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ABSTRACT 
 

Seedling stands are areas in forest landscapes where young trees, typically from newly 

planted or naturally regenerated seedlings, grow. These stands are in the early stages of forest 

development and are crucial for the renewal and future growth of the forest. They represent 

a vital phase in the forest's lifecycle, for which careful management is often employed to 

ensure the successful establishment and growth of young crop trees. 

To address the data-gathering requirements of forest management, seedling stands are 

typically assessed through field visits, a process that is considered time-consuming, 

expensive, and labor-intensive. As trees in the seedling stands are small and often densely 

stocked, they are difficult to assess in operational remote sensing-based forest inventories. 

However, recent developments in remote sensing, especially in laser scanning and the use of 

drones, could open new pathways to developing methods for the spatially explicit and timely 

inventorying of seedling stands; such methods could complement or even replace field visits.  

The aim here was to develop and assess remote sensing methods of estimating the tree 

density, mean tree height, and species of seedling stands, which are the key characteristics 

supporting forest management. For this purpose, new remote sensing techniques–namely 

drone photogrammetric point clouds, hyper- and multi-spectral imagery (studies I and IV), 

and multi-spectral and single-photon airborne laser scanning (ALS; studies II and III) data–

were investigated over seedling stands located in three study sites in the boreal forests of 

Finland. Performance of leaf-off and leaf-on hyper-spectral drone imagery and multi-spectral 

ALS data was explored in seedling stands in studies I and II. A canopy-thresholding method 

(Cth) was also optimized to minimize the interference of understory vegetation (study II), and 

the performance of single-photon ALS was examined in study III. In that study, an area-

based approach (ABA) that included single-tree features and corrected the effect of edge trees 

(ABAEdgeITD) was developed and compared to conventional ABA. In study IV, a new 

approach for feeding multispectral drone images to convolutional neural networks was 

proposed and validated for the classification of seedling tree species. 

The findings of this thesis demonstrated that drone imagery yielded more accurate tree 

density estimates, while dense multispectral ALS data outperformed other tested methods of 

tree height estimation (both when using leaf-on data). The use of ABAEdgeITD improved the 

tree density and height estimates compared to conventional ABA, although it was less 

accurate than the individual tree-based methods used in studies I and II. Characterization of 

advanced seedling stands was more accurate than that of early-growth stage stands (mean 

height < 1.3 m), which remained challenging. Finally, the image pre-processing approach, 

together with the convolutional neural network, used in study IV improved the species 

classification accuracy of seedlings. This thesis shows that the remote sensing methods used 

can be applied in operational forest inventories to complement or replace field visits. These 

new technologies are valuable approaches to increasing the efficiency and sustainability of 

forest management. 

 

Keywords: LiDAR, drone imagery, airborne laser scanning, regenerating stands, forest 

inventory, convolutional neural network  
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1 INTRODUCTION 

1.1 Ecology and management of seedling stands 

 

Seedling stands are essential for the early growth of young trees in forest ecosystems, and 

their careful management is crucial for sustainable forest growth, future wood supply 

security, and ecosystem health. Seedling stands are typically known as homogeneous forest 

stands in the early stages of development, with the mean height of crop species being <8–10 

m (Næsset and Bjerknes 2001; Næsset et al. 2004; Nilsson et al. 2010; Bartels et al. 2016). 

They are also referred to as regenerating or young forest stands. In Finland, seedling stands 

are classified as young seedling stands (YoS), with a mean tree height of <1.3 m, and 

advanced seedling stands (AdS), with a mean tree height of <7 or <9 m in coniferous and 

deciduous stands, respectively (Tapio 2006). These stands make up a significant portion 

(17%) of the Finnish forest land available for wood supply (Korhonen et al. 2021). The 

growth stage of seedlings is crucial in even-aged forestry, and appropriate silvicultural 

operations are necessary for their successful establishment and growth. The increasing 

number of Finnish forest stands younger than 20 years old (Kuuluvainen and Gauthier 2018) 

highlights the importance of managing seedling stands to ensure the development of mature 

stands for wood and other forest products. 

The primary goal of forest silviculture in seedling stands is to establish productive forests 

following clearcutting (Rantala 2011), which has been a central principle of forest treatments 

in Finland for over a hundred years (Rantala 2011). This is to ensure sustainable wood supply 

for the future (Rantala 2011; Huuskonen et al. 2020). In the years following clearcutting, new 

seedlings naturally emerge from seeds of retention trees or are manually planted (Mielikäinen 

and Hynynen 2003). In Finland, it is common practice to plant approximately three to four 

new seedlings for every harvested mature tree (MetsäGroup 2020), while in Sweden, at least 

two seedlings are typically planted (Berglund 2021). Manual planting becomes necessary in 

areas where the natural regeneration of crop species has not been successful. According to 

the Finnish Forest Act (1996/1039), it is mandatory to establish a financially viable seedling 

stand within 10–25 years of clearcutting, ensuring sufficient seedling density, with a mean 

height of >0.5 m and no immediate treatment of other vegetation. Furthermore, deciduous 

seedlings, particularly birch (Hynynen et al. 2010), often outgrow coniferous seedlings in the 

early growth stages of Nordic forests (Kaila et al. 2006; Uotila 2017). Therefore, it is crucial 

to release coniferous seedlings from the dominance of unwanted deciduous seedlings and 

understory vegetation (Uotila 2017; Äijälä et al. 2019; De Lombaerde et al. 2021; Dumas et 

al. 2022). 

During the early stages of forest stand development, two primary silvicultural operations 

are commonly implemented: tending, which involves the removal of competing understory 

and non-crop trees to favor the growth of desired crop trees, and thinning, which entails the 

selective removal of unwanted trees that compete with the crop trees. Tending activities are 

typically conducted within 5–10 years after planting, while thinning operations are initiated 

when the trees have reached a height of 1–5 m, a stage typically attained within 

approximately 10 years of initial planting. These silvicultural operations play a critical role 

in ensuring the successful establishment, survival, and optimal growth of the desired crop 

species in the forest stand. 
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The regeneration of seedling stands and the implementation of silvicultural tending are 

recognized as the two most costly forest operations, with estimated expenses of 940 and 423 

€/ha, respectively (Äijälä et al. 2019; Kellomäki et al. 2021, 2023).  

Despite the substantial financial costs associated with these operations, they are widely 

acknowledged as essential long-term investments in forest management (Äijälä et al. 2019). 

Moreover, Huuskonen et al. (2020) have underscored that a significant increase in stumpage 

revenues, amounting to €1.7 billion over the subsequent 100-year period, could be realized 

through a corresponding rise of €560 million in expenditures for more proactive seedling 

management in Finnish forests. These seedling operations are instrumental in ensuring the 

appropriate stocking of crop species and the establishment and growth of trees for future 

wood supply. Research has indicated that these operations contribute to the increased 

profitability of forest stands as they reach mature stages (Huuskonen and Hynynen 2006; 

Uotila and Saksa 2014; Ara et al. 2022). Consequently, there is a need to apply these 

operations in a highly cost-effective manner to enhance the survival, establishment, and 

growth of crop seedlings (Nilsson et al. 2010). Figure 1 shows a typical seedling stand. 

 

 

1.2 Collecting the information required for management of seedling stands 

 

Tree density, height, and species are the most crucial forest attributes to consider in the 

management of seedling stands, alongside survival, growth, species composition, and 

stocking (Næsset and Bjerknes 2001; Næsset et al. 2004; Vepakomma et al. 2023). 

Traditionally, this information is gathered through field visits, which are considered to be 

labor-intensive, less spatially explicit, and costly. In the context of national forest inventories 

(NFIs), forest plots are systematically sampled to measure the number of conifer and 

broadleaf trees per hectare, their heights, as well as additional data such as the tree species, 

diameter at breast height (dbh), tree stem quality, and canopy layer, particularly in mature 

forests. The field plots are typically circular and of varying radii based on tree dbh, with 

specific radii or relascope factors used for different dbh ranges (Korhonen et al. 2021). In 

seedling stands, tree species and story are used to define tree strata. Specific attributes such 

as mean height, mean diameter, age, basal area, and number of stems, together with seedling 

age, seedling damage, regeneration type (natural or cultivated), and other categorical stand 

attributes, are then assessed (Korhonen et al. 2021; Rana et al. 2023). 

Figure 1. An oblique image captured with a drone showing seedling stands on both sides of 

the road, with mature stands on the right and upper sides of the image. 
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1.3 Remote sensing techniques for characterizing seedling stands 

 

Remote sensing (RS) technologies and methods have undergone rapid advancement in recent 

decades, resulting in enhanced spatial explicitness, accessibility, cost-effectiveness, and the 

capacity to gather data across extensive areas within a relatively short time frame. 

Consequently, RS has the potential to provide information of superior spatial accuracy and 

in a more timely manner, thereby supporting silvicultural decision-making processes 

pertaining to the management of treatments in seedling stands. Consequently, there is an 

impetus to develop and swiftly implement novel methods that can effectively cater to the 

evolving requirements of foresters in the face of today's changing world under various 

climate threats.  

 

1.3.1 Satellite images and aerial photographs 

 

Different RS techniques, including the generation of air- or space-borne optical and radar 

data, have been employed in the monitoring of seedling stands. For instance, synthetic 

aperture radar (SAR) is an active RS technique that measures the distances between objects 

and sensors indirectly using microwaves. SAR can be utilized from space or sky to collect 

valuable data for mapping and monitoring seedling stands. Akbari et al. (2021) utilized open-

access SAR data from the Sentinel-1 satellite in combination with optical images from the 

Sentinel-2 satellite in a multi-temporal manner to detect and characterize seedling stands in 

Norway. Mitri and Gitas (2013) used a combination of high-resolution satellite imagery 

(QuickBird) and hyperspectral satellite data (EO-1 Hyperion) to map forest regeneration and 

vegetation recovery after fire. Additionally, Wunderle et al. (2007) used SPOT-5 satellite 

imagery to assess regenerating boreal forests, while Häme (1984) interpreted coniferous and 

deciduous seedling stands using Landsat imagery. 

Aerial imagery has also been employed in the assessment of seedling stands. For example, 

Kirby (1980) used aerial photogrammetry systems with manual interpretation to assess the 

regeneration of coniferous seedlings taller than 30 cm in Alberta, Canada, and Hall and 

Aldred (1992) used them to assess tree density and stocking in forest regeneration areas on a 

large scale. Smith et al. (1986) utilized high resolution aerial photography to image and 

identify pine seedlings after the first growing season. Additionally, Ball and Kolabinski 

(1979) and Haddow et al. (2000) utilized color aerial imagery to assess softwood 

regeneration, and to detect conifer seedlings and assess their competition, respectively. 

Furthermore, Pouliot et al. (2005, 2006) conducted an automated assessment of tree detection 

and the mapping of competition between trees and shrubs via aerial imagery. Although each 

of the abovementioned methods has its own merits, high resolution aerial imagery using 

drones and computer-assisted image interpretation methods have become particularly 

common, gradually replacing manual methods of tree detection. 

 

1.3.2 Airborne laser scanning technology 

 

Airborne laser scanning (ALS) has been a transformative RS technique for the monitoring 

and assessment of forest and vegetation canopies. It operates by emitting and receiving high-

energy, specific-wavelength laser beams to measure distances based on the time of light 

travel (Wehr and Lohr 1999;  Lefsky et al. 1999, 2002). The distance is measured by time-
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of-flight of the light in a 3D space (Bachman 1979). This method provides highly accurate 

and detailed 3D information (Wehr and Lohr 1999; Montaghi et al. 2013), particularly for 

forest structures at various scales, and is especially effective in capturing detailed 3D data 

related to tree height (Beland et al. 2019). Usually mounted on aircraft, it can quickly scan 

large areas at the scale of thousands of square kilometers (Wulder et al. 2012), making it an 

efficient tool for broad-scale monitoring. It has revolutionized forest RS by providing 

accurate and detailed 3D data of forests and vegetation canopies, which were previously 

difficult to obtain.  

One of the key advantages of ALS is its ability to operate independently of sunlight, as it 

relies on its own laser beams. However, its effectiveness can be hindered by cloud cover, 

dense fog, or dust, depending on the wavelength of the laser beams. Despite this limitation, 

ALS has been used for large-scale operational data collection, such as national-level ALS 

data from Finland and other Nordic countries. While national ALS data from Finland provide 

valuable information about mature forests, the data obtained from seedling stands may be 

less detailed. This necessitates the acquisition of higher-quality ALS data, which can be 

obtained via helicopter or drone. 

The development of ALS sensors to enhance efficiency and accuracy has been ongoing. 

For instance, single-photon laser (SPL) scanning has enabled the collection of highly detailed 

data over large areas by utilizing advanced technology that relies on a 10×10 practical laser 

beam (called beamlet) and high sensitivity for recording laser returns (Degnan 2016; Beland 

et al. 2019). It produces six million pulses per second using very short laser pulses in the 

green wavelength region of 532 nm (Leica 2021). Compared to conventional laser scanning 

systems, it has been found to detect backscattered laser returns more accurately, rapidly, and 

efficiently (Swatantran et al. 2016). Additionally, multispectral ALS (mALS) sensors have 

been developed to scan using multiple beams at different wavelengths, enabling better and 

more detailed spectral characterization and higher point density. These advancements have 

made ALS a potentially single-sensor solution for remote sensing applications (Yu et al. 

2017). Terrestrial laser scanning is a type of laser scanning that involves mounting the sensor 

on ground tripods, providing the ability to capture highly detailed 3D data of the surrounding 

environment. However, it has been underutilized in the assessment of seedling stands due to 

the high occlusion effect caused by dense tree density.  

 

1.3.3 Drone imagery technology 

 

The use of drones, also known as uncrewed aerial vehicles (UAV), uncrewed aerial systems 

(UAS), or remotely piloted aircraft systems (RPAS), has become increasingly popular in 

forestry research and industry. Drones equipped with various sensors, including optical 

(RGB, NIR, multispectral, or hyperspectral) or active (LiDAR or SAR) sensors, have been 

utilized for collecting high-resolution imagery to estimate essential forest inventory 

variables, with accuracies close to those achieved through field visits (Tuominen et al. 2015; 

Zahawi et al. 2015; Torresan et al. 2017; Goodbody et al. 2019; Puliti et al. 2019). This thesis 

focuses on drone optical imagery. 

