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ABSTRACT 
 

 

The forest industry in Finland faces challenges in maintaining a year-round supply of fresh 

roundwood due to low bearing capacity in forest terrain and roads during certain seasons. 

The accessibility of forest terrain depends on the physical properties of the soil, which in turn 

impacts the cost-effectiveness and quality of mechanized forest operations. However, the 

resolution of currently available trafficability data is insufficient for accurate stand-specific 

operational planning. Similarly, only a limited number of forest roads can support heavy-

duty vehicles year-round, and manual assessments of road conditions are time-consuming. 

Thus, improved methods utilizing readily available data for route planning and targeted road 

maintenance are required. The objective of this thesis is to explore methodologies for 

predicting terrain mobility and forest road bearing capacity, particularly using gamma-ray 

spectrometry. 

The thesis comprises three sub-studies using soil and forest road data alongside gamma-

ray datasets from Eastern Finland. The first and third studies focus on predicting small-scale 

soil property changes (stoniness, soil depth, peat depth) using airborne and ground-based 

gamma-ray measurements. The third study also examined the correlation between airborne 

and ground-based gamma-ray datasets. Ordinal regression and linear discriminant analysis 

were employed as analytical methods in these studies. The second study focuses on predicting 

forest road bearing capacity using easily measurable road and terrain properties, applying 

linear mixed-effects models. 

The third study revealed a weak correlation between airborne and ground-based gamma-

ray datasets. The first and third studies showed promising results in predicting soil properties 

using gamma-ray datasets, with up to 70% accuracy in stoniness and soil depth predictions. 

The second study showed moderate success in predicting forest road bearing capacity using 

easily measurable field data, achieving accuracy of 34% and RMSE% of 36%. Overall, the 

findings highlight the potential of gamma-ray spectrometry in enhancing the prediction of 

soil properties and forest road bearing capacity. 

 

Keywords: Trafficability, bearing capacity, forest terrain, forest roads, gamma-ray 

spectrometry, falling-weight deflectometer 
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1 INTRODUCTION 
 

 

1.1 Background 

 

According to the Natural Resources Institute of Finland (2024), approximately 61.0 Mm3 

(million cubic meters) of wood with the dimensions of saw logs or pulpwood and 4.9 Mm3 

of energy wood were harvested in Finland in 2023 for use by the forest industry. In our 

constantly changing climate, winter harvesting conditions can vary greatly from year to year, 

making it difficult to plan harvesting operations in advance. The mills aim to maintain a year-

round continuous flow of fresh roundwood, which is a major challenge during low bearing 

capacity seasons in Finland. During the early and late winter months, the soil is only partially 

frozen, and the terrain and forest roads are particularly sensitive to heavy-duty vehicle traffic. 

Conducting detailed on-site inspections is costly, and weather conditions are subject to rapid 

and frequent change during these seasons. 

Mechanized wood harvesting requires adequate trafficability conditions for forest tractors 

and operations are avoided during periods of high soil failure risk. Consequently, harvesting 

is often postponed to the winter season, when soil is typically frozen (Pohjankukka et al. 

2016). Moreover, within the existing forest network there is a limited number of roads that 

are suitable for year-round use by heavy-duty vehicles. Venäläinen et al. (2018) estimated 

that the seasonal variation in timber procurement causes costs amounting to approximately 

70M € every year largely on account of frost heave and other bearing capacity constraints, 

restrictions on the accessibility of stands and demand fluctuations at the mills. The costs 

caused by challenging trafficability conditions could be reduced by obtaining additional 

information on soil and road conditions, especially their bearing capacity (Pohjankukka et al. 

2016). 

 

 

1.2 Trafficability of forest terrain 

 

Interest in small-scale variations in soil characteristics and terrain topography has increased 

in recent times due to the challenges posed by varying weather conditions during rainy spring 

and autumn periods and the unfrozen state of the soil in some places during the winter. A 

major challenge for Nordic forestry is to maintain constant but high-quality harvesting with 

capital-intensive harvesting machinery and still finish the operations with acceptable 

negative impacts on the soil and without any unexpected difficulties (Sirén et al. 2019). The 

number of seasonal factors involved in harvesting operations reflects concerns about soil 

erosion, rutting, and compaction as well as the prevention of tree diseases and various forms 

of damage from heavy vehicles (Geisler et al. 2016). Forest certification standards guide 

loggers towards keeping damage to a minimum. In addition to the climatic factors, rut 

formation is affected by the bearing capacity of the soil, the characteristics of the machinery 

used in harvesting and hauling, and the experience of the operator (Suvinen et al. 2009). 

Both trafficability and rut formation depend on the ability of the soil to resist the force 

exerted on it by a rotating tyre or roller (Saarilahti, 2002). Nordic research has examined the 

factors influencing rut formation, with several studies highlighting the significance of soil 

properties, the mass or wheel load of the tractor, and the characteristics of the wheels, chains, 

and tracks (Saarilahti and Anttila, 1999; Bygdén et al. 2003; Eliasson L, 2005; Uusitalo et al. 

2015; Palander and Kärhä, 2016; Mattila and Tokola, 2018; Sirén et al. 2019; Ala-Ilomäki et 
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al. 2020; Uusitalo et al. 2020). The utilization of heavy machinery in forest harvesting 

operations has been demonstrated to result in soil compaction, thereby reducing soil porosity, 

water infiltration rates, and nutrient availability. Vehicle loads that exceed the soil's strength 

have been shown to not only cause soil damage but also damage to trees, predominantly to 

their roots, and occasionally to the stem, due to the increase of uncontrolled movement of the 

forwarder (Pohjankukka et al. 2016). The progressive effect of machine passes can differ 

significantly according to the physical properties and depth of the soil and depends strongly 

on the soil texture (Cambi et al. 2015). 

GIS-based modelling has been offered as a means to predict terrain mobility conditions 

in support of the planning of forest operations (Suvinen, 2006; Suvinen et al. 2009). To avoid 

soil damage, operators require precise information regarding soil and site conditions. The 

ability to reliably identify individual soil and terrain properties (e.g., stoniness, as well as soil 

and peat layer thickness) would significantly assist in the estimation of terrain trafficability 

and help to further develop the existing terrain trafficability maps (Metsäkeskus, 2023; 

Finnish Meteorological Institute, 2023). By observing the geomorphological properties of 

the soil, such as wetness, soil type, and stoniness, at a small-scale level, one could plan routes 

for heavy harvesting machinery to pass through areas where these soil properties are optimal 

in terms of high bearing capacity. In general, the bearing capacity decreases as the grain-size 

of the soil becomes finer and the number of boulders and stones diminishes. However, 

stoniness may also reduce machine mobility. 

Optimizing trafficability in forest terrain is dependent upon effective operation planning 

and high-resolution terrain modelling. Site-specific planning and operational practices, such 

as the selection of appropriate harvesting methods, routes, and equipment, can minimize 

environmental impact and reduce soil compaction. High-resolution terrain mapping and 

modeling techniques, including LiDAR, aerial imagery, and gamma-ray spectrometry, can 

provide detailed information about terrain characteristics, such as slope, elevation, surface 

roughness, and soil wetness. This information can be used to identify areas with favorable 

trafficability conditions and plan harvesting operations accordingly. In addition, the design 

of harvesting machinery, such as tracks instead of wheels, articulated frames, and low-

pressure tires, can improve traction and maneuverability and reduce rut formation in 

challenging terrain conditions. 

Predicting trafficability in forest terrain poses several challenges, primarily due to the 

complex and dynamic nature of natural environments. Variability in terrain conditions, such 

as soil moisture, vegetation growth, and seasonal changes, can significantly affect 

trafficability and make predictions less reliable. Factors such as vehicle type, load weight, 

operator skill, and mission objectives can influence the perceived difficulty of traversing 

forest terrain and may not always be captured accurately by predictive models. To ensure the 

efficacy of trafficability prediction, human decision-making processes, including route 

planning and risk assessment, must be considered alongside terrain characteristics. Several 

methods are employed to predict the trafficability of forest terrain, ranging from empirical 

models to remote sensing techniques. Empirical models often utilize terrain attributes such 

as slope, soil type, vegetation density, and surface roughness to estimate trafficability. These 

models may be based on field measurements, historical data, or expert knowledge. 
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1.3 Stoniness of forest soil and effect on forest operations 

 

The stoniness of Finnish forest soil exerts profound ecological impacts, influencing soil 

structure, nutrient cycling, and habitat diversity. Stones embedded within the soil affect soil 

porosity, water infiltration rates, and drainage patterns, which, in turn, influence plant growth 

and ecosystem productivity. The stoniness of Finnish forest soil poses both challenges and 

opportunities for forest management practices. Soil preparation, reforestation, and road 

construction can be hindered by stony soils, leading to increased costs and operational 

challenges. However, the stoniness of forest soil also presents opportunities for route 

planning of logging machinery in low bearing capacity areas reducing rut formation but on 

the contrary, it may increase soil compaction. 

The incidence of stones and boulders is an important forest soil property, affecting the 

hydrology of a site, the soil temperature, the amount of available nutrients, and hence the 

potential for timber production (Viro, 1947; Ashby et al. 1984; Eriksson and Holmgren, 

1996). The stoniness of the topsoil also has a major impact on several forest operations, such 

as harvesting, forwarding and soil preparation.  

The basic precondition for reforestation is well-planned and executed soil preparation, so 

that, when successful, the effects will be reflected in the forest yield over the entire rotation 

period (Immonen et al. 2000). In the context of forest regeneration, the most relevant measure 

is the stoniness of the soil at depths of 20–30 centimeters (Melander et al. 2019). The stone 

content of the topsoil is particularly important when planning forest regeneration, since it can 

often render soil preparation challenging and detract from the overall quality of the work. A 

high stone content can cause difficulties for both soil preparation and planting, and in some 

areas proper soil preparation may become impossible or be only partially successful 

(Saarinen, 2006; Luoranen et al. 2007; Rantala et al. 2010; Lideskog et al. 2014; Saksa et al. 

2018; Melander et al. 2019).  

The choice of soil preparation method depends on the thickness of the soil layer, the soil 

type, the stoniness of the soil, the current conditions of the forest site, and the tree species 

being planted (Luoranen et al. 2007; Löf et al. 2012; Äijälä et al. 2014). The main soil 

preparation methods, including harrowing (disc trenching), patch scarification and mounding 

(Löf et al. 2012), all involve tilling the forest soil in some manner, but at different depths and 

in different patterns. Mounding is an example of a forest regeneration process that would 

benefit from knowing the prevailing stoniness of the target site, at least when the continuous 

mounding method is considered (Rantala et al. 2010; Saksa et al. 2018). 

In Finland, most forest soils are tills of various types, and stoniness is one of their 

peculiarities. It has been reported that the volume of coarse fragments in forest soils, i.e. their 

stoniness (Viro, 1947), is substantial, e.g. averaging 42.3% by volume in Finland (depths of 

0 – 30 cm) (Viro, 1958) and 49.5% in Sweden (depths of 0 – 40 cm) (Eriksson and Holmgren, 

1996), whereas many rut formation and trafficability studies conducted elsewhere focus on 

homogeneous, deep soils such as peatlands and very few of them focus on predicting the key 

soil characteristics that determine its bearing capacity. 

However, topsoil stoniness data are not available in any existing map database, and 

traditional measurements of soil stoniness have always required laborious soil penetration 

methods. 
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1.4 Finnish forest road network 

 

Finland has one of the densest forest road networks in Europe, with approximately 160,000 

km of forest roads (6–16.5 m/ha, Uotila and Viitala, 2000), built to serve the transportation 

needs of the forest industry, the silvicultural management of forests, and others such as 

recreational users and rescue services. The Finnish forest road network was mainly 

constructed between 1960 and 1990, and the planned structural life of the roads was 20–30 

years. As a result, the majority of these roads are now reaching the end of their life cycle 

(Kaakkurivaara and Uusitalo, 2011). Moreover, the requirements for forest roads have 

changed significantly since the time they were originally constructed, largely due to the 

increased weight of timber trucks. In 1960, the maximum weight capacity for timber trucks 

was 30 tons; however, the current weight limit is 76 tons. Timber trucks are the most common 

method of transporting timber because they offer flexible, low-cost transportation to 

constantly changing locations. In 2014, Malinen et al. estimated that approximately 40 Mm³ 

of timber is transported to mills by trucks each year, with nearly all logistics chains beginning 

from low-volume road networks. That amount has increased since then. A well-functioning 

network of forest roads is therefore needed to ensure a reliable flow of fresh roundwood to 

the mills. 

Forest roads are often constructed from materials available at the site, with some materials 

transported from elsewhere. The structure of forest roads is generally divided into two major 

parts: subgrade and pavement. The subgrade consists of materials available on site, such as 

soil obtained during ditch excavation, and forms the underlying structural layer of the road. 

The pavement is constructed on top of the subgrade and typically includes three sub-layers: 

the surface layer, the base course layer, and the sub-base layer. The sub-base layer, usually 

composed of coarse material such as gravel, separates the upper pavement layers from the 

subgrade and helps prevent the capillary rise of water. The base course layer typically 

consists of crushed rock, while the surface layer is made of either crushed rock or finer gravel. 

The majority of old forest roads were built without properly constructed structural layers 

(i.e., sub-base and base course layers) to prevent capillary moisture. Consequently, these 

roads often have low bearing capacity during thaw seasons. Many such roads negatively 

affect the functionality and efficiency of the transportation network and are in need of 

renovation (Kaakkurivaara and Uusitalo, 2011). In areas where the ground is frozen for part 

of the year, the surface stiffness of a forest road is significantly reduced during thaw periods, 

resulting in lower bearing capacity and an increased risk of structural damage if subjected to 

heavy traffic (Huvstig, 2012; Kaakkurivaara et al. 2015; Saarenketo and Aho, 2005). This 

issue is currently addressed by restricting heavy traffic on such roads. The number of road 

sections with bearing capacity restrictions varies yearly, peaking during the spring thaw, 

typically from April to June (Saarenketo and Aho, 2005; Vuorimies et al. 2015). Due to 

reduced bearing capacity and fewer trafficable roads, the average distance from accessible 

roadside timber stores to the mills may increase, as timber must be transported from beyond 

the normal procurement areas of mills. However, with relatively small improvement 

investments, the quality of these roads could be enhanced to withstand timber transportation 

even during thaw periods. 

Still, it is not economically sensible to renovate all such roads. The scale of renovations 

must be considered based on the weight of the trucks used, the intensity of road use, and the 

season during which the road is used (Kaakkurivaara et al. 2016; Korpilahti, 2008). 

According to Viitala et al. (2004), the profitability of a renovation investment depends on the 

volume and timing of fellings in the area served by the road. It is important to note that a 
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forest road is only as good as its weakest point in terms of trafficability—i.e., one weak 

segment with low bearing capacity can prevent the use of the entire road. By identifying and 

targeting these weak points for renovation, road quality could be improved with relatively 

small investments (Viitala et al. 2004; Korpilahti, 2008; Kaakkurivaara and Korpunen, 2017). 

