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ABSTRACT 

The wood properties of standing trees are usually measured through destructive sampling, 

which is laborious and limited in terms of the number of observations that can be collected 

across a range of forest structures. In this thesis, the potential of bi-temporal laser scanning 

(LS) was explored to address these limitations by establishing a link between wood properties 

and the development of external tree characteristics. This thesis is an amalgamation of 

Studies I–III, in which all the experiments were conducted at the Evo study site in Southern 

Finland, encompassing diverse boreal forests.  

Study I assessed the feasibility of detecting increments in crown metrics using bi-

temporal airborne LS (ALS) acquired over a 5-year time interval. Significant increments 

were obtained across different crown metrics, the most prominent being recorded for crown 

volume and crown surface area. Differences were also noted between tree species in relative 

increments of the crown metrics, with Scots pine (Pinus sylvestris L.) differing significantly 

from Norway spruce (Picea abies [L.] H. Karst.) and birch (Betula spp.), though species still 

accounted for a small portion of variability.  

The increments in tree height and crown metrics observed over a 7-year monitoring 

period, in addition to their initial state, were then used to explain stem volume growth (ΔV) 

in Study II. To avoid point cloud occlusion, which typically occurs when the data is acquired 

using either aerial or terrestrial platforms, a combination of helicopter-borne ALS and 

terrestrial LS point clouds was used for the tree observations. Scots pine showed the highest 

associations between ΔV and tree height, crown projection area, and crown perimeter. By 

contrast, increments in crown volume and crown surface area emerged as highly important 

metrics for predicting the ΔV of Norway spruce and birch using random forest regression.  

Building on these findings, Study III addressed the use of bi-temporal ALS for assessing 

wood properties and their variations between the trees and stands represented by the sample 

plots. Wood properties were measured using X-ray microdensitometry over 15 growing 

seasons corresponding with ALS acquisitions. It was demonstrated that the mean annual 

increment in tree height was moderately associated with mean ring width across all species 

at both levels of the tree (RWmean-tree) and sample plot (RWmean-plot). In turn, basal area 

weighted mean wood density showed limited associations with the growth metrics, with only 

Scots pine yielding significant models at both levels of the tree (WDmean-tree) and sample plot 

(WDmean-plot). However, accounting for plot-level variability in linear mixed-effect regression 

improved the explanatory power of both the WDmean-tree and RWmean-tree models at the tree 

level. 

Overall, this thesis contributes to the current knowledge by demonstrating the feasibility 

of utilizing bi-temporal point clouds to characterize increments in tree and crown metrics. It 

provides insights into methodologies for assessing growth allocation and highlights the 

potential of tree and crown metrics to explain wood properties and their variations non-

destructively and repeatedly. 

Keywords: Ring width, Growth, Terrestrial laser scanning, Wood density, Tree crown, Time 

series 
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1 INTRODUCTION 

 

 

1.1 Wood properties and their variation in forests  

 

Sustainable forest management requires the recognition of competing ecosystem services, 

including timber production, water regulation, carbon sequestration, and the preservation of 

biodiversity (Van Leeuwen et al. 2011; Wylie et al. 2019). To manage and use forest 

resources effectively, we need knowledge about the structure of trees and forests, wood 

properties, and how these characteristics develop under different growth conditions. Growing 

wood with desired properties is among the key goals in forest management. The desired wood 

properties, however, may vary according to the specific end product. For instance, the most 

important wood properties for the timber industry are wood density (WD), the proportions of 

heartwood and sapwood, and the size, type, and placement of knots, with fiber length, wood-

cell properties, and chemical compositions being most relevant for the pulp and paper 

industries (Listyanto and Nichols 2009). Silvicultural treatments aim to control the growth 

patterns and resulting tree form that lead to the variability in wood properties, influencing its 

suitability for end use (Barrette et al. 2023). In intensive forest management, for example, 

aimed at maximizing wood and timber production, these treatments include thinning, 

pruning, fertilization, and the removal of competing vegetation (Barrette et al. 2023). 

However, due to the acceleration of the formation of earlywood rather than latewood, wood 

properties are also changed deleteriously in terms of WD, stiffness, and strength (Barrette et 

al. 2023; Moore and Cown 2017). Wood properties are also influenced more by species-

specific morphological plasticity and stand structure than species mixing, which is often 

higher in mixed and uneven-aged stands (Pretzsch and Rais 2016). Hence, understanding the 

drivers of variation in wood properties is essential to anticipate the effect of forest 

management on future wood supplies. This knowledge has economic implications in terms 

of increasing the productivity of the supply chains.   

Wood properties are known to vary by species, wood anatomical structure, tree, stand, 

and site characteristics, which make them complex to assess. Throughout the stem, variations 

in the relative amount of cell types, cell dimensions, and chemical compositions determine 

the wood’s properties. These include supra-cellular and sub-cellular characteristics, such as 

ring width (RW), WD, the proportions of sapwood and heartwood, and the proportions of 

juvenile and mature wood, in addition to cell length, microfibril angle, and cell-wall 

thickness. Wood properties can also vary in response to individual tree characteristics, such 

as crown structure, branch architecture, knot size, knot placement, tree height (H), diameter, 

and stem taper (Duchesne et al. 1997; Krajnc et al. 2019; Kuprevicius et al. 2013; Mäkinen 

and Colin 1998). On a broader scale, competition between trees, stocking density, and 

disturbances have profound effects on wood quality as stand-level extrinsic characteristics 

(Ikonen et al. 2008; Kankare et al. 2022). All of these also change with tree age and stand 

development (Van Leeuwen et al. 2011; Wylie et al. 2019).  

 The most common species-specific wood property that has been studied over the years 

is WD (Downes and Drew 2008). This mostly defines the value of the wood structure, in 

terms of stiffness and pulp yield, and plays a key role in tree-level hydraulic efficiency and 

mechanical support (Demol et al. 2021; Swenson and Enquist 2007; Van Leeuwen et al. 