Drones offer a cost-effective and repeatable method of collecting very high spatial 

resolution data for smaller areas (Carr and Slyder 2018; Albuquerque et al. 2021; Lopatin 

and Poikonen 2023; Fassnacht et al. 2024), providing benefits for the detection and 

characterization of small trees in young or recovering forest stands (Zahawi et al. 2015; Thiel 

and Schmullius 2017; Puliti et al. 2019). This includes the collection of data on seedling 

density, height, species, distribution, and health, which can aid foresters in applying the 
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necessary seedling treatments at the right time and place. Moreover, Goodbody et al. (2018) 

used aerial photogrammetry and drone-PPC to assess the conditions of seedling stands, while 

Korpela et al. (2008) demonstrated successful assessment of vegetation in seedling stands 

using a combination of aerial photography and ALS.  

However, drones have limitations in covering large spatial areas, operating at large scales 

due to safety regulations and technological constraints, and facing variability in data quality 

depending on weather conditions. Additionally, there are high workload and administrative 

costs associated with large-scale drone survey applications, such as travel to survey sites 

(Puliti et al. 2017; Fassnacht et al. 2024). 

Drones capture RGB, multispectral, and/or hyperspectral data, which are processed to 

provide orthomosaics using photogrammetric techniques. RGB images are commonly used 

due to their low cost and comparable results to ALS data (Fassnacht et al. 2024). The RGB 

images can also be used to create 3D photogrammetric point clouds (PPCs) using a 

photogrammetric method named "structure from motion," the image processing technique of 

generating 3D point clouds using several 2D images with different view angles to the object 

(Snavely et al. 2008; Guimarães et al. 2020). These PPCs can be very dense but, unlike ALS, 

cannot penetrate to the interior or bottom of the canopy. 

From an imagery perspective, drone images can be RGB, multispectral (often RGB with 

RedEdge, NIR, and SWIR spectral bands), or hyperspectral. Spectral reflectance bands of 

consumer RGB cameras are optimized for human eyes and not for remote sensing, while 

multispectral cameras, with 5–10 optimized bands, and hyperspectral cameras, typically with 

hundreds of narrow bands, provide precise spectral data (Aasen et al. 2018). 

Overall, the use of drones in forestry has shown great potential for improving forest 

management and conservation efforts. Drones can complement or replace field visits for 

seedling stands and can be a feasible alternative where frequent data collection is needed or 

where ALS data are not available (Thiel and Schmullius 2017). 

 

 

1.4 Methods of tree density and height estimation in seedling stands 

 

1.4.1 Area-based approach (ABA) 

 

The area-based approach (ABA) utilizes statistical relationships between predictor variables 

obtained from ALS data (such as height percentile) and target variables from field-measured 

plots to predict forest inventory parameters such as volume and basal area (Næsset 2002; 

White et al. 2013a). It involves acquiring ALS data for the area of interest, gathering field 

measurements, and developing predictive parametric (e.g., regression) or non-parametric 

models, followed by applying these models to produce wall-to-wall estimates and maps of 

particular forest inventory parameters (White et al. 2013a). ABA is not reliant on subjective 

stand boundaries and can forecast forest attributes with superior or comparable accuracy to 

conventional field inventories (Næsset 2004; White et al. 2013a). Additionally, integrating 

optical data with ALS data can enhance the estimation of forest characteristics at the species-

specific level (Packalén and Maltamo 2007). ABA is widely accepted and operational in 

forest inventories (White et al. 2013a; Næsset 2014), particularly in Nordic countries (Næsset 

2004; Næsset 2014; Nilsson et al. 2017; Maltamo et al. 2021), and is a low-cost method (Eid 

et al. 2004; Næsset 2004).  
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Efforts have been made to enhance the performance of conventional or "ordinary" ABA 

methods (ABAOrdinary) of characterizing different forest stands. These efforts can be 

categorized into two approaches: 

1) Adding individual tree features into ABA (ABAITD): This approach combines individual 

tree detection (ITD, explained in Section 1.4.2) with ABAOrdinary methods by averaging the 

features extracted from ITD segments within plots and using them for statistical modeling of 

forest attributes. This approach was initially introduced by Hyyppä et al. (2012), then further 

investigated and verified in other studies in mature forests (Breidenbach et al. 2012; 

Vastaranta et al. 2012; Shinzato et al. 2017; Parkitna et al. 2021; Kelley et al. 2022). 

2) Correcting the effect of edge or border trees in plot boundaries (ABAEdge): This 

approach involves adjusting the boundary of forest plots based on segmented edge treetops 

to improve consistency between ALS-derived features and plot-level field measurements. 

This approach was first introduced by Packalen et al. (2015), then evaluated and corroborated 

in other studies in mature forests (Pascual 2019; Knapp et al. 2021; Kotivuori et al. 2021). 

 

1.4.2 Individual tree detection (ITD) methods 

 

The ITD methods detect individual treetops, fit a crown boundary for each tree to be used for 

extracting different features from the point clouds, or image pixels located inside each tree 

segment. The ITD methods use a rasterized canopy height model (CHM; representing the 

height of each pixel from the ground) or point cloud directly (e.g., Hyyppä and Inkinen 1999; 

Wang et al. 2016). The typical components of tree detection are the different spatial spacing 

between individual trees, different inner or outer structure of trees, and geometric- and 

intensity-related properties of ALS point clouds (Parkan 2019). The CHM-based ITD 

methods typically find treetops using local maxima, then segment the crown boundary for 

individual or groups of trees using a segmentation algorithm such as marker-controlled 

watershed segmentation, which finds catchment basins on the CHM considered to be flooded 

topographic reliefs (Kornilov et al. 2022). Point cloud-based ITD methods often voxelize the 

point clouds and cluster them to distinguish the individual trees (Wang et al. 2016). The 

estimated forest attributes from these different ITD methods can be assessed at the tree, plot, 

or stand level (Vastaranta et al. 2011). Given the need for high-density point cloud data to 

detect individual seedlings, earlier applications of the ITD method were often elusive in 

characterizing seedling stands. 

 

 

1.5 Remote sensing methods of classifying species of seedlings 

 

1.5.1 Machine learning methods 

 

Spectral data from images and the intensity of mALS data are commonly utilized to classify 

species in remote sensing-based forest inventories. Machine learning (ML) methods can be 

categorized into supervised, semi-supervised, and unsupervised methods based on the 

availability of target variables (e.g., species class) and training data. This thesis focuses on 

the use of supervised methods, which utilize artificial intelligence (AI) to interpret data and 

achieve specific goals and tasks (Kaplan and Haenlein 2019).  

A popular ML method used for classifying different objects, including tree species 

classes, is the random forest (RF) algorithm. RF is an ensemble method that creates 

uncorrelated and independent decision trees to predict the target variable (Breiman 2001). 
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The most-voted prediction among the decision trees is used as the final predicted class 

(Breiman 2001) or the class with the highest average of prediction probability among classes 

in the implementation of RF using scikit-learn software (Pedregosa et al. 2011). It is a 

supervised learning method that trains a predictive model on input features and the target 

label to predict the target variable of unseen test data. It is known for its speed, ease of use, 

robustness to noise, high dimensionality, and multicollinearity of data, as well as its 

insensitivity to overfitting (Breiman 2001; Gislason et al. 2006; Cutler et al. 2007; Fawagreh 

et al. 2014; Belgiu and Drăgu 2016). The training phase often employs a cross-validation 

mechanism with out-of-bag sampling to reduce the risk of overfitting and improve model 

performance and generalization ability (Berrar 2019; Kee et al. 2023).  

RF, along with other ML methods, has been extensively utilized in forestry applications, 

such as for classifying tree species (Immitzer et al. 2012; Dalponte et al. 2013; Fassnacht et 

al. 2014; Shang and Chisholm 2014; Ma et al. 2021; Quan et al. 2023), mapping forest health 

conditions (Wang et al. 2015; Fraser and Congalton 2021; Huo et al. 2021; Junttila et al. 

2022), and predicting the regeneration probability of coniferous seedlings (Zhao et al. 2023). 

For instance, Zhao et al. (2023) reported that among all the methods they tested, RF had the 

highest accuracy in predicting the regeneration probability of coniferous seedlings. 

 

1.5.2 Convolutional neural network (CNN) methods 

 

Convolutional neural networks (CNNs) are another type of AI that is particularly effective 

for image classification tasks. CNNs consist of interconnected processing units organized in 

convolutional layers of intercorrelated nodes, where weights and biases are applied to input 

images to generate new feature maps (Ma et al. 2019; Kattenborn et al. 2021). To put it 

simply, the input data undergo convolutional computations in each convolutional layer when 

they pass forward and become ready for a decision (species class) made in the last layer using 

the values produced in each layer (Kim 2017; Litjens et al. 2017; Ma et al. 2019; Alzubaidi 

et al. 2021). Unlike traditional ML methods, CNNs can automatically create relevant features 

directly from input images (Sewak et al. 2018), eliminating the need for pre-defined manually 

created features and preprocessing (Li et al. 2017; Gao et al. 2018; Mäyrä et al. 2021). 

CNNs have gained popularity in RS-based image classification (Kattenborn et al. 2021), 

especially in the context of tree species classification in mature forests and other forestry 

applications. They have been successfully applied in the classification of tree species using 

various image inputs, including RGB and multi- and hyper-spectral images collected from 

drones, and air- and space-borne remote sensing platforms (e.g., Fricker et al. 2019; Natesan 

et al. 2020; Nezami et al. 2020; Pleşoianu et al. 2020; Onishi and Ise 2021; Yan et al. 2021). 

Additionally, CNNs have been used for tree health mapping (Minařík et al. 2021; Kanerva et 

al. 2022; Safonova et al. 2022; Turkulainen et al. 2023) and have demonstrated superior 

performance over other ML methods, such as RF, in species classification in mature forests 

(Mäyrä et al. 2021; Yan et al. 2021) and urban or suburban areas (Li et al. 2021; Guo et al. 

2022), yet largely remain unstudied for the classification of seedling stands. 
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1.6 Remote sensing methods of estimating tree height in seedlings 

 

The estimation of tree height through RS involves extracting the maximum height point 

(Hmax) from normalized point clouds obtained from ALS or drone-PPC data within tree 

canopy segments using the ITD method or modeling in ABA methods (Wang et al. 2019). 

The same approach can also be applied to estimate the height of seedlings. However, the 

accurate estimation of tree height in forests is challenging due to factors such as dense canopy 

cover, steep terrain (Gatziolis et al. 2010), a tall and dense understory (Haugerud et al. 2003; 

Hyyppä et al. 2008; White et al. 2013a), as well as the point density of the ALS data used 

(Hyyppä et al. 2008), as low-density ALS data are generally expected to hit tree "shoulders" 

rather than treetops (Nelson et al. 1988).  

These challenges hinder the generation of accurate digital terrain models (DTM) for 

height normalization, leading to difficulties in tree height estimation. This is particularly 

challenging in seedling stands because the same error in estimating the height of a small tree 

results in a proportionally larger error in seedling height compared to the error in tall trees. 

Additionally, seedlings are more vulnerable to point density issues as their sharp treetops 

lower the chance of ALS hitting the treetops, thus causing larger underestimates, as observed 

in the studies conducted in this thesis. 

 

 

1.7 State of the art and objectives 

 

The utilization of drone and ALS data in seedling stands had been relatively limited prior to 

the commencement of this thesis, with little prior exploration in both research and operational 

applications. While drone imagery has demonstrated promising results in the monitoring of 

mature forests, the research in this thesis has opened new avenues for understanding the 

potential of drones in seedling stands and has unlocked their full potential for use. Except for 

several studies that applied drone multispectral or RGB data in seedling stands (e.g., 

Vepakomma et al. 2015; Feduck et al. 2018; Goodbody et al. 2018; Puliti et al. 2019), before 

the realization of this thesis project, seedling stands had not been studied using hyperspectral 

drone imagery (study I), and the comparison of the suitable acquisition times for leaf-off and 

leaf-on data and investigation of methods in YoS and AdS had not been thoroughly explored 

prior to study I. Furthermore, study I was the first to utilize ITD in seedlings, in contrast to 

the use of ABA in inputs of ALS and PPC data by Puliti et al. (2019). The focus of study I 

was on assessing overall and spruce-specific tree density and height in seedling stands, given 

the greater care (e.g., tending and thinning to free them from naturally grown birches) 

required by spruces as the main crop species, compared to pine seedlings. 

In addition to the novelty of using mALS in seedling stands in study II, other innovations 

included the optimization of the canopy height threshold (Cth) method to minimize the 

encounter of laser returns from below the canopy in seedling stands, as well as the 

comparison of leaf-off and leaf-on conditions in YoS and AdS plots. Although the ABAOrdinary 

method was widely used in operational forestry, it had challenges inventorying seedling 

stands using nationwide low-density ALS data, remaining less operational and less developed 

for seedling stands. Therefore, study III pioneered the exploration of SPL in seedling stands 

and the development of the ABAEdgeITD method, while also comparing YoS and AdS.  

While some previous studies had used CNN to detect seedlings (e.g., Chadwick et al. 

2020; Pearse et al. 2020; Jayathunga et al. 2023; Lopatin and Poikonen 2023), they did not 

focus on addressing classification issues in seedling stands. Therefore, study IV focused on 
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the use of CNN for classifying seedling species and developed a new Cth-based image 

preprocessing method to be applied before feeding image tensors to the CNN classifiers. This 

is particularly important as the capability of CNNs to classify species in seedling stands–

where classification is challenging due to factors such as varying canopy sizes, low foliage 

cover percent, and mixed reflectance from neighboring trees or understory vegetation–has 

not been extensively examined. Study IV also compared the results with RF as a benchmark 

of ML methods. Overall, this thesis has addressed some parts of the knowledge gap in this 

area.  

The overarching aim of this thesis is to enhance the characterization of seedling stands 

using emerging RS techniques, with a specific focus on improving tree density estimation, 

mean tree height estimation, and species classification at either the tree or plot level. These 

are key forest characteristics that need to be considered in silvicultural operations to ensure 

the sustainability of seedling stands and the quality of the future forests and wood supply. 

