consistent over the whole 

measurement period (Study II, Figures 8 & 9), as well as those that presented contrasting 

patterns. These contrasting patterns would then indicate changes in the underlying 

physiological processes affecting the relationships. The relationships between leaf 

chlorophyll contents and red fluorescence, fluorescence peak ratio, MTCI, red edge 

reflectance and CCI remained constant between the early and late measurements. This same 

result could be noted for leaf nitrogen contents and the mentioned spectral indices, suggesting 

that the relationship of these spectral indices with N and leaf chlorophyll contents was not 

disturbed during the study period. Additionally, we identified results where the correlations 

were absent when investigating a single measuring point but appeared when pooling data 

from both points together. This would suggest an indirect effect mediating the relationship 

between nutrients and spectral indices, such as leaf morphology. 

In Study III, to answer the need for long term, in situ measurements of photosynthesis 

regulation, we present a first demonstration of integrated PAM-ChlF and gas exchange 

measurements with the shoot chamber and MICRO-PAM systems. Through high temporal 

resolution measurements using the novel integrated instrument, this setup allowed us to 

simultaneously follow both the light and carbon reactions of photosynthesis and their 

dynamics in changing environmental conditions. Our study period encompassed the month 

of July in 2021 and included periods of high temperatures. During this period, we measured 

environmental conditions (PAR, temperature, precipitation), ChlF parameters (F, Fm’, Y(II), 

ETR, FV/FM), as well as CO2 assimilation (ANET). The ChlF measurements were validated 

with concurrent MONI-PAM measurements. While the fluorescence parameters remained 

relatively stable during the period, a decreasing tendency could be noted in ANET (Study III, 
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Figure 2 H), which was closely tied to a decreasing gS. While ANET was clearly affected by 

the heat periods and low water availability (Study III, Figure 2 H, Figure S2), fluorescence 

parameters were not affected to the same degree. ETR increased during the second heat 

period, but to a much lesser degree than ANET and while the FV/FM parameter did not respond 

to low water availability or high temperature periods, it did decrease during cool nights 

between the two high temperature periods. Additionally, increased precipitation and lower 

temperatures after the second heat period led to a rapid increase in gs and ANET, (Study III, 

Figure 2 J, Figure 2 L).  Furthermore, we calculated the ETR/ANET parameter, which acts as 

an approximation for the number of electrons needed in the ETR for the assimilation of one 

CO2 molecule. The ratio has a regular diurnal pattern (values changing between 3 – 20) 

during early July (Figure 4 inset). In this diurnal pattern, the ratio increases during the 

morning hours and only starts to decrease in the late afternoon. This cycle is linked to a 

decrease in gs before noon, caused by increasing VPD and leading to decreasing ANET values 

(Chaves, 1991), while the ETR remains relatively stable. However, during high temperature 

periods, the ratio exhibits large variations (Figure 5). These variations in the proxy values are 

caused by differing sensitivity of the ETR and ANET reactions to environmental conditions 

(Perera-Castro & Flexas 2023), further detailed in the Discussion-section. Our high temporal 

resolution measurements, made possible by the new methodology brought forward in Study 

III, allowed for the recording of the ETR/ANET in situ, over a long period of time. 
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4.2 Variables affecting the scaling of leaf spectral signals from the leaf to the canopy 

 
When scaling leaf spectral signals to the canopy level, the signal is always affected by various 

factors, such as viewing geometry and canopy structural variables. For this reason, it is of 

utmost importance to be able to understand and quantify the processes that decouple the leaf 

level signal from the canopy level signal, such as leaf area index (LAI), fractional vegetation 

cover (FVC), LAD and, in SIF measurements, the escape probability of ChlF (fesc) (Zeng et 

al. 2019). One way of investigating the changes that a variable scale brings is to conduct 

simultaneous measurements on the leaf and canopy scales. 