It is anticipated that climate change will significantly affect the bearing capacity and 

trafficability of forest roads, with differing impacts across Finland’s regions. The occurrence 

of winter storms, strong winds, and increased precipitation is likely to disrupt transportation, 

increase the risk of structural damage, and shorten road lifespans—posing challenges for road 

maintenance (Malinen et al. 2014; Saarelainen and Makkonen, 2007). In Southern Finland, 

temperatures will rarely remain below 0°C for extended periods, preventing roads from 

freezing properly and decreasing the number of days with sufficient bearing capacity for 

winter transportation. Additionally, high moisture content will continually affect the surface 

and structure of forest roads, further reducing bearing capacity. Conversely, in Central and 

Northern Finland, increased snowfall is expected to cause difficulties in winter maintenance 

(Malinen et al. 2014; Vuorimies et al. 2019). On the other hand, Saarelainen and Makkonen 

(2007) note that climate change may also have positive effects on timber transportation, as 

milder winters could reduce frost depths in forest roads, thereby shortening the length of the 

spring thaw. According to Sterner et al. (2023), the two most significant challenges are the 

fluctuating weather conditions and the decreased accessibility of forest roads, which have a 

considerable impact on wood supply and increase the work intensity required for 

transportation. 

 

 

1.5 Road inventories and assessment of quality 

 

Trafficability and bearing capacity are two important factors that depict the quality of forest 

roads. Bearing capacity describes the stiffness of a forest road, and it is often used when 

assessing the usability of forest roads. The bearing capacity of forest roads describes the 

ability to withstand traffic without causing rutting or damage to the road structure. 

Information regarding a road's bearing capacity can be utilized to assess whether the road 

requires repairs or if it possesses the structural integrity to withstand traffic during thaw 

periods (trafficability). While bearing capacity and trafficability are closely related, they 

should not be confused. Trafficability refers to the period during which a road can support 

typical transport volumes—especially by heavy timber trucks—without significant rutting or 

deformation. Trafficability can be estimated from bearing capacity and elasticity 

measurements, but it is a distinct concept focused on seasonal usability. The trafficability of 

forest roads is typically classified according to seasons when the road can withstand the 

passage of timber trucks weighing 75 tons. The most commonly utilized classifications are: 

All-year category roads are trafficable throughout the year, even during periods of spring 

thaw and autumn, when precipitation levels are high. Summer category roads are trafficable 

in summer and winter, and partially manage to maintain their bearing capacity to avoid 

significant rutting even during the autumn, However, these roads are unable to withstand 

traffic during spring thaw. Dry Summer category roads are trafficable in winters and in 

exceptionally dry summers with prolonged heat waves and little precipitation. Winter 

category roads are trafficable only when the road structure is frozen to a sufficient depth. 

The most widely used method of measuring the bearing capacity of forest roads is through 

the use of a falling weight deflectometer (FWD) or a light falling weight deflectometer 

(LFWD). These devices have been shown to effectively replicate the wheel load of a truck, 
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making them useful tools for assessing the load-bearing capabilities of a road surface (George 

2003; Kaakkurivaara et al. 2015). The FWD and LFWD are frequently used on paved low-

volume roads and on forest roads in Finland (Saarenketo and Aho 2005). Another widely 

used tool is the dynamic cone penetrometer (DCP), which measures soil strength based on 

penetration resistance. It uses a cone tip that is driven into the ground, and results can be 

correlated with factors such as soil moisture and density (Kaakkurivaara et al., 2015). 

Numerous studies support the use of DCP in evaluating forest roads (Dai and Kremer, 2005; 

Embacher, 2006; Mohammadi et al., 2008; Siekmeier et al., 2009). There is also a strong 

correlation between DCP and FWD results (George & Uddin, 2000; George, 2003). 

However, while these measurements provide high-quality data on road surface bearing 

capacity (MN/m²) and trafficability, they are not feasible for widespread, large-scale 

applications. It would be beneficial to identify variables that could be used to provide 

information on road quality and trafficability without FWD measurements.  

The overall trafficability of a forest road is affected by several characteristics which are 

often assessed along with surrounding terrain properties when reviewing the road’s 

condition. The bearing capacity will remain good if the road structures are dry and rain or 

meltwater is prevented from accumulating on the surface or in the ditches close to the road 

frame. The most significant factors affecting the moisture of the road surface are curbs, 

shoulders, and potholes. Insufficient slope on the road surface can lead to rutting and the 

formation of pits, curbs, and banks from loose road material deposited beside the roadway. 

When these properties are met, water will flow freely into the roadside ditches and the road 

surface will remain dry, thereby reducing the risk of impaired surface bearing capacity. The 

surface layer of the road must be composed of a suitable material, most often crushed gravel 

or crushed rock, to ensure adequate stiffness and bearing capacity. Waga et al. (2015) found 

that wear and smoothness had the most effect on the overall quality of a road surface in terms 

of trafficability. The determination of surface quality is a particularly challenging yet crucial 

aspect in road evaluation. Roadside ditches play an important part in directing water away 

from the vicinity of the road structure and into the main drainage ditches. For effective 

drainage, the ditches must be sufficiently deep and unobstructed (i.e., free of trees and 

stones). The depth of the ditches will usually correlate with the type of soil surrounding the 

road. For instance, the presence of fine-grained soils and peat necessitates the construction 

of deeper ditches, whereas coarse soil types permit shallower ditches (see Waga et al. 2020). 

The ability to direct water away from the road surface and frame is a crucial aspect of the 

maintenance of forest roads, as effective drainage can markedly reduce thawing problems 

(Korpilahti, 2008). 

Forest road inventories are mainly carried out through field assessments using existing 

guidelines. While certain parameters can be objectively measured, others require subjective 

evaluation, thereby allowing the exercise of individual discretion. The subjective evaluation 

process demands a high degree of expertise to ensure accuracy and can introduce a risk of 

autocorrelation when assessing multiple subjective characteristics within the same road. 

Forest road inventories require an assessment of numerous characteristics which is both 

laborious and time-consuming when conducted on a large scale through fieldwork. 

Conducting these road quality assessments, especially on private roads, is critical for 

infrastructure management. The limited publicly available information regarding these roads 

complicates the planning of timber transportation, thereby underscoring the necessity for 

such assessments. As previously mentioned, the execution of these quality assessments 

requires a significant degree of technical expertise to collect reliable information. This, in 

turn, impedes the possibility of conducting a large-scale data collecting carried out by 
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individual road owners. It is therefore essential to develop faster methods of identification by 

employing data that is readily available or easily accessible. The utilization of readily 

available open data and remote sensing, such as airborne laser scanning (ALS), offers a 

means to gather information on road quality without the need for large-scale field 

measurements. The development of a methodology for determining the trafficability of forest 

roads, based on road characteristics derived from remote sensing data, would provide an 

accessible approach, eliminating the need for specialized expertise. 

The condition of forest roads has been determined in the past using various remote 

sensing methods. In particular, dense-pulse airborne Light Detection and Ranging (LiDAR) 

data has shown a potential for use in determining road quality and width as well as identifying 

centerlines and curves that are too steep for semi-trailer trucks (Azizi et al. 2014; Craven and 

Wing 2014; Waga et al. 2015; Waga et al. 2021; Karjalainen et al. 2024). Similar results 

regarding the steepness of curves have also been obtained using coarser flight laser data. 

Ferraz et al. (2016), Hruza et al. (2018) and Waga et al. (2016), studied four methods for 

observing the quality of a road surface: Airborne laser scanning (ALS), Mobile Laser 

Scanning (MLS), Terrain Laser Scanning (TLS), and Close-Range Photogrammetry (CRP). 

MLS is widely used in urban areas to scan pavements and paved roads in order to assess their 

quality and maintenance needs, while Hruza et al. (2018) found that Terrain Laser Scanning 

is also an efficient method for detecting possible defects in a road surface. The National Land 

Survey of Finland provides exciting sparse ALS data (0.5 points/m2) for the whole area of 

Finland (gathered in 2008 – 2019) (National Land Survey of Finland 2021a) and started 

gathering denser ALS data (5 points/m2) (National Land Survey of Finland 2021b) in 2020. 

When using sparse ALS (0.5 p), a dense canopy cover can greatly reduce the detection of 

roads. However, the 5-point ALS data is dense enough to offer precise information regarding 

numerous road properties regardless of canopy cover. The new ALS database covers the 

whole of Finland and will play a pivotal role in the future modeling and assessment of forest 

roads.  

In addition to laser scanning methodologies, alternative approaches have demonstrated 

promise in the evaluation of forest road quality. Peng et al. (2021) conducted research on the 

use of satellite radar interpretation for the monitoring of soil moisture over large areas, 

providing cost-efficient and high frequency data. The method would be ideal for monitoring 

dynamic road conditions and trafficability based on changes in surrounding terrain moisture. 

Aleadelat et al. (2017) studied the effectiveness of employing Android-based smartphones in 

the estimation of ride quality on gravel roads. Their findings yielded promising results, 

suggesting the potential for a cost-effective crowdsourcing approach that could be highly 

advantageous when considering the inventories of private forest roads. 

Research on the trafficability of forest roads, whether through manual measurements or 

the collection of data using ground-based mobile devices (see Dapeng and Li 2021; Heidari 

et al. 2022), is laborious due to the need of collecting data directly from the field.  Despite 

the rapid fluctuations in the conditions of gravel roads (Selim and Skorseth, 2000), it is not 

economically feasible to repeatedly observe/measure/review more than a subset of selected 

forest roads, given the labour required to collect the data. Furthermore, techniques such as 

the recording of vibration using an accelerometer must be carried out in a standardised 

manner that takes into account all influencing factors to ensure consistent results. These 

factors may include driving speed, vehicle suspension, arrangement of the measurement 

device sensors, as well as the sensor types.   
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1.6 Gamma-ray spectrometry and trafficability estimation 

 

Gamma-ray spectrometry measures the gamma radiation emitted from the natural decay of 

radioactive elements present in soil material (Cook et al. 1996). Although there are many 

naturally occurring radioisotopes, only three elements, potassium (%K), uranium (ppm eU) 

and thorium (ppm eTh), have isotopes that emit gamma radiation with sufficient intensity to 

be measured at airborne heights (Minty, 1997).  The energy intensity of these elements ranges 

1.37–1.57 MeV for potassium, 1.66–1.86 MeV for uranium and 2.41–2.81 MeV for thorium. 

Each rock and sediment typology has a typical amount of these radionuclides, which results 

the gamma-ray spectra and allows us to detect different soil and rock types (Priori et.al. 

2014).  

Gamma rays can penetrate up to 30 cm of rock and 50 cm of soil, and several hundred 

metres of air, and therefore these are the only choice available for the remote sensing of 

terrestrial radioactivity (Grasty, 1997; Minty, 1997). The technique has been used for soil 

survey for over 30 years. It has been stated by several authors (Grasty, 1997; Hyvönen et al. 

2003) that gamma radiation decreases in intensity with increasing soil moisture and that the 

soil moisture content is one of the most important factors that can be utilized for the 

classification of soil material and soil types (Schwarzer, 1973; Lundien, 1976; Pohjankukka 

et al. 2014). Gamma-ray spectrometry data have also been used in several studies to detect 

different soil attributes e.g., clay, silt, and organic carbon (Heiskanen et al. 2020; Taylor et 

al., 2002; Wong and Harper 1999), soil pH (Dierke and Werban, 2013; Wong and Harper, 

1999), and soil stoniness (Priori et.al. 2014; Heiskanen et.al. 2020). Vegetation not only 

attenuates the gamma radiation but also acts as a competing source of it, although the 

concentration of radioactive elements in vegetation is only a fraction of that in the bedrock 

and soil. In boreal forests, consisting mostly of pine and/or spruce-dominated stands, the 

concentration of radioactive elements in the forest biomass is marginal compared with that 

in the underlying soil (Kogan et al. 1971). 

The radiometric fingerprint of a site mainly depends on the parent material, its mineralogy 

and geochemistry (Dickson and Scott, 1997). In general, the radiometric fingerprint of the 

parent material is inherited to the soils which develop from them. However, the  soil 

formation process can also alter the nuclide signature of soils through hydrolysis, protolysis 

and redistribution of soil material by erosion process (Taylor et al. 2002; Herrmann et al. 

2010). The radiometric signal varies across landscapes and it reacts to different patterns in 

the terrain which indicate variation in soil properties, but the application does have several 

limitations (Marchuk and Ostendorf, 2009). The use of gamma radiometrics for soil proximal 

sensing is strongly site specific, because of the influence of parent material mineralogy on 

the gamma-rays emitted from the soil (Priori et.al. 2014). In addition, the data gathered using 

airborne gamma-ray acquisition systems often have poor spatial resolution for small-scale 

applications (Marchuk and Ostendorf, 2009; Wilford and Minty, 2007).  

Hand-held gamma-ray sensors have been used in geological studies (Moskalewicz et al. 

2022; Sandersson et al. 2002; Kock and Samuelsson, 2011) and can be used to obtain 

location-specific data. These instruments are often used for soil studies and provide much 

better spatial accuracy than low-resolution airborne gamma-ray data. 

The intensity and energy distribution of gamma-ray emissions are influenced by various 

factors, including the abundance of radioactive isotopes, soil moisture content, and soil 

density. The gamma-ray data offers information about soil composition, mineralogy, and 

geological structures, which are essential for terrain trafficability estimation, by providing 

insights into soil composition and moisture content, helping us identify areas with favorable 
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or unfavorable terrain conditions for forest machinery. For example, high concentrations of 

clay minerals or organic matter detected by gamma-ray spectrometry indicate areas with low 

bearing capacity and soil compaction. The resolution of airborne gamma-ray detectors may 

be insufficient to capture fine-scale variations in soil properties, especially in heterogeneous 

terrain. In addition, natural variations in background radiation levels and environmental 

factors, such as vegetation cover and topography, can complicate data interpretation and 

analysis. Integration with other remote sensing techniques, such as LiDAR and hyperspectral 

imaging, can provide complementary information about terrain characteristics and enhance 

the accuracy of trafficability assessments. 

 

 

1.7 Objectives 

 
The overall objective of the thesis was to determine how well the characteristics affecting 

terrain and forest road trafficability can be evaluated using openly available information and 

data. In terms of terrain trafficability, we focused on soil stoniness, soil depth and peat depth 

predictions. For the prediction of forest road trafficability, we aimed to use properties that 

are already openly available or can be derived from sufficiently dense ALS data.  We also 

introduced the use of gamma-ray spectrometry as a part of the road bearing capacity 

predictions. The specific aims of the respective studies were as follows: 

I: To evaluate whether the stoniness of the topsoil could be predicted using gamma-ray 

values from low-flying geophysical data combined with soil type information, both of which 

are available as open-source data in Finland. The gamma-ray values and soil type were 

studied using regression analysis and compared with measured stoniness index reference 

data. 

II: To evaluate which characteristics of forest roads and the surrounding terrain could be 

used to predict their bearing capacity and overall trafficability, and if any type of gamma 

radiation (U, Th, K) was sensitive to road bearing capacity. The bearing capacity data was 

collected with single-time measurements. The research was carried out by analyzing the 

collected forest road properties, LFWD and gamma-ray measurements using linear mixed-

effects models.   

III: To compare two gamma-ray spectrometry datasets, which were acquired from the 

same sample plots but measured with different methods. The dataset for the first method was 

collected using airborne gamma-ray spectrometry and the dataset for the second method was 

collected with a handheld gamma-ray spectrometer. This study had two sub-objectives:  

(1) To determine whether there was a significant relationship between the gamma-ray 

datasets, and if so, whether the gamma values collected with the handheld device could be 

derived from the airborne gamma data.  