The main objectives of each study are to: 

1. Investigate the potential of drone-PPC and hyperspectral data to estimate the tree density 

and height of seedling stands in both leaf-off and leaf-on conditions (study I) 

2. Minimize the impact of the understory by optimizing the Cth method to enhance 

estimation of the tree density, height, and species classification of seedling stands using 

mALS data in leaf-off and leaf-on conditions (study II) 

3. Enhance the ABAOrdinary method by developing the ABAEdgeITD method to improve the 

tree density and height estimation of seedling stands tested using SPL and LML ALS data 

(study III) 

4. Improve the species classification accuracy of seedlings by developing a preprocessing 

step in CNN on multispectral drone imagery (study IV) 

 

 

2 MATERIALS AND METHODS 

2.1 Study areas  

 

The study areas consisted of different seedling stands that represented typical southern boreal 

seedling stands in Evo (61.20°N, 25.08°E; studies I, II, and IV) and Akaa (61.25°N, 23.24°E; 

study III), Finland.  

The Evo study area covered approximately 2,000 hectares of forested land, with 

elevations ranging from 125 to 185 m above sea level. The dominant tree species in Evo were 

Scots pine (Pinus sylvestris L.) and Norway spruce (Picea abies (L.) H. Karst.), with 

deciduous species accounting for about one-fifth of the total stem volume. The primary 

deciduous tree species in Evo were silver birch (Betula pendula Roth) and white birch (Betula 

pubescens Ehrh.), and the site type of the area was classified as mesic heath forest. 

The Akaa study area covered approximately 102,000 hectares of forested land, with 

elevations ranging from 75 to 150 m. Similarly to Evo, Scots pine and Norway spruce were 

the dominant species in Akaa, and the area was also characterized as a typical managed boreal 

forest. 

The study areas are visually represented in Figure 2, providing a geographical overview 

of the Evo and Akaa locations. 
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2.2 Field data collection  

 

The study sites for both study I and study II were selected based on existing forest resources 

information, with a focus on stands with a tree density of more than 2,400 trees per hectare 

(TPH). Field plots were established at different tree densities through thinning, with circular 

plot areas of 5 and 10 m considered for young seedling (YoS) and advanced seedling (AdS) 

stands, respectively. Thinning was carried out to achieve target tree densities ranging from 

approximately 1,200 to 2,000 TPH in YoS plots and 600 to 2,400 TPH in AdS plots. The 

establishment of sample plots, thinning, and recording of plot locations using the Trimble 

GeoXT Global Navigation Satellite System (GNSS) device were conducted from April to 

May 2016, followed by the measurement of plot-level forest inventory attributes in June 

2016. 

In this field measurement, the dbh and species of seedlings taller than 1.3 m were recorded 

in the AdS plots. Additionally, the height of every third seedling of each species and the 

height of the tallest seedling in each plot were measured. For the remaining seedlings in each 

plot, their heights were estimated using Näslund's height curve (Näslund 1936) and the 

sampled seedling height measurements. In the YoS plots, the diameter at ground height of 

the seedlings was measured, as the seedlings were generally shorter than 1.3 m. 

The plot-level tree density was calculated by dividing the number of observed seedlings 

of each species by the area of each plot, converted to hectares. The plot-level mean height of 

the seedlings was calculated by taking the arithmetic average of the seedling heights in single-

species plots, and a weighted average of the mean height of species and their numbers in 

mixed-species plots. It is important to note that three plots (G1, G2, and G8) from the AdS 

were not included in study II because they were not thinned before the collection of leaf-off 

data on 1 May 2016. Table 1 shows the tree density and height variables in sample plots used 

in studies I and II. The remaining seedlings in the YoS were all spruce, while the AdS had 

an admixture of birch, accounting for less than 51% and 34.3% in studies I and II, 

respectively.  

In study III, 85 circular plots were established as part of the operational forest inventory 

site of the Finnish Forest Center. The location of these plots was pre-defined using a 

systematic stratified sampling method to ensure representation of the structural variation of 

seedling stands in the study area. Field measurements were performed inside single 9-m or 

5.64-m radius circular plots or four sub-plots with 2.82-m radii inside the 9-m radius circular 

plot (according to the growth stage and silvicultural management applied to the seedling 

stands) to ease the burden of field measurements. A total of 89 sample plots were measured, 

with the field crew recording the location of the plot center using GNSS and measuring the 

dbh and species of every tally tree within the plots. Additionally, the height of one tally tree 

per species and per height stratum were measured to be used for modeling the height of other 

trees using a mixed-effect model, which fits height-dbh curves for each species, proposed by 

Eerikäinen (2009).  

In study IV, 14 seedling stands representing variations in tree density and species classes 

were selected, and stratified sampling was used to pre-define the sample locations and their 

numbers in each stand. The sample plots were positioned along the longest intersecting line 

drawn through each stand, with the field crew using a magnetic compass and measuring tape 

to determine the direction of intersecting lines and the location of the plot center. A Real-

Time-Kinematic (RTK) GNSS device was used to record the location of the plot center, and 

the height, species, and location of all trees above 1 m in height were recorded. Depending 

on the height of the tree, either a measurement stick or an electrical clinometer (Vertex IV, 
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Haglöfs Sweden) was used for measuring tree height. In the early development stages of 

mainly deciduous species, seedlings typically grow in thickets. The field crew were instructed 

to record one location for these thickets and report the number of unique seedlings taller than 

1 m per species class in this location. A total of 5,417 seedlings inside 75 sample plots of 

10×10 m were measured.  

To ensure clarity, the forest inventorying in studies I–III was conducted at the plot level, 

while study IV focused on individual-tree level inventorying. For more in-depth information 

on the field data collection and forest inventorying methods employed in each study, please 

read the individual study descriptions. Table 1 offers a comprehensive summary of the data 

utilized in studies I–IV, and Figure 2 visually depicts the study areas. 

 

Table 1. A summary of tree density and height measured from plots used in studies I–IV. 

Study 
Collection 

time 

Data 

level 

Measured 

attribute 

Growth stage 

(number of 

observations) 

Mean of tree 

density 

(range) 

Mean of 

tree 

height 

(range) 

Mean of tree 

density and 

height of 

Spruce Birch 

   
Tree 

height, 

species, 

density  

YoS (n = 5) 
1591.6 

(1194–1989) 

1.1 

(0.7–1.9) 

1591.6, 

1.1 

0.0, 

NA 

I June 2016 
Plot 

level 
AdS (n = 10) 

1508.9 

(605–2388) 

3.3 

(1.6–4.5) 

1206.5, 

3.0 

432.0, 

4.2 

   All (n = 15) 
1536.5 

(605–2388) 

2.5 

(0.7–4.5) 

1334.9, 

2.3 

432.0, 

4.2 

   
Tree 

height, 

species, 

density 

YoS (n = 5) 
1591.6 

(1194–1989) 

1.1 

(0.7–1.9) 

1591.6, 

1.1 

0.0, 

NA 

II June 2016 
Plot 

level 
AdS (n = 7*) 

1587.1 

(796–2228) 

3.2 

(1.6–4.5) 

1364.3, 

3.0 

390.0, 

4.3 

   All (n = 12) 
1589.0 

(796–2228) 

2.3 

(0.7–4.5) 

1459.0, 

2.2 

390.0, 

4.3 

   
Tree 

height, 

species, 

density  

YoS (n = 9) 
6588.9 

(1900–13700) 

1.2 

(0.8–1.3) 
- - 

III 
Summer 

2017 

Plot 

level 
AdS (n = 80) 

3974.1 

(1001–14200) 

4.0 

(1.4–7.8) 
- - 

   All (n = 89) 
4238.5 

(1001–14200) 

3.7 

(0.8–7.8) 
- - 

IV 
September 

2020 

Tree 

level 

Tree 

species, 

height 

5417 seedlings tree-mapped in 75 sample plots of 10×10 m, 

included pine (13.6%), spruce (28.7%), birch (48.4%), and other 

species (9.3%) 

*three plots were excluded from study II, because the plots were not thinned in preparation for remote 

sensing data collection for study II on 1 May 2016. 



22 

 

 

Figure 2. A) Map of the study areas used in this thesis, along with illustrations of small subsets 

of the data from each study. Studies I, II, and IV were performed in the Evo and study III in 

the Akaa study area in Finland. B) 2D visualization of single-photon and linear-mode laser 

scanning (SPL and LML) data visualized by laser return numbers. C) Visualization of 

hyperspectral and multispectral drone data (studies I and IV) in plot and tree level together 

with 2D visualization of multispectral ALS data (study II) colored by scanner channels 1550, 

1064, and 532 nm in black, red, and blue, respectively. 

 

 

2.3 Remote sensing data collection 

 

The RS data used in this thesis included different optical (passive) imaging (hyperspectral, 

multispectral, and RGB) mounted on drones and different active ALS mounted on helicopters 

or other aircraft. Table 2 provides a summary of the data and Figure 2 visualizes parts of the 

data. However, the detailed technical specifications of the used data can be found in the 

published research articles of each study. 
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Table 2. Summary of used remote sensing data with other relevant information used in the 

different studies in this thesis. 

 

Study Platform Sensor Data type Resolution 
Acquisition 

time 

Flight 

height 

I Drone 

Fabry–Pérot 

interferometer 

(FPI) 

Hyperspectral 

(36 spectral 

bands) 

10 cm 

9 and 11 

May (Leaf-

off) and 29 

June (leaf-

on) in 2016 

100 m 

Samsung 

NX300 
RGB 2.5 cm 

II ALS 
Optech Titan 

mALS scanner 

Multispectral 

ALS 

(Channels in 

532, 1064, and 

1550 nm) 

60.1 and 

57.2 

points/m2 

(leaf-off and 

leaf-on) 

1 May 

(leaf-off) 

and 12–14 

June (leaf-

on) 2016 

500 m 

III ALS 

Leica (SPL100) ALS in 532 nm 
19.0 

points/m2 

31 May 

2018 
3750 m 

Riegl VQ-1560i 

(LML) 

ALS in 1064 

nm (dual) 

12.5 

points/m2 

21–23 May 

2018 
1450 m 

IV Drone 

MicaSense MX 

Red-Edge 

Multispectral 

(RGB, 

redEdge, NIR) 

5.5 cm 
11 and 15 

September 

2021 

70 m 
Sony A6000 (24 

MP) with 21-mm 

Voigtländer lens 

RGB 1.3 cm 

 

The hyperspectral data for study I were collected using a Fabry–Pérot interferometer 

(FPI) sensor in both leaf-off and leaf-on conditions. The sensor captured images in 36 bands 

from 500–900 nm, with dimensions of 1,024 × 648 pixels. Additionally, an RGB camera was 

mounted on the drone. The weather conditions varied from cloudless and bright during leaf-

off data collection to sunny and cloudy during leaf-on data collection. The drone flew at a 

speed of 3 m/s with forward and side overlaps of 83% and 80% for FPI camera blocks, and 

96% and 85% for RGB camera blocks, respectively. Georeferencing of the orthomosaics was 

achieved using 20 circular ground control points (GCPs) 30 cm in diameter. The coordinates 

of the GCPs were measured with a Trimble R10 (L1 + L2) RTK-GNSS receiver, providing 

horizontal and vertical accuracies of 2 cm and 3 cm, respectively. Reflectance calibration 

was conducted using 1×1 m reflectance panels placed near the drone's take-off location, along 

with irradiance measurement using an analytical spectrum device (ASD Field Spec Pro) with 

cosine collector optics. 

The multispectral drone images for study IV were collected using a MicaSense MX Red-

Edge sensor mounted on a quadcopter drone. The drone was equipped with a post-processed 

kinematic-level GNSS positioning system to georeference the images and a downwelling 

light sensor (DLS) to measure the illumination differences between images collected during 

flight. Additionally, an RGB camera was mounted on the drone. To ensure consistency 

between the RGB and multispectral data, the cameras were synchronized and captured 
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images simultaneously. Additionally, a 50% reflectance panel from the MicaSense camera 

kit was used for every flight to establish the proper level for reflectance. The data collection 

took place over two days under cloudy or slightly overcast weather conditions. Reflectance 

panels and DLS were used to account for the overcast conditions, as per the MicaSense 

instructions. The reflectance panels were strategically placed in each flight to account for 

illumination conditions and prevent shadows or distortions. In order to obtain two baseline 

measurements and monitor changes in lighting conditions during the flight, images of the 

reference panel were captured just before and after each flight. The light conditions of each 

image were automatically stored by the DLS. The drone flew at 8–9 m/s at 70 m above the 

ground, with forward and side overlaps of 80% and 75% for MicaSense and 85% and 80% 

for RGB images, respectively. The data were collected from five flight zones, each covering 

approximately 10 ha. 

In study II, mALS data were collected using three channels: at 532 nm, 1,064 nm, and 

1,550 nm. The ALS systems used in study III were the SPL and LML systems, which employ 

nutating mirror palmar and rotating polygon scanning mechanisms, respectively. The point 

density of the SPL data decreases at the flight nadir and increases toward the edge of the 

flight lines due to its scanning mechanism. As described in Section 1.3.2, the SPL system 

sends and receives each sunbeam's backscattered laser signal using an array of 10×10 

collimated sunbeams (Bernard et al. 2019), resulting in a similar or higher point density 

compared to the LML system. This higher point density was achieved despite the SPL system 

being collected from a flight height 2.6 times higher than that of the LML system. Both 

systems were planned to nominally collect 8 points/m2. Table 2 provides a summary of the 

different ALS data collected for studies II and III, including details such as the wavelengths 

used, the scanning mechanisms employed, and the planned point density for each system. 

 

 

2.4 Methodological overview 

 

2.4.1 Preprocessing of drone imagery data (studies I and IV) 

 

The preprocessing of drone data in studies I and IV involved creating dense point clouds 

from RGB images and creating image orthomosaics from hyperspectral (study I) and 

multispectral drone data (study IV). An overview of the entire methodological process for 

studies I–IV in this thesis is presented in Figure 3. 
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Figure 3. This flowchart provides an overview of the methodological steps conducted in 

studies I–IV. Each arrow type indicates the steps undertaken by its respective study, 

annotated with the study number near the top of the flowchart, under the icons depicting drone 

imaging (left) and airborne laser scanning (right). 

 

 

In study I, RGB images were georeferenced and processed using Pix4DMapperPro 

software to create dense photogrammetric 3D point clouds. Additionally, the FPI 

hyperspectral data were oriented and processed using a rigorous 3D approach  (Nevalainen 

et al. 2017) for band co-registration and radiometric correction. This involved using radBA 

software (version 2016-08-20, Masala, Finland) for sensor correction, atmospheric 

correction, and normalization of directional dependency effects (Honkavaara et al. 2013; 

Honkavaara and Khoramshahi 2018). The final outputs were RGB and hyperspectral 

orthomosaics with specific ground sampling distances of 2.5 cm and 10 cm, respectively. 