In Study I, we performed UAV and leaf level measurements to investigate how water 

stress caused changes in photosynthetic and canopy structural parameters on both the diurnal 

and longer (two-week measurement period) time scales. From our results comparing water 

stressed treatment plots to the control plots after the two-week measuring period, we notice 

that water stress induced differences in both photosynthetic and canopy structural variables 

(Study I, Figure 4). The water stressed plots had lower LAI (1.78 versus 2.22), higher average 

leaf angle (ALA) (57.9° versus 55.2°) and higher leaf chlorophyll contents (49.4 versus 42.2 

Figure 5 The ETR/ANET ratio from Study III, calculated as the ratio between electron transport 

rate (ETR) and net photosynthetic assimilation (ANET). Black dots indicate individual 

measurements, while high temperature periods are marked with grey bars. To further clarify 

the diurnal variation of the ratio, an inset has been added to the top left corner. This inset 

zooms in on the period between 4.7 – 9.7 and is marked by a grey box in the main figure. To 

improve readability of the figure, a break has been added to the y- axis of the main figure. 

Figure adapted from Study III. 
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µg/cm-2) than the control plots. Higher ALA consequently affected the relative contribution 

that LAD had on the SIF signal. In measurements accounting for the whole two-week study 

period, the water stress was mainly expressed as changes in LAI (affecting APAR) between 

plots (explaining 20 – 72 % of variability between treatments), as well as changes in fesc, 

caused by LAD dynamics, contributing 5 – 39 % of variation (Study I, Figure 9). This 

analysis showed that a decrease in far-red ChlF emission could be observed as a response to 

water stress both in simulated and observed SIF. 

Additionally, a sensitivity analysis was performed on a water stress treatment and control 

plot pair to assess which factors were the main drivers of diurnal differences in SIF. We found 

that, on the diurnal scale, the differences between SIF emission in the treatment and control 

plots were driven by variation in APAR (which was affected by leaf chlorophyll and LAI, 

explaining 39% of the difference in SIF), ΦF_PSII (explaining 30-36 % of differences) and 

LAD variation (explaining 25 – 31 %, most of it due to changes in fesc (22 – 28 %)). In other 

words, the diurnal variation of SIF emission between the control and treatment plots was 

driven both by canopy structural and photosynthetic variables. It is important to note that for 

non-woody plants, the diurnal changes of LAD have the potential to be an important source 

of misinterpretation of dynamics in remote sensing data, if static vegetation architecture is 

assumed, as changes in fesc could be then interpreted as changes in the photosynthetic 

physiology of the leaves (Study I). 

In Study II, we used reflectance based vegetation indices combined with ChlF 

measurements to detect leaf nutrient contents variations at both temporal and spatial scales. 

Temporal variation was accounted for by using two different measuring points with 20 days 

in separation. In addition to spectral remote sensing measurements, we calculated a fractional 

vegetation cover (FVC)-variable to estimate the effect of the developing canopy to the 

relationship between spectral measurements and leaf nutrients during the measurement 

period. This variable, estimated from the multispectral imaging data we collected from the 

UAV, was calculated for all of the treatments separately and we noticed a non-significant 

increase in FVC during the study for all treatments except the water stressed one. This use of 

multispectral data allowed the estimation of canopy structural parameters directly from 

remote sensing measurements. As the FVC was used as a proxy for canopy development, its 

relationship with each vegetation index and ChlF emission at the canopy scale was calculated. 

Interestingly, far-red fluorescence, red edge reflectance, CCI and NDVI were the only 

spectral indices with relatively high Pearson correlation (R > 0.60) with FVC, none of which 

were correlated with foliar chlorophyll levels at the canopy scale. 

The relationships between foliar nutrients and canopy level spectral indices differed from 

those at the leaf level. Both the red fluorescence and fluorescence peak ratio were positively 

correlated with Group 1 nutrients, while being negatively correlated with Group 2 nutrients 

(Figure 5). PRI, on the other hand, had weak positive correlation with Group 1 nutrients and 

strong negative ones with Group 2 nutrients. Additionally, red fluorescence, fluorescence 

peak ratio and PRI were negatively correlated with the Car/Cab ratio at the canopy level. 

Furthermore, it should be noted that in the correlations between foliar nutrients and 

fluorescence parameters, the relationships were inverted when moving from the leaf to the 

canopy scale. In other words, relationships that were positive on the leaf level were negative 

on the canopy level, and vice versa.  