2011). It also directly affects tree biomass and carbon content predictions as a crucial 

conversion factor in transforming volume into biomass (Demol et al. 2021; Pokharel et al. 
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2016; Van Leeuwen et al. 2011; Wylie et al. 2019). The cell-wall thickness, ratio of latewood 

to earlywood, and tracheid size and shape determine WD variation, which is also dependent 

on the seasons, geographical area, and site conditions (Demol et al. 2021; Van Leeuwen et 

al. 2011). Another intrinsic metric of wood properties that represents the annual growth layer 

of a tree is RW. This has received particular attention in dendrochronology and growth-

pattern studies (Ahmed et al. 2024; Jevšenak et al. 2024). Environmental variables, such as 

temperature, precipitation, and soil quality, in addition to tree-specific characteristics, such 

as genetics and competition, influence RW. These factors together determine the annual 

variations in RW, providing insights into the tree’s growth history and the environmental 

conditions it has experienced (Van Leeuwen et al. 2011). The advancement of measurement 

technologies and the increasing need for understanding within- and between-tree wood 

properties serve as the primary motivations driving studies in this area (Downes and Drew 

2008). Recently, wood properties have been measured using X-ray microdensitometry 

systems in the radial and tangential planes (Downes and Drew 2008; Peltola et al. 2007; 

Schimleck et al. 2019). This allows wood properties to be measured at a relatively high 

resolution, and not only as an average, but also at the level of the variations typically along a 

pith-to-bark transect. These X-ray microdensitometry systems combine densitometric 

measurements with multi-element analysis through X-ray fluorescence. However, these 

methods are expensive and labor-intensive because wood samples need to be collected, 

whereas understanding wood properties across a broad range of stand and tree communities 

is needed urgently for effective forest management and wood procurement (Van Leeuwen et 

al. 2011). In addition, standard methods of sampling are required to resolve annual growth 

reliably, especially for species without strong seasonal variation (Downes et al. 1997). 

Almost infinite sets of growing conditions and silvicultural treatments also affect wood 

samples, which makes modeling a challenging task.  

Tree crown characteristics affect wood suitability for end-use products by indicating the 

number of knots in the timber and have been widely used in modeling wood formation and 

predicting wood quality (Van Leeuwen et al. 2011). According to the conceptual model 

proposed by Larson (1969), the auxin that is produced in the stem apex has a fundamental 

role in forming the xylem properties. A higher auxin concentration leads to large-dimeter, 

thin-walled earlywood cells. Hence, earlywood production declines as distance from the 

auxin-producing live crown increases, with trees with large crowns being likely to produce 

wood with inferior mechanical wood properties. Crown dimensions, which are regulated in 

response to the stand density and competition status, can affect the wood interior 

characteristics (Van Leeuwen et al. 2011). This relationship is dependent on the competitive 

status of the crown (dominant, co-dominant or suppressed), as well as the shade tolerance of 

the studied species (Amarasekara and Denne 2002; Chen et al. 2017). Mechanical loading of 

the crown, which redistributes growth to the high-stress region, is another factor affecting the 

xylem properties (Krajnc et al. 2019).  

Previous studies have shown it is possible to assess stem growth by means of crown 

characteristics and their development over time (Pretzsch 2021; Seidel et al. 2015; Yrttimaa 

et al. 2022). Tree crown and stem growth are structurally and functionally linked to each 

other. The stem holds up the tree crown by hydraulics and mechanical supplies and transports 

water and nutrients to the leaves through the vessel elements. Conversely, the tree crown 

translocates photosynthetic carbon to the stem. These two features retain similar information 

and have been used in many eco-physiological growth models in combination with each other 

(Pretzsch 2021; Sievänen et al. 2000). Krajicek et al. (1961) were among the first to determine 

the relationship between crown width and stem diameter at breast height (dbh) in open-grown 
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trees. Understanding these species-specific relationships can also be used to assess species 

tolerance to variations in stand density, guide thinning treatments, and estimate growth. For 

instance, Mitchell (1969) used this simple relationship for a tree growth model in white 

spruce (Picea glauca [Moench.] Voss). Also, Mitchell (1975) demonstrated how to relate 

stem growth and crown dimension in Douglas-fir (Picea menziesii [Mirb.] Franco), using the 

resulting growth model in a simulation system for the silviculture of Douglas fir. In another 

study, Ottorini et al. (1996) developed an equation to estimate annual stem volume growth 

using stem and crown characteristics in even-aged ash (Fraxinus excelsior L.) stands. They 

showed that foliar volume––a product of crown projection area and annual height growth––

along with its relative measure, computed as a ratio between foliar volume and stem surface 

area raised to the power of 3/2, were the determining factors in stem growth of ash stands. A 

larger tree crown usually needs a bigger stem to support the increased biomass, thus 

establishing a link between the tree crown and RW. This is important in the context of 

metabolic scaling theory, which predicts the scaling up of photosynthetic and metabolic rates 

with biomass growth (Ahmed and Pretzsch 2023). Quantifying this link is also important 

because it reflects the impacts of past management actions.  