In study IV, the pre-processing of drone data began by geolocating the captured images 

using onboard Rinex GNSS log data from Trimble Virtual Reference Station with RTKLIB,  

version 2.4.3 b02 (www.rtklib.com, accessed on 10 October 2021) software. Subsequently, 
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the accurate orientation and rotation of the images were determined using photogrammetric 

adjustment in Agisoft Metashape version 1.7. The datasets from RGB and MicaSense 

cameras were processed separately. The images underwent radiometric and geometric 

calibration to ensure accurate orientation and positioning. Dense point clouds were created 

from the RGB images, while multispectral data were used to generate multispectral 

orthomosaics. Notably, no GCPs were used, as the RGB camera system was already 

geometrically calibrated. Finally, RGB-based point clouds were generated at a 3-cm point 

distance, multispectral orthomosaics were created at a 5-cm resolution, and a 3-m resolution 

digital surface model was employed to mitigate possible distortions of trees. 

Next, in study I, the heights of RGB point clouds were normalized to the ground height 

using a 2-m DTM created by the National Land Survey of Finland using ALS data updated 

in August 2015. Similarly, in study IV, this process was performed using the ground-

classified laser returns from drone-laser scanning data collected on the 10th of September 

2021 at the flight height of 55 m and speed of 5 m/s, to provide a planned point density of 

>700 points/m2. 

 

2.4.2 Preprocessing of ALS data (studies II and III) 

 

In studies II and III, the preprocessing of ALS data involved classifying ground versus non-

ground laser returns, followed by height-normalizing the ALS point clouds using the ground 

laser returns. 

For the mALS data in study II, the classification of ground and non-ground (vegetation) 

laser returns was carried out using a standard procedure in TerraScan (TerraSolid Oy, 

Helsinki, Finland). The data were then cleaned of any potential noisy laser returns originating 

from beneath the ground surface or above the tree canopy. Subsequently, a triangulated 

irregular network formatted DTM was created using the ground-classified laser returns of 

three channels independently to prevent any potential difference between the channels of 

mALS data. The DTM was used to normalize the height of point clouds by subtracting the 

terrain height from the point cloud height. These preprocessing steps were conducted 

independently for both leaf-on and leaf-off data. The intensity of laser returns was used 

without calibration. 

Similarly, in study III, the ALS data were initially preprocessed by the data provider 

(Leica Geosystems) using HxMap software (Leica HxMap 2022). Their preprocessing 

included noise removal from the data, which was adjusted for each sensor of LML and SPL. 

Next, laser returns from the ground were classified using the approach presented by Axelsson 

(2000), followed by creating a DTM using the Delaunay triangulation method. The height of 

point clouds was then normalized as in study II. Finally, laser returns from flight line 

overlapping areas were dropped to ensure the uniformity of the data to be used in the next 

steps. These steps were conducted separately for each SPL and LML dataset. 

 

2.4.3 Tree detection (studies I, II, and III) 

 

In studies I, II, and III, ITD and ABA methods were used to estimate tree density at the plot 

level. The ITD method involved creating canopy height models (CHMs) from drone-PPC or 

ALS data, with subsequent gap filling and smoothing CHMs, followed by watershed 

segmentation to detect tree crown boundaries. In study IV, CHMs were created from drone-

PPC and used for further image pre-processing. Additionally, field-mapped trees were used 
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to create image cubes for segment boundary definition, focusing on tree species 

classification. 

In study III, methodological improvements were developed for ABA by combining ITD 

features with ABA (in the ABAITD method) and correcting edge-tree effects (in the ABAEdge 

method); we named this approach the ABAITDedge method. The ABA methods involved 

statistical modeling between relevant features, as well as field-measured tree density and 

height, using an ordinary least squares (OLS) regression model. 

2.4.4 Feature extraction  

 

The extraction of relevant features from different datasets was a key focus across all studies 

(I–IV). In study I, the primary analysis involved extracting features from hyperspectral 

images and calculating the mean and maximum height (Hmean and Hmax) of each segment from 

the CHMs. The Hmax values were used to identify and remove segments below specific 

canopy height thresholds (Cth)–0.5 m and 1.0 m in YoS and AdS, respectively–based on the 

literature (e.g., the use of 0.5 m by Næsset and Bjerknes 2001; Økseter et al. 2015) and 

experimental validation. Next, after visual inspection and expert knowledge, pixels inside 

segments with ≥50% of Hmax of each segment were kept to minimize the possible reflectance 

of the understory within each remaining segment. Additionally, the arithmetic mean of 

spectral values of each band was extracted from each segment and used to calculate the 

normalized difference vegetation index (NDVI), as the popular vegetation indices (VIs). 

In study IV, a detailed feature extraction approach was employed, involving the creation 

of tensors (image cubes, the 10×10-pixel cubes centering the location of the field-mapped 

seedling treetops) from multispectral images. The Cth of pixels above 0.4 m were applied, 

and the dataset named withCth, keeping the original data (on which the Cth operation was not 

performed) and naming them as noCth. Study IV then included the extraction of various 

statistical handcrafted features from the spectral bands, such as minimum, maximum, 

standard deviation, range, and percentiles, and the calculation of eight different VIs for each 

of the extracted features. Given that the CNN methods of species classification necessitate 

tensors that are without null pixels, which arise as a result of nullifying the pixels below the 

Cth, these nulls were filled by employing 3×3 moving kernels around the gaps to fill them 

with the average of the eight closest pixels. The CNN method also automatically extracted 

features from the input 3D tensors, with and without the incorporation of VIs (named the 

withVIs and noVIs datasets, respectively), to explore the importance of VIs in CNN methods. 

In studies II and III, various relevant features were extracted from the mALS and the 

SPL and LML datasets, including the extraction of intensity-related features from laser 

returns and the calculation of geometric characteristics and other relevant features for tree 

density and height estimation. The features in study II included Hmax–the height of the highest 

laser return of all channels in each segment–and 208 intensity-related features extracted from 

the intensity values of laser returns of each channel above 6 Cths (0, 0.2, 0.4, 0.6, 0.8, and 1 

m). Next, the features were grouped into single-channel intensity (SCI) and multi-channel 

intensity (MCI) features. The MCI features were calculated by applying different VIs on the 

SCI features. As a result, a total of 78 SCI features and 130 MCI features were extracted from 

laser points above each of the six Cth per segment, yielding six separate datasets. In study III, 

a comprehensive set of geometric features was extracted from each sample plot and ITD 

segment, utilizing all the laser returns from the SPL and LML datasets. Next, the features 

were grouped into features suitable for tree density and height estimation. 
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Furthermore, in study III, methodological improvements were applied for the ABAOrdinary 

method, including the correction of edge-tree effects (ABAEdge), integration of ITD features 

(ABAITD), and introduction of a new combined approach (ABAEdgeITD) to enhance the 

estimation of tree density and mean height. These methods involved extending or shrinking 

the plot boundary based on the Hmax of the segment boundary falling inside or outside of the 

plot (ABAEdge), adding plot-level averaged ITD-derived features to the ABAOrdinary features 

(ABAITD), and combining the two methods, respectively. 

Overall, the feature-extraction process in the studies involved a range of techniques 

tailored to the specific characteristics of the input data, and the extracted features were 

utilized for tree density and height estimation in the respective studies. The plot-level tree 

density in all studies involved the calculation of the number of detected trees within the plot 

area, followed by the conversion of the area to hectares. 

 

2.4.5 Tree height estimation 

 

The Hmax values extracted from each segment were utilized as estimated tree heights, and the 

arithmetic means of these Hmax values were calculated to estimate mean tree height at the plot 

level using the ITD methods in studies I and II. In study III, the mean tree height was 

estimated through statistical modeling of the extracted ABA features and the field-measured 

mean tree height. It is important to note that study IV did not include tree height estimation 

as part of its focus. 

 

2.4.6 Feature selection and tree species classification 

 

The feature selection and tree species classification procedures in the respective studies were 

conducted with specific methodologies tailored to the unique characteristics of the datasets. 

In study I, a visual interpretation was performed to select and label training segments, 

followed by the selection of the most important features for distinguishing trees from non-

trees and spruce from birch. The RF classifier was implemented to identify the optimal 

features, and the selected features were used to predict the classes of each segment. However, 

the species classification accuracy was not reported due to limited training data. 

Similarly, in study II, a visual interpretation was conducted on the ALS-derived 

segments, and a larger number of training and validation segments were labeled. It included 

two separate and independent datasets created from segments inside (for training) and outside 

(for assessing the species classification accuracy). The feature importance was determined 

using the RF classifier, and the most important and uncorrelated features (r < 0.8) were 

selected for the classification of segments after being grouped into different intensity groups 

of features. Finally, the RF was trained to predict the classes of the segments using the most 

important and uncorrelated features of all three channels (MCI), as well as using features of 

SCI-Ch1 and SCI-Ch2, as single-channel ALS systems most frequently employ these 

wavelengths (Budei et al. 2018). Each process was conducted identically and independently 

for each dataset. 

In study III, an extensive feature selection process was undertaken to select the optimal 

inputs for OLS linear regression models to estimate plot-level tree density and heights using 

different ABA methods. The feature selection involved finding features with maximal 

correlation with the target variables and addressing intercorrelations between the selected 

features (r < 0.8). Once the normality assumption of linear regressions was checked, an 

independent regression model was trained and validated on each dataset through a 5-fold 
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leave-one-out cross-validation (LOOCV) approach to avoid overfitting and assess the 

accuracy of the regression models. Then, the regression model with the lowest prediction 

error was used for predicting all the data outside of the LOOCV approach.  

In study IV, the training phase of the RF classifier was hypertuned using a 5-fold LOOCV 

implemented in grid search functionality in the scikit-learn library in Python (Pedregosa et 

al. 2011), and the feature importance was extracted from the best model. The five most 

important and uncorrelated (r < 0.8) features were selected for seedling species classification 

using the RF classifier. In this study, the 5,417 field-located species classes were randomly 

split into training (80%), validation (10%), and testing (10%) datasets, which were used in 

the same manner for all datasets and methods.  

Furthermore, the main focus of study IV was to improve the classification of detected 

seedlings by adding Cth-based image preprocessing prior to feeding them into a sequential 

multi-layer perceptron CNN. The architecture of the developed CNN included specific 

components and activation functions to enhance the classification process. While default 

values were utilized in certain aspects of the CNN model, the dropout rates, dense units, and 

batch sizes were optimized through a Python code that exhaustively tested various 

combinations of values using a grid search. Each model combination was configured to 

iterate up to 300 times (epochs), and the computational efficiency was enhanced by 

customizing a callback function to implement early stopping if no improvement in validation 

accuracy was observed after 100 runs (patience = 100). Additionally, the model was 

programmed to save the progress when the validation accuracy of an epoch increased 

compared to the previous epoch. The computational efficiency was improved by parallelizing 

in Python to run on 7 single-nodes (10 CPUs) in the Puhti supercomputer provided by the 

CSC – IT Center for Science Finland (2022). 

In study IV, after training the best models of the CNN and RF on the training datasets 

withCth and noCth separately, these models were utilized to predict the species of test datasets 

that had not been previously observed by the models. Furthermore, to investigate the potential 

benefits of combining two classifiers trained on noCth and withCth datasets, the models were 

configured to predict the corresponding subset of the test dataset. Specifically, the model 

trained on the noCth dataset was used to predict the species of the Cth-unaffected tensors in 

the test dataset (66.6%; 361 of 542 test tensors), while the model trained on the withCth 

dataset was used to predict the Cth-affected tensors (33.4%; 181 of 542 test tensors). This 

process involved switching the subsets of predicted classes of each classifier without the need 

to retrain them. The underlying hypothesis was that the Cth-unaffected tensors in the test 

dataset would be more accurately classified by the model trained on the noCth dataset, and 

vice versa for the Cth-affected tensors in the withCth dataset. This expectation was based on 

the assumption that the most suitable parameters for each input dataset had been 

automatically selected during the hyperparameter tuning phase. 

 

 

2.5 Accuracy assessment  

 

The accuracy of the RS-based estimates was evaluated by comparing the results with 

corresponding field-measured data in all studies (I–IV). For tree density and height 

estimation in studies I, II, and III, absolute and relative root mean square error (RMSE) and 

bias were calculated (Equations 1–4), along with the Pearson correlation coefficient (r, 

https://jmlr.csail.mit.edu/papers/v12/pedregosa11a.html
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Equation 5). The tree density and height estimates were analyzed among all plots as well as 

among the YoS and AdS plots in studies I, II, and III. 

𝐵𝑖𝑎𝑠 =
∑ (𝑦𝑖 − �̂�𝑖)𝑛

𝑖=1

𝑛
 (1) 

𝑟𝐵𝑖𝑎𝑠(%) = 100 ×
𝐵𝐼𝐴𝑆

 ȳ
 (2) 

𝑅𝑀𝑆𝐸 = √
∑ (𝑦𝑖 − �̂�𝑖)2𝑛

𝑖=1

𝑛
 (3) 

𝑟𝑅𝑀𝑆𝐸(%) = 100 ×
𝑅𝑀𝑆𝐸

ȳ
 (4) 

𝑟 =
∑ (𝑥𝑖 − �̅�). (𝑦𝑖 − ȳ)𝑛

𝑖=1

√∑ (𝑥𝑖 − �̅�)2𝑛
𝑖=1 . ∑ (𝑦𝑖 − ȳ)2𝑛

𝑖=1

 (5) 

where n is the number of field-measured plots, 𝑦𝑖  is the field-measured value of the attributes 

of the question for plot i, �̂�𝑖 is the predicted value for plot i, and ȳ is the mean of the attribute 

in the field data.  

The species classification accuracy was assessed by overall accuracy (OA), recall, 

precision (studies II and IV), and F1 score (study IV) (equations 6–10): 

𝑂𝐴 =
TP + TN

TP + TN + FP + FN
 (6) 

𝐾𝑎𝑝𝑝𝑎 =
 2 × (TP × TN − FN × FP)

(TP + FP) × (FP +  TN) + (TP + FN)  × (FN + TN)
 (7) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
TP

TP + FP
 (8) 

𝑅𝑒𝑐𝑎𝑙𝑙 =
TP

TP + FN
 (9) 

𝐹1 = 2 ×
Precision × Recall

Precision + Recall
 (10) 

where TP is true positive, TN is true negative, FP is false positive, and FN is false negative.  