(2) To study the individual performance of the datasets when predicting topsoil stoniness, 

mineral soil depth, and peat depth. We wanted to assess whether there was a significant 

difference in the prediction accuracy of the datasets and if so, which dataset offered the better 

prediction results. 
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2 MATERIALS AND METHODS 
 
 
2.1 Study areas and plot design 

 

The research was carried out in two study areas located in the regions of North Karelia, North 

Savonia, and South Savonia in Eastern Finland (Fig. 1). The forests of the study areas are 

mostly dominated by Scots pine or Norway spruce, with deciduous trees found in minor 

proportions. The soil type in the study area is either peat or mineral soil (till and moraine 

mainly composed of granite and gneiss), since the majority of the fine-grained mineral soils 

(silt and clay mixtures) are in agricultural use.  

Field data used in studies I and III were collected from study area I (Fig. 1). The collected 

field data consisted of terrain characteristics measurements (described later) and handheld 

gamma-ray spectrometer measurements which were measured separately from terrain 

characteristics. The terrain characteristics measurements were used in both studies I and III 

but handheld gamma-ray spectrometer measurements were used only in study III. Both 

studies use also airborne radiometric data which was acquired from Geological Survey of 

Finland.  

 

 

 

Figure 1. Locations of the study area I (studies I and III) and study area II (study II). 

Coordinates of study area of study area I: Northwestern corner 62°39’56”N 28°48’41”E; 

southeastern corner 62°18’7”N 29°33’52”E (WGS84, EPSG:4326). Coordinates of study area 

II: Northwestern corner 62°49’27”N 28°39’30”E; southeastern corner 62°34’57”N 29°13’28”E 

(WGS84, EPSG:4326). 
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The field data for study II was collected from the study area II (Fig. 1) which partially 

overlaps the study area I. The field data consisted of measurements of different forest road 

characteristics (described later) as well as hand-held gamma-ray spectrometer 

measurements on the same roads. 

 

 

2.2 Data collection for studies I and III 

 

2.2.1 Field measurements 

 

The overall soil characteristics data were collected in the summer of 2017 from 69 clear-cut 

sites that varied in size from 0.15 hectares to 6.3 hectares. The sample plots were arranged in 

an even grid and both the number of plots and the distance between sample plots were 

proportional to the size of the clear-cut area, so that each site was evenly measured. A total 

of 1221 sample plots were measured from these clear-cut areas, 828 with mineral soils and 

393 with peatland. The location of each plot was determined using a high precision GPS 

device. The coordinates of the sample plots were post-corrected and the locations saved as a 

point-type shapefile. 

The study sites varied across the measured variables and the site characteristics. The 

majority of the study sites containing the measured plots were non-drained mineral soils that 

are characterized by dryness and contain little organic matter. Some sites were more wet 

boggy mineral soils having a shallow peat layer (depth less than 30 cm) on top of the mineral 

soil. The majority of these sites were drained (drained mineral soil). The presence of these 

mixed soil sites is due to the fact that the sites were planned for forestry operations (clearcut 

areas), so the boundaries were determined according to tree species rather than soil 

characteristics. The topography of the mixed soil sites was relatively flat with gentle slopes. 

Mineral soil mounds were common, especially at the drained mineral soil sites (visible in 

Fig. 2). The non-drained mineral soil sites varied in topography from flat to rough, steeper 

slopes.  

All of the measured sample plots were assessed with respect to the stoniness of the topsoil, 

topsoil type, as well as soil and peat depth. These parameters were assessed by utilizing a 

ground spike, a tool designed for precise soil measurement. For mineral soils, the soil type 

was assessed by visual estimation from a soil sample extracted from the top 30 centimeters 

of the sample plot. The soil type was confirmed for a number of plots using an open-source 

soil map (Geological Survey of Finland 2023). The soil types identified in studies I and III 

were peat, fine-till, sandy-till, and sand.  

The stoniness of the topsoil is expressed here in terms of the Stoniness Index (SI), which 

describes the stone content at depths of 20–30 centimeters (Melander et al. 2019). The 

determination of stoniness in the topsoil was carried out using the soil surface penetration 

method (Viro’s method), where a ground spike was inserted into the soil within the 

designated sample plot to a depth of 20–30 centimeters, and the number of stone contacts 

was counted (Viro, 1952). The stoniness was measured by making 10 insertions 1 meter apart 

along the line of sample plots and increasing the index for that plot for each contact with a 

stone, resulting in a Stoniness Index (SI) of 0–10, e.g. zero contacts = SI 0, one contact = SI 

1, two contacts = SI 2, etc. No attempt was made to avoid stones visible on the ground surface. 

The SI values were classified into Stoniness Index Classes (SIC) ranging from 1 to 5 (in study 

I) and 1 to 3 (in study III). This was carried out after it was determined that a small variation 

in stoniness (SI values) would not be significant as far as forest operations or the bearing 
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capacity of the forest soil were concerned. The distribution of the SI and SIC (1-5) values is 

shown in Table 1. It is the SIC values that will be used as the key criteria here when assessing 

the models and analyses. 

 

 

 

Figure 2. The radiometric components measured A map illustrating the measured plots within 

one stand (selected from a total of 69) from the original dataset. The map in the top-right 

corner presents the gamma radiation map of potassium as raster data with a pixel resolution 

of 50 meters (Geological Survey of Finland 2023). The numerical values indicate the 

Stoniness Index (SI) for each measured plot and are shown only on the top-right corner map. 

The map on the left depicts the study site using a Hillshade digital elevation Model (DEM) with 

a 2-meter pixel resolution as the basemap (National Land Survey of Finland 2024). The map 

in the bottom-right corner displays the site overlaid with a topographical map, where blue 

areas denote peat soil, and white areas represent mineral soil (National Land Survey of 

Finland 2024). The predominant soil type on the stand is peat, with occasional mounds of 

mineral soil, which are visible on both the hillshade and topographical maps. Coordinates at 

the center of the site 62° 36’3”N 29°7’21”E (WGS84, EPSG:4326).  

 

 

The mineral soil and peat depth measurements were taken in the center of each sample 

plot, and each measurement was assigned to one of three categories: < 30 cm, 30–60 cm or 

> 60 cm. For mineral soils, the depth was determined when the ground spike made contact 

with bedrock or a large underground boulder. For peat soils, the depth of the peat layer was 

determined when the ground spike encountered subsoil or bedrock. To account for the 
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possibility that the ground spike coincidentally hit a small rock on the first penetration, the 

measurements were taken at several locations within the sample plot. 

 

 

Table 1. Deviation of stoniness index (SI) and stoniness index classes (SICs) and soil types 

in the sample plots of study I. 

 

    Potassium (K) Thorium (Th) Uranium (U) 

  N (%) Min Max Mean Min Max Mean Min Max Mean 

SI 

0 70 (27.45) -2.99 0.55 -0.88 -3.07 1.43 -0.75 -2.41 1.58 -0.59 

1 9 (3.53) -2.85 0.33 -1.07 -1.95 0.89 -0.66 -1.23 1.06 -0.28 

2 7 (2.75) -1.60 1.52 -0.22 -1.71 1.67 0.09 -1.78 0.30 -0.56 

3 10 (3.92) -1.15 1.53 0.37 -1.29 1.46 -0.04 -0.66 0.27 -0.17 

4 16 (6.27) -0.96 1.82 -0.04 -0.95 1.24 -0.20 -1.48 1.53 -0.37 

5 18 (7.06) -1.44 1.58 0.40 -1.40 1.67 0.30 -2.32 1.33 -0.06 

6 21 (8.24) -0.96 1.11 0.20 -1.00 1.16 0.24 -1.45 1.39 0.21 

7 31 (12.16) -1.43 2.05 0.36 -1.31 2.39 0.43 -1.32 2.37 0.28 

8 30 (11.76) -1.19 1.86 0.48 -1.40 1.88 0.40 -1.04 2.12 0.35 

9 20 (7.84) -0.25 1.51 0.71 -0.61 1.62 0.34 -1.09 2.30 0.63 

1

0 
23 (9.02) -0.25 1.65 0.72 -0.93 3.51 0.73 -1.07 3.02 0.76 

SIC 

1 79 (30.98) -2.99 0.55 -0.92 -3.07 1.43 -0.74 -2.41 1.58 -0.56 

2 17 (6.67) -1.60 1.53 0.11 -1.71 1.67 -0.13 -1.78 0.30 -0.39 

3 55 (21.57) -1.44 1.82 0.17 -1.40 1.67 0.14 -2.32 1.53 -0.03 

4 61 (23.92) -1.43 2.05 0.47 -1.40 2.39 0.46 -1.32 2.37 0.36 

5 43 (16.86) -0.25 1.65 0.76 -0.93 3.51 0.59 -1.09 3.02 0.71 

Peatland 77 (30.20) -2.99 1.82 -0.77 -3.07 1.43 -0.74 -2.41 2.37 -0.53 

Fine till 19 (7.45) -1.07 0.27 -0.50 -0.73 0.45 -0.22 -1.04 0.20 -0.11 

Sandy till 141 (55.29) -1.43 2.05 0.49 -1.31 2.39 0.38 -1.48 2.30 0.29 

Sand 18 (7.06) -1.44 1.95 0.00 -1.40 3.51 0.40 -2.32 3.02 0.07 

 

 

2.2.2 Gamma- ray data and the sampling of datasets 

 

The airborne radiometric data were acquired from the national low-flying geophysical 

database maintained by the Geological Survey of Finland (GSF). The low-altitude surveys in 

question were conducted from 1972 to 2007, by which time the database covered the whole 

of Finland. The geophysical parameters measured included the Earth's magnetic field, the 

electromagnetic field of the Earth's crust and natural gamma radiation (radiometric). 

However, the present studies focus exclusively on the gamma-ray data, which comprises 
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measurements of natural gamma-ray radiation, potassium (%K), uranium (ppm eU), and 

thorium (ppm eTh), emitted from the ground (Hyvönen et al., 2005). 

The ground speed of the aircraft during the measurements was approximately 50 meters 

per second, and the flight altitude ranged from 30 and 40 meters. The radiometric 

measurements were performed for positions approximately 40 meters apart along flight lines, 

usually located at 200-meter intervals. The gamma radiation data covering the research area 

was measured in 1981 and 1991. The gamma-ray spectrometer employed in the surveys used 

a scintillation detector with a 25 liter NaI(Tl) crystal. The radiometric components measured 

were interpolated into pixels 50 meters in size (Fig. 2). 

For the training dataset of study I, all the fine-grained mineral soil (fine-till) plots were 

included in the dataset, and mineral soil, as well as peatland plots were selected using a 

sampling approach. The sampling was carried out by including those plots that were close 

enough to the GSF’s low-flying geophysical data flight lines for which the data is available 

from the GSF’s open data site (Hakku.fi). The flight lines were buffered with 20-meter zones 

on both sides of the flight line, resulting in a buffer zone with a total width of 40 meters. Plots 

that were outside the buffer zones were excluded from the original dataset. This was done 

because, although the distance between the flight lines was approximately 200 meters, the 

actual measurement zone was only 40 meters wide, thus leaving a distance of approximately 

160 meters between the flight lines with no direct measurement. Therefore, the process 

acquired radiometric values that were not the result of interpolation. The sampling process 

reduced the number of plots from 1,221 to 255 (Dataset 1). For the selected plots the values 

of each gamma component were extracted from the gamma radiation data which consisted of 

three raster format files, each containing the values of one gamma radiation component, i.e., 

potassium (K), uranium (U), thorium (Th). For study I, a second dataset (Dataset 2) was also 

selected, consisting solely of mineral soil plots. The sampling of Dataset 2 was carried out 

manually in such manner that all the SIC classes were evenly represented. A total of 215 

plots were selected for study I and subsequently divided into subgroups for the training and 

testing of the predictive model. 

For study III, a second field measurement campaign was conducted in July 2020, where 

145 plots were manually selected from the original dataset (n = 1,221) to ensure 

representation of variations in soil/peat depth and stoniness, thereby creating a balanced 

dataset regarding soil properties (Table 2). The selected plots were then assessed for their 

natural gamma radiation levels. The gamma-ray values were collected by taking a single 

measurement from the center of each plot. The gamma-ray measurements were carried out 

using a Georadis GT-40 (Fig. 3) with a 3 × 3” NaI/Tl detector, which is a portable/handheld 

multifunction gamma-ray spectrometer. The GT-40 unit utilizes a 1024 channel linear energy 

spectrometer and pile-up rejection with built-in continuous analysis (Georadis, 2023). The 

unit uses automatic stabilization based on natural background radiation during the operation, 

eliminating the need for additional radioactive sampling (Georadis, 2023). The selected plots 

were assessed with respect to their potassium (%K), uranium (ppm eU), and thorium (ppm 

eTh) values. This resulted in two separate gamma-ray datasets for each plot.  

 

 

2.3 Data collection for study II 

 

For study II, the field data were collected in the autumn of 2022. The data were measured 

from 25 forest roads, totaling 113 sample plots, which were arranged at regular intervals of 

25 meters and ranging from 3 to 5 per road segment. The measurements were conducted on 
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a single point per plot in the middle of every 25-meter segment. The roads for the 

measurements were selected manually, with the objective of finding roads that varied in their 

constructional properties and surrounding terrain characteristics. The primary tool used for 

the selection of the roads to be measured was to use soil type vector maps by the Geological 

Survey of Finland (Geological Survey of Finland, 2024), at scales of 1:20 000/1:50 000 which 

were used to identify variation in soil types surrounding the roads.  

The forest roads within the study area are primarily owned by private road maintenance 

associations which include private road owners, forest companies, and Metsähallitus, a state-

owned entity responsible for the management of state forests. The forests in the area are in 

active use for forestry purposes and by individuals. The selected roads vary in size, with 

larger roads utilized throughout the year by various parties (transportation companies, 

forestry, individuals, etc.), and smaller dead-end roads, which often lead to forest operation 

sites and are not used as frequently, and are often not accessible all year round.  

The majority of the selected road sections were located on mineral soils and a minor part 

of the roads were built on drained peatlands. The selected road sections were assessed 

through field measurements of roadway width, usable road area, and ditch depth. Site 

attributes such as habitat type and soil type were also determined for each plot, mainly 

through an open-source website (Geological Survey of Finland 2024). If there was 

uncertainty about the surrounding soil type, it was assessed by eye from a sample taken from 

the terrain surrounding the road at the location of the sample plot. 

