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ABSTRACT  
 

Forests play a significant role in biodiversity-related decision-making as they support 
approximately 80% of the world’s terrestrial biodiversity. Forest vegetation structure and its 
complexity affect local biodiversity by modifying microclimatic conditions, providing 
shelter and breeding sites, and affect the distribution and availability of resources and niches. 
In assessment of forest vegetation structure, remote sensing data, such as airborne laser 
scanning (ALS) data and optical data, are widely used. The objective of this dissertation was 
to examine the potential of ALS data in the assessment of biological and structural diversity 
of forests. 

First, the utilisation of ALS data in the assessment of biological and structural diversity 
of forests was reviewed. The most studied topics and geographical regions of the study areas 
were reported, and the most useful and common ALS metrics were listed. Second, the 
performance of ALS and aerial images for the mapping of ecologically valuable large 
European aspen (Populus tremula L.) trees was assessed. The ecological importance of 
European aspen has been highlighted by the large number of Red-listed species that are 
dependent on it. Remote sensing-based mapping of aspen is known to be difficult as the 
species is mixed with other deciduous tree species in a forest stand and its occurrence can be 
sparse. To account for the rarity of large aspen trees and to balance the training data, the 
synthetic minority oversampling technique (SMOTE) was tested. Third, the performance of 
ALS and Sentinel-2 data in the prediction of plot-level forest age was analysed. Remote 
sensing metrics were combined with field data-based categorical variables that describe site 
conditions. For the prediction of forest age, linear mixed effects modelling (LME) and tree 
boosting with random effects (GPBoost) were compared. Some of the field plots contained 
so-called hold over (seed and retention) trees from the previous generation, which hampered 
age predictions in these plots. This was addressed by testing an alternative prediction method 
that included a classification step to identify the hold-over plots. 

The results showed that most of the research to date with regard to ALS-based assessment 
of forest biological and structural diversity has been clustered in Europe and North America. 
Animal ecology, dead trees and tree species diversity measures have been the most frequently 
studied topics. The ALS data were usually fused with other remote sensing data, especially 
aerial or satellite images, which was highly advantageous in studies where tree species were 
considered. There was no single ALS metric that was suitable for all assessments of forest 
biological or structural diversity. However, the most often utilised and powerful ALS metrics 
were standard deviation, the mean and the coefficient of variation (COV) of vegetation 
heights, which were widely utilised across the studied topics. 

The classification of large aspen trees, when SMOTE data augmentation was utilised, 
improved classification accuracy at both the tree- and plot-levels. For the classification of 
large aspen trees, aerial image metrics were found to be more important than ALS metrics. 
In particular, the near-infrared band and its ratios with other spectral bands were important. 
Results suggest that the detection of large aspen trees in genuine populations is still difficult. 

The results presented in this dissertation showed that GPBoost was superior to LME in 
the prediction of plot-level forest age, and that the addition of categorical variables as random 
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group effects led to a clear decrease in the prediction error. Inclusion of categorical variables 
improved the root mean square error (RMSE) values for LME more than for the GPBoost 
model. The best modelling strategy was found to include an initial hold-over plot 
classification before age prediction. 

This dissertation demonstrated that ALS data can provide valuable information for the 
assessment of forest biodiversity at both fine and broad spatial scales. It also showed that it 
is important to assess the performance of the method with data that provide a realistic picture 
of the population. Further research on functional diversity, which has received less attention 
to date, is needed to cover other aspects of forest diversity. Also, the application of the 
GPBoost model should be further tested for forest attributes other than forest age. 
 
Keywords: airborne laser scanning, aspen, biodiversity, forest age, forest structure, remote 
sensing 
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TIIVISTELMÄ 
 

Metsillä on erityinen rooli luonnon monimuotoisuuteen liittyvässä päätöksenteossa, sillä ne 
kattavat noin 80 % maaekosysteemien monimuotoisuudesta maailmanlaajuisesti. 
Metsäkasvillisuuden rakenne ja sen moninaisuus vaikuttavat paikalliseen 
monimuotoisuuteen muokkaamalla mikroilmastollisia olosuhteita, tarjoamalla suojaa ja 
lisääntymispaikkoja, sekä vaikuttamalla resurssien ja ekologisten lokeroiden jakautumiseen 
ja saatavuuteen. Metsien kasvillisuuden rakenteen arvioinnissa kaukokartoitusdataa, kuten 
lentolaserkeilausdataa (ALS; Airborne Laser Scanning) ja optista dataa (esim. ilma- ja 
satelliittikuvat), hyödynnetään laajalti. Tämän väitöskirjan tavoitteena oli tarkastella ALS-
datan käyttömahdollisuuksia metsien biologisen ja rakenteellisen monimuotoisuuden 
arvioinnissa. 

Ensiksi tehtiin katsaus ALS-datan hyödyntämisestä metsien biologisen ja rakenteellisen 
monimuotoisuuden arvioinnissa. Katsauksessa raportoitiin yleisimmin tutkitut aiheet ja 
yleisimmät tutkimusalueiden maantieteelliset sijainnit, sekä listattiin kaikista eniten käytetyt 
ja hyödyllisimmät ALS-metriikat. Toiseksi arvioitiin ALS-datan ja ilmakuvien yhteiskäyttöä 
ekologisesti arvokkaiden metsähaapojen tunnistuksessa. Haavan ekologista tärkeyttä 
alleviivaa se, että lukuisat haavasta riippuvat lajit ovat Punaisen listan lajeja. 
Kaukokartoitukseen perustuva haavan kartoitus on tunnetusti haastavaa, sillä haavat 
sekoittuvat eniten muiden lehtipuiden kanssa, mutta myös siksi, että haapoja esiintyy vain 
harvakseltaan. Haapojen harvalukuisuus otettiin huomioon tasapainottamalla opetusaineistoa 
niin kutsutulla SMOTE-menetelmällä (Synthetic Minority Oversampling TEchnique). 
Kolmanneksi arvioitiin ALS-datan ja Sentinel 2-satelliittikuvien yhteiskäyttöä 
metsikkökoealojen iän ennustamisessa. Kaukokartoitusmuuttujien lisäksi laskettiin 
maastoaineistosta kategorisia selittäjiä, joilla kuvattiin koealan kasvuolosuhteista. Koealojen 
iän ennustamisessa verrattiin lineaarista sekamallia (LME) ja tehostettua 
päätöspuumenetelmää, joka hyödyntää satunnaisvaikutuksia (GPBoost). Joillakin koealoilla 
oli edellisen puusukupolven niin kutsuttuja ylispuita (siemen- ja jättöpuita), jotka vaikeuttivat 
iän ennustamista näillä koealoilla. Ylispuut otettiin huomioon testaamalla vaihtoehtoista 
ennustusmenetelmää, joka sisälsi ylispuukoealojen luokituksen ennen iän ennustamista. 

Tulokset osoittivat, että suurin osa ALS-perustaisesta metsien biologisen ja rakenteellisen 
monimuotisuuden tutkimisesta on tähän saakka tapahtunut Euroopassa ja Pohjois-
Amerikassa. Eläinekologia, kuollut puusto ja puulajien monimuotoisuusindeksit olivat eniten 
tutkittuja aihealueita. ALS-dataa käytettiin usein yhdessä muiden kaukokartoitusaineistojen, 
kuten ilma- ja satelliittikuvien kanssa, mikä oli erityisen hyödyllistä, kun puulajeja käsiteltiin 
suorasti tai epäsuorasti. Katsauksen perusteella ei löydetty yhtä selvää ALS-selittäjää, joka 
olisi hyödyllinen kaikenlaisessa metsien biologisen ja rakenteellisen monimuotoisuuden 
arvioinnissa. Kasvillisuuden korkeuden keskihajonta, keskiarvo ja variaatiokerroin olivat 
eniten hyödynnettyjä ja useimmiten hyödyllisiksi osoittautuneita ALS-selittäjiä. 

Kookkaiden haapojen puu- ja koealatasojen luokittelutarkkuus parani, kun SMOTE-
menetelmää hyödynnettiin harvinaisten haapahavaintojen augmentoinnissa. 
Ilmakuvaselittäjät osoittautuivat ALS-selittäjiä tärkeämmiksi kookkaiden haapojen 
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tunnistamisessa. Eritoten lähi-infrakanava ja sen suhteet muiden ilmakuvakanavien kanssa 
olivat tärkeitä selittäjiä. Tulokset osoittavat, että kookkaiden haapojen tunnistaminen aidoissa 
populaatioissa on edelleen haasteellista. 

Koealatason iän ennustamisessa GPBoost-menetelmä oli LME-menetelmää parempi, ja 
luokka-asteikollisten selittäjien mukaan ottaminen satunnaisvaikutuksina johti selvään 
ennustevirheen pienentymiseen. Ennustevirheen pieneneminen oli LME-malleissa 
suurempaa kuin GPBoost-malleissa. Kaikista parhaat tulokset saatiin, kun ylispuukoealojen 
luokitus tehtiin ennen iän ennustamista. 

Tämä väitöskirja osoitti, että ALS-data tarjoaa arvokasta informaatiota metsäluonnon 
monimuotoisuuden arviointiin niin pienessä kuin suuressakin mittakaavassa. Se myös osoitti, 
että on tärkeää arvioida menetelmän tehokkuutta aineistolla, joka antaa realistisimman kuvan 
tarkasteltavasta populaatiosta. Tulevaisuudessa tarvitaan enemmän tutkimusta vähemmän 
tutkituista aiheista, kuten funktionaalisesta monimuotoisuudesta. Lisäksi GPBoost-
menetelmää tulisi testata myös muiden metsää kuvaavien ominaisuuksien kuin iän 
ennustamisessa. 
 
Avainsanat: laserkeilaus, metsähaapa, biodiversiteetti, metsän ikä, metsän rakenne, 
kaukokartoitus 
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INTRODUCTION 
 
 
Biodiversity and forests 
 
The term ‘biodiversity’ covers all the variation in lifeforms found at different scales of 
biological organisation on Earth. It is divided into genetic, species and ecosystem diversity 
components (United Nations, 1992). Biodiversity is highly important for the global system 
as it enables the various ecosystem services from which society obtains direct or indirect 
benefits (Duffy 2009). However, human-induced changes on ecosystems have placed much 
of the global biodiversity in danger (Jetz et al., 2007). This is why conservation and future- 
and current-state assessment of biodiversity have received both scientific and political 
interest in recent decades (Millennium Ecosystem Assessment, 2005). 