The classification accuracy was evaluated using all test datasets, as well as specifically 

for the Cth-affected tensors of the test dataset to further explore the assumptions that those 

tensors would be classified more accurately in the withCth dataset compared to the noCth 

dataset. For this analysis, the test dataset was split into 4 bins of 1–5, 5–20, 20–40, and >40% 

Cth-affection, keeping the unaffected tensors in the 5th bin. Additionally, the effect of seedling 

height on classification accuracy was investigated by grouping the observed and predicted 

species classes of the test dataset into 4 bins of <1.5, 1.5–2, 2–4, and >4 m using the field-

measured height of the seedlings. To ensure the credibility of the results in these two further 

analyses, specific criteria were set for the number of observations in each analysis. 

The tree density and height estimation in studies I, II, and III was conducted at the plot 

level, while species classification in studies II and IV was performed at the individual tree 

level. Therefore, all studies were assessed with their corresponding data from field 

measurements at the plot and tree level, respectively. The accuracy of tree density and height 

estimation was reported for all plots, as well as separately for YoS and AdS plots. 

 

 



31 

 

 

 

3 RESULTS 

3.1 Estimating tree density 

 

Table 3 provides a summary of the most accurate results of tree density estimation conducted 

in different studies of this thesis using different RS materials and methods. 

In the Overall dataset, tree density was estimated more accurately when leaf-on drone-

PPC data were used in study I for all trees (rRMSE of 26.8%) and spruce trees (28.1%) 

compared to that of the leaf-off condition (33.5% and 44.6%, respectively). However, mALS 

data used in study II yielded more accurate spruce density estimates when acquired in leaf-

off condition (rRMSE: 37.9%) compared to leaf-on condition (57.0%). The tree density 

estimates reached an rRMSE of 64.9% using LML in study III, which was slightly more 

accurate (65.1%) than that of SPL. 

Comparing tree density estimate accuracies in YoS and AdS plots, tree density was 

always more accurately estimated for AdS than YoS. For example, the tree density of spruces 

reached an rRMSE of 19.2% when using drone-PPC data collected in the leaf-on condition 

(study I) compared to 58.2% for spruces in YoS. The same trend was observed in all trees 

overall, reaching 22.3% and 32.7% in AdS leaf-off and YoS leaf-on, respectively. Study II 

also confirmed the observation that the tree density of spruces was more accurately estimated 

in AdS (6.2%) than YoS (46.5%), both using leaf-off data. It was remarkable that the rRMSE 

was over seven times more accurate in AdS than YoS in the mALS data used in study II. 

Furthermore, study III showed that the tree density of all trees was estimated more accurately 

in AdS (60.6%) than YoS (73.7%) in LML, similarly to that in SPL (61.5% and 72.3% for  

 

Table 3. Summary of the most accurate tree density estimates assessed among young (YoS), 

advanced (AdS), and all seedling plots (Overall) in studies I–III. Numbers in each cell 

represent rRMSE% and rBias, respectively. The en dash (“–”) signifies unassessed 

parameters. 

Study number, 

material used 

Growth 

stage 

All trees Spruce 

Leaf-off Leaf-on Leaf-off Leaf-on 

I,  

Drone-

PPC+hyperspectral 

YoS 47.3, 38.8 32.7, 29.4 58.5, 53.8 58.2, 57.5 

AdS 22.3, 6.3 22.7, 15.4 34.6, 28.3 19.2, 12.7 

Overall 33.5, 17.5 26.8, 20.2 44.6, 37.1 38.1, 28.1 

II, 

Multispectral ALS 

YoS – – 46.5, 28.8* 78.5, 76.9 

AdS – – 6.2, 4.0* 18.3, 17. 7 

Overall – – 37.9, 23.4* 57.0, 44.8 

III, 

SPL and LML 

YoS – 73.7, 39.7** – – 

AdS – 60.6, 4.6** – – 

Overall – 64.9, 10.1** – – 

IV, 

Multispectral drone 
– 

– – – – 

* The Cth for YoS, AdS, and overall was 0.4 m, 1 m, and 0.4 m, respectively. 

** Results from the LML dataset were selected due to smaller rRMSE overall compared to SPL in the 

ABAITD and ABAEdgeITD methods. 
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AdS and YoS, respectively). Tree density estimation was not assessed and reported in study 

IV. 

Applying methodological improvements in studies II and III, including optimizing Cths 

for extracting ITD features and advancing the ABA method by correcting edge-tree effects 

and adding ITD features, improved the accuracy of tree density estimation. For example, 

study II showed that it reached the most accurate estimation when using a Cth of 0.4 m for 

all and YoS plots (rRMSE: 37.9% and 46.5%, respectively) and a Cth of 1 m for AdS plots in 

leaf-off mALS data (rRMSE: 6.2%). The novel method of ABAEdgeITD developed in study III 

succeeded in improving the tree density estimation from an rRMSE of 69.8% to 64.9% 

(rBias: 17.2% to 10.1%) from ABAOrdinary to ABAEdgeITD in the LML dataset, and likewise for 

SPL (67.4% to 65.1%, respectively, although rBias slightly increased from 15.8% to 18.9%). 

 

3.2 Estimating tree height  

 

Table 4 presents the most accurate mean tree height estimates obtained in different studies of 

this thesis (studies I–III) for all, YoS, and AdS plots using different RS materials and 

methods. 

In the Overall dataset, the mean tree height was estimated more accurately using leaf-on 

data collected via the drone-PPC data obtained in study I for all tree (rRMSE of 11.5%) and 

spruce trees (11.4%) than when using the leaf-off condition (23.0% and 21.7%, respectively). 

Similarly, mALS data used in study II provided more accurate mean tree height estimation 

of spruces when acquired in leaf-on condition (rRMSE: 10.8%) compared to leaf-off 

condition (18.9%) regardless of Cth used. The mean tree height estimation was nearly  

 

Table 4. A summary of the most accurate mean tree height estimates assessed among young 

(YoS), advanced (AdS), and all seedling plots (Overall) in studies I–III. Numbers in each cell 

represent rRMSE and rBias, respectively. The en dash (“–”) signifies unassessed parameters.  

Study number, 

material used 

Growth 

stage 

All trees Spruce 

Leaf-off Leaf-on Leaf-off Leaf-on 

I,  

Drone-

PPC+hyperspectral 

YoS 26.6, 24.6 9.2, 2.6 26.4, 24.6 9.6, -2.4 

AdS 21.1, 20.1 10.9, 8.3 19.8, 19.4 10.8, 8.7 

Overall 23.0, 20.8 11.5, 7.4 21.7, 20.2 11.4, 6.9 

II, 

Multispectral ALS 

YoS – – 3.5, 3.51* 3.5, -1.82 

AdS – – 17.3, 17.03 8.3, 5.04 

Overall – – 18.9, 17.65 10.8, 6.96 

III, 

SPL and LML 

YoS – 26.1, -18.5** – – 

AdS – 15.6, 1.0***
 – – 

Overall – 16.3, 0.3*** – – 

IV, 

Multispectral drone 
– – – – – 

* Superscript numbers 1 to 6 indicate Cths of 1 m, 0.8 m, 0.6 and 0.8 m equally, 0 m, 0.8 and 0.6 m 

equally, and 0.2 m, respectively. 

** Results from the SPL dataset under the ABAITD method, due to smaller rRMSE. 

*** Results from the LML dataset under the ABAEdgeITD method, due to smaller rRMSE. 
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unbiased (rBias: 0.0 to 1.1% and r: 0.9 to 1.0 among all methods and datasets) and reached 

an rRMSE of 16.3% using LML in study III, which was slightly more accurate (17.1%) than 

SPL. 

Comparing the accuracy of mean tree height estimation between YoS and AdS plots, tree 

height was estimated more accurately in AdS (rRMSE: 15.6% in LML) than YoS (26.1% in 

SPL) in study III. Study III showed that mean tree height estimation reached the highest 

accuracy for YoS plots when using SPL data (rRMSE: 26.1% in ABAITD method), and for 

AdS plots when using LML data (rRMSE: 15.6% in ABAITD and ABAEdgeITD methods). This 

was similar to the mean tree height estimation of all species and of spruce trees conducted in 

study I when using drone-PPC data collected in the leaf-off condition, which reached 

rRMSEs of 21.1% and 26.6% for the all-species AdS and YoS, and 19.8% and 26.4% for the 

spruce-tree AdS and YoS, respectively. However, the mean tree height of all species and of 

spruce trees was estimated more accurately in YoS than AdS when using leaf-on data from 

drone-PPC in study I (rRMSE: 9.2% and 10.9% for all-trees YoS and AdS, and 9.6% and 

10.8% for spruce-tree YoS and AdS, respectively). Similarly, mALS data in study II yielded 

more accurate mean tree heights of spruce trees for YoS than AdS in both leaf-off and leaf-

on conditions (rRMSE: 3.5% and 8.3% in leaf-on and 3.5% and 17.3% in leaf-off condition 

for YoS and AdS, respectively) (Table 4). The mean tree heights of YoS plots were 

overestimated by 2.4%, 1.8%, and 18.5% in leaf-on data used in studies I, II, and III, 

respectively; the mean tree height was not assessed and reported in study IV. 

The methodological improvements applied in studies II and III, including optimizing Cths 

and enhancing the ordinary ABA method by adding ITD features and correcting edge tree 

effects, improved the accuracy of mean tree height estimates. For example, study II showed 

that tree height was most accurately estimated when using a Cth of 0.2 m for the Overall plots 

in leaf-on data (rRMSE: 10.8%) compared to other Cths in both epochs in Overall. However, 

the results of the optimal Cth deviated in study II such that it reached more accurate estimates 

at Cths higher than 0.6 m in leaf-off data for Overall, YoS, and AdS plots (Table 4), and Cths 

of 0.8 m for YoS plots–as well as 0.0 m and 0.2 m for AdS and Overall plots, respectively–

when using leaf-on data. The ABAEdgeITD method developed in study III was successful in 

improving the mean tree height estimation from an rRMSE of 17.4% to 17.1% (rBias: 0.8% 

to 0.5%) from ABAOrdinary to ABAEdgeITD in the SPL dataset, and likewise for LML (rRMSE: 

19.5% to 16.3%, and rBias: 0.8% to 0.3%). The estimated mean tree height values using the 

ABAEdgeITD method were the most accurate among other ABA methods overall, although the 

values were close to those of ABAITD. The ABAEdgeITD and ABAITD methods provided more 

accurate estimates for AdS and YoS using LML and SPL data, respectively (Table 4). 

 

 

3.3 Tree species classification 

 

The overall results of study II showed that classification of spruce, birch, and non-tree classes 

was more accurate in mALS data acquired in leaf-off condition (OA: 96.8%) than in leaf-on 

condition (92.5%; Table 5). The results also showed that using MCI features yielded more 

accurate species classification results (96.7%) than using SCI-Ch1 (87.4%) and SCI-Ch2 

(82.8%) features, all based on leaf-off data.  

The overall results of study IV showed that classification of the detected seedlings into 

pine, spruce, birch, and other species classes was more accurate using CNN (79.9%) than RF  
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Table 5. A summary of the maximum tree species classification accuracies achieved in 

studies II and IV. Numbers in each cell represent overall accuracy (%). The en dash (“–”) 

signifies unassessed parameters.  

Study number and material used Leaf-off Leaf-on 

I, Drone-PPC+hyperspectral – – 

II, Multispectral ALS 

RF-classified birch, spruce, and non-trees 
96.7%* 92.5%** 

III, SPL and LML (ABA) – – 

IV, Multispectral drone 

CNN- and RF-classified pine, spruce, birch, and other trees 
– 79.9%*** 

* Refers to classification using MCI data at a Cth of 0.8 m.  

** Refers to classification using MCI data at a Cth of 1.0 m.  

*** Refers to classification using withVIs and a combined dataset classified using the CNN method. This 

reached 68.3% in RF using the withCth dataset. 

 

(68.3%). Pine seedlings were classified more accurately in CNN (recall: 0.6) than in RF 

(recall: 0.3% for the withVIs dataset). Moreover, fusing VIs into multispectral tensors 

assisted CNN to classify seedlings more accurately than not fusing VIs, e.g., 79.3% and 

75.1% for the withCth dataset, respectively. 

The methodological development in study II–which aimed to minimize the intervention 

of laser returns from the understory by optimizing the Cths–succeeded in improving the 

species classification. The development showed that an increase of Cth improved the OA in 

both leaf-off and leaf-on mALS data. For example, an increase of Cth from 0.0 m to 0.8 m 

improved the OA from 83.7% to 96.7% in leaf-off data; likewise, an increase from 0.0 m to 

1 m improved the OA from 77.9% to 92.5% in leaf-on data. The effectiveness of this 

development was also observed when classifying seedlings using only features from SCI-Ch1 

and SCI-Ch2. For example, seedling classification reached maximal accuracy at a Cth of 1.0 

m for the leaf-off data (OA: 87.4% and 82.8% in SCI-Ch1 and SCI-Ch2, respectively), versus 

at a Cth of 0.0 m (58.9%) and 0.2 m (69.5%) for the leaf-on data using SCI-Ch1 and SCI-Ch2, 

respectively. 

The development of a Cth-based image pre-processing method in study IV improved the 

OA of the Cth-affected subset of the test dataset (33.4%). For example, it improved OA among 

the Cth-affected subset of the test dataset from 75.7% to 78.5% in the CNN withVIs dataset, 

from 72.4% to 73.5% in the CNN noVIs dataset, and from 61.3% to 64.1% in RF. Further 

analysis on the Cth-affected test tensors showed that the OA was highest when they were Cth-

affected by 1–5% and lowest when Cth-affected by >40% in both the noVIs and withVIs 

datasets. The developed method also remarkably improved the OA from 59.4% (original, i.e., 

noCth) to 71.9% (processed, i.e., withCth) on the >40%-affected bin with the noVIs dataset. 

The results of study IV also showed that the OA was higher when seedlings were taller than 

1.5 m. For example, the OA was at least 82.4% among seedlings in all bins of above 1.5 m 

in the noVIs withCth dataset, while it was 60% among seedlings in the bin that included 

seedlings shorter than 1.5 m. Overall, the developed method improved OA in RF (from 67.9% 

to 68.3%) and in CNN withVIs (79.0% to 79.3%), while it reduced the OA slightly in the 

noVIs dataset (by 1.8 percentage points (pp); 76.9% to 75.1% in noCth and withCth, 

respectively). 
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Combining subsets of the test dataset predicted by individual models of the withCth and 

noCth datasets in study IV improved the OA in the Cth-affected subset of test datasets in CNN. 