However, measuring tree crown dimensions is time-consuming and difficult in the field 

due to their inaccessibility. Sometimes, simpler measures can be applied, such as tree dbh, 

height, and age for predicting competition between trees and their wood properties, but this 

method includes uncertainties (Biging and Dobbertin 1995; Ma et al. 2018; Van Leeuwen et 

al. 2011; Wensel et al. 1987). In permanent sample plots that enable forest monitoring, 

recording the development of trees requires the ability to relocate and remeasure specific 

trees, which is again time-consuming and prone to measurement errors. In addition, crown 

properties are rarely monitored. In general, the variability in consecutive measurements of 

trees and forests poses a challenge in distinguishing between the contributions of actual 

changes and measurement errors, especially when the magnitude of the actual change falls 

within the accuracy limits of the measurement technique. For instance, Luoma et al. (2017) 

assessed the repeatability of field measurements of dbh and height using calipers and 

clinometers in four independent measurements of 319 sample trees. They achieved a standard 

deviation of 1.5% for the dbh and 2.9% for the height measurements. Quantifying the 

structure of the crown is destructive and labor-intensive if the trees are felled, and detailed 

measurements of branch characteristics must be conducted to calculate the position, length, 

and angle of the branches relative to the initiation point of each annual stem growth unit 

(Ottorini et al. 1996; Seifert 2003).  

 

 

1.2 The use of laser scanning in characterizing tree crowns and their growth 

 

Laser scanning (LS) is an active remote-sensing technique that utilizes laser pulses for 

directed range measurements, and is capable of reconstructing the three-dimensional (3D) 

structures of trees and stands in a digital format as point clouds (Wehr and Lohr 1999). This 

can be deployed from static or mobile, aerial or terrestrial platforms. Over the last decade, 

this method has revolutionized forestry research and operations by integrating airborne LS 

(ALS) into forest inventory practices (Maltamo et al. 2006; Næsset 2004; White et al. 2017).  

Typically, ALS provides observations of vegetation height and density with a wide 

geographical coverage (White et al. 2017). Previous studies have shown its capabilities in 

characterizing the vertical structure of forests (Coops et al. 2007; Hyyppä et al. 2008; Zhao 

et al. 2018). Particularly, ALS has been demonstrated to be a promising technique for the 
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mapping and monitoring of tree crowns (Duncanson and Dubayah 2018; Popescu and Zhao 

2008). For instance, Frew et al. (2016) used the manual detection of individual trees to 

determine the crowns of Douglas fir (Pseudotsuga menziesii [Mirb.] Franco var. menziesii) 

trees at multiple time points. This manual detection was based on points of interest 

representing the location of individual trees in the field, discrete ALS datasets, and four-band 

multispectral imagery. They used FUSION software to subset the ALS data and multispectral 

imagery by zooming into field points of interest in an interactive viewer, allowing visual 

identification of the point clouds associated with individual trees. These were further 

processed interactively to calculate H and crown metrics, such as base height. The crown 

volume (CV) of individual trees was also obtained by triangulating the exterior crown points 

into a convex hull. The results showed a significant mean difference between ALS-derived 

H and crown base height with field measurements at a 95% confidence interval, resulting in 

coefficient of determination (R2) values of 0.98 and 0.79, respectively. Similar results were 

obtained between the predicted field and ALS-derived CVs, with an R2 value of 0.45 

compared to the field-measured CV.  

Terrestrial LS (TLS) is generally considered a non-destructive technology that provides 

detailed point clouds enabling millimeter-level details in the 3D characterization of 

individual trees, particularly the stem characteristics (Calders et al. 2020; Kankare et al. 2014; 

Liang et al. 2014; Liu et al. 2018; Srinivasan et al. 2015; Yrttimaa et al. 2020b). It has also 

been successfully applied in the characterization of tree crowns and branching structures 

(Metz et al. 2013; Srinivasan et al. 2015; Yrttimaa et al. 2024). Compared to ALS, TLS covers 

smaller, localized areas because its extent is limited by the static platform and hemispherical 

measurement geometry (Liang et al. 2016). Hence, TLS measurements are increasingly used 

nowadays as a reference for assessing how well other approaches are capable of measuring 

stem dimensions and crown properties. For example, in Jung et al. (2011), the tree and crown 

metrics of 15 Korean pines (Pinus koraiensis), extracted from ALS, were assessed using TLS 

data collected from the cardinal directions and manually processed into individual trees to 

obtain their characteristics, whereas the ALS data were segmented into individual tree crowns 

using the iterative watershed method, with the extended maxima transformation of image 

processing corresponding to each field-measured tree. Then, the H, crown projection area 

(CA), and CV were obtained for each segmented crown. They also estimated the crown base 

height through the iterative k-means clustering algorithm. The results of a regression analysis 

between the estimates of ALS and TLS resulted in R2 values of 0.94, 0.75, 0.69, and 0.58 for 

the H and CA, geometric volume, and base height, respectively.  

However, the capabilities of ALS and TLS in characterizing tree crown structures are 

limited in dense forests, where the crowns of individual trees overlap (Jung et al. 2011; Metz 

et al. 2013; Srinivasan et al. 2015; Weiner 2004). The below-canopy viewpoint of TLS 

reduces the visibility of crown structures toward the top of the canopy, which are often 

occluded by the crowns of adjacent trees (Liang et al. 2018). This limited coverage of TLS 

point clouds at the top of the canopy is typically mitigated by adopting a multiscan approach 

during data acquisition and using scanners capable of recording multiple returns for each 

laser signal emitted. However, capturing the vertical structure of trees remains challenging 

in closed-canopy conditions, and can lead to underestimations of H (Liang et al. 2018; Vaglio 

Laurin et al. 2019) in addition to the inaccurate characterization of the crown dimensions and 

the competitive status of the trees (Terryn et al. 2022). A complementary viewpoint from the 

upper part of the canopy can be provided by ALS, but at the cost of the horizontal structure 

and stem dimensions, which are occluded by the canopy vegetation (Polewski et al. 2019; 

Terryn et al. 2022). Kükenbrink et al. (2017) quantified the occluded canopy volume of ALS 
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over part of a semi-natural mixed deciduous forest in Zurich, Switzerland, using a voxel 

traversal algorithm. They also analyzed the dependency of occluded canopy volume on pulse 

density, flight-strip overlap, and acquisition season. The results showed that, even with the 

highest average pulse density (11 pulses/m2), at least 25% of the canopy volume remained 

occluded in the ALS acquisitions under leaf-on conditions. Roughly 7% of this occlusion was 

recovered by combining the leaf-off and leaf-on acquisitions. A cross-comparison with the 