 

 

Table 2. Deviation of soil types, SICs, soil depth, and peat depth on air gamma and ground 

gamma in the sample plots of study III 

 

 

 

 

 

      Air gamma mean Ground gamma mean 

  N % K Th U K Th U 

Peatland 60 0.41 -0.64 -0.41 -0.71 -0.82 -0.77 -0.84 

Fine-grained till 15 0.10 -0.35 -0.21 -0.18 -0.24 -0.22 -0.28 

Sandy till 55 0.38 0.96 0.74 0.91 0.53 0.61 0.69 

Sand 15 0.10 -0.98 -1.08 -0.47 0.45 0.23 0.67 

SIC 

1 66 0.46 -0.59 -0.32 -0.53 -0.67 -0.59 -0.75 

2 41 0.28 0.34 0.17 0.28 0.18 0.07 0.25 

3 38 0.26 0.52 0.28 0.54 0.52 0.63 0.85 

Mineral 
soil 

depth 

< 30cm 17 0.20 1.06 0.82 0.86 0.85 0.76 1.21 

30 - 60 cm 22 0.26 0.70 0.55 0.85 0.46 0.48 0.69 

> 60cm 46 0.54 -0.01 -0.10 0.14 0.16 0.23 0.17 

Peat 
depth 

< 30cm 20 0.33 -0.35 -0.26 -0.61 -0.35 -0.53 -0.28 

30 - 60 cm 20 0.33 -0.49 0.15 -0.68 -0.87 -0.71 -0.67 

> 60cm 20 0.33 -1.09 -1.11 -0.85 -1.24 -1.06 -1.57 
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Figure 3. Hand-held gamma-ray spectrometer on the left and Light falling-weight 

deflectometer (LFWD) on the right. 

 

 

2.3.1 Measured road characteristics 

 

The width of the roadway (RW) was measured with a tape measure to an accuracy of 10 

centimeters. For this purpose, the roadway was defined as the distance between the outer 

borders of the ruts made by the vehicle tires. If the ruts of the roadway were not at all 

detectable, the same measurement as useable road width (URW) was used. The width of the 

useable road surface (URW) was measured similarly, with the same level of accuracy as RW. 

The measurement of URW consisted of the total width of road surface useable by vehicles. 

Several factors affected how this useable road width was measured. If there was a clear 

crushed rock layer (continuous bed of crushed rock particles sized 30 – 60 mm) on the road, 

the width of this layer was measured. Usually on forest roads there are different sizes of 

particles on the road surface but lacked a clearly defined crushed rock layer. If there was no 

crushed rock layer visible on the road surface, then the width between ditches was measured, 

and if there was clearly softer area closer to the ditches this area was excluded from 

measurement. If the road segment did not have ditches, then the distance was measured where 

the road surface clearly changed into the surrounding terrain.  

The depths of the ditches on both sides of the road, i.e., the vertical distance between the 

bottom of the ditch and the level of the road surface, were measured to an accuracy of 5 

centimeters using a tape measure. If a measurement fell between two five-centimeter 

segments, the result was rounded down. If the road embankment descended directly into the 

terrain, the depth was marked as “x” to be processed later. The depths in these cases were 

later converted into a depth of 200 cm. 
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2.3.2 Falling weight and gamma-ray measurements 

 

During October and November 2022, the same roads/plots were then measured with a Light 

Falling Weight Deflectometer (LFWD) (Fig. 3) to determine their surface stiffness and 

bearing capacity (MN/m2). The LFWD unit was built by a company named Terratest GmbH 

(Terratest, 2022). A period of heavy rainfall preceded the measurements, so the road 

structures were saturated. In order to obtain the most realistic bearing capacity values 

possible, the falling weight deflectometer measurements were performed on the wheel paths 

of the road, where the road material is compacted by the passage of vehicles. A total of two 

measurements were taken on each plot from both wheel paths. The Light Falling Weight 

Deflectometer (LFWD) is commonly used to evaluate the physical properties of paved and 

unpaved roads by estimating the structural capacity to determine their overall quality and to 

detect any weak points in their surface structure (George, 2003; Kaakkurivaara et al. 2015). 

The lightweight falling weight deflectometer mimics the wheel load of a truck using an 

impulse method, where a load plate is placed on the road surface and then a mass is dropped 

onto the plate. The force of the falling mass is transferred through the plate to the surface, 

causing a deflection that is measured and then converted to load bearing capacity values 

(MN/m2) through a computational procedure (Saarenketo and Aho 2005, Kaakurivaara et al. 

2015). 

The same plots were measured using a handheld gamma-ray spectrometer (same as in 

study III). The gamma-ray measurements were taken simultaneously with the LFWD 

measurements, and they were taken from exactly the same points. So, two gamma-ray 

measurements were conducted on each plot from both wheel paths of the roadway. This way 

we could safely assume that these two data are directly comparable since both were measured 

during the same levels of moisture in the road. 

Upon closer examination of the data, we noticed an outlier in the LFWD measurements 

that was nearly three times higher than any other measurement on that particular road section, 

and it occurred only on the left tire track of the roadway. We believe that it was caused by a 

rock which was close to the road surface. The exceptionally high LFWD value was deemed 

to exist due to measurement error or an abnormality on the road and was therefore excluded 

from the final dataset, thus reducing it to n=111. (Table 3) 

 

2.3.3 Depth-to-water index 

 

Depth-to-Water (DTW) data (Salmivaara, 2020) were acquired from the Natural Resources 

Institute of Finland (Open download service Paituli.csc.fi). The calculation of the DTW 

moisture index (Murphy et al. 2007, 2008, 2009) has been made based on the National Land 

Survey's 2-meter digital elevation model (DEM) (National Land Survey of Finland, 2019). 

DTW is based entirely on DEM, so soil type information or weather conditions are not taken 

into account, and this causes slight uncertainty (Ågren et al. 2014; Lidberg et al. 2020). DTW 

maps have been created with 4 thresholds, representing different hydrological conditions, 

i.e., that calculated with a 0.5 ha threshold represents extremely moist conditions (after the 

snow has melted), that with a 1 ha threshold represents moist conditions, that with a 4 ha 

threshold dry conditions, e.g. at the end of summer, and that with a 10 ha very dry conditions 

(Ågren et al. 2014). DTW values were extracted for each plot from the DTW maps by 

creating a buffer zone with a radius of 12.5 meters around every plot and calculating an 

average DTW value from the values inside the buffer zone (Table 3).  
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Table 3. Summary statistics (mean, standard deviation, minimum, and maximum) on the used 

variables in dataset (n=111) for study II. Soil types have their amount reported as count (N) 

and percentage (%) on how many plots that soil type has occurred. Min. and Max. tell how 

many plots there was on a single road with that soil type. 

 

 Mean SD Min. Max. 

Number of plots measured/Road (Plots) 4.44 0.80 3.00 5.00 

Roadway width (RW) 272.25 45.75 200.00 380.00 

Useable road width (URW) 359.01 85.29 250.00 570.00 

Depth-to-water index (DTW) 571.32 384.71 77.74 1771.90 

Ditch index (DI) 56.37 49.93 0.00 200.00 

Light Falling-weight deflectometer 
value (LFWD) 

39.59 17.20 6.60 77.45 

Potassium (K) 2.02 0.23 0.53 0.79 

Thorium (Th) 6.23 1.41 1.03 3.98 

Uranium (U) 2.07 2.48 3.41 8.32 

Soil type N % Min. Max. 

Peat 24 21.62 0 5 

Fine-grained till (FT) 14 12.61 0 5 

Sandy till (ST) 54 48.65 0 5 

Sand 19 17.12 0 5 

 

 

2.4 Data characterization 

 

In all studies (I-III) the gamma-ray data used, (both airborne and handheld gamma 

spectrometer measurements) were normalized using z score normalization (Eq. 1), which 

scales the values in relation to the mean of the population. 

 

𝑋𝑛𝑜𝑟𝑚 =
𝑋𝑖−𝑋𝑚𝑒𝑎𝑛

𝑆
       (1) 

     

where xnorm is the normalized value of the gamma component, xmean is the mean for the 

population and S is the standard deviation within the population.  

In study II a Ditch index (DI) was calculated which is a mean of the ditch depths on a 

single plot (Eq. 2) It describes how well the drainage works and whether the ditches are deep 

enough to keep the water away from the vicinity of the road structure. 

 

𝐷𝐼 =
(𝐷𝐿+𝐷𝑅)

2
 ,       (2) 

where DI is the Ditch index, DL is the left-side ditch depth, DR is the right-side ditch depth. 

The higher the Ditch index, the better was the overall ability directing water away from the 

vicinity of the road structure. If during field measurements a ditch depth was marked as “x” 

it was converted to a depth of 200 centimeters because it was seen that these steep descends 
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have a similar effect as high quality ditches. In study II the soil information was transformed 

into soil coefficients according to the table presented in the study Suvinen (2006). These 

coefficients represent the rolling resistance of the soil. 

Correlation coefficients were calculated for each study to detect high correlations among 

independent variables to highlight a possible risk of multicollinearity which was then further 

tested using a variance inflation factor test (VIF) (Kuhn et al. 2020). In study III ANOVA 

test (analysis of variance) was conducted to investigate whether the mean values of each 

gamma component (air gamma and ground gamma) varied significantly between SIC and 

soil/peat depths. 

Commonly boxplots were utilized in all of the studies (I-III) to visually observe the 

relationships of important variables of the datasets. In study I boxplots were used to observe 

the relationships between stoniness (SI and SIC) and the normalized airborne gamma-ray 

values. This analysis was conducted on both the complete dataset (Dataset 1) and a dataset 

limited to mineral soil data (Dataset 2) (Fig. 12). In study II the boxplots were created to 

observe the relationships of Light Falling weight measurement values (LFWD) (MN/m2) and 

usable road width and soil types. Similarly, boxplots were created for soil types and DTW 

and Ditch index to study whether ditch depth in our data depends on the surrounding soil 

type on which the road is built (Fig. 5). In study II a normal scatter plot was also used to 

detect the relationship between handheld gamma-ray measurements and LFWD values (Fig. 

6). In study III similar boxplots to study I was created where we observed the relationship 

between SIC values and both normalized airborne gamma and ground gamma (Fig. 13). In 

study III boxplots were also created to investigate the relations of mineral soil and peat 

depths to these same gamma values (Fig. 8 and 9) 

 

 

2.5 Data analysis 

 

2.5.1 K-fold ordinal regression 

 

In study I the main method used in the analytical modelling was ordinal regression since both 

SI and SIC were class form variables, i.e., the predicted values were selected through class 

probability. Ordinal regression is commonly used to predict the behaviour of level-dependent 

variables, since the dependent variable is assumed to be consecutive, and each level must be 

in an ordered scale. Ordinal regression was used to determine the significant independent 

variables to be used in the final models, and K-fold cross-validation was used when 

constructing each model by means of 10 folds and three repeats. The main goal was to 

determine whether the stoniness of the topsoil (SI and SIC) can be reliably predicted using 

gamma radiation data and soil type information, and to construct a model for this that could 

be based on openly available geographic information. A total of three ordinal regression 

models were constructed to predict SI and SIC. Ordinal regression was performed first on the 

SI for Dataset 1, taking both gamma radiation values and soil type dummy variables as 

predictors. Secondly, we constructed a similar model but replacing SI with SIC, and thirdly, 

we constructed another SIC model using Dataset 2 with only gamma-ray values as predictors 

to see how well these values performed with respect to mineral soil stoniness alone. 

Ordinal regression does not give us a class estimate directly, but instead the result is a 

plot-specific y-value (Eq. 3), so that a class pair probability can be calculated for each plot 

by comparing this y-value with a plot-specific z-value (Eq. 4). We can then further calculate 

the class-specific probabilities (Eq. 5 – 9) and choose the class with the highest probability. 
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An ordinal regression model is relatively laborious to use compared with regular linear 

regression precisely because of these class probability calculations. 

 

y = 𝛃i𝐗i … + εi        (3) 

 

where y is a plot-specific y-value, β is the regression coefficient for the predictor variable 

X and ε is a random error term. 

 

𝑝𝑥 =
1

1+𝑒−(𝑧𝑥−𝑦)        (4)  

 

where p is the class pair probability (1:2; 2:3; 3:4; 4:5), z is the class pair-specific z-value 

provides by the ordinal regression analysis, and y is the y-value acquired from Eq. 3. We 

were able to derive a class-specific probability value p1 – p5 (Eq. 5 – 9) from the class pair 

probability p: 

 

𝑝1 = 𝑝1 𝑜𝑟 2        (5)  

𝑝2 = 𝑝2 𝑜𝑟 3 − 𝑝1       (6) 

𝑝3 = 𝑝3 𝑜𝑟 4 − 𝑝2 𝑜𝑟 3       (7) 

𝑝4 = 𝑝3 𝑜𝑟 4 − 𝑝4 𝑜𝑟 5       (8) 

𝑝5 = 1 − 𝑝4 𝑜𝑟 5       (9) 

 

where p1 is the probability of class 1, p2 is the probability of class 2, p3 is the probability 

of class 3, p4 is the probability of class 4 and p5 is the probability of class 5. 

The key assumption in ordinal regression is called assumption of proportional odds which 

assumes that the independent variables have the same effect on the odds across all levels of 

categories/classes (i.e., relationship between each class-pair is the same). Since our models 

estimate one equation over all levels of SI or SIC, we conducted the test of parallel lines for 

each of our models to see whether the assumption of proportional odds holds. Test of parallel 

lines compares our ordinal model which has one set of coefficients for all class-pairs, to a 

new model with a set of class pair-specific coefficients. If the model with separate 

coefficients for every class pair gives significantly better fit to the data, we reject the 

assumption of proportional odds. 

 

2.5.2 Linear mixed effects models  

 

The main analysis method used to predict the LFWD values from forest roads in study II was 

Linear mixed effects models (LME). Linear models (regression models) have been 

commonly used in the field of forestry especially in the prediction of forest attributes with 

ALS metrics. However, the data often have a grouped structure as for example in our case 

many observations are measured within one road section and it is safe to assume that two 

observations within one road section are more alike than two observations from different 

road sections. The variance-covariance structure between observations affects the standard 

errors of the estimated regression coefficients, so ignoring within group correlations in the 

model construction phase may lead to severe problems in parameter estimates and model 

inference (Mehtätalo and Lappi, 2020). Therefore, instead of regular linear models that are 

fitted with the ordinary least squares method and the assumption that the residuals are 

uncorrelated, linear-mixed effects models should be used to take the correlation structure into 

account. 
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In LME models, the group effects are modelled as random variables, i.e. the group effects 

are the same for all members within the group and are different between members of different 

groups. There can be one or more random effects in a mixed-effect model. In this thesis, a 

total of three LMEs were constructed. The general form of each of the models is shown in 

Eq. 10.  

 

𝒚𝑘𝑖 = 𝑿𝑘𝑖𝜷 + 𝒖𝑘 + 𝜺𝑘𝑖        (10) 

 

where Xki is the vector of fixed predictor variables for plot i on road k, β is a vector 

including regression coefficients for the fixed effects, uk is the random effect for road k, and 

εki is the residual error for plot i on road k. 

The first of three LME models with LFWD as response variable was constructed using 

stepwise selection of most significant variables (LME-1). For the second model (LME-2) it 

was decided to include gamma-values in addition to road characteristics to the model even 

though they would not reach significance. Third model (LME-3) was constructed since one 

variable in our set of predictors was overpowering every other variable, thereby dropping 

them from the model. Thus, the third model (LME-3) was constructed to see how big of an 

effect the overpowering variable has in the resulting statistics. Homoscedasticity of residuals 

was evaluated in the selection of the final predictors using VIF test. 