The role of forests in biodiversity-related decision-making is fundamental because they 
support 80% of global terrestrial biodiversity. Forests provide multiple ecosystem services, 
such as genetic, species and ecosystem diversity, as well as provisioning services, e.g. timber 
and recreation (Balvanera et al., 2014). Continental-scale variation of biodiversity is 
perceived to be determined by climatic conditions, but at smaller scales (e.g. forests), 
vegetation structure influences diversity and species distribution (Zellweger et al., 2013). 
Forest structure and its complexity modifies microclimatic conditions, provides breeding 
sites, affects the distribution and availability of resources and niches, and provides shelter 
from predators (Brokaw et al., 1999; MacArthur and MacArthur 1961; Melin et al., 2014). A 
greater availability of niches and resources (i.e. more structural diversity) will likely result in 
greater diversity of species than a forest with less of these features (Stein et al., 2014). Also, 
more structurally diverse forests will be able to better cope with changing environmental 
conditions. In addition to vegetation structure, the variation in terrain elevation influences 
species diversity at the local-scale (Vogeler et al., 2014; Zhou et al., 2015). The large-scale 
measurement of habitat structure and the reconstruction of 3D vegetation characteristics 
using ground sampling requires a lot of time and resources, which is why more efficient 
methods of data collection are needed. 

As direct measurement of biodiversity is not possible, so called ‘biodiversity indicators’ 
are utilised. These measures transform the complex nature of biodiversity information into a 
simple and quantifiable form (Biodiversity Indicators Partnership 2011). For example, the 
change in forest area can be interpreted as an indicator of the progress in forest conservation. 
In this dissertation, studies II and III focused on two biodiversity indicators of forests: 
European aspen (Populus tremula L.) and forest age. 

 
 
European aspen as a biodiversity indicator 
 
European aspen is a keystone species and pioneer in coniferous-dominated boreal forests. 
Many forest-dwelling species, including birds, fungi, invertebrates and mammals are 
dependent on both living and dead aspen trees (Kouki et al. 2004; Kivinen et al. 2020). 
Numerous secondary hole-nesters, such as flying squirrel (Pteromys volans) and tits 
(Paridae) also utilise aspen trees (Baroni et al. 2020). The ecological importance of the 
species is highlighted by the fact that many aspen-dependent species are also Red-listed 
species (Jonsell et al. 1998; Tikkanen et al. 2006), which means that the species itself is in 
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danger of extinction (International Union for Conservation of Nature 2023). Old-growth, 
large-diameter (>20 or 25 cm) aspen trees are especially valuable from a biodiversity 
perspective (Latva-Karjanmaa et al. 2007; Maltamo and Packalen 2014).  

As a keystone species, there is a need for information on the abundance and occurrence 
of these trees at the landscape-level. This information is valuable in the planning and 
implementation of sustainable forest management and conservation. Also, a time series of 
aspen occurrence would provide valuable information on landscape health and integrity (Kay 
1997). However, the number of aspen trees and other deciduous trees in boreal forests is 
limited due to traditional forest silvicultural practices that have favoured coniferous trees, 
and also because natural disturbances rarely occur (Esseen et al. 1997; Kuuluvainen 2002). 
To date, information on aspen occurrence and abundance in northern Europe is limited. 
 
 
Forest age as a biodiversity indicator 
 
Forest age is an extremely important attribute for sustainable forest management and 
planning (Franklin et al., 2018; Rogers et al., 2022), for the assessment of forest biodiversity 
and habitats (Costanza et al., 1998; Pan et a., 2011), as a predictor variable for various forest 
attribute models (Eerikäinen et al., 2002; Racine et al., 2014), and in regional or national 
level reporting (Gillis et al., 2005). Age is usually known in even-aged plantation forests 
(Packalén et al. 2011), but not in managed boreal forests. In Finland, for example, forest age 
information is not always available because of the long rotation period of the main tree 
species and the natural regeneration of minor tree species, such as aspen, during the rotation 
period (Maltamo et al., 2020). 

Identification of old-growth forests is an important aspect related to forest age. In 
addition, old-growth forests are characterised by the large amount and variation of dead 
wood, by multilayered canopies, and by a substantial variation in age structure and tree sizes 
(European Commission 2023; FAO 2022). In this context, terms such as natural forest and 
virgin forest are also used, sometimes interchangeably (Sabatini et al., 2018). Approximately 
34% of global forests are old-growth and are mostly fragmented and small in extent (FAO 
2022). Their ecological importance is highlighted by the considerable provisioning potential 
of ecosystem services and the fact that they provide habitats for multiple endemic and 
endangered species (Hyvärinen et al., 2019). 
 
 
Airborne Laser Scanning and other remote sensing technologies 
 
Remote sensing data, such as optical aerial and satellite images and light detection and 
ranging (lidar) data, are widely utilised in operative forest inventories (Maltamo and Packalen 
2014; Næsset 2014). Optical images contain information related to the reflected intensity of 
electromagnetic radiation. The use of optical remote sensing data for biodiversity assessment 
has been studied extensively in recent decades and offers relevant data for the classification 
of vegetation types or for the definition of the horizontal structure of the landscape (Turner 
et al., 2003). However, many applications require information on the vertical structure, which 
cannot be directly measured using optical data alone (Vierling et al., 2008). One such 
technique to overcome such restriction is lidar as it can be used to map both the horizontal 
and vertical vegetation structures (Bergen et al., 2009).  
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Lidar is an active remote sensing technology that can be spaceborne, airborne or 
terrestrial. Airborne laser scanning (ALS or airborne lidar) is often utilised in 3D ecosystem 
assessments because these surveys aim to provide valuable 3D information about the 
vegetation over large areas (Bakx et al. 2019). Different statistical metrics can be computed 
from ALS data that can be used to quantify the structural attributes of forest habitats (Bakx 
et al., 2019; Davies and Asner, 2014; Hill et al., 2013). In general, they are statistics 
associated with the height distribution of the ALS echoes, which can be linked to the 
attributes of interest. These metrics can be roughly categorised into height, density, 
distribution and intensity metrics. 

Forest inventory methods that use ALS data can be divided into two categories: an area-
based approach (Næsset 2002) and individual tree detection (Hyyppä et al. 2001). In the 
former, point cloud metrics are calculated at the plot- or raster cell-level and are used as 
predictor variables for forest attributes, while in the latter, the derivation of tree- or stand 
attributes is based on the prediction of tree dimensions from trees that are individually 
segmented from the ALS data. The required scale of information will determine the method 
that is employed (Maltamo et al. 2014); for example, it may be more desirable to detect large 
aspen trees at the tree-level rather than predicting the characteristics of aspen at the plot- and 
raster cell levels. 

Clearly, ALS and other remote sensing technologies have considerable advantages: they 
can cover large areas, which allows for the generation of wall-to-wall maps, and their use can 
also reduce logistical and other costs. Therefore, it is evident why ALS technologies have 
become increasingly popular in the fields of ecology, biodiversity and conservation in recent 
years. Numerous studies have suggested that remote sensing information can serve as a 
relevant proxy for biodiversity and ecosystem assessments in vertically complex ecosystems, 
such as forests (Clawges et al. 2008; Bergen et al. 2009; Vihervaara et al. 2015). However, 
to-date, reviews of the utilisation of ALS data as the main remote sensing data source in the 
assessment of forest structural biodiversity and in the prediction of forest biodiversity indices 
are non-existent. 

Earlier studies have highlighted the potential of 3D data for the mapping of aspen (Li et 
al. 2013; Alonzo et al. 2018). However, the detection of large aspen by remote sensing is 
reported to be difficult because of their low quantity and scattered occurrence (Maltamo et 
al. 2015; Viinikka et al. 2020). Moreover, the overlapping spectral response of aspen with 
other broadleaved trees, such as birch (Betula spp.), has been shown to be problematic (see 
Korpela et al. 2010; Pippuri et al. 2013; Hovi et al. 2017). Also, the overlapping ALS-
intensity properties of aspen and spruce have been reported (Ørka et al. 2007). 

Remote sensing data have also been reported to be useful in the prediction of forest age. 
For this purpose, spectral data (Jensen et al., 1999; Gillis et al., 2005; Dye et al., 2012), ALS 
data (Racine et al., 2014; Maltamo et al., 2020) or a combination of these datasets (Straub 
and Koch 2011; Schumacher et al., 2020) have been tested. Earlier studies have pointed out 
that age predictions for forests older than approximately 100 years is a challenge (Maltamo 
et al., 2020; Wylie et al., 2019). For example, Wylie et al. (2019) reported that the stand age-
height relationship in boreal forests in Canada weakened after 120 years. 
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Objectives  
 
The main objective of this dissertation was to assess the potential of ALS data in determining 
the biological and structural diversity of forests. The objectives of the three original articles 
were:  

  
I To provide a review of the use of ALS data in forest biological and structural 

diversity assessments and describe the ALS metrics that were used in those studies. 
 

II To evaluate the performance of the combined use of ALS data and aerial images for 
the detection of large European aspen trees. 
 

III To analyse the performance of ALS and Sentinel-2 data for forest age prediction 
when combined with categorical site condition variables available from each unit of 
prediction. 

 
 

MATERIALS 
 
 

Field data 
 

European aspen 
 
In study II, field data consisted of National Forest Inventory (NFI) plots and so-called 
“treemap” plots acquired from the Mikkeli study site (3,082 km2). The NFI plot data were 
provided by Natural Resources Institute Finland (Luke) and the treemap plots were provided 
by the Finnish Forest Centre. Treemap plots were measured in 2020 and 2021, whereas the 
NFI plots were measured between 2018 and 2021. To account for the time difference in the 
NFI data, trees from 2018, 2019 and 2020 were “grown” to 2021 using internal (Luke) growth 
models (unpublished). The sampling design of the Finnish NFI is explained in detail in 
Korhonen et al. (2021). How the locations of the trees were determined differed between the 
NFI and treemap plots: In the former, locations were recorded as bearing and distance from 
the individual tree to the plot centre, while for the latter, the locations were determined with 
the TerraHärp system implemented with Masser ExCaliper II callipers (Kostensalo et al. 
2023). Treemap plots were subjectively placed within the study area as part of the operational 
stand-level forest management inventory. Treemap plots were irregular in their shape and 
size (i.e. neither round nor rectangular), whereas NFI plots were always round with variable 
radii. 