In addition to investigating pooled results from both measuring points in Study II (as 

shown in Figure 4), we additionally separated the results by measuring point to examine the 

role of temporal changes on the relationships between foliar nutrient contents and spectral 

indices (Figures 8 & 9, Study II). Unlike in the leaf level results, only the relationship between 
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CCI and nitrogen was found to be consistent over time. In other words, only in this case did 

the relationship between nutrient and spectral signal remain the same on both individual 

measuring points and when pooling all the data together. In the other canopy level 

relationships, while the spectral indices correlated with the nutrients when looking at the 

pooled data, the relationships in individual measurement points were affected by additional 

factors, breaking said relationships. The most important of these factors would most likely 

be the varying canopy structure, which would naturally not be a factor in leaf level results. 

In general, stronger correlations between canopy spectral signals and leaf nutrients could be 

noted in the second measuring point relative to the first one, possibly caused by enhanced 

variability due to nutrient and water stress treatments having an impact on leaf and canopy 

development. Finally, some correlations between spectral signals and leaf nutrients only 

emerged when the data was pooled together across both measuring points, such as between 

fluorescence peak ratio and phosphorus. These findings emphasize the role of canopy 

development as the mediator in the relationship between spectral remote sensing and leaf 

nutrients at the canopy scale.  

 

 

5. DISCUSSION 

 

 

The proliferation of remote sensing measurements of vegetation at the end of the 20th century 

and the beginning of the 21st century has opened up new possibilities for the cost-effective 

and timely collection of data, aiding in the characterization of plant stress responses and 

photosynthesis research at scale (Zarco-Tejada et al. 2012; He et al. 2020). These 

measurements have been made possible by advances in both remote sensing platform and 

sensor technology (de Castro et al. 2021). Early vegetation indices were based on the 

differences on reflectance and absorbance characteristics of vegetation in the visible and 

infrared regions (Jordan, 1969; Rouse et al. 1974). The availability of hyperspectral remote 

sensing coupled with advancements in SIF retrieval and processing has meant that new 

information related to crop stress (Lassalle, 2021), water content (Zhang & Zhou, 2018) and 

gross primary productivity (GPP) (Sun et al. 2017) is now available. In order to obtain precise 

information from the measured object, novel methods are required to quantify the effects that 

scale, and the underlying leaf level mechanisms have on the remote sensing signal. 

Through the implementation of novel UAV-based methods to assess canopy structural 

variables, as well as new instrumentation integrating both optical and gas exchange 

measurements into a single system this thesis aimed to present novel methods for facilitating 

the mechanistic interpretation of multiscale optical remote sensing measurements. The results 

provided in the three studies included in this thesis lay out promising developments in remote 

sensing signal interpretation. In the following section, these results are viewed in the context 

of i) interpretation of the underlying mechanistic ecophysiological processes that affect the 

signal at the leaf level, and ii) interpreting canopy level remote sensing signals as they are 

scaled from leaf to canopy.  
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5.1 Co-registration of leaf physiological processes and spectral signals 

 
SIF and GPP are well known to be correlated at diverse scales (Damm et al. 2015; Sun et al. 

2018; Magney et al. 2019). As such, Study I concentrated on revealing the interplay between 

variations in structure and photosynthetic physiology that couple and decouple this 

connection under water stress, something that has yet to be quantified in previous research. 

The results from Study I point to the dynamics of fluorescence yield between stressed and 

non-stressed plots to be in line with earlier research, since as can be observed from Figure 10 

in Study I, the plots suffering from water stress had lower fluorescence yield when compared 

to the control plots. This is due to limited water uptake causing stomatal closure, which in 

turn leads to a decrease in intercellular CO2 concentration (Farquhar et al. 1980, Cornic, 

2000), while also reducing the carbon assimilation rate and affecting the partitioning of 

carboxylation / oxygenation of RuBisCO to favor photorespiration (Flexas et al. 2000). In 

addition, stomatal closure reduces carbon assimilation, which leads to a decrease in 

fluorescence yield and LUE due to increased NPQ (Flexas et al. 2000). The effect that these 

leaf level processes, together with processes on the canopy level, have on the relationship 

between SIF and GPP is discussed in more detail in Section 5.2. 