 

2.5.3 Linear discriminant analysis 

 

The linear discriminant analysis (LDA) was used as the main method in study III where we 

predicted the SICs and mineral soil and peat depths. The main objective of linear discriminant 

analysis is to find a linear combination of features that best separates different classes in the 

data. It aims to maximize the separation between classes while minimizing the variation 

within each class. LDA does this by projecting data with two or more dimensions into one 

dimension so that it can be more easily classified. The technique is, therefore, sometimes 

referred to as dimensionality reduction. Linear discriminant analysis assumes that the 

features within each class are assumed to follow a multivariate normal distribution, and that 

the decision boundaries between classes are assumed to be linear. Once the linear 

discriminants are computed, they can be used to classify new observations into different 

classes. This is done by evaluating the discriminant functions for each class and assigning 

the observation to the class with the highest discriminant score. 

Category = f(Air K, Air U, Air Th; Ground K, Ground U, Ground Th | soil type)   

where 

Category  Topsoil stoniness (SIC) or soil/peat depth 

Air *  Airborne gamma-ray response for potassium, uranium and thorium 

Ground *  Ground gamma-ray response for potassium, uranium and thorium 

soil type  Categories from soil map (fine-till, sandy-till, and sand) 

 

 

2.6 Validation of models and accuracy assessment 

 

In study I the accuracy of the SI and SIC models (Dataset 1) was further tested by performing 

a classification of 500 randomly selected sample plots from the initial complete data 
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(n=1,221). The accuracy of the second SIC model (only mineral soil) was tested by dividing 

the dataset 2 into training and testing datasets in a ratio of 0.7:0.3. In studies II and III to 

avoid overly optimistic results, Leave-one-out cross-validation (LOOCV) was used. In 

LOOCV, the predictions are always produced by excluding the observation in question from 

the training data and, possibly the observations from the same group as well (e.g. from the 

same road). 

The accuracies of stoniness (SI and SIC) classification results in studies I and III were 

assessed using cross-tabulations of the predicted and observed SI and SIC values. The main 

key statistics in the accuracy assessments were the percentage of agreement and the Kappa 

value (Eq. 11 and 12). 

 

𝑒𝑓 =
∑𝑟∗∑𝑠

𝑛
        (11) 

 

𝐾𝑎𝑝𝑝𝑎 =
∑𝑎−∑𝑒𝑓

𝑛−∑𝑒𝑓
       (12) 

 

where r is the sum of the class-specific row values in the cross-tabulations, s is the sum 

of the class-specific column values, n is the total number of cases, ef is the expected frequency 

of each class, and a is the number of congruous cases. 

The accuracies of the regression models in studies II and III were assessed in terms of 

degree of determination (R2, Eq. 13), root mean square error (RMSE%, Eq. 14), and mean 

difference (MD%, Eq. 15). The R2 value represents the proportion of variance in the 

dependent variable explained by the independent variables in the model. The RMSE% value 

describes the overall relative difference between the observed vs predicted values, i.e., the 

greater the percentage value, the greater the prediction error. The MD% value is also known 

as Bias and describes whether the expected value of the estimator is equal to the population 

parameter, which in our case indicates that if MD% is positive, then the model has a tendency 

for overestimation.   

 

𝑅 
2 = 1 −

∑(𝑦𝑖− �̂�𝑖)2

∑(𝑦𝑖−�̅�)2
       (13) 

 

𝑅𝑀𝑆𝐸% = √∑
(𝑦𝑖−�̂�𝑖)2

𝑛

𝑛

𝑖=1
×

100

�̅�
      (14) 

 

𝑀𝐷% = ∑
(�̂�𝑖−𝑦𝑖)

𝑛
×

100

�̅�

𝑛

𝑖=1
      (15) 

 

where 𝑛 is the number of observations, 𝑦𝑖  is the observed value for observation 𝑖, �̂�𝑖 is the 

predicted value for observation 𝑖, and �̅� is the mean of the observed values. 

In study II the observed and predicted LFWD values (MN/m2) were classified into 

trafficability categories according to the LFWD value thresholds in Table 4. These 

classification outcomes were further compared to obtain a percentage of agreement i.e. how 

accurately the categories of predicted LFWD values are similar to the categories of observed 

LFWD values. Also cross-tabulations were used to see how the categories classified from 

predicted LFWD values compared with the categories classified from the observed LFWD 

values. 
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Table 4. Thresholds for the LFWD values (MN/m2) used in four different trafficability 

categories. 

 

Category All-year Summer Dry Summer Winter 

MN/m2 >60 >50-60 30-50 <30 

 

 

3 RESULTS 
 

 

3.1 Comparison of gamma-ray datasets (study III) 

 

The coefficients of the regression models are presented in Table 5. The correlation between 

the air gamma and ground gamma values was relatively low (Table 6). A separate model was 

constructed for each gamma component: potassium and thorium both exhibited moderate R2 

and correlation values, although the RMSE% value was quite high for both components 

(Table 5). The uranium component offered the weakest results across all statistics. Potassium 

got the best result with a normal linear regression (R2 = 0.294), whereas uranium (R2 = 0.184) 

and thorium (R2 = 0.263) had better results with polynomial regression. The statistics for the 

uranium and thorium models showed minimal deterioration compared to the values in Table 

6, even when simple linear regression was used. The uranium model yielded an R2 value of 

0.148 and an RMSE% of 0.561 while the thorium model yielded an R2 value of 0.241 and an 

RMSE% of 0.487. In total, the polynomial models resulted in a relatively small improvement 

compared to simple linear regression. In all cases, the MD% value was small for all the 

models, so the risk of severe overestimation or underestimation was low. The fit of the 

regression lines of each model is shown in Figure 4. 

 

 

Table 5. Polynomial regression to predict ground gamma-ray values using air gamma values. 

The predictions were made for each component, e.g., airborne potassium values were used 

to predict ground potassium values. Estimates and significance (p-value) of the different levels 

of predictors are shown. 

 

Model information 

Potassium 

Coefficients Estimate Std. Error t-value p-value 

Air K 0.844 0.034 24.570 2.00E-16 

Uranium 

Coefficients Estimate Std. Error t-value p-value 

Air U 2.291 0.374 6.131 8.19E-09 

Air U^2 -2.095 0.529 -3.963 1.17E-04 

Air U^3 0.653 0.180 3.628 3.98E-04 

Thorium 

Coefficients Estimate Std. Error t-value p-value 

Air Th 1.848 0.183 10.087 2.00E-16 

Air Th^2 -0.122 0.041 -2.995 3.24E-03 
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Table 6. Statistics for polynomial regression predictions of each component. Pearson 

correlation was calculated from the normalized gamma values. 

 

Statistics Potassium Uranium Thorium 

Pearson 0.543 0.384 0.491 

R2 0.294 0.184 0.263 

RMSE 0.466 0.514 2.255 

RMSE-% 0.515 0.548 0.481 

MD% 5.50E-04 -8.57E-04 6.26E-03 

 

 

 

Figure 4. Ground gamma-rays vs air gamma-rays for each gamma component. The line 

indicates the regression line.  
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3.2 Prediction of bearing capacity (study II) 

 

The correlations between light falling weight deflectometer values (LFWD)(MN/m2), road 

properties, soil type and depth-to-water index are presented in Table 7. The significance of 

variables seems to be divided. Soil types peat and fine till (FT) and road properties useable 

road width (URW) and roadway width (RW) seem to have significant correlations with 

LFWD values. Sandy till has significant negative correlations (significant at the 0.01 p-level) 

with all the other soil types (peat (-0.51), sand (-0.44), fine till (-0.37)) which can partially 

be explained by the fact that it is the dominant dummy variable in our data and therefore an 

inverse dummy for the other soil types. The fine till variable has a significant correlation with 

LFWD values and both roadway width and useable road width. This matter is further 

considered in the discussion section.  

The boxplots in Fig. 5 show the relations of the most important variables in the dataset of 

study II. The top left boxplot shows that there is a mixed trend with LFWD values and soil 

types with fine till having the highest LFWD values and sandy till and sand having slightly 

higher median LFWD values than peat. The top right boxplot shows that there is also an 

obvious trend between LFWD values and useable road surface width, where wider roads also 

acquire higher LFWD values, manifesting as significant correlation of 0.58 (Table 7). The 

lower left boxplot shows a correlation between low Ditch index values and the coarse soil 

type (sand), which means that in areas where soil type is sand, there are usually no or very 

shallow ditches. As illustrated in Fig. 5, there is considerable variation in the Ditch index for 

peat and sandy till. This variability can be attributed to the presence of road sections within 

these soil types that descend into the terrain. Consequently, the ditch depth is recorded as 200 

centimeters, as detailed in the Materials and Methods section. The bottom right boxplot 

indicates a correlation between DTW values and the various soil types. However, it should 

be noted that DTW exhibits significant correlations with all soil types, with the exception of 

sandy till (Table 7).  

 

 

Table 7. Topside of the table shows Pearson correlation coefficients between LFWD values, 

soil types, road properties, and Depth-to-water values. LFWD = Light falling weight 

deflectometer values, URW = useable road width, RW = roadway width, DTW = Depth-to-

water index values, DI = Ditch index, Peat = peatland, ST = Sandy till, FT = Fine-grained till, 

Sand. Bottom side of the table shows the significance values of the correlations (p-values). 

 
 LFWD URW RW DTW DI Peat ST FT Sand 

LFWD  0.58 0.52 0.02 0.07 -0.25 -0.06 0.28 0.11 

URW 0.00  0.90 0.15 0.13 -0.24 -0.11 0.38 0.07 

RW 0.00 0.00  0.15 0.14 -0.32 -0.06 0.45 0.04 

DTW 0.81 0.12 0.12  -0.21 -0.22 0.07 -0.21 0.33 

DI 0.45 0.18 0.14 0.03  0.23 0.05 0.14 -0.45 

Peat 0.01 0.01 0.00 0.02 0.01  -0.51 -0.2 -0.24 

ST 0.54 0.25 0.53 0.43 0.58 0.00  -0.37 -0.44 

FT 0.00 0.00 0.00 0.03 0.15 0.04 0.00  -0.17 

Sand 0.24 0.47 0.71 0.00 0.00 0.01 0.00 0.07  
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Figure 5. Boxplots for LFWD values and soil types (top left), LFWD values and useable road 

width (in centimeters) (top right), Ditch index (in centimeters) and soil types (bottom left), DTW 

index and soil types (bottom right). The ends of the box are the upper and lower quartiles, the 

median is marked by a horizontal line inside the box, and the whiskers extend to the highest 

and lowest observations. Figure created with R statistical computing environment (R Core 

Team 2020). 

 

 

The plots on Fig. 6. present the gamma-ray components (K, U, Th) plotted against the 

LFWD values. The Pearson correlation coefficients are also presented on the plots which 

show that there is very little to no correlation between any of the gamma-ray components and 

LFWD values, with the highest being potassium (K) (0.11). The same observation can be 

seen from the plots themselves and the regression lines added to the plots which do not fit to 

the observations very well. 
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Figure 6. Plots of gamma values and LFWD values. Pearson coefficient in the top left corner 

of each plot reports the correlation between LFWD values and a single gamma component. 

The line on the plots represents the regression line when LFWD is predicted using each 

gamma component. 

 

 

3.2.1 LME models for bearing capacity 

 

Three linear mixed effects models were constructed using the significant road variables, soil 

type information and gamma-ray values. The soil types were transformed to soil coefficients 

as described in material and methods section.  The road ID was used as the grouping variable 

in all models, so that the total number of groups (number of roads) was 25. The information 

given by all LME models is shown in Table 8. Stepwise selection for the first model (LME-

1) resulted in useable road width emerging as the most significant variable at the 0.05 p-level. 

For LME-1 other variables did not reach the desired level of significance (p-value) but it was 

decided to include other variables to the model even though they would not reach significant 
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p-level. The used variables and their transformations can be seen from Table 8. Second model 

(LME-2) stepwise selection resulted, useable road width being significant at the 0.05 p-level 

and from gamma-ray values relative K being most significant still reaching only p-level of 

0.24. The relative K value was calculated from the gamma-ray data by dividing the K 

component value with the sum of all components (K, U, Th). The third model (LME-3) was 

similar to LME-1 but it did not use useable road width (URW) as a variable since it performed 

too well, dropping the other variables from the model. Thus, the third model (LME-3) was 

constructed to see how significant effect the URW variable has in the resulting statistics. The 

variance inflation test for all models gave low values, the highest being 1.83 for the LME-3 

for the variable roadway, and consequently the risk of multicollinearity in our models is low.  

After LOOCV the LME-1 model acquired an R2 of 0.315, LME-2 acquired R2 of 0.335 

and LME-3 acquired R2 of 0.243 respectively. The LME-1 gained RMSE% of 35.7% before 

LOOCV and 36.0% after LOOCV, with a corresponding MD% value of -0.1% in both cases 

(Table 8), while the model with gamma-ray value (LME-2) had an RMSE% of 35.6% before 

LOOCV and 35.9% after LOOCV, with respective MD% values of -1.2% before and after 

LOOCV. Inclusion of the gamma-ray value (relative K) did not significantly improve the 

resulting statistics. LME-3 gained an RMSE% of 38.0% before LOOCV and 38.2% after 

LOOCV which is slightly worse than with models LME-1 and LME-2. 

 

 

Table 8. Information obtained from the linear mixed effects models when fitted with all the 

data. The first section of the table includes estimates for all the variables used, with the 

standard errors given in parentheses. The second section includes p-values for all the 

variables used in both models, and the third section includes R2, RMSE% and MD% statistics 

with no LOOCV and with LOOCV of both LME models. 

 
 LME-1 LME-2 LME-3 

Intercept - 18.763 (12.972) - 

URW 10.617 (0.762) 9.176 (2.426) - 

RW - - 14.104 (1.044) 

DI 1.712 (1.844) - - 

(Soil * DTW) 0.040 (0.071) - 0.049 (0.073) 

K relative - -58.920 (49.791) - 

P(Intercept) - 0.151 - 

P(URW) 0.000 0.000 - 

P(RW) - - 0.000 

P(DI) 0.806 - - 

P(Soil * DTW) 0.040 - 0.038 

K relative - 0.240 - 

Before LOOCV      

R2 0.326 0.350 0.255 

RMSE% 0.357 0.356 0.380 

MD% 0.001 -0.012 0.014 

After LOOCV    

R2 0.315 0.335 0243 

RMSE% 0.360 0.359 0.382 

MD% -0.001 -0.012 0.013 
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In the scatter plot of observed vs. predicted values after LOOCV (Fig. 7) a clear trend can 

be seen between observed and predicted values, but the relation does not seem to be 

completely linear. From Fig. 7 we can see that almost all low observed LFWD values (< 30 

MN/m2) are fitted to 30-35 MN/m2 value range by the model. The residuals of the LME-1 do 

seem to have some variation, but it was not deemed to be significant in terms of functionality 

of the model. In the residuals we can spot the same trend as in the observed vs predicted plot, 

which is that the low observed values are predicted to much higher value range which is 

manifested as a high number of positive residuals among the low predicted LFWD values (x-

axis). The scatter plots and residual plots of LME-2 and LME-3 were not significantly 

different and were therefore not added as a figure. 