In total, there were 33,195 field-measured trees located across 701 plots, including both 
NFI and treemap sub-plots. The number of deciduous trees (other than aspen) was 9,079, 
which corresponded to 27.4% of the trees in the field dataset. There were only 167 aspen 
trees in the dataset, which corresponded to 0.5% of all field-measured trees. Of those, 35 
aspen trees had diameter at breast height (DBH) values ≥ 22 cm, which equated to 1.96 large 
(DBH ≥ 22 cm) aspen per hectare. The corresponding mean estimate in the NFI for the larger 
Etelä-Savo region that surrounds the study site was 2.21 large aspen (DBH ≥ 22 cm) per 
hectare. 
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Forest age 
 
In study III, field data consisted of NFI plots from 12 ALS data acquisition areas in northern 
Finland (Fig. 1). Plots were measured between 2019 and 2022. For the main tree species in 
the dominant tree layer, age was always defined by coring or by the calculation of the number 
of whorl of branches. This age was used as the observed plot age in study III. Plot ages were 
updated to match the year of ALS data acquisition by adding or subtracting the difference 
between the field measurement year and the ALS data acquisition year. 

Tree-level age is not always the attribute of interest. In many cases, the mean age of trees 
within a plot or stand is often of interest, although accurate determination of the plot- or 
stand-level age can be difficult. For example, ages in mixed forests often vary between tree 
species, and many old-growth forests have canopy gaps caused by wind or by other 
disturbances that lead to a substantial variation in tree ages in the gaps and adjoining areas. 
Also, the systematic sampling design utilised in the NFI means that plots can be located either 
completely inside a forest stand or in between multiple forest stands of different ages. In this 
dissertation, only NFI plots that were completely located within one forest stand were 
selected, as the definition of plot age is more straightforward on a one-stand plot than on a 
multi-stand plot. 

One aspect of study III was to identify plots that contained hold-over tree(s) (hereafter, 
hold-over plots). This issue was addressed because plot age is determined by the age of the 
dominant stratum, and the dominant stratum on hold-over plots is composed of seedlings. In 
this situation, employing a common age model would be suboptimal, which is why two 
separate age models were fitted: one for hold-over plots and one for the other plots. A plot 
was labelled as a hold-over plot if it contained at least one hold-over tree and its recorded age 
was ≤ 50 years. Hereafter plots other than hold-over plots are referred to as “other plots”. 

In total, there were 870 plots across the ALS data blocks. From these, 50 plots were 
observed as hold-over plots (5.7% of all plots). The plot age ranged between 0 and 300 years 
and the most common age class was 70–80 years (Fig. 1). The mean and median plot ages 
were 87 and 79 years, respectively. The number of plots ≥150 years old was 83 (out of a total 
of 870). 
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Figure 1. Histogram for the age distribution of plots (left) and map (upper right) showing the 
locations of airborne laser scanning (ALS) data blocks (n=12) used in study III. Each bar in 
the histogram equates to a 10-year age class. 

 
 

Remote sensing data 
 

European aspen 
 
Remote sensing data for study II consisted of ALS data and aerial images acquired during 
leaf-on conditions in June 2020 (Tables 1 & 2). The ALS echoes were classified as ground 
and non-ground, as proposed by Axelsson (2000). The original echo heights in the N2000 
vertical coordinate reference system were normalised to above ground level (a.g.l) using a 
digital terrain model interpolated from ground echoes by Delaunay triangulation. Resulting 
negative echo heights were set to zero. 

Multispectral bands (Level-2) from a Vexcel UltraCam Eagle camera were used, without 
pan-sharpening or orthorectification. First of many and only echoes were projected to 
unrectified colour bands using the internal and external orientation of the camera at the time 
of exposure (see details in Packalén et al. 2009). External orientations of images were 
determined using the bundle block adjustment technique with tie points, control points and 
global navigation satellite system (GNSS) and inertial measurement unit (IMU) values as 
ancillary observations (Mikhail et al. 2001). The pixel values of the colour bands (red, green, 
blue and near-infrared (NIR)) were then assigned to the first of many and only ALS echoes.  
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Table 1. Metadata of the utilised airborne laser scanning (ALS) data used in studies II and III. 

 Study II Study III 

ALS device RIEGL VQ-1560i 

RIEGL VQ-780i 
RIEGL VQ-780 II 
RIEGL VQ-780 II-S 
RIEGL VQ-1560 II 
RIEGL VQ-1560 II-S 

Flying altitude 1,525 m a.g.l. 855–2100 m a.g.l. 

Scanning frequency 148 Hz 131–230 Hz 

Pulse repetition frequency 1400 kHz 700–1 620 kHz 

Point density 7.2 points/m2 5.1–9.5 p/m2 

Maximum scanning angle 20° 20–23° 

Side overlap 20.8% 20–24% 

 
Table 2. Metadata of the aerial images used in aspen detection in study II. 

Multispectral Camera Vexcel UltraCam Eagle Mk. 1 

Image Format, mm 68.016 × 104.052 

Image Format, pixels 4360 × 6670 

Pixel size (in CCD) 15.600 µm × 15.600 µm 

Focal length 100.5 mm 

Flying altitude 7,700 m a.g.l. 

Ground Sampling Distance of camera 120 cm 
1 Full width at half maximum. 
 
 

Forest age 
 
Remote sensing data for study III consisted of ALS data and Sentinel-2 satellite imagery. 
The ALS data were acquired during leaf-on conditions in the summers of 2020, 2021 and 
2022, depending on the ALS block (12 in total) (Table 1, second column). The ALS data were 
processed in the PALUS remote processing platform operated by the CSC–IT Center for 
Science. The Sentinel-2 mosaic was generated in the Google Earth Engine using the 
percentile-based method described in Pitkänen et al. (2024). The mosaic included all bands 
where the 20 m pixels were resampled to a 10 m pixel size using the nearest neighbour 
method. The mosaicking process started with selection of all the summertime (between June 
15 and August 15) Level-2A images between 2020–2022 that had a maximum overall cloud 
coverage of 25%. Then, these initial images were masked to remove the majority of the 
remaining clouds by using a 30% threshold, based on the S2_CLOUD_PROBABILITY 
layers (Zupanc, 2017). The final output was calculated using the band-wise 40th reflectance 
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percentile values, derived from all the unmasked pixels. The resulting mosaic was also 
manually checked and verified to confirm that there were no clouds or shadows. 

 
 

METHODS  
 
 

Literature analysis (I) 
 
Literature searches for study I were conducted in July 2023 using Scopus, Google Scholar 
and UEF Primo (search service for electronic materials at the University of Eastern Finland). 
The used keywords were carefully chosen to minimise the potential of excluding relevant 
studies. The selected keywords were “ALS”, “airborne lidar” or “airborne laser scanning” for 
the lidar component, “forest” or “forest structure” for the vegetation component, and either 
“biodiversity”, “forest type”, “deadwood”, “fragmentation”, “species diversity”, “species 
richness”, “successional stage”, “understorey” or “animal ecology” as a third component. 
These keywords were used in all possible combinations for the vegetation, lidar and third 
components. After the search, the number of articles was reduced by screening the articles – 
first by title and then by abstract. Lastly, the selected articles were read entirely. To limit the 
length and complexity of the review, studies where the primary data were acquired with 
terrestrial, spaceborne or profiling lidar systems, and studies that used photogrammetric point 
clouds derived from aerial and satellite image data, were excluded. Furthermore, studies 
where the main interest was the assessment of leaf-area index (LAI), canopy cover, primate 
habitats or were conducted in aquatic ecosystems, were excluded from the study.  

In total, 182 scientific articles were included in study I and all articles were published 
between 2003 and 2022. Most of the research was conducted between 2009 and 2018, with 
a peak occurring in 2016 when 17 studies were published. The least frequent years for 
published studies were 2003 and 2006 when only one paper was published per annum. 

The most common domain for publications were remote sensing journals, which 
accounted for 45% of the studies. Approximately 75% of studies only utilised ALS data, and 
approximately one quarter of studies used optical images and ALS data. Both ALS and 
terrestrial laser scanning data were utilised in four studies. There was a clear trend in the type 
of ALS data used: discrete return (DR) ALS were used in 93% of studies, whereas FW-ALS 
was only used in 7% of the studies. Clear trends with regard to the use of FW-ALS data were 
not found. Each study was classified by its spatial extent, defined here as the spatial unit on 
which the study was conducted. Approximately 45% and 35% of the studies were conducted 
at landscape- and plot-levels, respectively. 

Most of the study areas were located in Europe and North America (Fig. 2). Note that 
there are more study areas than study articles, since some studies utilised data from multiple 
locations. Approximately 42% of the study areas were located in temperate broadleaved and 
mixed forests. Boreal and temperate coniferous forests were hosts for approximately 20% of 
the study areas. The remainder were mainly located in Mediterranean and tropical forests – 
both accounting for < 10% of the study areas.
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Figure 2. Locations of study areas (a) globally, (b) in North and Central America, and (c) in 
Europe. Number of clustered studies is shown inside the purple circles. Colouring of the 
global map (a) is based on the global terrestrial biome classification as presented by Olson 
et al. (2001). Map: WWF (2021) 

 
 

Mapping large European aspen in Finland (II) 
 

For the identification of large aspen, single trees were identified from a canopy height 
model (CHM) interpolated from the ground normalised ALS echoes. Treetops were 
identified from the low-pass filtered CHM with the assumption that the local maximum 
in the 8-neighbourhood corresponded to a tree. Trees were delineated from the CHM using 
marker-controlled watershed segmentation with identified treetops as seeds. Field 
measured trees were linked to remotely detected trees in order to attach the information 
related to a field tree (here DBH and tree species) to the detected tree (Fig. 3). As a linking 
criterion, a 2.5 m limit in the X and Y directions, and a 3 m limit in the Z direction were 
used. Linking resulted in 12,189 linked trees. 

 
 
 
 
 
 
 

a 

c b 
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Figure 3. Workflow for the classification of large aspen trees. 
 
The ALS and image metrics were calculated for the CHM segmented tree polygons 

(Fig. 3). The ALS metrics were calculated for the first, intermediate, last and all echo 
categories and commonly included height and intensity percentiles (5th, 10th, …100th). In 
addition, the proportion of the different echo categories, as well as mean, standard 
deviation, skewness and kurtosis values for height and intensity were calculated. Image 
metrics of mean and standard deviation values for each band, ratios between the bands 
(e.g. Red/Blue) and Normalised Difference Vegetation Index (NDVI), were computed for 
the trees using the pixel values linked to the echoes. Only echoes with a height > 0.5 × the 
predicted height of the tree (e.g. the identified treetop) were selected. Tree height was 
predicted for detected trees using a linear model fitted with all the detected and correctly 
linked trees. In the model, the maximum pixel value within the tree polygon (hPoly) 
explained the measured/predicted height of the tree (hTree). 