TLS acquired for the leaf-on conditions further revealed that 28% of the vegetation elements 

detected by TLS were not detected by ALS due to the effects of occlusion. They also found 

a significant increase in the amount of observed canopy volume with larger flight-strip 

overlap. In a study by Novotny et al. (2021), the accuracy of individual tree attributes 

measured by ALS and TLS was affected by the occlusion primarily using the automatic 

segmentation method. However, the manual segmentation method was also partly influenced 

by complex forest structure and subjective evaluation. The scanned H had the highest 

correlation (r) with the field-measured H for Norway spruce (Picea abies [L.] H. Karst.). The 

correlations were r = 0.91 for ALS automatic segmentation, r = 0.94 for ALS manual 

segmentation, and r = 0.91 for TLS manual segmentation. The TLS estimates of crown base 

height were more accurate than the ALS estimates, with the TLS manual segmentation having 

r = 0.85 with a standard error of 1.4 m. In terms of crown diameter, the ALS manual 

segmentation showed better agreement with the field measurements than the TLS manual 

segmentation (r = 0.71).  

Hence, the combination of ALS and TLS in a multisensorial framework can potentially 

lead to a higher level of detail in tree characterization. Panagiotidis et al. (2022) evaluated 

the efficiency of unmanned aerial vehicle LS (UAV-LS) and TLS separately and in 

combination in order to estimate individual tree metrics under different management types. 

The combination of UAV-LS and TLS significantly increased the accuracy of the H and dbh 

measurements, especially in broadleaves, giving root mean square error (RMSE) values of 

0.7 m and 0.9 cm, respectively. They also observed changes in crown structure compared to 

the separate datasets, which led to improved estimates for all the crown metrics. Yun et al. 

(2019) provided a quantitative comparison of the occlusion effect among different LS of 

fixed-position terrestrial, multiple terrestrial, and airborne-terrestrial approaches. In this 

study, five virtual 3D tree models, based on field measurements from multiple tree crowns, 

were reconstructed, and multiplatform LS simulations were performed on these. The results 

showed that the one simulated terrestrial scan captured only 25–38% of the leaf area, which 

increased to 60–73% when three simulated terrestrial scans around one tree were acquired. 

Importantly, the inclusion of a supplementary airborne scan reduced the occlusion and 

recovered 72–90% of the leaf area. A similar result was obtained by Schneider et al. (2019). 

They compared two measurement setups for tropical and temperate forests, separately, 

including a combination of TLS and laser scans from a canopy crane, and a combination of 

TLS and UAV-LS. The results showed it was possible to combine ground and above-canopy 

measurements to sample the CV with less than 2% occlusion. The sufficient coverage of TLS 

was observed when no sampling of the leaves and branches at the top of the canopy was 

required. Contrastingly, UAV-LS and the measurements from canopy cranes showed 

considerable occlusion in the middle and understory. However, forests with complex 

structures may benefit more from being characterized using multisensorial point clouds than 

forests with simpler structures, as discussed in Yrttimaa et al. (2020a). In that study, the 

estimation accuracies of forest structural attributes, using TLS point clouds and a 

combination of TLS with photogrammetric point clouds acquired from UAV, were assessed 

in managed Scots pine stands. These structural attributes were computed by aggregating 
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individual tree observations. They showed that both TLS and its combination with UAV were 

capable of deriving plot-level stem number, basal area, and basal area weighted mean 

diameter with relative RMSE (rRMSE) values of less than 4.8% because the TLS alone also 

captured the upper part of the canopy rather well in simple forest structures. However, the 

rRMSE values improved from 4.3 to 2.8% for the plot-level basal area weighted mean height 

and from 6.2 to 5.4% for the plot-level mean stem volume when the combination of TLS and 

UAV was used.  

In addition, the use, availability, and temporal resolution of LS is increasing, allowing us 

to take advantage of time-series data to observe or model structural changes in trees and 

forests. Generally, modeling these changes is applied by either direct or indirect methods 

(McRoberts et al. 2014; Soininen et al. 2024). With the direct method, the change in variables 

of interest is predicted from the observed changes in multitemporal LS point clouds as direct 

predictors. The indirect method predicts change by differencing independent predictions of 

the variable of interest obtained through time. These changes can also be predicted at different 

spatial scales, divided into canopy-gap-based, area-based, and individual tree-level analyses 

(Soininen et al. 2024). Unlike the area-based and individual tree-level analyses, the level of 

detail provided by the canopy-gap-based analysis is very often not clear. In this method, the 

changes are detected through differencing point-cloud-derived metrics or a canopy height 

model (CHM) (Noordermeer et al. 2019; Vastaranta et al. 2013). In area-based analysis, 

metrics describing the horizontal and vertical distributions of pulse returns in a regular, fixed 

area larger than the tree crowns are used to predict forest changes (Dubayah et al. 2010; 

Næsset and Gobakken 2005). However, spatial information beyond this area, and harvested 

or fallen trees at the level of the tree, are lost (Soininen et al. 2022). The addition of detail is 

provided by individual tree-level analysis, which enables investigation of the relationship 

between tree growth and other factors, such as tree size, competition, species composition, 

and stem density. Hence, it simulates attempts to link these measurements with conventional 

individual tree growth models (Tompalski et al. 2021). This information can also be 

aggregated at the stand level, although Peng (2000) acknowledged that it does not necessarily 

correspond to the average change in multilayered forest stands because it is weighted by the 

dominant trees.  