 

 

 

Figure 7. Upper figures show the plots from LME-1 and lower figures show the plots from 

LME-3. Left figure shows the plot of observed vs predicted LFWD values and the line which 

represents if these values had perfect linear relation. Right side figure shows the residuals of 

the model after LOOCV.  
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The observed and predicted LFWD values (MN/m2) were classified into trafficability 

categories according to the LFWD value thresholds in Table 4. These classification outcomes 

were further compared to obtain a percentage of agreement (Table 9), i.e. how accurately the 

categories of predicted LFWD values are similar to the categories of the observed LFWD 

values.  

Cross-tabulation of the predicted and observed trafficability classifications was used to 

see how the categories classified from predicted LFWD values fell into the categories 

classified from the observed LFWD values. The categories used in study II indicate the 

usability and trafficability of the road segments as was described in the discussion. The 

overall LFWD classification results are shown as percentage of agreement in Table 9. The 

classification results were calculated by subtracting the predicted category from the observed 

category (ordinal scale of trafficability categories). For instance, if the observed category was 

Summer (category 3) and the predicted category was also Summer (category 3), the 

prediction error value (Prer.) would be zero (0). Conversely, if the observed category was 

All-year (category 4) but the predicted category was Dry summer (category 2), the prediction 

error value (Prer.) would be negative two (-2). The classification results were consistent 

across all models, both before and after LOOCV, with a percentage of agreement ranging 

from 36.9% to 38.7%. The differences between classification results between the models 

were only marginal. Noticeable is that all of the models give high portion of one class over 

estimations (32.4%-37.8%). These misclassifications are the result of the over estimations of 

LFWD values which we observed in Fig. 7. where low observed LFWD values (< 30 MN/m2) 

are all fitted by the models to the value range of 30-35 MN/m2 in the predictions.  

 

 

Table 9. Table shows the results of classifications obtained before and after LOOCV with 

different trafficability category thresholds. In the Prediction error (Prer.) column, a value of 0 

indicates correctly classified observations with zero prediction error. The corresponding row 

displays the percentage of correctly classified observations (from the n=111 data) for each 

LME model. If the value in the 'Prer.' column is positive 1, it means that the classification 

overestimates the trafficability category by one category. 

 

Model Before LOOCV After LOOCV 

Prer. LME-1 LME-2 LME-3 LME-1 LME-2 LME-3 

-2 0.090 0.090 0.117 0.090 0.090 0.117 
-1 0.144 0.162 0.162 0.162 0.189 0.162 
0 0.378 0.369 0.378 0.387 0.378 0.378 
1 0.369 0.378 0.342 0.342 0.324 0.342 
2 0.018 - - 0.018 0.018 - 

 

  



39  

3.3 Prediction of soil and peat depths (study III) 

 

The Spearman correlations between gamma-ray values and soil depths are presented in the 

captions of Fig. 8 (mineral soil) and Fig. 9 (peat soil). A negative trend was observed in both 

ground gamma and air gamma datasets concerning mineral soil depth and peat depth, 

indicating that gamma- radiation intensity in mineral soils decreases as the thickness of the 

soil layer overlaying bedrock or large boulders increases. Similarly for peat soils, gamma-

radiation intensity decreased when the thickness of the peat layer covering the bedrock or 

subsoil increased. The air gamma components: potassium and uranium (Fig. 8), offered better 

Spearman correlations (K = -0.480; U = -0.474) with soil depth than ground gamma (K = -

0.421; U = -0.238). In contrast, with regard to peat depths, ground gamma provided 

significantly better correlations across all components (K, U, Th) when compared to air 

gamma (Fig. 9). 

 

 

 

Figure 8. Boxplots of soil depth classes and normalized airborne gamma (upper row) and 

normalized ground gamma datasets (lower row) for mineral soils (n=85). The ends of the box 

are the upper and lower quartiles, the median is marked by a horizontal line inside the box, 

and the whiskers extend to the highest and lowest observations. Spearman correlations: K air 

= -0.480; U air = -0.474; Th air = -0.359; K ground = -0.421; U ground = -0.238; Th ground = 

-0.556 
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Figure 9. Boxplots of peat depth classes and normalized airborne gamma (upper row) and 

normalized ground gamma datasets (lower row) for peat soils (n=60). The ends of the box are 

the upper and lower quartiles, the median is marked by a horizontal line inside the box, and 

the whiskers extend to the highest and lowest observations. Spearman correlations: K air = -

0.368; U air = -0.386; Th air = -0.243; K ground = -0.779; U ground = -0.409; Th ground = -

0.762.  

 

 

An ANOVA test was conducted for each gamma component to determine whether the 

mean values of each gamma component varied significantly (p-level <0.05) between soil 

depths. Our null hypothesis assumed that there was no significant difference in gamma values 

between the soil/peat depths. The ANOVA tests yielded significant results in every case, 

except between peat depth and the air gamma component thorium (correlation = -0.243). 

Therefore, we reject our null hypothesis and note that there was significant variation in 

gamma-ray values between the soil/peat depth levels (aside from air gamma thorium).  

The prediction of soil depth was conducted separately for the mineral soil plots and peat soil 

plots. Ground gamma offered slightly better overall classification accuracies (64.7% mineral 

soil; 70.0% peat soil) when compared to air gamma (63.5% mineral soil; 61.7% peat soil). 

Soil depth predictions for the mineral and peat soils are shown in Fig. 10 and Fig. 11, 

respectively The plots in Fig. 10 show that the < 30 cm and 30–60 cm depth classes on 

mineral soils were interspersed, although the > 60 cm class was clearly separated, especially 

when predicted with ground gamma. For mineral soil depth predictions, air gamma offered 
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almost as good prediction result (63.5%) when compared to prediction result of ground 

gamma (64.7%) (Table 10). For peat soils, ground gamma provided a prediction result that 

was 8% better than the one provided by air gamma. Ground gamma showed a slightly better 

separation for the > 60 cm class on peat soil (depth 3, Fig. 11).  

The functionality of all of the models was primarily influenced by the first discriminant 

function (LDA1). As the separation of classes occurred based on the LDA function on the x-

axis (LDA1), there was minimal separation along the y-axis (LDA2) when visualized in the 

plots (Fig. 10 and 11). 

 

 
Table 10. Classification statistics of the soil and peat depth models for air gamma and ground 

gamma datasets. The number of plots in each case is presented at the top of each section 

column. The ‘count’ rows represent the count of correctly predicted plots. The % rows 

represent the percentage of agreement (count/n). Kappa values are also presented for each 

case. 

 

Soil depth 
Mineral soil (n=85) Peat soil (n=60) 

Ground gamma Air gamma Ground gamma Air gamma 

Count 55 54 42 37 

% 0.647 0.635 0.700 0.617 

Kappa 0.458 0.414 0.599 0.497 

 
 

 

Figure 10. Distribution of soil depth classes when predicted with linear discriminant analysis 

(LDA) for mineral soils. The predictors used in the model were ground gamma components 

(upper graph) or air gamma components (lower graph).  
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Figure 11. Distribution of soil depth classes when predicted with linear discriminant analysis 

(LDA) for peat soils. The predictors used in the model were ground gamma components 

(upper graph) or air gamma components (lower graph).  

 

 

3.4 Prediction of topsoil stoniness (SI and SIC) study I and study III 

 

The prediction of the stoniness of topsoil was carried out in studies I and III using the 

airborne gamma-ray data (studies I and III) and handheld gamma-ray spectrometer data 

(study III) as well as soil type information (studies I and III). In study I the stoniness was 

examined in terms of SI (0-10) and SIC with five levels (1-5) whereas in study III the 

stoniness was examined using only SIC with three levels (1-3). The study I utilized Ordinal 

regression as the main analysis method whereas in study III Linear discriminant analysis was 

used. The base assumptions required by the used analysis methods were met in both studies. 

In study I both peatlands and mineral soil plots (n=255) (Dataset 1) were included in the 

prediction of SI and SIC, but also separate dataset was selected which comprised only of 

mineral soil plots (Dataset 2). In study III only mineral soil plots were used in the modelling 

of SIC. In Study I the datasets were divided into training and validation samples whereas in 

study III LOOCV was used as the validation method.  

The Spearman correlations between stoniness information, soil types and gamma values 

(both air gamma and ground gamma) showed significant relations among the variables in 

both studies I and III. The correlations of gamma-ray values and stoniness are presented in 

the caption of Fig. 12 for study III and in caption of Fig. 13 for study I. The correlation 

coefficients of the Dataset 1 (n=1221) in study I show strong correlation among air gamma 

values and SIC, with the highest observed coefficient being 0.634 (with component K). In 

study III, the correlation between SICs and air gamma values was moderate, with a highest 
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coefficient of 0.342 (with component K). However, it is important to note that study III 

utilized exclusively mineral soil plots in the data. Similarly, in study I the Dataset 2 also used 

only mineral soil plots and equivalent correlation with the highest coefficient of 0.368 

(component K). The ground gamma values show higher correlation with SICs in study III 

with the highest coefficient of 0.605. In both studies I and III air gamma component uranium 

(U) gives the lowest correlation with SIC. 

  

 

 

Figure 12. Boxplots of stoniness index classes (SIC) and normalized airborne gamma (upper 

row) and normalized ground gamma (lower row) datasets for mineral soils (n=85). The ends 

of the boxplots are the upper and lower quartiles, the median is marked by a horizontal line 

inside the box, and the whiskers extend to the highest and lowest observations. Spearman 

correlations: K air = 0.342; U air = 0.259; Th = air 0.276; K ground = 0.452; U ground = 0.395; 

Th ground = 0.607. 
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Figure 13. Boxplots for stoniness and their normalized air gamma values for whole dataset 

(SI top row, SIC second row) and for SIC of mineral soil dataset (bottom row). The ends of the 

box are the upper and lower quartiles, the median is marked by a horizontal line inside the 

box and the whiskers extend to the highest and lowest observations. Spearman correlations 

for whole data (Dataset 1) (rows 1 and 2): SI K = 0.621; SI U = 0.457; SI Th = 0.503; SIC K = 

0.634; SIC U = 0.455; SIC Th = 0.508. Spearman correlations for mineral soil data (Dataset 

2) (bottom row) SIC K = 0.368; SIC U = 0.157; SIC Th = 0.075. 
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3.4.1 Prediction of SI 

 

In study I the ordinal regression managed to classify 36.47% of the SI cases correctly, with 

a kappa value of 0.199 and correctly with an acceptable two-class-off variation in 65.88% of 

the cases, with a kappa value of 0.587. The resulting crosstable (Table 11) showed that the 

correctly classified cases were divided between the extreme SI classes, in that only classes 0, 

7, 8 and 9 had classifications in them, and the rest had none. When the SI model was tested 

with 500 randomly selected plots it managed to predict 29.00% of the cases correctly with a 

Kappa value of 0.000 and correctly with an acceptable two-class-off variation in 60.40% of 

the cases, with a Kappa value of 0.440. The resulting crosstable (Table 11) showed that the 

correctly classified cases were divided between classes 0, 7 and 8 while the rest of the SI 

classes had no correct classifications. 

 

3.4.2 Prediction of SIC on mixed soils (Dataset 1) study I 

 

In study I, using the whole data and the ordinal regression we managed to classify 52.16% 

of the SIC cases correctly in the modelling phase, with a Kappa value of 0.547, and correctly 

with an acceptable one-class-off variation in 78.82% of cases, with a kappa value of 0.719. 

The model informations are in Table 12. The resulting crosstable (Table 13) showed that the 

correctly classified cases were divided among all the SIC classes except for class 2, which 

had zero correct predictions. A total prediction error of three classes or over was observed in 

7.45% of cases. In the testing phase the model achieved 49.00% prediction accuracy with 

Kappa of 0.478, and with acceptable variation the accuracy was 82.00% with Kappa of 0.766 

which is an excellent result. The testing phase part of Table 13 shows that the classification 

again concentrates the sites into classes 1, 3 and 4. A total prediction error of three classes or 

over was only observed in 4.00% of cases. 

 

 

Table 11. Crosstable of prediction of SI 

 

    Modelling phase of SI Testing phase of SI 

    0 7 8 9 0 7 8 

SI 

0 68 2 0 0 101 3 0 

1 9 0 0 0 15 2 0 

2 6 0 1 0 13 8 0 

3 4 5 1 0 12 11 0 

4 11 3 2 0 15 16 0 

5 5 9 4 0 22 31 0 

6 11 6 4 0 19 33 0 

7 7 13 9 2 17 41 0 

8 12 7 11 0 17 36 3 

9 4 5 10 1 13 23 0 

10 5 9 8 1 29 20 0 
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Table 12. Ordinal regression model predicting SIC classes based on dataset 1 using soil 

information and gamma values. Peat = Peatland, FT = Fine-grained till, Sand = sand, K = 

potassium gamma values, U = uranium gamma values. The intercepts in the model are class-

pair specific and are used for calculating class-pair probabilities. The model uses a negative 

loglog link function.  

 

Coefficients value std.error t-value p-value 

Peat -1.0557 0.232 -4.546 5.48E-06 

FT -2.7356 0.724 -3.780 1.57E-03 

Sand -0.4363 0.327 -1.335 1.82E-01 

K 0.4672 0.113 4.128 3.67E-05 

U 0.3997 0.109 3.658 2.54E-04 

Intercepts       

1|2 -0.8041 0.128 -6.277 3.45E-10 

2|3 -0.4604 0.121 -3.819 1.34E-04 

3|4 0.4380 0.128 3.417 6.34E-04 

4|5 1.6645 0.177 9.407 5.11E-21 

 

 

Table 13. Correlation between observed (rows) and predicted SIC classes (columns) in the 

modelling and testing phases. Correct predictions are indicated with grey shading. The total 

numbers in the observed SIC classes in the test data (rows) were: SIC 1, n=121; SIC 2, n=44; 

SIC 3, n=136; SIC 4, n=114; SIC 5, n=85; and those in the testing phase results (columns) 

were: SIC 1, n=172; SIC 2, n=0; SIC 3, n=160; SIC 4, n=168; SIC 5, n=0.  

 

    

Modelling phase  

prediction of SIC 

Testing phase prediction 

of SIC   

  1 2 3 4 5 1 2 3 4 5 

 1 70 0 8 1 0 110 0 9 2 0 

 2 7 0 3 7 0 16 0 17 11 0 

SIC 3 12 0 22 20 1 21 0 64 51 0 

 4 14 0 7 33 7 10 0 33 71 0 

  5 4 0 7 24 8 8 0 29 48 0 

 

 

The prediction of SIC was performed on mineral soils in both studies. The mineral soil dataset 

on study I consisted of 215 cases which had been manually picked to represent all the SIC 

classes evenly and it was divided into modelling and testing data in the ratio 0.7/0.3. The 

model information of study I can be seen in Table 14.  

In study I during modelling phase (of Dataset 2) the ordinal regression managed to 

classify 32.24% of the cases correctly with a Kappa value of 0.181, and with acceptable one-

class-off variation in 67.11% of cases with a Kappa value of 0.589 (Table 15). Each SIC class 

contained some correct classifications, but classes 1 and 4 possessed the highest numbers. In 

the testing phase the models achieved 28.57% prediction accuracy with a Kappa of 0.07 and 

with the acceptable variation 74.60% accuracy with Kappa of 0.671.  