The Random Forest (RF) classifier was utilised to separate large aspen from other 
remotely detected trees (Fig. 3). This is a well-established, supervised learning algorithm 
in data science and has been widely used in remote sensing applications (Belgiu and 
Drăguţ 2016). More specifically, the “fast implementation of random forest algorithm” 
from package ranger (Wright and Ziegler 2017) in the R environment (R Core Team 2022) 
was selected. 

There was a substantial imbalance in the field data as the proportion of large aspen was 
very small compared to other trees (e.g. 35 aspen with DBH > 22 cm from a total of 33,195 
trees). In addition, the number of aspen trees was small compared to other deciduous trees; 
approximately only 1.8% of all deciduous trees were aspen. To account for the imbalance 
in model construction, the Synthetic Minority Oversampling Technique (SMOTE) 
(Chawla et al., 2011) was adopted. In SMOTE, new instances of observations are 
generated by combining features of the target observation and its k-nearest neighbours in 
the feature space. In the analysis, values for user-defined parameters were calculated in 
such a way that the numbers of aspen and other tree species in the training data were 
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approximately equal. SMOTE was implemented in the R-package performanceEstimation 
(Torgo 2016). 

Initially, there were 179 ALS and 15 image metrics. Prior to fitting the RF model, ALS 
metrics were removed until the absolute correlations between the remaining metrics were 
< 0.8. All image metrics were used as there were significantly more ALS metrics. The 
response class “large aspen” was assigned to those observations that were aspen and where 
DBH values were ≥ a range of DBH limits (18, 20, 22, 24 and 26 cm). The definition of 
large aspen here may be ambiguous, as earlier studies have used DBH values between 20 
and 25 cm as a criterion (Latva-Karjanmaa et al., 2007; Maltamo et al., 2015). 

Classification was divided into two separate tests. In the first classification (SC1 II), 
balanced (SMOTE-RF; SRF) and imbalanced RF classifications were compared using the 
fixed 22 cm DBH limit for large aspen. The second classification (SC2 II) compared 
SMOTE-RF classifications across a range of DBH limits for large aspen (18, 20, 22, 24 
and 26 cm). In SC1 II, the data were sub-divided into A, B and C datasets for both balanced 
and imbalanced classifications. Dataset A only included linked trees (i.e. trees for which 
tree polygons were assigned) from the aspen plots. Here, “aspen plot” indicates that the 
plot contained at least one large aspen tree. In dataset B, unlinked field measured trees 
from the aspen plots were added to the dataset, and in dataset C, all trees from all plots 
were considered in the classification. Dataset C was considered as representative of the 
population, while A and B were unrepresentative.  

The leave-one-plot-out cross-validation (CV) technique was utilised, which means that 
for each iteration, trees from one plot were used as the test data and trees from all the other 
plots were used as the training data. The following accuracy statistics were reported: 
precision, recall and the F1-score (Sasaki 2007). In SC1 II, tree-level accuracies for aspen 
plots (A, B) and all plots (C) were reported. In SC2 II, only accuracies for all plots are 
shown, but the results are reported at both the tree- and plot-levels. 

Finally, the most important metrics used in the SMOTE-RF classification at the 22 cm 
DBH limit when data from aspen plots and all plots were utilised, are reported. The 
importance measure employed here was the Gini importance. It is calculated as the number 
of times that a metric was used to split a tree node divided by the number of all trees. 
Initially, the importance values across RF runs with different datasets are at different 
scales, so to make them comparable (between the aspen plots and all plots), importance 
was normalised by dividing it by its overall mean value. 

 
 

Forest age prediction using tree boosting and remote sensing data (III) 
 
In study III, ALS, Sentinel-2 and categorical metrics were calculated at the plot-level. 
The ALS metrics were calculated separately for the first and last echo categories using 
the lascanopy program (LAStools, 2024). Height metrics included commonly used height 
percentiles (20th, 40th, …), height bincentiles (a.k.a. deciles), mean, standard deviation, 
skewness and kurtosis values for height, and a vertical complexity index. The ALS metrics 
also included two terrain height metrics. These were the terrain height at the plot location 
above sea level and the relative terrain height calculated as the terrain height at the plot 
location (field measured in the NFI) divided by the mean terrain height in the 3 km radius 
around the plot. The Sentinel-2 metrics contained the mean values for each band, the ratios 
between the bands (e.g. B2/B11) and NDVI. Plot-level Categorical predictors (ALS block, 
WoodProdRestr and MainType) were derived from the NFI data. As a 12-level factor, the 
ALS block addresses the effect of an inventory area, while WoodProdRestr describes 
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wood production restrictions of a forest and has three levels: “no restrictions”, “protected 
forests” and “protected mires”. The MainType variable describes the main type of the 
forest plot and has three levels: “mineral soil”, “drained peatland” and “undrained 
peatland”. The inclusion of categorical variables, which are indicative of site conditions, 
was based on the fact that these variables had previously been reported to be important in 
the modelling of forest age (Maltamo et al., 2020). 

Age predictions between tree boosting with random effects (GPBoost) and the linear 
mixed effects model (LME) for three scenarios (SC1 III, SC2 III and SC3 III) were 
compared (Fig. 4). In the first scenario (SC1 III), plot age was predicted using only remote 
sensing metrics. In the second scenario (SC2 III), three categorical variables were added 
to the configuration of SC1 III. In the third scenario (SC3 III), a hold-over plot 
classification was added to the configuration of SC2 III. Age predictions for hold-over 
and other plots differed by the structure of the random component of the age models. 
Categorical variables were treated as random effects for other plots, whereas in the models 
for the hold-over plot (SC3 III only), they were not included in the models at all. This was 
done because hold-over plots only contained a few observations in most categories. All 
the analyses in study III were implemented in the R environment (R Core Team 2024). 

Predictor variable computation resulted in 42 ALS and 56 Sentinel-2 metrics. Prior to 
the fitting of the age models, predictor variables were removed until the correlations 
between the remaining metrics were < 0.9. From the remaining metrics, the 10 metrics 
that had the strongest correlation with plot age were selected. This was done within each 
of the 10-fold CV schemes described below. The resulting 10 metrics in each fold were 
included in the age models in each scenario. 
 

 
 

 
 

 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

Figure 4. Workflow of age predictions on National Forest Inventory (NFI) plots for the three 
scenarios SC1 III, SC2 III and SC3 III. 
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GPBoost was the first tested prediction method. It is a relatively new software library 

used to combine tree boosting with the Gaussian process and grouped random effects 
models (Sigrist et al., 2021; Sigrist 2022). Tree boosting is a machine learning technique 
that trains models in a sequential fashion. It is based on the premise that the best possible 
next model can be acquired when correcting the previous model. In study III, only tree 
boosting with random effects was used, but the Gaussian process part of the library was 
not included. 

In this study, LME was the second method to be tested for age prediction. It is an 
extension of common simple linear models as it has both fixed and random effects, and 
LME models are highly usable when dealing with hierarchical data. The LME method is 
simpler than GPBoost and can be considered as a sort of a baseline here. First, the 
‘maximum model’ was formulated with lmer function (Bates et al., 2015), which contains 
all the predictors that were used in the corresponding GPBoost model. In SC1 III, only 
fixed effects (i.e. ALS and Sentinel-2 predictor variables) were used in the model. In SC2 
III and SC3 III, categorical variables were included in the mixed effects model by adding 
random intercepts for the categorical variables. After model formulation, buildmer 
function (Voeten 2021) finds the maximal feasible model by starting with an “empty 
model” and adding terms to this model until the model can no longer converge. After the 
maximal feasible model was found, stepwise elimination was applied. In SC2 III and SC3 
III, ALS block, MainType and WoodProdRestr were included in the random part of the 
models. This means that the “empty” lmer model was not entirely empty but contained the 
pre-defined variables in the random component of the model. Eventually, the best model 
of buildmer was fitted with lmer. 

Hold-over plot classification of SC3 III was implemented with logistic regression 
using the glm function from the stats package. The stepwise model selection was carried 
out using the stepAIC function from the MASS package. The candidate set of predictor 
variables was the same as for age prediction, although categorical variables were included 
as the fixed effects in the model formulation. All computations were carried out using 10-
fold CV, which means that the data were first split into 10 subsamples, i.e. folds. Then, 
each plot fold (~ 10%) was, in turn, used as the test data, while the remainder of the plots 
(~ 90%) were used as training data. For each fold, plots were sampled from each of the 12 
inventory areas without replacement. The same folds were used for both prediction 
methods (GPBoost and LME) and for all scenarios. 

The data were split 50 times to minimise the effect of randomness due to random 
selection of observations into the 10-fold CV. All the results from the three scenarios are 
reported based on the 50 repetitions. This means that age was predicted 50 times for each 
plot and the mean of these 50 values was used as the predicted value. The relative root 
mean square error (RMSE) (Eq. 1) and relative bias (Eq. 2) values are reported as 
measures of prediction accuracy: 

%RMSE = 100
𝑦𝑦�

 × �∑ (𝑦𝑦𝚤𝚤�−𝑦𝑦𝑖𝑖)2

𝑛𝑛
𝑛𝑛
𝑖𝑖=1        (1) 

%BIAS = 100 × ∑ (𝑦𝑦𝚤𝚤�−𝑦𝑦𝑖𝑖)
𝑛𝑛
𝑖𝑖=1 
∑ 𝑦𝑦𝑖𝑖
𝑛𝑛
𝑖𝑖=1

        (2) 

where 𝑦𝑦𝚤𝚤�  is the predicted age on plot 𝑖𝑖, 𝑦𝑦𝑖𝑖  is the observed age on field plot 𝑖𝑖, 𝑦𝑦� is the 
mean of observed ages on plot 𝑖𝑖, and 𝑛𝑛 is the number of plots. 
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Finally, the most important predictors of the GPBoost models of SC3 and the hold-
over classification were analysed. For GPBoost, the importance measure Gain (Sigrist et 
al., 2021) was utilised as the mean values over the 50 repetitions. The importance metric 
for the hold-over plot classification was represented as the number of times the predictor 
variable was chosen in the logistic regression models divided by 500 (the value of 500 is 
the total number of logistic regression models in each 10-fold over 50 repetitions). 

 
 

RESULTS  
 
 

ALS-based assessment of forest biodiversity (I) 
 
The most studied topics in the biodiversity-related assessment of forests with ALS data 
were highlighted in study I. In addition, the most common ALS metrics and the best 
performing combinations with other remote sensing data were reviewed. The division of 
sections below represent the most important findings from the review conducted in study 
I. 