Both ALS and TLS have been demonstrated as being able to quantify tree growth and 

structural changes if consecutive measurements are collected over time (Luoma et al. 2021; 

Sheppard et al. 2017; Tompalski et al. 2021). A few studies have also predicted changes in 

the crowns of individual trees. For instance, Duncanson and Dubayah (2018) studied forest 

change at the individual tree level by comparing the spatially matched individual crowns 

from two different ALS acquisitions in a high-biomass forest in California. Across Douglas 

fir trees, Frew et al. (2016) examined the capability of ALS to detect the growth in CV based 

on manual detection and field reference data. However, the challenge to accurately predict 

individual-tree changes in the stem and crown persists. In addition, tree growth is prone to 

high variability between tree species as an intrinsic source of change because each species 

responds to lightning conditions, growing space, and resources differently (Coomes and 

Allen 2007). This emphasizes the need for further species-specific studies under different 

growing conditions. 
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1.3 Objectives 

 

The effective management and utilization of forest resources require an understanding of tree 

and forest structure, wood properties, and the development of these characteristics under 

various growth conditions. In this thesis, the ability of LS to monitor tree growth patterns in 

boreal forests was investigated, these measurements being linked to species and wood 

properties. The following specific objectives and related questions were addressed in Studies 

I–III.  

The first objective was to investigate the feasibility of bi-temporal ALS data to detect 

increments in crown metrics (Study I), with the related research question (RQ1) formulated 

around whether increments in the ALS-derived crown metrics could be detected over a 5-

year period. If the increments could be detected, the second research question (RQ2) was 

whether the relative increments in the investigated metrics differed between tree species. 

The second objective was to investigate the relationships between stem volume growth 

and crown metrics, in addition to their increments over time, using a combination of bi-

temporal TLS and helicopter-borne ALS point clouds (Study II). The related research 

question (RQ3) was about the extent to which crown metrics and their increments over time 

explained the observed variation in stem volume growth.  

The third objective was to assess wood properties and their variation between trees and 

sample plots using bi-temporal ALS data (Study III). The related research question (RQ4) 

asked how the basal area weighted mean WD and mean RW were related to the respective 

ALS-derived mean annual increments in crown metrics at the tree and plot levels, analyzed 

by species. 

 

 

2 MATERIALS AND METHODS 

 

 

2.1 Study area and field measurements 

 

The study area was located in the southern boreal forest of Finland, at Evo (61.19ºN, 25.11ºE) 

(Figure 1a) and included approximately 2,000 ha of managed forest with elevations ranging 

from 125 to 185 m above sea level. Scots pine (Pinus sylvestris L.), Norway spruce (Picea 

abies [L.] H. Karst.), and silver and downy birches (Betula pendula Roth and Betula 

pubescens Ehrh., respectively) were the dominant tree species in the study area, contributing 

44.7%, 33.5%, and 21.8% of the total volume, respectively. The experimental setup for Study 

I included 91 rectangular sample plots initially established in 2014 with dimensions of 32 × 

32 m (1,024 m2) (Figure 1b).  

At the time of establishment, a tree-by-tree field inventory was conducted for the trees 

with dbh values exceeding 5 cm. The field inventory included tree species and health status 

determined based on visual interpretations. The dbh measured using calipers and the height 

using a Vertex IV clinometer (Haglöf Sweden AB, Långsele, Sweden). These were used to 

compute the tree-level basal area, considering the cross-sectional area of the trees to be 

circular and calculating the stem volume using the national species-specific volume equation 

(Laasasenaho 1982). The sum and basal area weighted mean descriptive statistics of the field 

plots are presented in Table 1. 
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Figure 1. (a) Study area in Evo, Finland, and (b) distribution of sample plots over Esri’s world 

imagery basemap. 

 

 

Among the 91 sample plots, a subset of 22 sample plots were selected for Study II, which 

encompassed a variety of stand conditions representing different stages of development, 

species composition, stand density, and canopy layering. These plots have been used to 

support various remote-sensing research activities, including the international benchmarking 

of TLS approaches for forest inventory (Liang et al., 2018). The field inventory for these 22 

sample plots was repeated in 2021, with the remeasurement of dbh and height of all trees that 

met the predefined dbh threshold of 5 cm. Table 2 shows the number of trees, stem volume, 

basal area weighted dbh, and height for all 22 field plots in 2014 and 2021. 

 

 

Table 1. Summary statistics across the 91 sample plots used in Study I, showing the minimum, 

maximum, mean, and standard deviation of the number of trees, mean volume, basal area 

weighted mean diameter, and basal area weighted height. 

 

Attribute Min Max Mean Std. 

Number of trees  

(n/ha) 
342 3,076 943 556 

Mean volume  

(m3/ha) 
34.46 518.39 271.49 110.73 

Basal area weighted 

mean dbh (cm) 
13.91 46.42 25.79 7.51 

Basal area weighted 

mean height (m) 
10.02 31.09 21.10 4.42 
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Table 2. Summary statistics across the 22 sample plots used in Study II for the years 2014 
(T1) and 2021 (T2), including minimum, maximum, mean, and standard deviation values for 
the number of trees, stem volume, basal area weighted dbh, and height. 
 

Attribute 
2014 2021 

Min Max Mean Std. Min Max Mean Std. 

Number of trees 

(n/ha) 
430 3,008 1,238 731 430 2568 1,197 674 

Mean volume 

(m3/ha) 
110.64 482.33 297.24 115.21 143.89 537.24 356.42 117.14 

Basal area 

weighted mean 

dbh (cm) 

13.91 41.58 25.93 9.10 16.08 42.41 27.91 8.79 

Basal area 

weighted mean 

height (m) 

13.03 27.04 21.01 4.14 14.80 28.14 22.50 3.80 

 

 

For Study III, a subset of 59 sample plots, dominated by pines and spruces, was utilized. 