In study III the air gamma achieved prediction accuracy of 45.9% with a Kappa of 0.232 

(Table 16) when using only gamma components as predictors. The result is slightly better 
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than in study I when not considering the acceptable one-off-variation, but of course in study 

III only three SIC classes are used. In study III the prediction accuracy increased noticeably 

with air gamma when soil type (mineral soil) was introduced to the model, now reaching 

prediction accuracy of 64.7% with Kappa of 0.499 

 

 

Table 14. Ordinal regression model predicting the SIC classes of Dataset 2 using only gamma 

values for potassium (K), uranium (U) and thorium (Th). The model uses a cauchit link 

function. 

 

Coefficients value std.error t-value p-value 

K 3.2352 0.703 4.600 4.22E-06 

U 0.0162 0.386 0.042 9.66E-01 

Th -0.8005 0.319 -2.507 1.22E-02 

Intercepts         

1|2 -1.3347 0.201 -6.627 3.43E-11 

2|3 -0.3205 0.123 -2.608 9.10E-03 

3|4 0.5360 0.140 3.838 1.24E-04 

4|5 1.7664 0.277 6.372 1.87E-10 

 

 

Table 15. SIC classification results for both the modelling and testing phases with dataset 2 

 

SIC  
Modelling Testing 

Correct Acceptable Correct Acceptable 

Count 49 102 18 47 

% 0.322 0.671 0.286 0.746 

Kappa 0.181 0.589 0.066 0.671 

 

 

Table 16. Classification statistics of the stoniness index class (SIC) models. Left shows the 

results with only gamma-ray values used as predictors, and the right shows the results with 

gamma-ray values and soil type used as predictors. The ‘count’ rows represent the count of 

correctly predicted plots. The % rows represent the percentage of agreement (count/n). Kappa 

values are also presented for each case. (n=number of plots) 

 

SIC 
Gamma only (n=85) + soil type (n=85) 

Ground gamma Air gamma Ground gamma Air gamma 

Count 57 39 64 55 

% 0.671 0.459 0.753 0.647 

Kappa 0.579 0.232 0.673 0.499 
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The ground gamma performed noticeably better than air gamma. The ground gamma 

reached prediction accuracy of 67.1% with Kappa of 0.579 (Table 16) when using only the 

gamma components as predictors. When the soil type information was introduced along with 

ground gamma the prediction accuracy increased to 75.3% with Kappa of 0.647 (Table 16).  

The SIC predictions of study III are shown in the upper and middle plots in Fig. 14 where 

it is evident that LDA had difficulty in separating the observations from the different classes. 

While ground gamma was able to separate the high-level and low-level SIC, there was 

considerable overlap between SICs of 1 and 2. Air gamma failed to clearly separate any of 

the SICs. When soil type was added to the models, the classification results improved for 

both ground gamma (by 8.2%) and air gamma datasets (by 18.8%). The addition of soil type 

to the model positively affected the separation of SIC classes (bottom plot in Fig. 14), 

especially the low stoniness class (SIC 1). 

 

 

 

Figure 14. Distribution of stoniness index classes (SIC) when predicted using linear 

discriminant analysis (LDA) for mineral soils. The predictors used in the model are ground 

gamma components (upper graph), air gamma components (middle graph), or ground gamma 

components and soil type information (lower graph). 
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The functionality of all of the models in study III (both SIC and depth models) were 

primarily influenced by the first discriminant function (LDA1). As the separation of classes 

occurred based on the LDA function on the x-axis (LDA1), there was very little separation 

when the plots were viewed from the y-axis (LDA 2) (Fig. 10, 11, and 14). This observation 

was further supported by the proportion of trace of the functions (LDA 1 and LDA 2) acquired 

during the modeling process. In all SIC models, the proportion of trace was 90–99% for the 

first discriminant function (x-axis in Fig. 14) and 1–10% for the second discriminant function 

(y-axis in Fig. 14). In all soil depth models, approximately 90% and 10% of the separation 

was achieved by LDA1 and LDA2, respectively (LDA1 on the x-axis in Fig. 10 and 11, and 

LDA2 on the y-axis). 

 

4 DISCUSSION  
 

  

4.1 Comparison of airborne and ground gamma 

 

The regression models for the gamma components yielded unsatisfactory results in study III. 

While potassium and thorium showed moderate R2 and RMSE% values, uranium performed 

poorly (Table 6). Several factors likely contribute to these findings. Firstly, there is a 

significant time gap (30–40 years) between the airborne and ground gamma measurements, 

which allows for soil processes to alter the nuclide signature and the gamma spectra (e.g. 

Taylor et al. 2002; Herrmann et al. 2010). Additionally, anthropogenic activities such as soil 

preparation and peatland drainage can also affect the gamma fingerprint through the 

relocation and leaching of minerals, especially since the study sites were in active use of 

forestry. Studies by Takeuchi and Katase (1982) and Rizzo et al. (2022) suggest that short-

term weather conditions, such as rainfall, can influence the intensity of gamma-rays. 

However, no weather data were recorded during the field measurements of study III, leaving 

uncertainty as to whether significant variations in short-term weather conditions near the time 

of measurement could have influenced the results. The most likely reason is the difference in 

resolution of the measurement methods. We know that gamma radiation is dependent on soil 

moisture and other soil properties (particle size, soil type etc.), which can vary greatly, even 

over small areas. Airborne gamma measurements provide low-resolution information (50 m 

× 50 m) whereas the handheld gamma offers almost point-type information that captures 

small-scale changes in soil properties. Minty (1997) emphasizes that airborne gamma 

surveys, while effective for large-scale surveys, has limitations due to its lower spatial 

resolution compared to ground-based methods. This lower resolution results from the wide 

field of view of airborne detectors, which average the gamma radiation over larger areas, 

potentially missing small-scale variations in soil properties. 

In the study by Kock and Samuelsson (2011), a similar comparison of two gamma-ray 

datasets was conducted. While the airborne spectrometer scintillation units in their study 

were different from the units used in our dataset, the ground gamma spectrometers had a 

similar scintillation unit, although the device was manufactured by a different company. 

Moreover, Kock and Samuelsson (2011) studied continuous gamma-ray values whereas in 

study III a single measurement point type gamma-ray data was studied. They acquired high 

Pearson correlation coefficients between normalized airborne and normalized ground-based 

gamma-ray values: 0.98–0.96 for potassium (K), 0.68–0.94 for uranium (eU) and 0.97–0.92 

for thorium (eTh), which are significantly better than the values reported in study III (Table 

6). Their regression analysis also provided better results in terms of R2 values for uranium 



50 

(R2 = 0.82) and thorium (R2 = 0.79) although their potassium R2 value of 0.21 was weaker 

than observed in study III (Table 6). Kock et al. (2014) state that unknown radionuclide 

distributions, topography and geology as well can lead to uncertainties and problems when 

comparing ground gamma-ray measurements to airborne surveys which could be one 

explaining factor for the differing results. The observed differences in results are likely due 

to the geographical variability of the study areas. The study sites in Southern Sweden, as 

investigated by Kock and Samuelsson (2011), exhibit distinct mineralogical compositions 

and topographical features compared to study area location of study III. According to Kock 

and Samuelsson, the linear relationship between air and ground gamma measurements 

becomes apparent only in regions with significant variations in areal activity – a condition 

that our study area, characterized by homogeneity in parent mineralogy, does not meet. 

Additionally, the variation in topography between the sites may further contribute to the 

differences observed. Furthermore, Kock and Samuelsson’s study benefited from a larger, 

more uniform study area and a substantially more extensive dataset, in contrast to our more 

limited and fragmented study site locations (relatively few measured plots scattered over 

large area). 

 

 

4.2 The prediction of peat and soil depths 

 

The soil depth classification results in study III were good for both the mineral and peat soils, 

with a clear trend of deeper mineral (Fig. 8) and peat soils (Fig. 9) as gamma values 

decreased. For mineral soils, there was practically no difference between using air gamma or 

ground gamma with both achieving prediction accuracies of around 64%. When the cross-

tabulations of these classifications were evaluated, we noted that both gamma methods 

performed almost equally well at the >60 cm level. However, ground gamma performed 

better at the <30 cm and 30–60 cm levels which supports the superiority of ground gamma 

in this matter. For peat soil depths, ground gamma was almost 10% better than air gamma. 

Ground gamma effectively separated the peat depth observations at >60 cm and partially 

separated the observations at <30 cm and 30– 60 cm, while air gamma had difficulty 

separating observations at <30 cm and 30–60 cm levels (Fig. 9). Hyvönen et al. (2005) stated 

that, in general, the maximum thickness of a peat layer that gamma radiation can penetrate is 

0.6 m which makes it a valuable method when predicting the depth of peat. 

A substantial portion of Finland's original peat bog area was subjected to drainage for 

forestry purposes, during the 1960s and 1970s (Simola et al. 2012). In the year 2011, 

peatlands constituted approximately one-third of Finland's forestry area and one-fourth of the 

total growing stock volume (Ala-Ilomäki et al. 2011). However, this proportion has since 

changed due to the restoration of formerly drained bogs. Nonetheless, peatland areas still 

cover a substantial portion of the active forestry area. Lehtonen et.al. 2019 stated that the 

prediction of peat depth is important or future trafficability, as frost periods are becoming 

shorter due to global warming and so does the window for harvesting. In the future the decline 

in soil frost and wintertime bearing capacity will become increasingly evident. By the latter 

half of the 21st century, the majority of winters in southern and western Finland, will 

experience a virtual absence of soil frost in drained peatlands. A 20 centimeter thick layer of 

frozen soil or 40 centimeter thick layer of snow on the ground may already be sufficient for 

heavy forest harvesters (Lehtonen et al. 2019). This depth is optimal for gamma-ray surveys. 

Areas where peat depth exceeds 20 centimeters require deeper frost than areas with thinner 

peat depths. With precise peat depth data some clear-cutting operations located on peatland 
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stands scheduled to carry out in winter could be carried out during summer. This is due to 

the fact that clear-cutting allows for greater flexibility in selecting forwarding routes on-site 

in comparison to thinning (Lehtonen et al. 2019; Uusitalo et al. 2015).  

 

 

4.3 Prediction of bearing capacity on forest road  

 

The light falling weight deflectometer is commonly used as an alternative to the static plate 

load test (e.g. Sabouri et al. 2022). The FWD and LFWD are the most important devices used 

to evaluate the physical characteristics of road and soil surfaces (Kaakkurivaara et al. 2015). 

In Finland, forest roads are often constructed without compaction standards and with varying 

moisture and soil composition from materials found near the construction site (e.g. 

Grajewski, 2016). A few studies have suggested the potential value of applying gamma 

radiation surveys to estimate the proportion of clay in soil content (e.g. Díaz-Curiel et al. 

2021). Therefore, in study II, the efficacy of these methods was assessed in predicting the 

bearing capacity and overall trafficability of unpaved roads. 

Prediction of the overall trafficability of forest roads is extremely difficult. In study II the 

road width variable dominated, rendering other variables insignificant. Therefore, a decision 

to construct an additional model was made to see how much better prediction results the 

useable road width variable gives alone. Both useable road width (URW) and roadway width 

(RW) were powerful variables in every model which tells us that road width is a highly 

important factor when assessing bearing capacity which is also defended by the high 

correlation of road width variables and LFWD (Table 7). It is often safe to assume that wider 

roads are in better condition than more narrow roads since wide roads are often located in 

areas where there is more traffic from timber transportation and other vehicles. More narrow 

roads are built in areas where there are very little traffic, i.e. roads that lead to forest stands 

where there are fellings and the majority of traffic comes from timber transportation during 

certain seasons. There is potentially a need to develop separate models for high- and low-

quality roads as differing road and environmental properties could influence the bearing 

capacity on different-sized roads. 

It was surprising that the Ditch index was not a significant variable in any of the models 

and that there is very little correlation between the Ditch index and LFWD. The normal 

assumption is that low bearing capacity soil types (peat and fine till) should have high DI 

because ditches should usually be deeper on fine-grained soil types and peatlands, where 

conducting the water away from the vicinity of the road the frame is more crucial than in 

coarse soil types (sand and gravel). The Ditch index showed a significant correlation with 

certain soil types (peat and sand), which was expected since roads on coarse soils (sand) 

typically lack deep ditches, as water drains easily through the soil’s pores. 

The soil coefficients were significant variables when coupled with DTW but not when 

used alone. This defends one basic assumption regarding well-built forest roads which states 

that the surrounding soil type should not drastically affect the trafficability of the road if the 

road is built correctly, since if the building material available on site (i.e. the soil) is 

unsuitable (peat, fine till), the material for the construction of the supporting layers is 

generally brought from elsewhere. The surface layer of crushed rock is brought in from 

quarries. Of course, this assumption does not hold true for the majority of older roads, which 

have often been built without all the necessary structural layers. Since many old roads are not 

constructed with all the necessary layers and materials, it was expected that soil type could 

affect the bearing capacity. Some forest road networks consist of temporary roads constructed 
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from cheaper aggregates. For such roads, it would be reasonable to adopt different bearing 

capacity standards (Czerniak et al. 2021). 

The R2 statistics of models LME-1 and LME-2 show that the models performed 

moderately when predicting LFWD values. LME-3 had a noticeably (7%) lower R2 value 

which was caused by the fact that LME-3 did not use URW as a predicting variable. The 

gamma-ray data unfortunately did not seem to be significant when predicting LFWD values. 

It can be observed from the plots and Pearson correlations of Fig. 6 that there is very little to 

no relation between gamma-ray values and LFWD. None of the gamma components prove 

to be significant in any of the models. Potassium achieved the best significance of all the 

gamma-ray components in LME-2 and offered only marginal improvement in the prediction 

results. 

The overall prediction error (RMSE%) of all models was moderate, reaching values of 

around 36-38% which tells that there is considerable prediction error between observed 

values and predicted values. When assessing Fig. 7 we can see that models give 

overestimation in lower LFWD values and underestimation in higher LFWD values but all 

models still had low MD% (−1.2%−1.3%). We believe that the reason why our model failed 

to detect low LFWD values was because of the significance of the useable road width 

variable. Low-bearing capacity roads and some of the higher bearing capacity roads have 

similar widths, i.e. roads with a width of 350 centimeters include the majority of the low 

bearing capacity value roads but also a large part of the higher bearing capacity value roads. 

This causes the LFWD values to mix in the data which negates the lowest LFWD values from 

the predictions. As a solution, the modelling should be conducted where roads are divided to 

classes according to certain width thresholds and these classes could be used as the grouping 

variable if linear mixed effects models were to be used. Then it would be possible find the 

variables that have an effect on the LFWD values and are not tied to road width. In a study 

Varol et al. (2021) found that other methods (artificial neural networks; adaptive network 

based fuzzy inference system) than linear regression models perform noticeably better when 

predicting bearing capacity of forest roads. These methods could also be introduced to further 

studies. 

In study II the classification of the trafficability categories performed poorly. This was 

largely the result of poor prediction accuracy of low LFWD values. The classifications 

achieved correct predictions only in 37.8% - 38.7% of cases. The crosstabulations of 

observed versus predicted classifications revealed that most predicted LFWD values were 

assigned to trafficability category 2 (dry summer), which has the widest LFWD range (30–

50 MN/m²) and the highest case count. Consequently, other categories, such as winter, had 

only 1–2 correct classifications, and summer and all-year categories had very few correct 

classifications. This was caused by the overestimation of the models. The classification 

thresholds should be revisited at least on the account of Dry summer which seems to be too 

dominant compared to other categories and an additional category “Autumn” could be 

introduced to balance the categories. Autumn category roads would not be trafficable during 

spring thaw but still manage to maintain their bearing capacity and avoid rutting during the 

autumn, when there is high precipitation and fluctuating temperatures.  