 
Forest habitat type and successional stage 
 
The distribution of habitat types and forest successional stages across large areas is 
reflective of potential species richness and helps to understand broad-scale biodiversity, 
but mapping to date has proved a challenge. 

Classification of land cover and the assessment of successional stages have been 
mainly studied in temperate forests, often located in national parks or protected sites. 
Classification schemes for land cover classification have varied greatly and were most 
often named after the main tree species or the species group that was most representative 
of the landscape (Dalponte et al., 2008; Simonson et al., 2013). In successional stage 
studies, the stage to be classified was determined based either on an existing classification 
scheme utilised in forest management (Alberti et al. 2013) or was tailored by the authors 
of the study (Martin and Valeria 2022). In both topics, classification was most often 
implemented using supervised machine learning algorithms, such as RF and Support 
Vector Machine (SVM). The overall accuracy was reported to depend on the number of 
habitat types in question. For example, Sverdrup-Thygeson et al. (2016) obtained an 
overall accuracy of approximately 94% in a 2-class scenario, whereas Álvarez-Martínez 
et al. (2018) mapped 11 forest-related habitat types with an overall accuracy of 
approximately 66%. For the successional stages, the classification accuracy was greater in 
older successional stages (Alberti et al., 2013; Torresan et al., 2016). 

The most important metrics for both types of studies were those that described the 
vertical canopy structure. For example, average/mean values (Álvarez-Martínez et al., 
2018; Bottalico et al., 2014), standard deviation (Fuhr et al., 2022), median absolute 
deviation (Martinuzzi et al., 2013) and average absolute deviation of vegetation height 
(Valbuena et al., 2016) were found to perform well with ALS metrics. The addition of 
spectral variables (Dalponte et al., 2008) and/or ALS intensity features (Pippuri et al., 
2016) were found to be favourable when broadleaved trees were used in habitat type 
classification. In successional stage studies, classification performance was reported to be 
less successful with Landsat metrics than ALS metrics (Martinuzzi et al., 2013). 
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In some habitat type studies, poor class-level accuracies were attributed to the small 
number of training samples for a specific class (Álvarez-Martínez et al., 2018; Pippuri et 
al., 2016) and to incorrect categorisation of observations in the training data (Vehmas et 
al., 2009). In successional stage studies, errors were most notable in forests that exhibited 
significant structural variability: forests with multi-layered stages (Alberti et al., 2013) and 
stages with a distinct understorey (Falkowski et al., 2009).  

 
Canopy assessment 
 
The studies in this section either attempted to assign the forest into classes that described 
height, openness or layering of the canopy, and or were studies that described the structure 
of the forest understorey (i.e. shrubs and suppressed trees under a dominant canopy). 
Studies were most often conducted in temperate broadleaved and coniferous forests. For 
dominant canopy, the most common attribute of interest was forest canopy layering, 
whether single- or multi-storey (Leiterer et al., 2015; Wilkes et al., 2016). For the 
understorey assessment, the aims of the studies were generally twofold: some studies 
predicted the existence of an understorey or its trees (Hill and Broughton 2009; Miura and 
Jones 2010) while other studies predicted the forest attributes that describe the 
understorey, such as volume or height (Dees et al., 2012; Lindberg et al., 2012). 
Unsupervised classification, such as k-means (Guo et al., 2017; Pascual et al., 2008), was 
used in most of the studies.  

Studies on canopy structure reported that the classification accuracy (overall 66.9–
97%) was dependent on the number of classes that were classified, i.e. a smaller number 
of classes resulted in greater overall accuracy (Leiterer et al., 2015), which is to be 
expected. Some studies reported that the volume of the understorey layer was predicted 
more accurately (R2: 0.88–0.95) than height features of the understorey (R2: 0.76–0.96). 
The most powerful ALS metrics represented the vertical distribution of the canopy 
material. Such metrics included, for example, the median and standard deviation (Guo et 
al., 2017) and COV (Zimble et al., 2003) associated with vegetation height. The inclusion 
of aerial imagery metrics was favourable when coniferous and deciduous canopies were 
distinguished (Jayathunga et al., 2018). Full-waveform ALS data were found to be more 
powerful in the estimation of vegetation volume for lower canopy layers than discrete 
return ALS data (Lindberg et al. 2012). 

Misclassification of canopy structure was mostly exhibited in classes with an open 
canopy structure and multi-layered canopy (Adnan et al., 2019; Guo et al., 2017). It was 
observed that broadleaved canopies tended to be classified less accurately than evergreen 
canopy types (Morsdorf et al., 2010). In some cases, the heights of the understorey canopy 
layers were overestimated when the understorey layer intersected the dominant canopy 
layer (Sumnall et al., 2017). 

 
Measures of tree species diversity  
 
Assessment of tree species diversity measures is of major global interest as they contribute 
to ecosystem (here, forest) health. This section also covers studies that assessed 
understorey plant species and their richness and/or diversity indices, ecologically valuable 
trees, and the structural diversity of forests. 

Studies on tree species diversity, ecologically valuable trees and structural diversity 
were most often conducted in boreal coniferous and temperate broadleaved forests. 
Understorey plant species were assessed in various terrestrial biomes, from mixed 
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mountainous to broadleaved Mediterranean forests. Tree and plant species richness (i.e. 
the number of species within a defined region) or diversity (e.g. Shannon diversity index) 
were most often assessed based only on the trees (George-Chacon et al., 2019), although 
some studies also considered shrub and herb species (Leutner et al., 2012). Only a small 
number of studies were interested in the assessment of ecologically valuable tree species, 
such as aspen (Maltamo et al., 2015; Sankey, 2012). Structural diversity of forests was 
commonly assessed with the Gini Coefficient (GC) of tree size inequality with respect to 
DBH or tree height (Adhikari et al., 2020; Valbuena et al., 2014). Also, standard deviation 
values associated with DBH and tree height were also utilised (Mura et al., 2015). Studies 
that were assigned to this category mainly utilised regression techniques, such as linear 
regression (Ceballos et al., 2015) to predict the attributes of interest. 

In the review, studies reported widely varying model fits for both tree species richness 
and diversity (R2: 0.30–0.89), and understorey richness and diversity (R2: 0.2–0.6). Both 
tree species and understorey species richness could be predicted more accurately than 
diversity when ALS data were used (Leutner et al., 2012; Mauya, 2015). Model fits for 
structural diversity studies also exhibited a varying trend (e.g. R2 for GCDBH: 0.33–0.89). 
One of the most important ALS metrics for tree species richness/diversity and structural 
diversity predictions was the standard deviation of vegetation height (Fricker et al., 2015; 
Mohammadi et al., 2020). The ALS metrics related to heterogeneity in the lower parts of 
the vegetation layers were considered the most important for the assessment of 
understorey richness/diversity, particularly the low percentiles of vegetation heights 
(Bourgouin et al., 2022). The combination of ALS data and optical data was not reported 
to significantly increase the performance of tree or understorey species richness/diversity 
models (Singh et al., 2015).  

The poorest fits for the structural diversity models were reported for forests with a very 
diverse structure (Adhikari et al., 2020). Mapping of ecologically valuable aspen was 
reported to be difficult as the species shared similar ALS intensity metric values with 
spruce and birch (Korpela et al., 2010).  

 
Dead wood 
 
Dead wood plays an important role in nutrient cycling in forests and also provides a habitat 
and resources for multiple species. Large-diameter dead wood is especially of interest, as 
the increment of dead wood diameter positively correlates with forest biodiversity and the 
naturalness of forested areas (Jönsson and Jonsson 2007).  

Studies in this topic were mostly conducted within protected forests in the temperate 
and boreal ecoregions, which naturally contain a large amount of dead wood. Some studies 
assessed fallen (Heinaro et al., 2021; Lindberg et al., 2013) and standing dead trees (Amiri 
et al., 2019, Hardenbol et al., 2022) separately, while other studies took both types into 
consideration (Pesonen et al., 2008). The objective was often to identify single standing 
trees or fallen dead trees (Blanchard et al., 2011), although characteristics of the dead 
wood, such as volume (Chirici et al., 2018), diameter (Stitt et al., 2022) and the proportion 
of standing dead tree (decay) classes (Bater et al., 2009), were also predicted.  

There was a clear variation in the detection accuracies for both standing and fallen 
dead trees across studies (overall accuracy: ~40% to >90%). Detection accuracy clearly 
increased with increasing diameter and length of the stem (Hardenbol et al., 2022; Heinaro 
et al., 2021) but there were no clear differences in detection accuracies between fallen or 
standing trees. The most powerful ALS metrics in dead wood assessment were related to 
canopy heterogeneity, such as COV of vegetation heights (Martinuzzi et al., 2009), and to 
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the geometrical structure of the canopy surface (Hardenbol et al., 2022). Also, waveform 
information, such as return width and amplitude, increased detection accuracy (Mücke et 
al., 2012). Incorrect detection of dead trees was often due to clusters of fallen trees and 
dense understorey vegetation (Blanchard et al., 2011), but roads, stone walls and ditches 
were also problematic (Lindberg et al., 2013). 

 
Fragmentation 
 
Forest fragmentation affects the structure, function and biodiversity of forests (Laurance 
et al., 2017).  The microclimatic conditions on the forest edge are different from the 
interior, as the air is drier and wind effects are more prominent (Didham and Lawton 
1999). 

In the review, the number of studies that investigated forest fragmentation was low. 
Study areas were mostly located in tropical and temperate broadleaved forests. The aims 
of the reviewed studies could be roughly designated as studies that focused on within-
fragment properties (Almeida et al., 2019; Vaughn et al., 2014) and studies that 
investigated inter-fragment connections (Guo et al., 2018). Two studies investigated the 
long-term effects of fragmentation on canopy structure (Almeida et al., 2019; Vaughn et 
al., 2014) and one study investigated the effects of fragmentation and fragment area on 
bird species richness (Flaspohler et al., 2010). In general, ALS information was reported 
to be suitable to expand our understanding of fragmentation effects on forest structure and 
function (Vaughn et al., 2014). Almeida et al. (2019) reported that ALS information on 
mean canopy height showed clear differences between near-edge and inner forests. 

 
Animal ecology 
 
Habitat structural heterogeneity has long been recognised as the main driver of local 
biodiversity (MacArthur and MacArthur 1961). In forests, plant communities drive such 
heterogeneity, which further affects the diversity and richness of various animals. 