The OA reached 83.3% in tensors affected by 1–5% in withVIs. Regarding the OA in 

different seedling height bins, the combined method also improved OA in all bins, similar to 

what was observed for the individual datasets. Overall, the combined method improved OA 

in CNN (in both the withVIs and noVIs datasets). For example, it improved OA from 79.0% 

(noCth) and 79.3% (withCth) to 79.9% (combined) in the withVIs dataset, with a similar 

pattern observed for noVIs. However, in the RF method, the combined method caused a 

reduction in OA to 66.6% from 67.9% (in noCth) and 68.3% (in withCth). 

Although species classification was conducted in study I, the species classification 

accuracy was not assessed and reported due to the small number of training data that were 

visually annotated. 

 

 

4 DISCUSSION 

4.1 Seedling tree density can be estimated using remote sensing  

 

4.1.1 Comparing estimation accuracy with the state of the art  

 

Our findings indicate that RS methods can offer reliable tree density estimation in seedling 

stands. For instance, in study I, a leaf-on drone-PPC analyzed with the ITD method achieved 

an rRMSE of 26.8%, representing an improvement over the state-of-the-art accuracy reported 

in similar studies in seedling stands. The studies utilized drone-PPC or ALS data processed 

with either ABA or ITD methods. For example, Puliti et al. (2019) employed both PPC and 

ALS data processed with the ABA method, resulting in rRMSE values of 36.3% and 53.4%, 

respectively. Additionally, Närhi et al. (2008) and Rana et al. (2023) achieved rRMSE values 

of 45% and 41–92%, respectively, in height estimation of seedling stands using operational 

nationwide ALS data (at 0.5 points/m2, and 0.5 and 44 points/m2, respectively) in Finland. 

In study II, dense point clouds from mALS processed with the ITD method achieved an 

rRMSE of 37.9% for the overall tree density of spruces. The observed improvement in our 

studies I and II could be attributed to various factors, including the use of different methods 

(e.g., ABA vs. ITD), variations in input data quality (e.g., ALS vs. PPCs, point density, etc.), 

and differences in study designs (e.g., number of plots, forest conditions, etc.). 

 

4.1.2 Effects of seedling stand development stage 

 

The findings revealed that the developmental stage of seedling stands had a notable impact 

on the accuracy of tree density estimates. Across studies I–III, the estimates consistently 

exhibited higher accuracy in AdS compared to YoS, with respective rRMSE values of 22.3%, 

6.2%, and 60.6% for AdS and 32.7%, 46.5%, and 73.7% for YoS. These values indicate that 

the most accurate results for AdS were achieved by mALS (study II), while drone-PPC in 

study I outperformed other methods for YoS (study I). 

The superior performance of mALS for AdS can be attributed to the denser point clouds 

and the ability of ALS to penetrate the canopies of relatively dense AdS plots. Conversely, 

the use of drone imaging was more effective for detecting YoS than mALS due to the narrow 
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laser footprints of ALS having a lower chance of hitting the treetops of small seedlings with 

less foliage and sharper treetops, particularly after thinning of the field plots to pre-defined 

densities in studies I and II. Another contributing factor to this trend may be the difference 

in tree heights between AdS and YoS, with the shortest tree in the field dataset of study II 

measuring 1.6 m in AdS and 0.7 m in YoS. Future studies could explore the use of mALS in 

unthinned YoS to validate the results obtained in thinned YoS stands. 

The lowering of the Cth resulted in overestimation in YoS and increased the influence of 

understory reflectance, while raising it led to the omission of many seedlings from detection. 

Based on the findings, it may be appropriate to utilize a Cth of 1 m for seedling stands taller 

than 1.5 m. 

 

4.1.3 Comparing leaf-off and leaf-on epochs 

 

The comparison of leaf-off and leaf-on data collected in studies I and II revealed that in study 

I, leaf-on drone-PPC data yielded more accurate tree density estimates than leaf-off data, 

while in study II, leaf-off mALS data provided more accurate spruce tree density estimates 

than leaf-on data. This suggests that leaf-on drone imagery may be suitable for surveying 

seedlings due to its ability to provide spectral information for characterizing vegetation and 

seedling properties, including seedling health. However, for the specific purpose of detecting 

coniferous seedlings, leaf-off mALS data may also be appropriate. 

 

4.1.4 Comparing remote sensing technologies (sensors) 

 

The comparison of RS technologies for estimating tree density in seedling stands, as 

demonstrated in studies I and II using drone-PPC and mALS, yielded similar results (38.1% 

and 37.9% rRMSE, respectively). These findings align with other studies utilizing drone-

PPC with ABA (rRMSE: 36.3% in Puliti et al. (2019)) and ALS with ABA (53.4% in Puliti 

et al. (2019), and 42% in Næsset and Bjerknes (2001)). Drone-PPC has been highlighted as 

the optimal tool for tree density estimation in mature forests (Puliti et al. 2020) and is favored 

by practitioners due to being a better-understood and more cost-effective solution than ALS 

(White et al. 2013b; Fassnacht et al. 2017). The comparable accuracy between passive drone-

PPC and active mALS data underscores the superior capability of dense mALS, which can 

penetrate the canopy independently of direct sunlight and clear sky. However, mALS lacks 

detailed spectral characterization crucial for studying other seedling properties, such as 

seedling health. Therefore, each technology offers distinct advantages, and no single solution 

was identified. 

Furthermore, the comparison of SPL and LML in study III revealed generally similar tree 

density estimates, with slightly lower underestimation in LML (10.1%) compared to SPL 

(18.9%) using the ABAEdgeITD method. This discrepancy reflects the advantage of SPL, 

captured at a higher flight height (3.75 km) than LML (1.45 km), making it a cost-efficient 

and faster option for nationwide forest inventorying, providing denser point clouds (10–100 

times) than LML at the same flight height (Yu et al. 2020). Previous studies in mature forests 

have also recognized SPL's advantage in predicting species-specific tree volume (Räty et al. 

2022) and forest attribute estimates (Yu et al. 2020), despite yielding similar or greater 

estimation errors. Another factor contributing to SPL's comparability with LML for seedling 

density estimation in study III is its higher point density (19 points/m2) compared to LML 

(12.5 points/m2; Table 2), with most laser returns being first or single returns from the top of 
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the canopy, resulting in fewer gap-pixels in the generated canopy height models compared to 

LML. 

 

4.1.5 Comparing effects of methodological developments on tree density estimation 

 

Based on the findings of this thesis, the ITD method generally demonstrated higher accuracy 

in estimating tree density, particularly when dense point clouds were available, allowing for 

the detection of single trees. In contrast, the accuracy of tree density estimation using the 

ABA method, as reported in the literature (e.g., Næsset and Bjerknes 2001; Puliti et al. 2019; 

Rana et al. 2023; study III), was generally lower (rRMSE: 36.3–92%) compared to studies I 

and II, which utilized the ITD method (rRMSE: 26.8–37.9%). It is worth noting that the 

studies employing the ITD method had lower tree density in field plots, and that both methods 

can reach a saturation point, resulting in underestimation–particularly when tree density 

exceeds a specific value (e.g., 6,000 trees per hectare, not shown in the findings of study III). 

Despite the lower accuracy of tree density estimation using the ABA method, it still 

outperformed the NFI-based results of seedling density estimation reported in Rana et al. 

(2023) (rRMSE: 65–115%). 

Furthermore, the development of the ABAEdgeITD method in study III indicated that 

incorporating single tree features and addressing edge-tree effects in the ABAOrdinary method 

improved tree density estimation from an rRMSE of 67.4% to 65.1% (SPL) and 69.8% to 

64.9% (LML), with a similar trend in underestimation, except for the ABAEdgeITD method 

with SPL data. Despite attempts to improve the ABAOrdinary method and the utilization of 

novel high quality ALS data, the improvement was marginal in the magnitude of the accuracy 

of the study (rRMSEs of 65–70%), and it remained challenging to use ALS features extracted 

in the ABA method of tree density estimation. This challenge in predicting tree density using 

ALS in the ABA method was also noted by Næsset and Bjerknes (2001) and Puliti et al. 

(2019), as ALS point clouds are primarily used for height estimation rather than density 

estimation in ABA. These results were consistent with the plot-level estimation of Ørka et al. 

(2016) (rRMSE: 63.1%), but less accurate than those of other studies, such as Puliti et al. 

(2019), which achieved a plot-level rRMSE of 53.4% using ALS data in ABA. It is 

acknowledged that the regression modeling in study III omitted the consideration of tree 

species proportion in each plot to focus on presenting the main research development 

(ABAEdgeITD). 

The optimization of the Cth method in study II revealed that using Cth values of 0.4 and 

1.0 m resulted in the most accurate tree density estimation for YoS and AdS, respectively. 

The findings aligned with the Cth values used in study I (0.5 and 1.0 m for YoS and AdS, 

respectively). Similarly, a Cth of 0.4 m was applied across all plots in study III, consistent 

with the Cth values (0.4 m and 0.5 m) employed by Korpela et al. (2008) and Ørka et al. 

(2016) when using ALS to assess seedling vegetation and predict tree density in seedling 

stands in their respective studies. 

 

  

https://cdnsciencepub.com/doi/10.1139/cjfr-2022-0135
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4.2 Seedling height can be estimated using remote sensing 

 

4.2.1 Comparing estimation accuracy with the state of the art  

 

The findings from studies I–III indicate that RS methods can be used for estimating seedling 

height. In study II, the most accurate results (rRMSE: 10.8%, bias: 0.2 m; rBias: 6.9%) were 

obtained when utilizing dense mALS data with a Cth of 0.2 m in leaf-on condition. This 

represents an improvement over existing methods such as ALS (rRMSE: 15–32%, Næsset 

and Bjerknes 2001; Närhi et al. 2008; Puliti et al. 2019; study III) and drone-PPC (11.5–

30.9%, Puliti et al. 2019; study I) for estimating seedling height at the plot level. Additionally, 

our study II results outperformed those reported by Hartley et al. (2020) (rRMSE: 18.5%) 

for height estimation of individual seedlings in a forestry trial using drone-PPC, although 

their drone-laser scanning results were more accurate (rRMSE: 5.9%). Furthermore, our 

results in study II (RMSE: 0.2 m) were more accurate than the RMSE of 0.4 m achieved by 

Gallardo-Salazar and Pompa-García (2020) using drone-PPC to estimate the tree-level height 

of pines in an orchard, despite their smaller underestimate (5.5×10-5 m).  

When compared to literature reporting only height underestimation, our results (rBias: 

6.9%) were more accurate using the mALS and ITD method in study II. For example, 

Vepakomma et al. (2015) and Goodbody et al. (2018) reported underestimates of 0.4 m and 

0.6 m, respectively, while Solvin et al. (2020) and Albuquerque et al. (2021) reported 

underestimates of 9.7% and 13%, respectively, using drone-imaging and individual tree 

detection level. Ørka et al. (2016) showed a 4.7% underestimate of stand-level height of 

seedlings when employing ABA with sparse ALS point clouds (0.7 points/m2). Korpela et al. 

(2008) also observed 20–40% underestimates when utilizing leaf-on ALS (6–9 points/m2) 

and aerial imagery using ITD to characterize seedling vegetation in a complicated setting 

(with high seedling density and species classes). The use of denser mALS point clouds (57.2 

points/m2) in study II compared to the mentioned ALS studies (with point densities of 0.7–

19 points/m2) may have contributed to the improvement in accuracy, although other 

parameters such as the different methods used (ABA vs. ITD) and different study designs 

(number of plots, forest conditions, etc.) also had an impact. 

 

4.2.2 Effects of seedling stand development stage 

 

The accuracy of tree height estimation is influenced by the development stage of seedling 

stands, as revealed by the results of this thesis. For example, study III demonstrated higher 

accuracy in AdS (15.6%) compared to YoS (26.1%). However, the use of mALS in study II 

presented contrasting results, with YoS estimates being more accurate than those of AdS in 

both epochs. For instance, in the leaf-off mALS data, the rRMSE (and rBias) were 3.5% 

(3.5%) and 17.3% (17.0%) for YoS and AdS, respectively. This discrepancy arises from the 

separate determination of the best rRMSE and rBias for each Cth optimization, irrespective 

of whether it was the best for all plots. Notably, the optimal Cths for YoS and AdS were 1 m 

and 0.6 m (and 0.8 m equally), respectively, versus 0.8 m for all plots. These findings suggest 

that mALS data can be effectively used for YoS in both epochs, particularly considering that 

study II focused on spruces, which have needles in both epochs. 

The slight overestimation of seedling height in the leaf-on mALS and drone-PPC may 

have been caused by the small time lag between field and RS data collection. Furthermore, 

the overestimation of height in YoS plots in study III (by 18.5%) may have been due to the 

use of ABA instead of ITD, as well as the predominance of field data from AdS (80 out of 
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89 sample plots), causing the regression to converge toward the average field-measured 

height. Inaccuracies in tree density estimation and species classification could also lead to 

overestimating tree heights in YoS plots due to the presence of taller non-tree segments (e.g., 

tall bushes, deadwood, stumps, etc.). Conversely, the slight underestimation of seedling 

height, especially in AdS, could be due to the regression to the mean height value in study 

III. Additionally, the issues of the laser missing treetop hits and the occlusion of suppressed 

trees in studies II and III could contribute to the underestimation, particularly in unthinned 

and dense seedling stands, and especially where birch trees dominate the conifers. This 

challenge of tree occlusion has been recognized as a significant obstacle in the accurate 

estimation of tree height using laser scanning in mature forests (Wang et al. 2019). Hence, if 

feasible, employing mALS for height estimation is advisable. However, for studies primarily 

focusing on spruces, either epoch would be suitable for this purpose. 

 

4.2.3 Comparing leaf-off and leaf-on epochs 

  

The results of studies I and II indicate that leaf-on data provide more accurate tree height 

estimates in both drone-PPC and mALS data compared to leaf-off data. This finding is 

particularly significant as the comparison of leaf-off and leaf-on data in seedling stands is a 

relatively new area of study, and our results align with previous research in mature forests. 