In Study II, the relationships between multiscale measurements of ChlF and reflectance 

based spectral indices and a wide range of micro- and macronutrients was investigated for 

the first time. Reflectance based vegetation indices are affected by leaf morphology, canopy 

structure and the pigment pools in the leaves, the latter of which can vary due to stress, such 

as nutrient deficiency (Ögren, 1988, Hashmi et al. 2019). As such, we hypothesized that 

spectral indices related to photoprotection (PRI, CCI), as well as ChlF, through their direct 

connection with the leaf physiological processes, would be more strongly related to leaf 

nutrient levels than more traditional greenness-based indices. The results from Study II 

support this hypothesis. 

A temporal division of nutrients during the study period into two distinct groups could be 

noticed, where Group 1 nutrients all decreased during the measurement period, while Group 

2 nutrients increased. This division is most likely caused by the so-called dilution 

phenomenon (Lambers & Oliveira, 2019), where the increased use of macronutrients causes 

a decrease in foliar nutrient contents over the growing season (Abukmeil et al. 2022). While 

Group 2 nutrients were negatively correlated with leaf chlorophyll, Group 1 nutrients were 

positively correlated with leaf chlorophyll amounts, indicating that the allocation of these 

nutrients into chlorophyll synthesis was not disrupted by drought or nutrient variation during 

the study period. 

While red fluorescence emission and fluorescence peak ratio, in addition to CCI, red edge 

reflectance and MTCI were all correlated with Group 1 nutrients (nitrogen, phosphorus, 

potassium and magnesium), NDVI was not. As such, the NDVI signal has been found to 

saturate in high leaf chlorophyll conditions, which was also the case in our study (Gitelson 

et al. 1996; Satognon et al. 2021). The connection between MTCI, red edge reflectance and 

the nutrients was through their coupling to the leaf chlorophyll amounts: increasing 

chlorophyll amounts in the leaf shifts the red edge feature towards higher wavelengths 

(Filella & Peñuelas, 1994), causing it to be less susceptible to saturation than the red 

reflectance band (Kanke et al. 2012). The carotenoid / chlorophyll – ratio (Car/Cab) provides 

information about the physiological status of the plant. As plants suffer from stress, the 

amount of protective pigments increases in relation to chlorophyll, increasing the Car/Cab 

ratio. The photoprotection-related indices PRI and CCI were expected to be inversely related 

to photoprotection, as they are sensitive to the carotenoid – chlorophyll ratio (Car/Cab) 
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(Gamon et al. 1992; Filella et al. 2009). In other words, PRI and CCI should decrease when 

leaves have increased levels of protective carotenoids. In our study, only PRI was negatively 

correlated with the Car/Cab ratio, while CCI was negatively correlated with leaf chlorophyll 

amounts. This would indicate that in our study, while PRI was driven by changes in 

carotenoids, changes in CCI were driven by leaf chlorophyll amounts at the leaf level, 

explaining their different correlations to leaf nutrients. 

Finally, the negative correlation between Group 1 nutrients and red ChlF, as well as ChlF 

peak ratio could be explained by the re-absorption of red fluorescence by chlorophyll inside 

the leaf (Buschmann, 2007, Romero et al. 2018). When a leaf has low chlorophyll contents, 

an increase in chlorophyll level leads to an increase in APAR and thus the ChlF emission. 

However, at high chlorophyll contents, such as in our study, an increase in the chlorophyll 

contents of the leaf increases re-absorption to a much higher degree than APAR due to self-

shading within the leaf (Study I, Buschmann, 2007). The dynamics of re-absorption would 

explain i) the strong relationships between red ChlF and ChlF peak ratio and ii) the lack of 

correlations between far-red ChlF emission and leaf chlorophyll contents (and by extension 

the nutrients tied to leaf chlorophyll level). 

To conclude, at the leaf level, the perceived correlations between leaf nutrients and 

spectral indices are driven by leaf chlorophyll (MTCI, red edge, CCI) and carotenoid (PRI) 

dynamics, as well as the interplay between leaf chlorophyll and chlorophyll re-absorption 

(fluorescence parameters). 