Studies on faunal species richness (α-diversity) and species diversity indices were 
mainly conducted in temperate and boreal forests. In contrast, habitat suitability studies 
were conducted in various terrestrial biomes that ranged from mountainous ecosystems to 
riparian forests and wetlands. In habitat suitability studies, the main objective was to map 
the occurrence of old-growth forest species and to use their occurrence as indicators of 
suitable habitats for a specific animal or animals (Vogeler et al., 2013). Other studies also 
predicted habitat quality classes for specific species through the mean body mass of birds, 
for example (Hinsley et al., 2006). To date, most of the research has focused on bird 
species (Melin et al., 2018; Herniman et al., 2020), but some studies have shown interest 
in butterflies (Zellweger et al., 2016; Zellweger et al., 2017; de Vries et al., 2021), spiders 
(Vierling et al., 2011) and other forest-dwelling species (Lindberg et al., 2015; Vogeler et 
al., 2022). 

In general, faunal species richness, diversity indices and habitat suitability have been 
modelled using regression techniques. The R2 values for all taxa ranged between 0.18–
0.96 and 0–0.34 for species richness and diversity indices, respectively. Group-specific 
accuracies across bird species varied widely and were in some cases much greater (R2: ~ 
0.50) than total bird species richness. Spider species richness could be predicted with 
similar accuracy as birds, however, the R2 values for forest beetle- and butterfly- richness 
models were generally lower (Lindberg et al., 2015; Zellweger et al., 2016). Taxa of the 
modelled species or forest terrestrial biome did not have any notable effect on model 
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performance for species diversity indices. The most powerful ALS metrics were similar 
across faunal species richness, diversity and habitat suitability studies: lower vegetation 
height and density metrics, and metrics that describe the vertical heterogeneity in the 
canopy. Climatic variables (e.g. temperature, precipitation) were found to have a greater 
explanatory power than ALS metrics for bird species richness (Carrasco et al., 2019; 
Zellweger et al., 2016) and diversity indices (Zellweger et al., 2017), especially at the 
country-scale. In the diversity index models, the ALS metrics were reported to be superior 
to, or at least as accurate as, field-derived explanatory variables (Müller and Brandl 2009; 
Sasaki et al., 2016).  

The inclusion of aerial or satellite imagery variables in the diversity index modelling 
had little effect on accuracy (Melin et al., 2019). In the habitat suitability studies, the 
addition of optical image data was reported to lead to only slight improvements in model 
performance, with the improvement more pronounced for species connected to deciduous 
trees (Eldegard et al., 2014).  

 
 

Mapping of large European aspen in Finland (II)  
 
The results of study II highlighted the difficulties in the detection of large European aspen 
trees in a population that realistically portrays the imbalance in class representations. The 
utilisation of SMOTE data augmentation was found to improve detection performance. 
Confusion matrices for the first classification (SC1 II) are presented in Table 3 and the F1-
score values for SC2 II are shown in Fig. 5. 

The number of large aspen trees in the dataset strongly declined when the DBH limit 
was increased. For example, the number of aspen with DBH values ≥18 cm and ≥26 cm 
was 64 and 22, respectively. In SC1 II, 29 large aspen were linked to remotely detected 
tree crowns. In addition, a link between a remotely detected tree and 6 large aspen was not 
possible given the distance restrictions of the linking procedure. This resulted in a total 
number of 35 large aspen trees in SC1 II. In the aspen plots, the RF method (Table 3, RF-
A) was used to identify 10 large aspen out of 29, and the SMOTE-RF method (Table 3, 
SRF-A) 16 out of 29. When all 701 plots were used, the number of correctly identified 
large aspen trees was 1 and 7 (out of 35) with the RF-C and SMOTE-RF methods, 
respectively. 

The F1-scores for dataset A were similar between the RF (0.42) and SMOTE-RF 
methods (0.44) because a considerable number of large aspen were incorrectly predicted 
in the latter. The SMOTE-RF method obtained smaller precision (0.36 vs. 0.56) and better 
recall (0.55 vs. 0.34) values than RF, which indicated a greater proportion of incorrectly 
predicted aspen. The recall values for dataset B with RF and SMOTE-RF classifications 
were 0.05 and 0.09 smaller, respectively, than in dataset A. The F1-scores for both 
classifications were 0.04 smaller than dataset A. The difference in the statistics between 
datasets A and B remained relatively modest because most of the field-measured trees 
were not aspen and most of the field measured large aspen were linked to a remotely 
detected tree. 
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Table 3. Confusion matrices associated with first classification (SC1 II) where the random 
forest (RF) algorithm and Synthetic Minority Oversampling Technique augmented RF 
classification (SMOTE-RF) were compared across different datasets. Labels “Aspen” and 
“Other” denote large aspen and other trees, respectively. Suffix “A” denotes the dataset 
where only linked trees from aspen plots were considered, suffix “B” denotes the dataset 
where unlinked field-measured trees from aspen plots were added to previous results, and 
suffix “C” denotes the dataset where all trees from all plots were used in the classification.  
 

Pr
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Observed class  

RF-A Other Aspen Sum  SRF-A Other Aspen Sum 
Other 430 19 449  Other 409 13 422 
Aspen 8 10 18  Aspen 29 16 45 
Sum 438 29 467  Sum 438 29 467 

         

RF-B Other Aspen Sum  SRF-B Other Aspen Sum 
Other 1371 25 1396  Other 1350 19 1369 
Aspen 8 10 18  Aspen 29 16 45 
Sum 1379 35 1414  Sum 1379 35 1414 

         

RF-C Other Aspen Sum  SRF-C Other Aspen Sum 
Other 33159 34 33193  Other 33136 28 33164 
Aspen 1 1 2  Aspen 24 7 31 
Sum 33160 35 33195  Sum 33160 35 33195 

 
 
The advantage of SMOTE-RF was clear when all plots were utilised (dataset C) as it 

resulted in a greater F1-score than RF (0.21 vs. 0.06). Moreover, SMOTE-RF also 
predicted a greater number of large aspen, although many were incorrectly predicted 
(precision 0.23). Further inspection on the tree species distribution of false positives in 
SRF-C revealed that most of the false positives (20 trees out of 24) were birch trees (B. 
pendula Roth and B. pubescens Ehrh.), three were spruce (Picea abies (L.) H. Karst.) and 
one was pine (Pinus sylvestris L.).  

In SC2 II, tree-level F1-scores increased as the DBH limit increased (Fig. 5). The 
number of correctly classified aspen at the tree-level varied between 5 and 7 across a range 
of DBH limits. At the plot-level, the number of correctly classified aspen plots remained 
approximately similar (7–9), although the number of aspen plots (i.e. plots with ≥ 1 large 
aspen) declined from the 18 cm DBH limit (n = 33) to the 26 cm limit (n = 17). Overall, 
F1-scores increased with increasing DBH, although the 24 cm limit exhibited greater 
precision than the 26 cm limit (Fig. 5), while F1-scores at the plot-level were greater than 
their equivalents at the tree-level. 
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Figure 5. Plot- and tree-level F1-scores associated with second classification (SC2 II) 
where the Synthetic Minority Oversampling Technique augmented RF classification 
(SMOTE-RF) was used to identify large aspen trees across a range of diameter at breast 
height (DBH) limits at the tree- and plot-levels. 

 
 
In SC1 II, we analysed the most important remote sensing metrics for SMOTE-RF 

when all trees from aspen plots (SRF-B) and all trees from all plots (SRF-C) were used. 
The most important remote sensing metrics yielded similar results between these datasets. 
In general, image metrics were more important predictors than ALS metrics. In particular, 
metrics that contained the near-infrared (NIR) band were important. Examples of these 
included NIR/Blue, NIR/Red and standard deviation of NIR. The green band appeared to 
be the second most important spectral band. The most important ALS metric was ranked 
8th in importance with the aspen plots and 12th with all plots. The most important ALS 
metrics were related to lidar intensity (e.g. standard deviation of intensity for the last and 
only echoes) 

 
 

Forest age prediction using tree boosting with linear forest-type effects (III)  
 
The most essential findings of the study III were the superior performance of GPBoost 
compared to LME, and that the inclusion of categorical variables clearly decreased the 
prediction error for forest plot age. Predicted vs. observed age scatter plots of the three 
scenarios are presented in Figure 6. 

In SC1 III, RMSE values were large for both GPBoost and LME (Fig. 6). The RMSE 
value associated with the LME model was more than 4 percentage points larger than the 
value associated with GPBoost. Neither of the methods was able to accurately predict the 
ages of plots that had an observed value close to zero. The LME model clearly 
overpredicted the age of young plots, while the age of old plots was underpredicted. 
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Overall, the predictions of GPBoost were closer to the observed values than the predictions 
from the LME model (Fig. 6). 

In SC2 III, accuracies were greater in both methods compared to SC1 III (Fig. 6). The 
RMSE value associated with LME decreased more than the RMSE value associated with 
GPBoost. Also, GPBoost in SC2 III was clearly the better alternative of the two methods. 
As in SC1 III, the age of plots with observed ages close to zero was difficult to predict 
accurately in both methods, but this tendency was stronger in LME. For both methods, the 
predicted values in SC2 III better corresponded to the observed values than in SC1 III. 
Moreover, the overprediction of young ages and underprediction of old ages in SC2 III 
was clearly reduced in LME compared to SC1 III. This was observed as a much wider 
range of predictions in SC2 III than in SC1 III. 

In SC3 III, a hold-over plot classification was added prior to age prediction. Its purpose 
was to separate age predictions for hold-over and other plots. Hold-over plot classification 
with a logistic regression model provided an overall accuracy value of 94.7% and a Kappa 
coefficient of 0.58 (as the mean of 50 repetitions). The performance of age predictions for 
both methods was further improved compared to SC2 III (Fig. 6). Biases were clearly 
larger in this alternative compared to SC1 III and SC2 III (where biases were marginal). 
Larger bias originated from the splitting of age modelling between hold-over plots and 
other plots. However, plots with observed ages close to zero were clearly predicted more 
accurately than in the previous scenarios. Poor age predictions for the remaining single 
hold-over plots close to zero could be mostly accounted for by the fact that the hold-over 
classification failed in those plots. 
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Figure 6. Predicted vs. observed age for tree boosting with random effects (GPBoost) and 
the linear mixed effects (LME) model in the first scenario (SC1 III), second scenario (SC2 
III) and third scenario (SC3 III). The observed hold-over plots are highlighted in bold in the 
SC3 III scatter plots. 
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In study III, the proportion of plots predicted as ≥150, ≥175 and ≥200 years old from 

the number of observed plots in these age classes, was analysed. One trend was obvious: 
GPBoost predicted older forests more accurately than LME. For example, in SC1 III, 
LME did not predict any plots for age classes 175 and 200, while in contrast, GPBoost 
predicted 29.1% and 23.5% of the number of observed plots in these classes, respectively. 
In SC1 III, GPBoost predicted 43.3% and LME 8.4% of the number of observed plots in 
the 150 year old class. Another trend was that the proportion of predicted plots observed 
in each class declined from age class 150 to age class 200, especially for LME. In SC2 
III, the difference in percentage values between methods was not as large as in SC1 III, 
but GPBoost still yielded larger values, especially in age class 200 (41.2% vs. 11.8%). In 
SC3 III, both methods yielded identical percentage values for age class 150 (44.6%), but 
the greatest difference was again in age class 200 in favour of GPBoost (38.2% vs. 8.8%). 
It is also worth noting that SC2 III yielded slightly larger proportions in age classes 150 
and 200 for both LME and GPBoost. 