For instance, Bohlin et al. (2017) recommended the use of leaf-on aerial imagery for more 

accurate height estimation of deciduous trees. Similarly, Bohlin et al. (2016) reported lower 

height estimation in leaf-off aerial image data when estimating the proportion of deciduous 

tree volume in a mixed-species forest using ABA. 

However, literature utilizing ALS and ABA has arrived at the opposite conclusion, with 

leaf-off ALS data yielding more accurate estimates for forest attributes in mature forests 

(Næsset 2005; Ørka et al. 2010: Villikka et al. 2012; White et al. 2015). The poorer accuracy 

of leaf-off mALS data in study II may be attributed to tree height growth between mALS 

data collection and field data gathering (which occurred with a time lag of approximately 45 

days), as well as misclassification of spruces in the ITD method used. Therefore, collecting 

drone-PPC data in leaf-on condition could be considered for surveying seedlings, as it not 

only yields more accurate height estimates, but also provides useful spectral information for 

characterizing vegetation and seedling health. Additionally, leaf-on drone-PPC facilitates 3D 

object reconstruction, particularly for tree branches in YoS, which may contribute to better 

height estimation.  

Considering the technological advancements that enabled the installation of both sensors 

on a platform, flying in leaf-on condition can be considered for seedling detection from 

imagery and height estimation from ALS data. 

 

4.2.4 Comparing remote sensing technologies (sensors) 

 

The comparison of RS technologies for tree height estimation revealed that dense mALS data 

provided more accurate results (rRMSE: 10.8% in study II) compared to drone imaging 

(rRMSE: 11.5% in study I), both using the ITD method. However, the height estimation 

accuracy in study III was lower (16.3%, using the SPL and ABAEdgeITD method) than in 

studies I and II. Nonetheless, it was nearly unbiased (0.3%) compared to the biases observed 

in studies I and II (7.4% and 6.9%, respectively). This unbiased result may be attributed to 
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the underestimation of the height of AdS plots canceling out the overestimation of YoS height 

estimates. Additionally, the one-year interval between field data acquisition (from April 28 

to September 9, 2017) and laser scanning may have allowed for tree height growth, 

potentially offsetting the underestimation of mean tree height. The denser point clouds used 

in study II (57 point/m2) compared to study III (19 points/m2) could also contribute to the 

more accurate results. 

When consulting the literature, it was found that each study using ALS or drone-PPC 

showed different values based on the method, data quality, and forest conditions. For 

example, rRMSE values ranged from 15–32% when using ALS (Næsset and Bjerknes 2001; 

Puliti et al. 2019; study III) and 11.5–30.9% when using drone-PPC (Puliti et al. 2019; study 

I) for estimating seedling height at the plot level. The advantage of ALS over drone-PPC for 

tree height estimation has been established in mature forests (Järnstedt et al. 2012; Puliti et 

al. 2019; Mielcarek et al. 2020), as it penetrates inside and between canopies and can provide 

accurate DTMs, while drone-PPC does not (White et al. 2013b). This advantage of dense 

ALS data is complemented by its capability to operate regardless of direct sunlight, cloud 

cover, or time of day. 

Furthermore, when comparing SPL and LML technologies for height estimation in study 

III, the results showed that SPL data produced somewhat similar or more accurate estimates 

overall than those of LML data, particularly for YoS plots. The advantage of SPL in 

estimating the height of YoS plots may be due to its denser point cloud and larger percentage 

of first/only returns compared to LML. Even if the results were the same, the advantage of 

SPL is evident as it captures data at a higher flight height, making it a cost-efficient and faster 

alternative for large-area mapping. This advantage of SPL was also reported in mature 

forests, where SPL flights at higher altitudes yielded more accurate estimates of structural 

metrics (e.g., height, Yu et al. 2020) and species-specific tree volume (Räty et al. 2022). 

 

4.2.5 Comparing effects of methodological developments on tree height estimation 

 

The incorporation of ITD features and correction of edge-tree effects addressed by the 

ABAEdgeITD method developed in study III improved tree height estimation relative to 

ABAOrdinary. The incorporation of ITD features and correction of edge-tree effects resulted in 

enhanced accuracy, as indicated by reduced rBias and rRMSE values. Notably, the 

improvement was more pronounced in the LML data, with rBias and rRMSE decreasing from 

0.8% and 19.5% to 0.3% and 16.3%, respectively. The addition of single tree features 

(ABAITD) demonstrated more substantial improvements compared to only correcting edges 

(ABAEdge), and the combination of both approaches yielded even more accurate estimates in 

SPL data. These methodological developments, particularly in the ABAEdgeITD method, 

represent a novel application in seedling stands, with few prior attempts having been made 

to enhance ABAOrdinary in mature forests. Our findings align with previous research on the 

use of ABAITD to improve height estimation in mature forests, such as the work by Hyyppä 

et al. (2012), further validating the efficacy of the approach.  

In addition, the optimization of the Cths in study II identified optimal Cth values for the 

height estimation of YoS and AdS (0.2 m, and 0.2 and 0.6 m, respectively), shedding light 

on the significance of tailoring Cth values to forest stands at different developmental stages. 

These findings differed from the Cth values used in study I, which were 0.5 m and 1.0 m for 

YoS and AdS, respectively. When considering all plots, the optimal Cth of 0.2 m was lower 

than the Cth of 0.4 m employed by Korpela et al. (2008). The lower Cth found in study II may 

be attributed to the accurate classification of the remaining tall spruces, which would raise 
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the mean plot height. Notably, our optimal Cth of 0.2 m for height estimation closely aligned 

with the results of Ørka et al. (2016), who reported more accurate height estimation using a 

Cth of 0.0 m in regeneration forests. The comparison of our Cth optimization results with those 

in the literature emphasized the importance of optimizing Cth for each forest variable 

separately, as demonstrated by Gorgens et al. (2017) in mature forests. In study II, the 

underestimation of spruce density in leaf-on data resulted in slight (2.4%) height 

overestimation due to the omission of small spruces from detection. Therefore, this 

optimization was essential as it first affected tree detection (density estimation) and 

subsequently influenced height estimation. 

Furthermore, the comparison of the ITD and ABA methods used for height estimation in 

studies I–III indicated that the ITD method generally provided less error (smaller rRMSEs 

in studies I and II), while ABA provided nearly unbiased tree height estimates in study III. 

Note that the observed deviations in results across the studies underscore the complexity 

of drawing definitive conclusions, emphasizing the need for careful consideration of various 

influential parameters, including tree density in field plots and the quality of RS data. 

Nonetheless, the spatially explicit and tree-level height estimation provided by the ITD 

method offers distinct advantages over the plot- or stand-level estimation offered by ABA, 

highlighting the potential for tailored applications based on specific objectives and forest 

characteristics. 

 

4.2.6 Other factors influencing height estimation 

 

Several factors influenced the height estimation in this thesis, including the accuracy of the 

Näslund model and DTMs used to normalize the height of point clouds. The Näslund model 

predicted heights of YoS and AdS with rRMSE values of 12.8% and 11.8% and rBias values 

of -0.1% and 0.6%, respectively, in study I. Additionally, the accuracy of DTMs 

(approximately 0.1–0.3 m) had an impact on the height estimates, particularly for YoS in 

studies I and II, as small errors for shorter trees in YoS had a more significant effect than 

those in AdS height estimates. This also affected the estimation of tree density–especially for 

YoS, where trees are smaller and more vulnerable to changes in Cths–in study II. Furthermore, 

Näslund's model would not be necessary if tree height were measured at the individual tree 

level during field surveys, and RS-assisted height estimates could be evaluated at the 

individual-tree and plot levels instead.  

The height estimation in study III could also be improved by modeling YoS and AdS 

plots separately, or by separating them into different tree density bins if more field plots were 

available. This could potentially resolve the overestimation of YoS plot heights observed in 

study III. However, this approach would move the computations away from the operational 

level. 

 

 

4.3 Species classes of seedlings can be distinguished using remote sensing 

 

4.3.1 Comparing classification accuracy with the state of the art  

 

In comparing our classification accuracies with those obtained using state-of-the-art methods, 

the results of the studies demonstrated the effectiveness of utilizing novel RS materials and 
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methods of classifying seedlings. In study II, the use of mALS achieved an OA of 96.7% for 

classifying seedlings into spruce, birch, and non-trees, with a mean precision of 0.9%. 

Similarly, study IV utilized multispectral drone imagery with CNN and achieved an OA of 

79.9% for classifying seedlings into pine, spruce, birch, and other species classes. These 

results surpassed the reported accuracy of other studies, such as the classification of grass, 

seedlings, and other classes in a restoration forest area in the Brazilian Atlantic forest, which 

achieved an OA of 75% using low-cost drone-RGB imagery (Albuquerque et al. 2021). 

Furthermore, studies using drone-RGB imagery for seedling classification reported average 

precisions of 0.9 (Feduck et al. 2018) and 0.8 (Fromm et al. 2019) for distinguishing 

coniferous seedlings from non-seedling objects. The superior accuracy of the findings in the 

current studies demonstrates the effectiveness of the utilized method and input data, 

particularly in classifying seedlings into multiple species classes.  

A comparison with previous studies using different sensors for species classification of 

seedlings is crucial for contextualizing the performance of the novel mALS data used in study 

II. The OA–ranging from 24% to 71.8%–reported in previous studies using alternative 

sensors underscores the challenges and variability in seedling species classification. For 

example, Korpela et al. (2008) achieved an OA of 39% when using features from both ALS 

and aerial imagery to distinguish 27 classes from sunlit observations in seedling stands. They 

also noted that when utilizing only features from images or ALS, their OA decreased to 28% 

and 24%, respectively. Furthermore, Närhi et al. (2008) achieved a classification accuracy of 

71.8% in spruce seedling stands using sparse (0.5 point/m2) ALS data. In comparison to 

similar studies that used mALS to classify mature forests, the findings of Yu et al. (2017) are 

noteworthy for achieving slightly higher accuracy, with an OA of 86% in classifying pine, 

spruce, and birch trees. 

 

4.3.2 Comparing leaf-off and leaf-on epochs 

 

Comparing leaf-off and leaf-on mALS data in study II revealed that leaf-off data produced 

more accurate species classification (OA: 96.7%) than leaf-on data (92.5%). This finding is 

consistent with previous research that supported the advantage of leaf-off Optech Titan 

mALS data for the classification of mature trees, particularly coniferous species (Kim et al. 

2009; Yu et al. 2017; Axelsson et al. 2018). Furthermore, Villikka et al. (2012) highlighted 

the advantages of employing leaf-off ALS data for ABA-based forest inventorying, 

particularly in scenarios requiring the differentiation between deciduous and coniferous trees. 

The outperformance of leaf-off data in study II could be attributed to the fact that coniferous 

trees, including spruce seedlings, remain green even in leaf-off data collection time, making 

species classification easier. Additionally, the commission of non-trees as spruces caused 

overestimation (by 23.4%) of spruce tree density in leaf-off data. Future studies could 

investigate each variable separately to eliminate the effect of tree detection accuracy on 

species classification accuracy. Therefore, the use of leaf-off mALS data could be more 

useful for species classification, especially if coniferous trees are the main species of interest. 

 

4.3.3 Comparing remote sensing technologies (sensors) 

 

Comparison of the RS technologies used in study II revealed that species classification 

accuracy was significantly higher when using MCI features from mALS data compared to 

SCI features from Channel 1 and 2 (SCI-Ch1 and SCI-Ch2). For instance, the OA reached 

94.6% using leaf-off MCI data in Cth 0.6 and 0.8 m, while it was 84.8% and 81.5% using 
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SCI-Ch1 and SCI-Ch2, respectively. This observation aligns with similar findings in studies 

conducted in mature forests (Kim et al. 2009; Korpela et al. 2012; Yu et al. 2017; Axelsson 

et al. 2018; Budei et al. 2018). Furthermore, the results highlighted that employing MCI 

features from mALS data was potentially more reliable and beneficial for classifying smaller 

seedlings compared to using SCI-Ch1 and SCI-Ch2. mALS has been proposed as a potential 

single-sensor solution for species classification in mature forests (Yu et al. 2017) in boreal 

areas limited to three main species classes in Finland. Based on our findings in study II, it 

can be considered for use in classifying species of seedlings as well. 

Additionally, the study demonstrated that species classification was more accurate when 

utilizing SCI-Ch2 (OA: 69.5%) compared to SCI-Ch1 (53.7%) in leaf-on data with a Cth of 

0.2 m, possibly due to the increased reflectance of vegetation in the NIR wavelength in the 

leaf-on condition. 

Adding VIs in study IV was somewhat similar to using MCI in study II from the 

perspective of adding new features for the classifiers. The results of study IV showed an 

improvement in OA when fusing VIs to the drone-multispectral imagery in the CNN method. 

The inclusion of VIs appeared to improve the performance of the data-hungry CNN methods, 

resulting in consistently higher OA in the withVIs dataset compared to the noVIs dataset. 

Other studies using satellite imagery (Worldview, Sentinel-2) to classify species of urban 

trees or mountainous protected areas have also observed a comparable improvement in OA 

by fusing VIs (Hartling et al. 2019; Yaloveha et al. 2021; Adagbasa et al. 2022). 

Note that the species classification accuracy using drone-hyperspectral data was not 

reported in study I, preventing a direct comparison with the results using drone-multispectral 

data in study IV. 

 

4.3.4 Comparing effects of methodological developments on tree classification accuracy 

 

Comparison of the effect of optimizing Cths to enhance species classification accuracy in 

study II revealed that increasing the Cth improved the accuracy by minimizing interference 

from ground and understory vegetation. The worst OA was achieved with a Cth of 0 m, 

indicating that employing a Cth method was beneficial for improving species classification 

accuracy in seedling stands. 

A methodological development in study IV was the application of Cth-based image 

preprocessing on input tensors before feeding them to CNN and RF classifiers, which aimed 

to improve species classification. The results demonstrated a 2.8-pp improvement in species 

classification accuracy in Cth-affected tensors using the withVIs CNN method, as well as in 

the RF method. This improvement minimized interference from understory reflectance, 

particularly in shorter seedlings. The novelty of the proposed method in seedling stands 

necessitates a comparison of the findings with those reported in the literature on mature 

forests. Previous studies on mature forests have explored hybridizing the CNN and K-nearest 

neighbor (Prasad and Senthilrajan 2022), merging Res-Net and U-net (Chen et al. 2021), 

utilizing a 3D-1D-CNN approach (Zhang et al. 2020), and employing a new two-phase CNN 

(Ao et al. 2023). These studies reported improvements in OA ranging from 1 to 1.4 pp, which 

aligns with the improvement in seedling classification observed in study IV. 