A similar study by Waga et al. (2021) has reported an overall classification accuracy of 

77%, which is noticeably higher than that achieved in study II (36.9% – 38.7%). Waga et al. 

(2021) classified road condition with three categories (poor, satisfactory, good) using the 

Topographic Position Index together with LiDAR and DEM data, in order to determine the 

need for road rehabilitation. Their quality categories were based on visible parameters 

defined by experts (Korpilahti, 2008), whereas study II was focused on estimating a non-
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visible parameter (LFWD) using road structure variables. In the approach used by Waga et 

al. (2021) the estimation of forest road quality and surface condition (surface wearing and 

flatness) was based on a total of 62 plots and was carried out subjectively, which leaves room 

for human estimation error. Study II used a slightly larger dataset of 111 plots together with 

LFWD measurements to determine trafficability classifications in terms of 4 categories. The 

method implemented by Waga et al. (2021) is prone to a risk of subjective autocorrelation 

since all the road parameters are visually evaluated, which can partially explain the better 

classification results. 

In study II it was known that the prediction of bearing capacity without having 

information on the road’s supporting layers and construction materials would be challenging 

and overall, it must be said that the models, did not produce satisfactory results. The static 

road and surrounding terrain properties used here were not enough to provide good 

predictions of the bearing capacity. In order to address this issue, more variables should be 

introduced into the model to test whether they result in a significant improvement relative to 

the LFWD predictions. Even though the soil type did seem to be significant in this work, soil 

type information should be included in future models as an alternative dummy variable. The 

problem is that accurate soil type information is not always available. The existing soil maps 

of Finland (Geological Survey of Finland, 2024) are often published at a scale of 1:20 000 or 

1:50 000 and in many areas at a coarser scale of 1:100 000 or 1:200 000, and the principal 

soil types recognised are often sandy till or peat, which were not significant in this study.  

One major defect with our model was the lack of road surface information, which is often 

the most significant variable when considering rutting and bearing capacity. Surface quality 

information could be derived from LiDAR data if these are dense enough (12 pulses m2 

(James et al. 2007; Waga et al. 2021)) as observed previously (Craven and Wing, 2014; Waga 

et al., 2015, 2016, 2021), and other road properties such as the centre line, road frame width, 

ditch depth and ditch quality could be extracted from ALS data if these are dense enough 

(Azizi et al. 2014; Craven and Wing, 2014; Ferraz et al. 2016; Hrůza et al. 2018; Waga et al. 

2015, 2016, 2020, 2021; Karjalainen et al. 2024). For this purpose, the 5P data provided by 

the National Land Survey of Finland could have been used to some extent. Surface condition 

significantly affects bearing capacity, particularly during high precipitation, which increases 

moisture content in the road surface. Aleadelat et al. (2017) also demonstrated the use of 

smartphone sensors in evaluating gravel road conditions with promising results especially 

detecting potholes and surface deterioration. Kaakkurivaara et al. (2016, 2017) state that 

mixing ash into the crushed rock surface layer of a forest rod will form a tough shell that can 

significantly increase the bearing capacity. On soils with limited bearing capacity, such as 

wetlands, the use of geotextile mattresses has proven to be an effective solution. Research 

has demonstrated that, despite the recorded bearing capacity during testing being low, these 

pavement systems offer good performance for periodic forest management operations 

(Czerniak et al. 2021). 

The bearing capacity of forest roads is influenced by moisture levels, which significantly 

impact the structural integrity of road surfaces, as highlighted by Elshaer et al. (2018). Similar 

findings were reported by Salour and Erlingsson (2013), who investigated pavement 

structural behavior during the spring thaw. Their use of a falling weight deflectometer 

demonstrated that the thawing process, which increases water content, in combination with 

traffic loads, can substantially affect pavement lifespan and alter the mechanical properties 

of the road. This warrants the development of bearing capacity models that account for both 

static and dynamic road and environmental factors. 
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4.4 Topsoil stoniness and gamma-ray data 

 

When assessing the data of studies I and III (Tables 1 and 2), it is evident that SIC levels and 

gamma-ray values have a clear parallel correlation between gamma values and SIC levels, 

which can also be clearly seen in Fig. 12 and 13. This is also supported by the mostly high 

correlation coefficient between SICs and gamma components in the data of both studies, 

except for the mineral soil data from study I.  The trend is not as clear in the SI figures, and 

the gamma values do not increase consistently with the SI classes (Fig. 13). The clearest 

correlation with SIC and gamma is achieved by the ground gamma values, which performed 

better than air gamma in predicting SIC. The difference in the correlations between the 

studies is due to the difference in composition of the datasets, where in study I peatlands 

were included in the main dataset and in study III only mineral soils were used. 

In study I the overall results of the SI predictions were better than expected achieving 

accuracies of 36.47% - 65.88% but the ordinal regression had major difficulties in creating 

boundaries between most of the SI classes. Only some of the SI classes had correctly assigned 

values on them and on Table 1 we can see how only the gamma values of extreme SI classes 

are separated from the mid-section values. The good performance of the model in the low SI 

classes can be explained by the fact that a large number of the sample plots with low SI values 

were on peatlands, where the soil contains large amounts of water. An increased moisture 

content in the soil reduces the intensity of the gamma radiation and in peatlands, the average 

moisture content of peat is around 90% (Hyvönen et al. 2005). Peatlands are also known for 

having relatively small quantities of stones as compared to mineral soils. There was evident 

autocorrelation between peatlands, stoniness, and low gamma values which presumably 

caused the SI predictions to achieve as good overall results and high correlations (caption of 

Fig. 13). This was indicated by the increased VIF-score (4.04) for variable peat which causes 

some uncertainty towards the performance of the model but was not considered being a 

severe violation in this case. The model also performed moderately well among the high SI 

classes, in which high SI values were typically obtained in areas where bedrock or large 

boulders lay close to the ground surface. It is known that the intensity of gamma radiation is 

affected by the grain size of the mineral particles in a soil (Hyvönen et al. 2005), the larger 

the particle, the higher the emitted radiation – which explains the correlation between high 

gamma-ray values and SI findings in study I. When interpreting the class probabilities 

acquired from ordinal regression, most of the values were quite evenly distributed among 

several SI classes. The results indicate moderate performance at the extremes of the scale but 

poor overall accuracy of SI predictions. 

In study I the results of SIC prediction based on whole dataset, which also included 

peatland plots, were good in both the modelling and testing phase, reaching 49% - 82% 

prediction accuracies and the prediction errors of three classes or over were only 7.45% at 

most. However, as can be seen from Table 13, the SIC had similar problem to SI, where there 

is classes (SIC 2) with zero correct predictions. Furthermore, the SIC 1 achieved high correct 

prediction percentage of ~90%, which is most likely result of the previously described 

autocorrelation (low stoniness, peat soil, and low gamma-ray values), where peatlands 

contain smaller quantities of stones compared to mineral soils and have low gamma-ray 

values due to high moisture content in the soil. Therefore, for study III the SIC predictions 

were carried only on mineral soils as was done also in study I with separate dataset (Dataset 

2). 

In study III we created two separate models for SIC, as the plots composed mainly of 

fine till were all assigned to the low-level stoniness class (SIC 1), which we thought would 
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cause an imbalance in the model. The results of study III indicated that the inclusion of soil 

type had a slight improving effect on the classification results, which was expected. The 

models that used air gamma data as the predicting variable obviously benefited more from 

the inclusion of soil type (percentage of agreement increased by 18%) compared to the 

models that used ground gamma data (percentage of agreement increased by 8%). 

The SIC models in study III (using only gamma values) that used the ground gamma data 

achieved over 20% better classification accuracy than the models that used air gamma data. 

The air gamma data had difficulty separating SIC 2 from the other classes, resulting in a 

lower prediction accuracy. The difference in classification accuracy is due to the averaging 

nature of air gamma data, which misses the small-scale variations but which are detected by 

the handheld device (Minty, 1997). Compared to Studies I and III Melander et al. (2019) 

reported similar results, achieving 70% accuracy in their study of topsoil stoniness prediction 

(with three SIC) using excavator boom vibration data. This outcome enhances the reliability 

of the finding that topsoil stoniness can be predicted through different methods, particularly 

when employing classification techniques. However, both methods have limitations: the 

approach used by Melander et al. (2019) is applicable only during soil preparation, and the 

constraints of gamma spectrometry are extensively discussed earlier in this dissertation.  

Heiskanen et al. (2020) conducted a study in which they predicted the stone volume of 

topsoil (0–30 cm) in Finland using airborne gamma-ray data (specifically the K component). 

They achieved relatively low prediction accuracy, with an R2 of 17%. Their study area 

covered all of Finland so there is a major variation in parent mineralogy which may have 

affected their result compared to studies I and III. Additionally, the analytical methods differ 

where Heiskanen et al. (2020) predict the volumetric stoniness using general linear models 

rather than classification. In a study by Priori et al. (2014) they used similar gamma-ray data 

to predict soil stoniness, achieving a moderate R2 of 41%. Their study was conducted in a 

topographical area where the mineral composition and parent material differ significantly 

from those in the study area of studies I and III. Additionally, their study area exhibited 

substantial variation in parent materials which most likely led to the differences in the results. 

Soil textures often show reliable correlation with soil gamma radiation and can be quite easily 

used to predict soil texture in areas characterized by homogeneous parent material. In regions 

where the lithology is heterogeneous, more advanced statistical processing is required for 

data aggregation in order to derive textural information. (Reinhardt and Herrmann 2018). 

Therefore, it is important to acknowledge that soil mapping using gamma-ray spectrometry 

strongly site-specific (Dierke and Werban 2013; Priori et al. 2014; Rawlins et al. 2007). 

The volumetric proportion (%) of stoniness in soil would offer a better overall picture of 

the stone content, as demonstrated by Heiskanen et al. (2020). However, as seen in Studies I 

and III and in Melander et al. (2019), classification of stoniness provides more consistent 

and accurate prediction results (compared to prediction accuracy of Heiskanen et al. (2020) 

and Priori et al. (2014)) even if, the measurement methods differ. The bedrock in our study 

area showed little variation (consisting mainly of migmatite) which is crucial, as previous 

research has stated the radiation properties of soil are affected more by the parent material, 

rather than individual soil characteristics. In addition to gamma values, we could consider 

using information on above ground boulders to assist in the prediction of topsoil stoniness. 

As evidenced by Stendahl et al. (2009), a correlation was identified between surface boulder 

frequency and stone and boulder content. However, the strength of this correlation exhibited 

regional variations. Furthermore, the correlation between stoniness and soil information with 

different landforms and topographies should be considered. Digital terrain models (DTMs) 

would be useful in this regard, as they can be created using data obtained from various 
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sources, such as ALS and TLS, which are extensively employed in forest inventories 

(Hyyppä H. et al. 2005; Hyyppä J. et al. 2006; Hyyppä H. et al. 2006). 

In a study by Kankare et al. (2019) they evaluated the information of the static 

trafficability map in relation to the rutting damage within logging tracks within thinning 

stands. They stated that the probability of rutting damage is found to be considerably 

influenced by a variety of factors, including local weather history, route planning and used 

machinery. An analysis of the available data indicates that the utilization of static 

trafficability maps can enable the allocation of harvesting stands for different seasons, 

thereby providing a framework for the strategic planning of wood procurement. Terrain 

trafficability maps are widely available and undergo continual improvement and refinements 

(Finnish Meteorological Institute 2023; Metsäkeskus 2023). However, trafficability maps 

have a somewhat coarse resolution and further research is necessary to comprehensively 

understand the impact of various variables on the risk of rutting damage. As study III 

concluded, a handheld gamma spectrometers could be used to observe small-scale changes 

of the soil more accurately. Of course, measurements with handheld gamma spectrometers 

are laborious for large scale usage but could be utilized on some smaller areas. Gamma 

spectrometers that can be attached to drones could provide valuable information on the small-

scale changes in soil properties that have an impact on trafficability. Klvac et al. (2010) 

suggest based in their study that light falling weight deflectometer (LFWD) may be utilized 

to assess the bearing capacity and compaction of forest soils beneath the canopy as well as in 

transport lines. This data could be studied in conjunction with gamma-ray data. Although, 

study II found no correlation between LFWD values and gamma values, this has not been 

studied in the field of terrain trafficability. 

Capturing within-site variations in site trafficability is necessary to avoid undesirable soil 

and root damage. Hoffman et al. (2022) stated that DTW maps are an effective tool in forest 

management when planning and executing operations in order to mitigate the traffic-induced 

soil impacts, by identifying sensitive areas that should be avoided during mechanized 

operations. Highest degree of rutting and soil compaction typically occurs in the top 30-

centimeter soil layer, which normally contains most of the root mass (Wingate-Hill and 

Jakobsen, 1982). All of these effects on the soil structure can significantly reduce vegetation 

growth. Murphy et al. (2004) reported that compaction below a depth of 10 centimeters 

resulted in a reduction of up to 42% in tree growth, which corresponded to a 60% reduction 

in value over a projection of 28-year period. Pressure and rutting can be avoided by creating 

brush mats from harvesting residues especially for peak loads on the most vulnerable sections 

of stands (Labelle and Jaeger 2012).  

 

 

5 CONCLUSIONS 
  

  

Predicting the bearing capacity and trafficability of forest roads by means of static road 

parameters remains a challenge. Addressing the problem related to detecting weak spots on 

roads is imperative, as gamma-ray data did not provide any insight on that matter. 

Furthermore, the classification thresholds (Table 4) should be validated through testing and 

field measurements, as there is currently little information on how they are actually 

delimited/formed and whether they can be properly used in practice. Additionally, an 

alternative analysis method to LME should be considered as the results of this dissertation 

demonstrate that the relationship between road properties and LFWD values is not linear. 
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While road width variables appeared to be highly significant in detecting LFWD values, other 

significant variables need to be identified due to autocorrelation with road quality and road 

size. In particular, water content and the condition of the road surface and underlying layers 

are likely to enhance the accuracy of assessments regarding the bearing capacity of roads in 

general. The increasing availability of dense LiDAR data available in Finland could provide 

a useful tool for extracting data on these significant road properties without extensive and 

laborious field measurements and should thus lead to improvements in the planning and 

targeting of road maintenance. 

The results of this dissertation provide novel insights into the application of gamma-ray 

spectrometry for assessing soil properties which affect the terrain trafficability. The study 

makes successful predictions regarding the stoniness of topsoil and offers encouraging results 

for predicting soil and peat depth. Whether these results are applicable on geologically 

diverse settings remains unclear or if a petrologic adjustment factor is needed. To achieve a 

more comprehensive assessment of the method's robustness across diverse environments, 

further studies are necessary. These studies should employ larger datasets and high-resolution 

gamma data on varying parent materials. The study-specific results also highlight the 

potential of ground gamma/high resolution gamma to noticeably improve the prediction of 

soil properties when compared to air gamma.  
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