The proportion of plots predicted as 150, 175 and 200 age classes did not provide any 
information as to whether the predictions were false positives, i.e. the actual age was less 
than the age limit. A clear trend was observed that showed that the proportion of false 
positives increased with an increased age limit. In age class 150, approximately one 
quarter of plots were false positives. In age class 200, almost half of the plots were 
younger than 200 years. Furthermore, GPBoost predicted a lower rate of false positives 
than LME. 

The random effects of the SC3 III models for “other plots” are shown in Figure 7. The 
effect of the ALS block variable was minor compared to other categorical variables and 
is not shown here. The "Protected forests” category yielded the strongest random effect 
with an increase in the predicted age in GPBoost by 40 years and by 30 years in the LME 
model. The second strongest random effect was in the “undrained peatlands” category, 
which increased the predicted age by 25 years in GPBoost and by 20 years in the LME 
model. For the “drained peatlands” category, the increase in age was 10 years in GPBoost 
and 5 years in the LME model. The “Mineral soil” category yielded the strongest negative 
random effect. It decreased the predicted age by 10 years in GPBoost and by 25 years in 
the LME model. For plots with “no wood production restrictions”, the predicted age 
decreased by approximately 5 years in GPBoost and by 25 years in LME. The random 
effect for the “protected mires” category in GPBoost increased the predicted ages by 20 
years, although for the LME model, it decreased predicted ages by 5 years. The effect of 
the “protected mires” category was negative in LME but positive in GPBoost, which is 
likely caused by the different prediction levels (between GPBoost and LME) in the fixed 
parts of the models. 
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Figure 7. Mean random effects by grouping variables in the “other plots” models of 
scenario 3 (SC3 III). Effects are presented separately for tree boosting with random effects 
(GPBoost) and the linear mixed effects (LME) model. Categorical variables are presented 
in the following colours: WoodProdRestr (levels 2,1,0) as orange and MainType (levels 
2,1,0) as blue. 

 
The most important metrics were observed in the GPBoost models in SC3 III for age 

models on hold-over and other plots, and in the hold-over plot classification. Overall, ALS 
metrics were more important predictors for age prediction than Sentinel-2 metrics. In the 
case of hold-over plot classification, the 10 most important predictors included all 
categorical variables (n=3) and four Sentinel-2 metrics. The most important ALS metrics 
for hold-over and other plots were partly the same: relative density of the first and last 
ALS echoes between 5 and 10 m, and the 60th bincentile of vegetation heights were 
included in the 10 most important variables in both cases. For other plots, field-measured 
height of a plot (TH) was ranked as the second most important metric, but was not in the 
ten most important metrics for hold-over plots. Another difference between the most 
important metrics in the age models for hold-over and other plots was that the most 
important Sentinel-2 metric (B3) was ranked as second for hold-over plots, but for the 
other plots, the most important Sentinel-2 metric (B8/B11) was only the fifth most 
important. Also, the most important Sentinel-2 metric for hold-over plots (B3) was not 
ranked in the ten most important metrics for other plots. For both hold-over plots and 
other plots, half of the 10 most important metrics were Sentinel-2 and ALS metrics, 
respectively. The ratio of some Sentinel-2 bands (e.g. B8/B11) was often the more 
important metric than the Sentinel-2 band per se (e.g. B8). 
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DISCUSSION  
 
 

Role of ALS data in the assessment of forest biodiversity  
 

Heterogeneity of the vegetation structure affects the patterns in biological diversity 
(Heidrich et al., 2023). The more heterogenous areas provide greater niche space than 
areas with low heterogeneity, and so allow more species to coexist (Stein et al., 2014). 
Also, the more heterogenous areas provide shelter from hazardous environmental 
conditions, which should promote species resilience.  

At this point in time, ALS is a well-established technology used to assess such 
heterogeneity in forested ecosystems (Adhikari et al., 2020). Moreover, quantification of 
forest 3-D structure via ALS data has key advantages over field-based approaches: ALS-
based approaches are less labour-intensive and can cover larger spatial areas (50–100 km2) 
during a single flight. 

Study I reviewed 182 scientific articles that utilised ALS data as the main RS data to 
assess various topics on biological diversity in forested ecosystems. Most of the study 
areas were located in Europe and North America, and temperate and boreal ecoregions 
were the most commonly assessed regions. The reasons for such clustering are the high 
level of expertise in this domain, the information needs of decision-makers and the fact 
that ALS data are widely available from these areas. The review showed that the most 
studied topics were animal ecology, tree species diversity/richness and dead wood. 

The clear majority of reviewed studies in study I utilised DR-ALS data; FW-ALS data 
were used only in a small number of studies. The ALS data were often combined with 
other remote sensing data, especially with optical satellite or aerial data; the premise here 
is to utilise complementary data sources that describe both the spectral and structural 
features of the forest. This fusion is especially beneficial for the assessment of tree species 
diversity measures and forest land cover classification, when tree species information is 
needed (George-Chacon et al., 2019; Jayathunga et al., 2018). The assessment of dead 
wood (Pesonen et al., 2010), forest understorey (Bouvier et al., 2017) and successional 
stages (Martinuzzi et al., 2013) did not appear to benefit from the addition of optical data. 
One probable reason for this is that optical data does not describe below-canopy conditions 
as its information is limited to the upper-most canopy layer (i.e. visible from above). 

Based on the results from study I, there is no single ALS metric that would be suitable 
for all forest biodiversity assessments. The ALS metrics most often utilised in the 
assessment of forest biodiversity describes the central tendency and dispersion of ALS 
vegetation heights. Especially, standard deviation, mean and COV of vegetation heights 
were employed across reviewed topics, while ALS-intensity was reported to be useful in 
studies that considered tree species (e.g. the classification of canopy types or forest habitat 
types). Another often utilised ALS-based variable group is the terrain variables that 
describe local topography (e.g. slope and altitude), which performed well in the 
assessment of non-flying mammals and arthropods (Zellweger et al., 2017). This is 
because terrain variables are associated with solar radiation and hydrography, which 
further influence these taxonomic groups. It is worth noting that the derived metrics, 
especially ALS intensity metrics, are dependent on the ALS sensor, acquisition parameters 
and forest type, which means that the relevant metrics and observed relationships in one 
study are not necessarily universal. 

Currently, ALS data provides meaningful measures for the classification of forested 
areas based on the assessment of canopy structure (e.g. layering) and for the assessment 
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of structural diversity (I). Despite the small number of studies that have examined forest 
fragmentation, ALS data were found to be relevant to expand our understanding of 
fragmentation effects on forest structure and function (Almeida et al., 2019). Research has 
also shown that ALS data is highly usable in the assessment of animal-habitat relationships 
(Davies and Asner 2014). In particular, bird populations have received considerable 
attention in ALS-based animal ecology, which is understandable given the implicit 3-D 
nature of avian ecology and the strong suitability of ALS data to map forested 
environments (Davies and Asner 2014).   

However, ALS data alone is not always sufficient when tree species are assessed 
directly or indirectly with regard to a specific biodiversity indicator. Currently, forest 
biodiversity indicators that are difficult to assess with ALS data include diversity indices 
of forest fauna (Wallis et al., 2016) and understorey flora (Barber et al., 2016), and fallen 
dead trees (Hardenbol et al., 2022). One issue often reported is the low point density of 
the utilised ALS data (here <10 pt./m2). With greater point density, lower canopy structures 
could be better described and new approaches enabled to retrieve information from the 
ALS data. In the case of fallen dead trees, the difficulties are manifold: clusters of fallen 
dead trees, dense understorey vegetation, ditches, roads and stone walls have all been 
reported to cause incorrect detection. Also, detection of later decay stage fallen dead trees 
has been shown to be more difficult than the detection of earlier decay stage trees because 
the height of the stem objects above ground is reduced (Mücke et al., 2013). In assessment 
of bird species richness, climatic variables (e.g. temperature and precipitation) were 
sometimes reported to be even more important than ALS metrics (Zellweger et al., 2016) 
and diversity (Zellweger et al., 2017). 

 As study I included scientific articles from 2003–2022, a brief review of articles from 
2023 until the writing of this dissertation was carried out detect new trends in the domain. 
From this additional review, it was found that the number of studies in 2023 (n=22) and 
2024 (n=17) had increased from the peak years observed in study I. Since 2022, the most 
studied topics were somewhat similar to those identified in study I: dead wood and tree 
species diversity, although animal ecology and forest undergrowth were studied to a lesser 
extent than previously. The greatest difference to the trends noted in study I was the 
clustering of study areas: since 2022, more than 75% of the studies were conducted in 
Europe. Also, there was a slight increase in the number of ALS-biodiversity studies 
conducted in Asia. One potential cause of such a high number of (a) dead wood studies 
and (b) studies in Europe, are the goals of both the EU Forest Strategy and the EU 
Biodiversity Strategy (European Commission 2021), which aim to protect all remaining 
primary and old-growth forests, and one of the indicators of such forests is the 
amount/presence of deadwood (European Commission 2023).  