In Study III, in order to investigate the dynamics of light and carbon reactions of 

photosynthesis with high temporal resolution measurements, we followed ChlF and gas 

exchange parameters for a period of one month. During the study, we noticed that stomatal 

conductance (gS) and net carbon assimilation had a decreasing tendency, caused by 

decreasing water availability and high temperatures. Our results from the ChlF and gas 

exchange measurements were encapsulated in the ETR/ANET – ratio, which indicates the 

number of electrons needed for the assimilation of one CO2 molecule. This ratio has been 

shown to be increased by several factors, such as photorespiration, mitochondrial respiration, 

and alternative energy sinks, which affect the rate of electron transport (Alric and Johnson, 

2017; Alboresi et al. 2019; Walker et al. 2020). Earlier research has shown the carbon 

assimilation process to be more sensitive to drought conditions than the PSII machinery 

(Flexas et al. 2002). Additionally, several factors help maintain PSII activity in low water 

availability conditions. This includes increased photorespiration, as well as the Mehler 

reaction (Flexas et al. 2007) and alternative energy sinks (Flexas et al. 2000; Sunil et al. 2019; 

Perera-Castro & Flexas, 2023). The combination of these factors, in addition to increased 

mesophyll conductance, are potentially causing very high ETR/ANET values during high 

temperature periods in our study. The precise detection of these changes in the ETR/ANET 

ratio is made possible by the high temporal resolution in situ measurements presented for the 

first time in Study III (Figure 4). The ETR/ANET ratio has been shown to be a good indicator 

for plant stress (Flexas et al. 2002; D’Ambrosio et al. 2006) and in our study seems to be 

responding to periods of low water availability and high temperatures.  

However, since some assumptions are required for the ETR calculation, the validity of 

these assumptions across differing environmental conditions and species should be revisited. 

This includes the constant value of 0.84 for leaf absorption, which can be a potential source 

of error in ETR calculations (Blache et al. 2011). Also, the partitioning of energy between 

photosystem I (PSI) and PSII is assumed to be a constant 0.5 (Krall and Edwards, 1992; Laisk 

& Loreto, 1996), which could provide an error in ETR calculation. This error could be caused 

by the uneven amount of PSI and PSII reaction centers (Anderson et al. 1988), as well as the 
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differences in pigment composition and absorbance spectra between the photosystems 

(McClain and Sharkey, 2020), causing changes in energy partitioning between photosystems. 

Finally, while often neglected, the PSI contribution to the quantum yield of photochemistry 

should be taken into account in ETR calculations. Previous work by Pfündel (1998), Agati et 

al. (2000) and Franck et al. (2002) suggest that PSI could be an important contributor to F, 

but not FM, affecting ETR calculations. To conclude, the results from Study III present a clear 

methodological advance in photosynthesis research. While we are able to successfully track 

the seasonal regulation of photosynthesis in silver birch with our novel setup, further 

improvements could be made. The improvements could be carried out by implementing an 

integrated spectrometer, allowing for better estimation of APAR and energy partitioning 

within the leaf, linking the results to reflectance based spectral indices and spectral 

fluorescence. Further measurements with similar setups would potentially lead to advances 

in photosynthesis modelling and interpretation of remote sensing data. 

The first aim of this thesis was to quantify the physiological processes that connect 

spectral measurements to photosynthesis and nutrient contents at the leaf level. In Study III, 

the long-term interplay of physiological processes and spectral signals was investigated in 

situ for the first time using a novel instrument setup. The integrated high temporal resolution 

measurements of ChlF and gas exchange allowed for the investigation of photosynthesis 

downregulation, possibly leading to advances in photosynthesis remote sensing and 

modelling in the future. The leaf level physiological effects of water stress were investigated 

in Study I. We found that water stress decreased leaf stomatal conductance, increasing leaf 

photorespiration, leading to a decrease in SIF emission. With the quantification of these leaf 

level physiological measurements, we are able to investigate the relative effect that these 

processes have on the SIF – GPP relationship, along with canopy structural variables. Study 

II concentrated on the factors driving the relationship between leaf nutrient contents and 

spectral signals, while investigating a wide array of micro- and macronutrients. The results 

from the combined multiscale measurements point to leaf pigments being the main drivers 

of these relationships at the leaf level and call for multisource measurements to quantify the 

physiological processes causing changes in leaf level spectral indices.  