Trees identified during field measurements in 2014 were considered as the population for 

wood sampling. In April–May 2023, wood samples were collected from Scots pine and 

Norway spruce trees using an increment borer at a fixed height of 1.30 m above the ground 

(Figure 2). The number of samples was determined based on the dominant tree species per 

plot. Excluding the birch-dominated plots, the number of samples was supposed to be eight 

for the Scots pine- and Norway spruce-dominated plots and 12 when the species shared more 

than 30% of the basal area proportion. The selection of sample trees per plot included those 

located within an 11-m distance from the plot center and with a height exceeding 80% of the 

dominant height in that plot. This was done to increase the likelihood of detecting these trees 

in the ALS data. Additionally, sample trees were distributed among different dbh classes and 

plot sectors spanning 90º, with the main cardinal point sitting at the middle of each, 

representing various trees and stand conditions. A total of 273 Scots pine and 150 Norway 

spruce wood samples were collected.  
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Figure 2. (a) Wood sampling using an increment borer. (b) The core extracted from the tree, 

and (c) the digital radiographic image generated by X-ray microdensitometry. The resulting 

(d) WD and (e) RW profiles spanning the tree’s lifetime. The red dashed line represents the 

period investigated in this study. 

 

 

2.2 X-ray microdensitometry measurements 

 

The reference measurements of wood properties used in Study III were obtained using the 

ITRAX X-ray microdensitometry system (Figure 3) (Cox Analytical Systems, Göteborg, 

Sweden). First, air-dried samples with a 12% moisture content were scanned in batch mode 

with a standard X-ray intensity for an exposure time of 20 ms, which generating digital 

radiographic images with horizontal and vertical pixel sizes of 25 µm. Second, WD profiles 

were extracted from scanned images using density software (Bergsten et al. 2001), and intra-

ring standard measurements were extracted using in-house-developed Excel macros. Based 

on these, the sample trees’ mean WD (WDmean_tree) and RW (RWmean_tree) values for the years 

2009 to 2022, which coincided with the ALS acquisitions used in Study III, were calculated 

by species (Subsection 2.3). We omitted the possible early season of 2023 to maintain 

measurement consistency. The WDmean_tree was weighted by basal area using RW as a proxy 

for basal area growth from the pith outward (Biondi and Qeadan 2008). At the plot level, the 

WDmean_tree and RWmean_tree values of individual trees were averaged for each species 

separately (WDmean_plot, RWmean_plot), and the standard deviation between these was calculated 

for only the sample plots having at least three observations per species (WDstd_plot, RWstd_plot). 

Table 3 summarizes the attributes obtained from the X-ray microdensitometry. 
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Figure 3. The ITRAX X-ray microdensitometry system (left) developed by Cox Analytical 

Systems (Peltola et al. 2007). 

 

 

Table 3. X-ray microdensitometry measurements at the tree and sample plot levels. These 

include the basal area weighted mean wood density (WDmean_tree) and mean ring width 

(RWmean_tree) between T1 (2009) and T2 (2023) and their plot-level means (WDmean_plot, 

RWmean_plot) and standard deviations (WDstd_plot, RWstd_plot). The minimum, maximum, mean, 

and standard deviation are presented. 

 

 

 Min Max Mean Std. 

 
Tree-level statistics for Scots pine/Norway spruce 

sample trees (n = 273/150) 

WDmean_tree 

(g/cm3) 
0.42/0.34 0.69/0.57 0.54/0.45 0.05/0.05 

RWmean_tree 

(mm) 
0.28/0.28 2.53/3.18 1.26/1.24 0.46/0.51 

 
Statistics of the mean values for Scots pine/Norway spruce- 

dominated sample plots (n = 45/25) 

WDmean_plot 

(g/cm3) 
0.44/0.40 0.60/0.49 0.54/0.45 0.03/0.02 

RWmean_plot 

(mm) 
0.43/0.50 2.44/2.06 1.25/1.26 0.37/0.41 

 
Statistics of the standard deviation values for Scots Pine/Norway 

spruce-dominated sample plots (n = 39/23) 

WDstd_plot 

(g/cm3) 
0.01/0.02 0.09/0.08 0.04/0.05 0.02/0.02 

RWstd_plot 

(mm) 
0.04/0.10 0.62/0.86 0.33/0.37 0.13/0.18 
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2.3 Point cloud data 

 

All the studies were conducted utilizing point cloud data collected at two distinct time points, 

referred to as the first (T1) and second (T2) acquisitions. Table 4 provides an overview of the 

point cloud data used in the studies. Studies I and III relied solely on ALS data, with T1 

acquisition taking place in July 2009, using a Leica ALS-50II SN058 scanner (Leica 

Geosystems, St. Gallen, Switzerland) with a 30º scanning angle, beam divergence of 0.22 

mrad, and wavelength of 1064 nm (hereafter referred to as ALS 2009). The flying altitude 

was 400 m, with a pulse rate of 150 kHz, resulting in an average point density of 10 pts/m2. 

The T2 acquisition for Study I, with a lower point density, was collected in September 2014 

using a Leica ALS70-HA SN7202 scanner at a scanning angle of 30º and beam divergence 

of 0.15 mrad (ALS 2014). The pulse rate and flying altitude were 240 kHz and 900 m, 

resulting in a point density of approximately 6 pts/m2. In Study III, however, the T2 

acquisition was collected using a helicopter-borne Riegl VUX-1HA (Riegl Laser 

Measurement Systems GmbH, Salzburg, Austria) laser scanner in June 2023 (hereafter 

referred to as ALS 2023). With a flying altitude of 100 m, a flying speed of 50 km/h, and a 

scanner operating at a pulse rate of 1,017 kHz and a wavelength of 1,550 nm, the data 

represented an average point density of 1,182 pts/m2. This scanner is one of the three Riegl 

scanners in the HeliALS-TW triple-wavelength laser scanning system, which was mounted 

at the front of the system, with a nominal scan plan of 15º forward, and provided a linear 

scanning pattern.  