To date, the utilisation of ALS data to map rare but ecologically valuable tree species 
has not been studied to any great extent. In the case of European aspen in boreal forests, 
this is mainly due to overlapping ALS intensity metrics between aspen and spruce 
(Korpela et al., 2010) and the overlapping spectral response between aspen and birch 
(Viinikka et al., 2020), but also to the naturally rare occurrence of aspen trees in the 
prevailing tree population in managed forests (Maltamo et al., 2015). Study II provides a 
realistic picture of the mapping of rare phenomena in true populations: in the field data, 
the proportion of aspen with respect to stem number was 0.49%, while the Finnish NFI 
estimate for the larger geographical area around the study area was 0.5%. The proportion 
of large aspen was even smaller: approximately 0.1% for aspen with DBH ≥ 22 cm. The 
rarity aspect of aspen in the population has not been adequately considered in earlier 
studies. For example, in the studies by Viinikka et al. (2020) and Kuzmin et al. (2021), the 
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proportion of aspen were estimated at approximately 11% and 27%, respectively. From a 
biodiversity perspective, it is meaningful to identify large aspen trees, whether clustered 
or few and far between. This is why the basic unit of interest in study II was the tree – not 
the quantity. In addition, the classification accuracy (absence or presence of large aspen) 
was validated at the plot-level, which was based on the predictions at the tree-level in each 
plot. 

The low accuracy values reported in study II highlight the inherent challenges in 
remote sensing-based detection of large aspen trees. For example, the highest F1-scores 
were reported for the least representative dataset of the population, while the lowest F1-
scores were reported for the most representative dataset. SMOTE, which balances the 
training data by (synthetically) oversampling the minority class, was clearly beneficial, 
even though the accuracies of large aspen detection were still low. The greatest benefit of 
SMOTE was its ability to increase the number of correctly predicted large aspen compared 
to the method that did not utilise SMOTE. When the SMOTE data augmentation was 
utilised, the number of predicted large aspen was almost identical to the number of 
observed large aspen, but a large proportion were false positives and truly large aspen 
were not identified. It is evident that SMOTE improves the recall at the price of reduced 
precision but can still be considered useful for imbalanced classification scenarios, such 
as large aspen. Minority class oversampling by the duplication of minority class 
observations would lead to overfitting of the model. Instead, SMOTE combines the 
features of the k-nearest neighbours in the dataset, which results in completely new 
datapoints in the training data. 

A comparison of the results in study II to other studies is difficult as the proportion of 
aspen compared to other deciduous trees/other trees varies considerably across studies. 
Indeed, the number of tree species and differences in overall vegetation structure has been 
found to differ widely across studies. 

 The accuracy statistics reported in study II were low compared to many earlier aspen 
tree detection studies. The reason for this anomaly most probably lies in our field dataset, 
which realistically described the low proportion of aspen in the forest area reported in 
study II. Other studies that have reported high accuracy values either contained a large 
proportion of aspen trees among deciduous trees (> 50%) or the proportion of aspen was 
large overall (> 30%). For example, Li et al. (2013) classified individual tree crowns into 
four species, one of which was quaking aspen (P. tremuloides Michx.). The proportion of 
aspen in their field data was >30% of all trees and approximately 63% of deciduous trees. 
For comparison, the proportion of aspen of all deciduous trees in study II was only 1.8%. 

Historically, the prediction of forest age with ALS data (Wylie et al., 2019; Maltamo 
et al., 2020) and optical remote sensing data (Cohen and Spies 1992) has been a difficult 
task. In study III, we investigated the issue by comparing two alternative methods used 
for the prediction of forest age with ALS and aerial image data: tree boosting combined 
with random effects (GPBoost) and linear mixed effects modelling (LME). It was shown 
that the additional variables that describe site conditions (e.g. MainType of plot) improved 
the prediction accuracy for both GPBoost and LME. Their high importance originates 
from the fact that these variables described the growing conditions that the ALS data could 
not explain. For example, forests located on undrained peatlands are less productive 
compared to drained peatlands, which causes the trees in the former to be older than trees 
in the latter provided the spectral response and 3-D structure are assumed to be similar. 

In study III, the predictions of the GPBoost algorithm were superior to LME in each 
tested scenario. The greatest differences occurred in the age predictions when the 
categorical variables that describe site conditions were not utilised in the models. The age 
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prediction methods considered were fundamentally different: GPBoost is a non-
parametric machine learning method, whereas LME is a parametric statistical method and 
assumes that the target variable (here, age of a plot) can be expressed as a linear 
combination of the explanatory variables. In contrast, GPBoost as a gradient-boosted tree 
method attempts to approximate functions for any type of relationship, and it can be used 
in both classification and regression tasks. However, LME does have a number of 
advantages: it is faster to converge and it is generally more interpretable than GPBoost. 
On the other hand, if the data contains non-linearities, GPBoost will generally fit the data 
better than LME, which results in greater prediction accuracy. Also, GPBoost can handle 
high-dimensional data and is more robust when there are non-linear relationships between 
variables. 

There are major challenges in remote sensing-based prediction of ages in forests that 
are older than approximately 100 years due to the diminishing link between spectral 
information and age, and a weakened height-age relationship (Cohen and Spies 1992; 
Maltamo et al., 2020). This is why some earlier studies have ignored prediction of older 
plots (Maltamo et al., 2020) or have fitted a separate model for the older plots (Wylie et 
al., 2019). In study III, it was evident that most of the variation in age predictions occurred 
after 150 years, although predicted ages closely followed observed plot ages  up to 250 
years old (Figure 6, SC3 III, GPBoost). The weakened age-height relationship can partly 
be accounted for by the reduction in height growth. In the later successional stages, tree 
height growth will eventually cease, but the tree diameter continue to grow and this causes 
significant variation in age for trees of similar heights. 

A comparison of the results in study III to earlier studies that have predicted forest age 
with remote sensing is not straightforward. For instance, there are considerable variations 
in how the ALS and image data are utilised, and the forests vary in many ways. Studies 
that have a narrower age range in the field data generally report smaller prediction errors 
than in study III. This was the case with Racine et al. (2014) who reported an age range 
between 11 and 94 years in their dataset, whereas the age range for field plots in study III 
was between 0 and 300 years. The RMSE value reported by Racine et al. (2014) was 
clearly lower than the smallest value reported in study III (19% vs. 36%). In Finland, 
Maltamo et al. (2020) predicted the forest plot age for plots with ages between 10 and 100 
years and the lowest RMSE value in their study was 32.9%, which was similar to the value 
reported in study III.  

One of the key challenges in study III was the age definition of utilised NFI data. Ages 
for hold-over plots were defined based on the dominant tree stratum (i.e. seedling), 
although tall hold-over trees left from the previous tree generation caused substantial 
errors in the modelling of plot age. Also, there were plots that had observed ages near 100 
years old and predicted ages between 0–30 years. These plots were found to have been 
recently harvested and the seed trees were left from the previous tree generation. On these 
plots, however, age was defined based on seed trees as the seedlings had not yet emerged. 
If the ages of plots were defined from a biodiversity perspective (i.e. based on hold-over 
trees) rather than from a forest management perspective, the error rate of age prediction 
would have been lower. 

There are biodiversity indicators that have not yet been assessed in-depth with ALS 
data (study I). One such is functional diversity, which quantifies the range of functional 
variation in the population. Instead, species taxonomic diversity studies, especially related 
to species richness, have received considerable attention. However, there is a drawback 
with species richness, as it does not give information on the abundance of species: there 
can be two sites that have same number of species, but they are not necessary the same 
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species. Functional diversity is considered to be a stronger predictor of ecosystem 
functioning than species richness (Petchey et al., 2004; van der Plas 2019). Studies on 
functional diversity have shown that greater functional diversity leads to more productive 
and resilient ecosystems (Schmitt et al., 2019; Schneider et al., 2023). Functional diversity 
studies that have utilised ALS data are still rare, but have been conducted in steadily 
increasing numbers in recent years (Kamoske et al., 2022; Schneider et al., 2023).  

In the mapping of large aspen trees, one of the greatest issues observed was the 
naturally low quantity of aspen trees in the population (study II). The use of SMOTE 
clearly increased the detection accuracy of large aspen trees, but the accuracy statistics 
still yielded low values due to an increased number of false positives. Another issue to be 
considered is the crown shape of aspen trees, specifically the assumption that one local 
maximum at the top of a tree is not always realistic. The increasing point densities in ALS 
datasets enable more precise determination of the canopy, which could enable better 
discrimination between aspen and other deciduous trees. 

In the assessment of forest age (study III), the issue centred mainly on the 
determination of plot age for different types of field plots. A more uniform determination 
of plot age could have decreased prediction errors. However, any relevant approach to 
define plot- or stand-level age may differ depending on silvicultural or ecological 
viewpoints. Another issue was the fact that the height growth of a tree eventually ceases 
in later successional stages so age can vary significantly for trees of similar heights as both 
diameter and crown continue to grow for a longer period than tree height. The increased 
point density in new ALS datasets could open up novel possibilities for a more detailed 
assessment of the tree crown. For example, the prediction of tree/plot/stand age could 
make use of crown biomass predictions to better discriminate trees of different ages. 

 
 

CONCLUSIONS  
 
Based on the conducted literature review, research on ALS-based assessment of forest 
biodiversity has been shown to have clustered on the European and North American 
continents, and most of the research currently focuses on animal ecology, tree species 
richness/diversity measures and the assessment of dead wood. However, there are no ALS 
metrics that would suit all the various assessments of forest biodiversity, although some 
ALS metrics have been used more often than others. These are mainly related to dispersion 
and the central tendency of vegetation height; standard deviation, mean and COV, for 
example. 

It is common that the biodiversity indicator of interest is rare in a population. Data 
augmentation using the SMOTE algorithm was found to be beneficial when the aim was 
to detect rare tree species and an increased number of false positives is not an issue. 
However, the mixing of aspen and surrounding broadleaved trees is still an issue in remote 
sensing-based detection of aspen. Also, the crown structure of large aspen complicates the 
detection of these trees with remote sensing, which is why a more dedicated approach for 
the automatic detection and delineation of large aspen needs to be developed. Future 
studies that deal with the issue of imbalanced data on forest biodiversity indicators should 
use field data that provide a realistic picture of the population. The utilisation of 
unrepresentative data of a population provides an overly optimistic picture of the 
reliability of the utilised method. 

Forest age is a highly important attribute in the assessment of forest biodiversity. In 
the prediction of plot-level forest age, tree boosting with random effects (GPBoost) 
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showed overall better prediction performance than linear mixed effects modelling (LME). 
The inclusion of categorical site variables clearly increased the prediction accuracy for 
both GPBoost and LME. The application of tree boosting combined with random effects 
(GPBoost) in the forest remote sensing arena can also be recommended for the modelling 
of attributes other than forest age.  

This dissertation demonstrated that ALS data provide valuable information on 
horizontal and vertical vegetation structures of a forest and can assist in the assessment of 
forest biodiversity indicators, at both fine and broad spatial scales. It is highly advisable 
to further extend ALS-based forest diversity research to investigate functional diversity.  
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