 

5.2 Impacts of canopy structural effects on the scaling of the remote sensing signal 

from leaf to canopy 

 

The second goal of this thesis was to investigate the spatial factors that affect the spectral 

remote sensing of photosynthesis and leaf nutrients when the signal is scaled from the leaf to 

the canopy. Consequently, Study I investigated how water stress affects the relationship 

between canopy structure, photosynthetic factors and SIF. On the diurnal scale, water stress 

was found to induce changes in canopy structure by increasing ALA. The higher ALA in 

water stressed plots, especially around noon, would point to a loss of turgor, causing the 

plants to close their stomata to preserve water, leading to reduced transpiration rates 

(Reynolds-Henne et al. 2010; Obidiegwu et al. 2015). This noon wilting has been commonly 

noted in non-woody crops and also causes changes in LAD (Xu et al. 2018). Additionally, 

we observed an increase in ALA during the morning hours, which started to decrease towards 

the evening (Study I, Figure 5 F) in both the water stressed and control plots, with these 

changes being comparably more drastic in the water stressed plots. Surprisingly, the water 

stressed plots had higher leaf chlorophyll amounts, which would most likely point to nutrient 

relocation within plants to top leaves, as has been noted earlier with plants in water limited 
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conditions (Munné-Bosch & Alegre, 2004, Study II). Furthermore, due to the water stress 

induced changes in canopy structure (LAD, LAI, fesc) and reductions in fluorescence quantum 

efficiency (ΦF), a clear reduction in the SIF signal could be noted when comparing the water 

stressed plots to the control plots on the diurnal scale. Based on our measurement results, 

combined with the simulation results, we conclude that both LAD and ΦF are as important as 

drivers of SIF response to water stress on a diurnal scale. 

In addition to diurnal variation, our study investigated the effects that water stress has on 

the SIF-GPP relationship as the stress affects the photosynthetic and structural variation of 

the canopy over a two-week measuring period. Over this period, the relationship between 

SIF and GPP is mediated by both structural and physiological factors, with APAR (changes 

in which are driven by LAI and leaf chlorophyll contents), ΦF_PSII and LAD being the most 

important factors. We conclude that the response of SIF to water stress is caused by a 

multitude of factors, which are a combination of both physiological and structural variables. 

Some of the changes in SIF emission that are caused by structural factors could therefore be 

misconstrued as being caused by changes in ΦF. Furthermore, some differences have been 

found in the SIF response to water stress between earlier experimental results (Helm et al. 

2020) and satellite observations (Magney et al. 2020; Sun et al. 2015). As structural effects 

affect the remote sensing signal differently depending on the scale of observation, novel 

UAV-based observations of SIF and structural properties, such as presented in Study I, could 

help bridge the gap between experimental results and satellite-level observations. 

One of the objectives of Study I was to characterize the mechanisms that drive the spatial 

response of SIF in water stressed potato plants. We found that structural dynamics, foremost 

being LAD had an important role in modulating SIF variation. Additionally, we were 

interested in finding out how these mechanisms affected the SIF – GPP dynamic. As shown 

in Eq. 3, in an ideal situation, the relationship between SIF and GPP depends on the variation 

of light use efficiency (LUE), ΦF and fesc. This relationship is however affected by plant stress 

responses, such as changes in the photochemistry in the form of increased photorespiration, 

and in changes to the plant structure in the form of changing leaf angles. Therefore, the 

relationship between SIF and GPP in water stressed conditions is modulated by 

photochemistry through LUE, fluorescence yield and fesc, as well as canopy structure through 

changes in leaf angle distribution (Figure 6). The results from Study I simulations would 

additionally point to canopy structural elements coupling SIF and GPP together, rather than 

acting as a decoupling factor. This is shown by the simulated relationships between SIF and 

GPP improving when accounting for changes in LAD and fluorescence yield. Results from 

Study I show that the separation of canopy structural effects from the underlying signal 

Figure 6 Schematic of the responses of SIF and GPP to water stress through decreasing leaf 

turgor and stomatal conductance. Importantly, both of these effects separately decouple SIF 

and GPP, but our results point to them cancelling each other out. Figure adapted from Study 

I. 
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originating from the photosynthetic processes can be difficult to discern without the use of 

multiscale measurements.  