Further analysis of this method revealed that it was more successful in improving tensors 

Cth-affected by 1–5% compared to those Cth-affected by >40%. However, the method 

achieved a striking improvement (from OA 59.4% to 71.9%) in the "more challenging" 



44 

 

 

>40%-affected tensors, demonstrating its significance. Additionally, the OA of the method 

was higher (82.4%) among tensors taller than 1.5 m compared to shorter seedlings (60%). 

Another methodological development in study IV involved merging subsets of the test 

dataset based on Cth-affected or unaffected status. This method further improved species 

classification accuracy in CNN for the withVIs and noVIs datasets. For example, in the 

withVIs dataset, the OA increased from 79.0% (noCth) and 79.3% (withCth) to 79.9% after 

applying this method. The improvement was more pronounced in Cth-affected tensors (from 

75.7% to 78.5%), while the unaffected subset of test datasets saw a slight decrease in 

accuracy (from 80.6% to 79.8%). This method has the potential to aid seedling stand 

inventorying, aligning with previous research employing a similar methodology.  

The findings of this method merging the subsets of the test dataset in study IV aligned 

with prior research in mature forests that utilized a similar approach. For instance, Martins et 

al. (2021) employed a multitask CNN with a post-processing step, akin to the method used 

in study IV, to classify tropical urban trees. Their approach resulted in an average F-score of 

79.3 ± 8.6%, indicating improved species classification accuracy. Similarly, Anderson et al. 

(2023) found that combining CNN and object-based-image analysis (OBIA) techniques led 

to higher overall accuracy (91%) for classifying invasive species in wetlands using drone-

based RGB data, compared to using CNN alone (88%). However, the results of study IV 

demonstrated that this merging method did not improve species classification accuracy in 

RF, likely due to the handcrafted features in the withCth dataset not requiring the filling of 

nullified pixels. 

 

4.3.5 Comparing classifiers (CNN and RF) 

 

The findings from study IV demonstrated that species classification of seedlings achieved 

higher accuracy with CNN (79.9%) compared to RF (68.3%). This superior performance of 

CNN over RF aligns with similar studies in mature forests, where CNN outperformed RF by 

4.4–38.6 pp (Raczko and Zagajewski 2017; Hartling et al. 2019; Xi et al. 2019; Zhang et al. 

2020; Mäyrä et al. 2021; Ye et al. 2021; Adagbasa et al. 2022; Anderson et al. 2023). For 

example, Xi et al. (2019) reported that a one-dimensional CNN outperformed RF in tree 

species classification by 4.4 pp (OA: 85.0% and 80.6%, respectively) using OHS-1 

hyperspectral satellite data. 

Comparing the achieved OA of 79.9% in study IV with those reported in the literature on 

seedling stands, it is evident that the results of each study varied based on the input data, the 

classification model used, species composition, and forest conditions. For instance, in study 

II, seedlings were classified into spruce, birch, and non-tree classes using manually extracted 

mALS data intensity and classified with the RF classifier. The study achieved an OA of 

96.7% in leaf-off data using a Cth of 1 m. However, the study did not include the pine class, 

and the results were obtained in leaf-off condition. Therefore, direct comparisons with other 

studies are limited, and the focus was on achieving the highest possible accuracy within each 

study. 

The superiority of CNN to RF in study IV was evident in the accuracy of classifying each 

species class. The results showed that CNN was able to classify pine more accurately (recall: 

0.6) than RF (recall: 0.3%) in the withVIs dataset. This finding was consistent with the 

research of Trier et al. (2018), who found that the classification of birch species was more 

accurate using CNN (86%) than their index technique (26%) using hyperspectral data.  

Furthermore, the recall for the main tree species (pine, spruce, and birch) was more 

accurate (0.6, 0.8, and 0.9, respectively) than the recall of other species (0.5) because the 
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other species classes were frequently misclassified as birch (e.g., recall of 0.5 in the withVIs 

dataset using the combined method). This was expected, since 99% of other deciduous trees 

and 1% of other coniferous trees belonged to the other species class. As a result, several 

seedlings from the other species class were classified as birch (recall 0.6). 

While the OA could be improved by merging the other class into the major classes (birch 

and pine), the resulting estimates would not be suitable for operational use in forest 

inventorying. An alternative approach would be to combine the other classes into two new 

ones, such as other deciduous and other coniferous, but this would necessitate gathering more 

field data for the other species class. 

 

4.3.6 Other factors influencing seedling classification 

 

The results of study IV highlighted two key parameters that significantly impact the accuracy 

of species classification: 1) the proportion of Cth-affected pixels of a tensor, and 2) the height 

of seedlings. These factors collectively hindered the classification of seedlings, with the 

majority of tensors being more than 40% Cth-affected, representing trees shorter than 1.5 m. 

The findings demonstrated that classification of small seedlings (height < 1.5 m) and tensors 

affected by more than 40% Cth was challenging. However, the proposed Cth-based image 

preprocessing method enhanced the classification of shorter seedlings by up to 8 pp and 

tensors affected by more than 40% Cth by 12.5 pp. This preprocessing method proved to be 

particularly influential in improving the classification of very difficult seedlings. 

The accuracy of classification was further improved for tensors in the 2–4 m and >4 m 

height bins, as these tensors had fewer nullified pixels, resulting in more accurate OA. 

Conversely, the results for trees larger than 4 m remained unchanged, as there were no 

nullified or Cth-affected pixels in their tensors. The tensors unaffected by Cth were generally 

classified more accurately compared to Cth-affected tensors in both datasets (withVIs and 

noVIs) and using both classifiers. This was expected, as the majority of Cth-unaffected tensors 

represented taller seedlings with denser foliage, minimizing the effect of the understory.  

The size of the tensors was identified as an influential factor in species classification 

accuracy. For example, Zhang et al. (2020) and Sun et al. (2019) achieved more accurate tree 

species classification in mature forests using larger tensor sizes (13×13 and 64×64, 

respectively). However, in the context of study IV, such large tensor dimensions would 

include multiple seedling canopies or large understory reflectance due to the close spacing 

and smaller size of the seedlings, as well as the 5-cm pixel size of the multispectral data used. 

Considering the rapid advancements in camera technologies that enable the collection of 

even finer-resolution (1 cm) imagery at the same flying heights as those used in study IV, 

future studies are likely to yield improved findings, especially for YoS in the near future. 

 

 

4.4 Constraints and future steps 

 

This thesis has considerably advanced the RS methods of characterizing seedling stands, 

particularly in estimating species-specific tree density and height. However, further research 

is needed to improve the performance and efficiency of these methods. Studies I–III were 

limited by the inclusion of a small number of field-measured plots and low variability in 

species and densities. Therefore, future studies should consider including a greater number 
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of field sample plots with a wider range of tree densities, species, and heights. Additionally, 

utilizing tree-level field data would be preferable to plot-level field data, as it would allow 

for more detailed spatial results and greater reliability compared to methods such as the visual 

interpretation of species from drone images. 

In future research, it is important to tackle challenges related to tree detection and species 

classification arising from thickets, particularly in seedling stands with clumped spacing. The 

presence of a few birches resembling grass or thickets alongside the conifer seedlings is a 

normal occurrence in tightly spaced seedling stands, impacting tree detection, height 

estimation, and species classification. In study IV, approximately 7% of the field data 

(tensors) exhibited impurity of species classes, indicating the presence of at least one other 

tree class beneath the canopy of the primary species of the tensor. This impurity posed 

challenges in the process of classifying tree species in study IV. Furthermore, the thicket 

seedlings posed challenges in detecting seedlings using aerial and drone imagery, as observed 

in previous studies by Hall and Aldred (1992) and Röder et al. (2018). For instance, Röder et 

al. (2018) reported a general tree detection rate of 39.1%, which decreased to 17.8% in thicket 

seedlings. This underscores the impact of thickets on seedling detection and emphasizes the 

importance of utilizing high-resolution RS data and innovative methods to address this issue. 

For example, the application of superpixel-enhanced CNN methods may offer a potential 

solution for improving seedling detection accuracy, as demonstrated in the detection of urban 

trees by Liu et al. (2023). 

Further research is essential to enable large-scale operational applications that allow 

foresters to efficiently update data over extensive areas in a cost-effective and timely manner. 

One potential approach is the combined use of very high-resolution satellite imagery and 

drone-imagery. 

The growing interest in utilizing shelterwood-based silvicultural systems to address 

climate change and biodiversity in Finland underscores the need for innovative research and 

methods for seedling stands. Addressing the obstacles posed by shelterwood for drone flights 

close to the ground requires novel solutions to ensure accurate data collection and analysis. 

Lopatin and Poikonen (2023) tested a two-phase drone scanning method to obtain sub-

centimeter RGB images of seedlings, dedicating one flight for scanning obstacles and 

retention trees before flying at a height of 5–20 m. However, the use of modern drones 

capable of obstacle avoidance by flying under the canopy (Hyyppä et al. 2020) could present 

a more appealing RS technology for assessing regeneration under the main canopy in 

shelterwood systems. 

Future research efforts could focus on developing and adopting methods to address 

various emerging needs of foresters, such as seedling establishment, seedling health and 

mortality monitoring, and moose- and snow-damaged seedling detection, among others. For 

example, ALS has demonstrated its effectiveness in detecting moose-damaged pine seedlings 

in boreal forests (Melin et al. 2015), while hyperspectral imagery has been utilized to assess 

the health of pine seedlings threatened by a fungal pathogen in a greenhouse (Haagsma et al. 

2020). These issues are gaining importance in the context of climate change, forest fires, 

droughts, and insect damage affecting seedling stands. 

Future studies could also focus on directly detecting and classifying seedlings from 

orthomosaics (e.g., using faster-RCNN) or dense point clouds from drone-based laser 

scanning (e.g., employing PointNet++). Although previous attempts have been made to detect 

and count seedlings from drone imagery (Fromm et al. 2019; Chadwick et al. 2020; Pearse 

et al. 2020; Jayathunga et al. 2023; Lopatin and Poikonen 2023), species classification has 

been absent from many studies.  
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The method developed in study IV could be further examined and enhanced in future 

studies by testing different kernel-filling strategies and experimenting with different Cth 

values. Another potential approach, contingent upon the availability of additional field data, 

could involve training and predicting the classifiers on Cth-affected and Cth-unaffected 

subsets of the dataset separately. Furthermore, results could be improved by incorporating 

hyperspectral imagery and performing atmospheric correction on multispectral data. Finally, 

the employment of more sophisticated and deeper CNN architectures could potentially 

improve the results, although this would increase the computational load. 

 

 

5 CONCLUSIONS 
 

In order to ensure sustainable forest management and secure future wood supplies, it is 

essential to obtain accurate and detailed information for implementing silvicultural 

management of seedling stands. Currently, this information is primarily obtained through 

costly, time-consuming, and labor-intensive field visits. This thesis aimed to develop new 

methods and explore different RS data to complement or replace field visits, thus contributing 

to the cost-efficiency and sustainability of forest operations. 

The objective of this thesis was to characterize seedling stands by estimating the tree 

density, height, and species classes of seedlings. Various high-quality drone and laser 

scanning data were utilized, including drone-PPC, drone-hyperspectral data, mALS data 

collected in leaf-off and leaf-on conditions, as well as LML and SPL laser scanning data and 

drone-multispectral data. Additionally, this thesis developed the Cth optimization method 

(study II), the novel ABA approach method (ABAEdgeITD, study III), and the Cth-based image 

preprocessing method (study IV).  

Overall, this thesis demonstrated that the use of high-quality RS data and developed 

methods notably improved the accuracy of characterizing seedling stands. The results 

showed that RS methods consistently provided more accurate results for AdS than YoS in 

studies I–III, with YoS posing resistant challenges. Consequently, RS methods can be 

efficiently utilized for inventorying AdS, while field visits remain essential for YoS. 

Considering data collection epochs, drone imagery is best collected in leaf-on condition, 

while mALS data collection is preferable in leaf-off condition. 

Different RS technologies can serve specific purposes in characterizing seedling stands. 

Dense mALS data are particularly suitable for estimating seedling height, while drone-PPC 

is effective for accurately estimating tree density, especially for YoS. Furthermore, the use 

of SPL data, collected at higher flight heights, yielded comparable or superior estimates–

especially in YoS–compared to conventional LML, making it a viable option for operational 

large-area ALS-based seedling inventorying. The results also showed that using MCI features 

from mALS data for classifying tree species was more effective and accurate than using only 

SCI-Ch1 or SCI-Ch2 (study II). Furthermore, fusing VIs to multispectral drone imagery 

enhanced the accuracy of species classification by 4.3 pp when employing CNN methods 

(study IV).  

The optimization of Cth in study II emphasized the significance of customizing Cth for 

tree density and height estimation. An optimal Cth of 0.4 m and 0.2 m provided the most 

accurate overall tree density and height estimation, respectively. Furthermore, the findings 

suggested that an increased Cth generally led to improved species classification accuracy. The 
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ABAEdgeITD method improved the accuracy of estimating tree density, and the mean height of 

seedling stands (study III). It outperformed the ABAOrdinary method, resulting in more 

accurate estimates of tree density and mean height (which improved by 4.9 and 3.2 pp, 

respectively). 

The Cth-based image preprocessing approach, proposed and developed in study IV, 

improved the species classification of seedlings by 2.8 pp by combining the Cth-affected and 

Cth-unaffected subsets of the test datasets. Further analysis revealed that the shorter and 

highly-Cth-affected seedlings, which posed analytical challenges, were classified more 

accurately as a result of the methods developed in study IV. The results also showed that 

CNN outperformed RF in the classification of species for seedlings by improving OA up to 

13.3 pp and the classification accuracy of pines by 50 pp. 

In conclusion, the utilization of both drone imagery and mALS data has demonstrated its 

reliability for the RS-based inventorying of seedling stands. The integration of the 

methodological improvements developed in this thesis further enhances the reliability and 

applicability of these resources. The findings of this study contribute to the advancement of 

accuracy and knowledge in RS applications for seedling stands. It is evident that RS 

technologies can offer dependable support and potential alternatives to traditional field 

surveys of seedling stands, thereby assisting precision forestry and silvicultural decision-

making, and consequently promoting sustainable forest management. 
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