A multisensorial framework was applied in Study II, combining TLS and ALS at each 

time point. The helicopter-borne scanner of Riegl VQ-480-U, with a 1,550-nm wavelength, 

was used for the T1 acquisition of ALS in December 2014 (hereafter referred to as Heli-ALS 

2014). This is a lightweight scanner that was operated at a 550-kHz pulse rate and a beam 

divergence of 0.3 mrad. With a flying altitude of 75 m and a flying speed of 50 km/h, this 

setup resulted in a point density of approximately 450 pts/m2. The T2 ALS acquisition for 

Study II was conducted in June 2021 using the multispectral HeliALS-TW system, as used 

in Study III, as mentioned above (hereafter referred to as Heli-ALS 2021). The acquisition 

took place at a flying altitude of 80 m and a target flying speed of 50 km/h. The combined 

point cloud data from all the Riegl scanners used, including a VUX-1HA, a MiniVUX-

3UAV, and a VQ-840-G, were examined in Study II, and featured a point density of 3,200 

pts/m2 and a point spacing of 2.0 cm on the ground. The MiniVUX-3UAV has a linear 

scanning pattern (120º), similar to the VUX-1HA scanner (360º), whereas the VQ-840-G 

provides conical scanning principles, with a 40º cone angle. The wavelengths for the 

MiniVUX-3UAV and the VQ-840-G were 905 and 532 nm, with pulse rates of 300 and 200 

kHz, respectively.  

The T1 acquisition of TLS for Study II occurred in April–May 2014 using a Leica 

HDS6100 phase-shift scanner (hereafter referred to as TLS 2014). This used a wavelength of 

690 nm and provided a 310º vertical × 360º horizontal field of view, with a 0.018º angular 

resolution and a beam divergence of 0.22 mrad. A total of five individual scans per sample 

plot were collected to capture a comprehensive point cloud representing the entire sample 

plot. The center scan was located at the plot center, while the other four auxiliary scans were 

evenly positioned at an 11.3-m distance around the sample plot center in the quadrant 

directions (i.e., northeast, southeast, southwest, and northwest). For the T2 acquisition of 

TLS for Study II, the time-of-flight scanner of Leica RTC360 3D was used in a data-

acquisition campaign that took place in April–May 2021 (hereafter referred to as TLS 2021). 

The field of view for this scanner was 300º vertical × 360º horizontal. It operated at a 
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wavelength of 1,550 nm and provided an angular resolution of 0.009º and a beam divergence 

of 0.16 mrad. More specifically, the scan setup for TLS 2021 was densified in comparison 

with TLS 2014 because of the improved scanner technology (i.e., higher resolution and 

measurement frequency, meaning shorter scan times per position) and an enhanced 

knowledge of the best practices in point cloud data acquisition in boreal forest conditions. 

The scan setup comprised eight auxiliary scans approximately at the plot borders, in addition 

to the central scan.  

Individual scans from each sample plot were registered together, with the aid of six 

reflective artificial reference targets attached to the trees at a height of approximately 2 m. 

These targets were evenly distributed on each sample plot, based on their visibility from the 

center scan locations, with at least three from the auxiliary scan locations. The Z+F 

LaserControl software for TLS 2014 and Leica Cyclone 3D Point Cloud Processing software 

for TLS 2021 were used for registration where the point clouds were merged with an accuracy 

of 2 mm, on average. It is worth mentioning that the location of the reflective artificial 

reference target was also determined in the TLS 2014 campaign. To accomplish this, two 

reference points over open areas, either inside or outside the plot, were located using a 

Trimble R8 global navigation satellite system (GNSS) receiver (Trimble Inc., CA, USA) with 

a real-time kinematic correction. A survey point was also established near the plot center, 

using distance and angle from the reference points. Finally, the location of artificial reference 

targets was determined using a Trimble 5602 DR200 + total station. 

 

 

Table 4. An overview of the point cloud data used in Studies I, II, and III at different time 

points. 

 

Study 
Number 

of plots  

First acquisition (T1) Second acquisition (T2) 

Year Scanner Year Scanner 

I 91 2009 
Leica ALS50II 

SN058 (ALS) 
2014 

Leica ALS70-HA 

SN7202 (ALS) 

II 22 2014 

Riegl VQ 480-U 

(Heli-ALS) 

Leica HDS6100 

(TLS) 

2021 

Riegl VUX-1HA/ 

MiniVUX-3UAV/ 

VQ-840-G  

(Heli-ALS) 

Leica RTC360 3D (TLS) 

III 59 2009 
Leica ALS50II 

SN058 (ALS) 
2023 

Riegl VUX-1HA  

(Heli-ALS) 
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2.4 Pre-processing point cloud data 

 

All point clouds were first denoised using LAStools software (rapidlasso GmbH, Cliching, 

Germany) to remove isolated noisy points, and then normalized by transforming height above 

sea level to height above the ground. For Study I, the point clouds were classified into ground 

and non-ground points by the data provider using TerraScan software. Similarly, we used 

LAStools software to assign ground and non-ground classes to each point in Studies II and 

III. To date, the algorithm developed by Axelsson (2000) is the simplest and most effective 

algorithm included in most point cloud classifying software. This algorithm works by 

creating a grid whose size corresponds to the lowest elevation return––the ground point. From 

these points, a triangulated facet surface is built, with vertices as bare ground points. Then, 

the vertical distance and angle of points other than those bare ground points are evaluated. 

Iteratively, the new ground points that meet the filtering criteria are added to the triangulation 

facet model. It is worth mentioning that all the pre-processing steps in Study I were assisted 

by 3,000 × 3,000-m tiling. And, to avoid empty pixels and poorly shaped triangle surfaces, a 

20-m buffer was used around the tiles (Isenburg 2015). Finally, the normalized point clouds 

in all the studies were clipped using sample plot polygons. However, the sample plot 

polygons were buffered by 5 m in Studies I and III to avoid boundary effects.  