Based on the results from Study I, we conclude that on the diurnal scale, SIF responded 
to fluorescence quantum efficiency and LAD, while on the longer temporal scale variation in 

SIF was mostly modulated by structural factors. Thus, while the SIF emission decreased 

during the study, this decrease in SIF signal during the water stress period could not be 

attributed to a single driver but was caused by a combination of structural and physiological 

factors. Consequently, in future research, we advocate for concurrent field and remote 

sensing measurements to further our quantitative understanding of the interaction between 

SIF and canopy structural parameters. 

While spectral indices were found to be correlated with many nutrients at the leaf level in 

Study II, most of the relationships between spectral indices and leaf nutrient contents broke 

down when moving to the canopy scale spectral measurements. Additionally, at the canopy 

scale, the correlations between nutrient groups and spectral indices presented inverted 

patterns (red fluorescence), decreased considerably (red edge reflectance and MTCI), 

increased (PRI) or remained similar in the case of CCI. Our results are not in line with earlier 

research showing that MTCI was able to track leaf N concentrations (Nigon et al. 2015) in 

potato. This could in part be due to differences in canopy structure between the studies and 

the susceptibility of red edge based VI’s to the impact of bare soil (Li et al. 2014). The 

distinctly different patterns between scales clearly indicate that, in the case of our fertilization 

and water stress treatments, the leaf level spectral signals are greatly affected by canopy 

structural variables when scaled to the canopy level. From the results of leaf nutrient contents 

and their relationships with canopy level ChlF and greenness- and photoprotection-related 

vegetation indices in Study II, we conclude that the relationship between foliar nutrients and 

greenness-based indices seems to depend on the spatiotemporal co-variation of canopy 

development (here parametrized in FVC) and leaf chlorophyll contents, which in our case 

was very limited. This would be supported by the lower correlations between greenness-

based indices and foliar nutrients during the first measurement point (Study II, Figure A12). 

Canopy scale ChlF emission is driven by changes in the amount, arrangement and angles 

of the leaves in the canopy, affecting APAR, fesc and ChlF-reabsorption (Study I; Liu et al. 

2019; Verrelst et al. 2015). Increased chlorophyll levels in leaves lead to a rise in APAR, 

which consequently increases the ChlF emission of the leaf. However, the increase in leaf 

chlorophyll also increases the chance of ChlF re-absorption, which primarily affects the red 

fluorescence emission. The concentration of the chlorophyll molecules within the leaf 

dictates the level at which the increase in re-absorption overtakes the increase in ChlF 

emission (Liu et al. 2019). As canopy level red fluorescence emission was weakly positively 

correlated with FVC, it would indicate that the APAR effect still dominated over the re-

absorption effect on the canopy scale. Additionally, the fact that far-red ChlF was positively 

correlated with FVC would indicate that the effect of LAI on canopy APAR was not yet 

saturated and a higher FVC would still increase far-red ChlF emission (Zhang et al. 2016). 

Furthermore, the strong and positive relationship between far-red fluorescence and FVC 

seems to point to the importance of canopy structural dynamics as a driver of ChlF dynamics 

at the canopy scale (Study I; Chang et al. 2021). 

Foliar nutrient contents were not dependent on canopy cover, which was further 

emphasized by the lack of correlations of far-red ChlF with any of the nutrients. Also, as both 

red ChlF and ChlF peak ratio are sensitive to both APAR and reabsorption dynamics, they 

would appear to have an enhanced capability to track foliar nutrients over far-red ChlF. 
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In Studies I & II, the effects of spatial change on the remote sensing signal was explored. 

In Study I, to help interpret and model the connections between SIF and GPP, we aimed to 

disentangle the effects of photosynthetic and structural dynamics on the SIF – GPP 

relationship. We noted that the LAD was one of the main drivers in the relationship between 

SIF and GPP on the diurnal and longer time scales. Furthermore, we conferred that water 

stress caused changes in LAI and fesc in addition to LAD, all of which affected the relationship 

between GPP and SIF on a diurnal scale. As Study I gave insight into the physiological and 

canopy structural response to water stress, we conclude that leaf angular variation should be 

taken into account when investigating the relationship between SIF and canopy structure. In 

Studies I & II, the canopy level spectral measurements were conducted from a UAV, which 

provided a flexible and low-cost solution for canopy level spectral measurements. As such, 

UAV-based spectral measurements could in the future help narrow the gap between leaf and 

satellite level observations. In Study II, we provided leaf scale measurements of numerous 

micro- and macronutrients, combined with multi-scale measurements of spectral signals. 

While the relationships between foliar nutrient contents and spectral signals were driven at 

the leaf level by leaf chlorophyll concentration, on the canopy level the relationships were 

modulated by a combination of chlorophyll concentration and structural properties. The 

capacity of spectral signals to detect leaf nutrients thus depended on covariation between 

nutrients, canopy structure and leaf pigments. As such, to be capable of scaling leaf nutrients 

to canopy level measurements, these factors should be taken into account in future 

measurements. To resolve the spatial and temporal dynamics of leaf nutrients from the 

canopy scale, we propose that novel imaging solutions combined with modern radiative 

transfer models would be utilized in the future (Lu et al. 2020; Ye et al. 2020).  

Both Studies I & II relied on simultaneous measurements conducted on both leaf and 

canopy levels, allowing for the complementary information provided by several scales, 

making the quantification of the effects caused by scaling possible. The results from Studies 

I & II into the effects of variable spatial scale affecting the leaf level signal provide insights 

to the interpretation of remote sensing signals discussed in Sections 1.4 & 1.5. 

 

 

6. CONCLUSIONS 
 

 
Via the development and validation of novel methods and instruments, this thesis contributes 

to the interpretation of multiscale optical remote sensing of nutrients and photosynthesis. 

These novel methods are here used to quantify the i) connections between leaf spectral signals 

and physiological processes, as these processes are affected by regulatory mechanisms in a 

temporal dimension, ii) spatial factors that affect the spectral remote sensing signal when 

scaling the signal from leaf to canopy scale. 

In Study I, we found different drivers for the SIF response to water stress on the diurnal 

and longer temporal scales. Additionally, we presented the potential of UAV-based SIF and 

hyperspectral measurements to detect changes in canopy structural variables, such as LAD 

and LAI, and how these changes affected the SIF emission as well as the SIF – GPP 

relationship. We conclude that the focus of the relationship between canopy structure and 

SIF should, using data from multiple sources or scales, additionally take into account leaf 
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angular variation on the diurnal and spatial scales. Finally, the versatility of UAV’s could 

help bridge the gap between field and satellite measurements.  

In Study II, UAV-based remote sensing measurements were used to estimate changes in 

canopy structure in the form of FVC, validated by its high correlation with several canopy 

level spectral indices. Canopy level spectral measurements of leaf nutrient contents were 

found to depend on the spatiotemporal covariation of nutrients, chlorophyll and canopy 

structure. Thus, we conclude that novel imaging or multi-angle measurements, combined 

with 3D radiative transfer methods would be needed to develop novel methods for the 

estimation of leaf nutrient contents from the canopy scale.  

We demonstrated the potential of integrated, continuous and long-term measurements of 

ChlF and gas exchange in Study III. This new instrument setup, conducting continuous high 

temporal resolution field measurements, opens new possibilities to look into the drivers of 

photosynthetic downregulation, offering opportunities in photosynthesis modelling, remote 

sensing and field research. 

To conclude, the novel methods and instrumentation presented in this thesis lay the 

groundwork for better quantification of canopy structural parameters, as well as 

photosynthesis downregulation dynamics, allowing for advances in the remote sensing of 

photosynthesis and nutrients. This thesis calls for implementation of new instrumentation and 

methodologies that can be used to co-register spectral and physiological variables at multiple 

scales simultaneously. These multiscale measurements will be key in connecting spectral 

signals to leaf physiological processes across scales. Additionally, to advance the 

interpretation of the processes that connect ChlF with photosynthesis, the novel instrument 

combining ChlF and gas exchange measurements could in the future be improved with a 

spectrometer, opening new possibilities for the estimation of energy partitioning within the 

leaf, advancing photosynthesis modelling and interpretation of remote sensing data. Finally, 

I see potential in combining multi-scale high spatial resolution observations coupled to 

advanced 3D radiative transfer models, machine learning methods and fluorescence-based 

imaging systems in helping resolve questions related to spatial variability of plant regulatory 

and control processes. 
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