The airborne platform was integrated with a GNSS and an inertial measurement unit, 

offering georeferenced point clouds over the study area. Contrastingly, the complementary 

terrestrial platform performed in the local coordinate system of the sensor. Hence, a co-

registration procedure was conducted to combine the point clouds of the georeferenced Heli-

ALS with the local TLS in Study II. In T1, TLS 2014 was georeferenced to the EUREF-FIN 

global coordinate system using the locations of artificial reference targets measured in the 

TLS 2014 field campaign (Subsection 2.3). The co-registration between Heli-ALS 2014 and 

TLS 2014 in T1 was also manually checked by determining whether the point clouds 

overlapped from the top and side views. It was further fine-tuned if discrepancies between 

point clouds in the horizontal plane persisted. However, obtaining acceptable positional 

accuracy in forest conditions is not always possible, especially in dense forests. Hence, an 

automatic co-registration method was conducted to co-register Heli-ALS 2021 with TLS 

2021 in T2. This method is a rigid transformation consisting of translation and rotation known 

as canopy density analysis (Dai et al. 2019). The co-registration began by filtering points 

below 60% of the maximum height in each sample plot from both datasets, leaving the 

remaining points as the canopy points. Canopy points were also down-sampled into a 5-cm 

grid to ensure equal spacing between the datasets, and CHMs were generated at a resolution 

of 40 cm. Using a local maxima filter with variable window size (Pitkänen et al. 2004), the 

treetops were extracted and used as descriptors (i.e., tie points) for estimating the initial 2D 

rigid transformation matrix, including translation and rotation along the z axis. This method 

works simultaneously, allowing the determination of similarity in the descriptors and 

iteratively estimating the transformation matrix until convergence. The iterative closest point 

algorithm (Zhang 1994) was used for this reason. Finally, the fine-tuned 2D rigid 

transformation matrix was used for co-registration between the T2 datasets.  

 

 

2.5 Point cloud data processing 

 

For the individual tree-level analysis, a raster-based marker-controlled watershed algorithm 

was used in all studies (I–III) to segment the individual tree crowns (Meyer and Beucher 
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1990). In Study II, HeliALS CHMs at T1 and T2 with a 40-cm grid were generated from 

height-normalized point clouds because it was assumed HeliALS would be more capable 

than TLS to characterize the tops of the tree crowns. However, for Studies I and III, a pit-

free algorithm, originally developed by Khosravipour et al. (2016), was performed to 

generate CHMs in the LAStools software. This approach was introduced to avoid empty 

pixels, and especially pits, from forming, caused by variations in height that would affect 

further analysis, such as individual tree detection and metrics extraction. This algorithm 

works by using a subset of point clouds to fill the pits, and has been found to work robustly 

on high-density and thinned point clouds. It comprises two steps: 1) the construction of a 

standard CHM and several partial CHMs, each corresponding to the highest part of the 

canopy; and 2) the combination of these CHMs based on their highest value in each grid cell. 

In our study, a set of increasing height thresholds, of 2, 5, 10, 15, ..., and 40 m, were used to 

obtain the partial CHMs. All CHMs were generated using normalized point cloud data that 

were thinned to half the pixel size instead of all being the first returns. In addition, a ground 

CHM was included, excluding the normalized point clouds above 0.1 m, in order to fill the 

potential holes and prevent higher-up canopies from being wrongly connected across water 

bodies (Isenburg 2014). Finally, the CHMs were merged at a 0.5-m resolution based on the 

highest value across all CHMs. The pit-free algorithm and the resulting CHM for ALS 2009 

acquired in T1 are shown in Figure 4.  

 

 

 
 

Figure 4. (a) Pit-free algorithm, (b) canopy height model (CHM) of ALS 2009 for the whole 

study area, and (c) close-up views of (b) (Studies I and III). 
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The local maxima filter was applied to identify the treetops on the generated CHMs. Two 

approaches were applied for the filtering––a fixed window size of 3 × 3 pixels (Studies I and 

III) and a variable window size based on an assumed relationship between H and CD, as 

introduced by Popescu and Wynne (2004) (Study II). The identified treetops were then used 

as markers in the watershed segmentation to delineate crown segments, analogous to pouring 

water into the inverted CHM. Generated crown segments were used to determine a set of 

height-normalized points belonging to each tree (or a group of trees with mixed crowns) 

using a point-in-polygon approach. In Study II, however, tree identification was confirmed 

at the tree stem level, with a Voroni diagram used to split the TLS point clouds if multiple 

stems were distinguished within a segment.  

The individual TLS tree point clouds were divided into stem and crown points based on 

the method developed by Yrttimaa et al. (2020b) in Study II. This classification assumes the 

stem points have more planar, vertical, and cylindrical characteristics than the points 

representing the branches and foliage. As a repetitive procedure, starting from the base of a 

tree (i.e., zero towards the top of the tree), the point clouds were binned into n number of 

horizontal slices, including P1, P2, …, Pn. The vertical interval of these slices was 4 m for 

P1 and 50 cm from P2 onward. The idea behind this was to initially access the origin of the 

stem, which is usually better exposed in the point clouds, while going up the stem requires a 

more careful exploration due to the presence of foliage. Then, the following procedures were 

repeated for each slice in order to identify the structural origin of the points and to assign a 

stem point or crown point classification accordingly. First, to make a uniform point spacing, 

a grid average downsampling, with a 5-mm grid size, was applied. Second, the surface normal 

vectors were computed for each point based on their 40-point neighborhood to extract vertical 

surfaces assumed to represent stems rather than branches. These candidate stem points were 

further segmented into clusters, with a minimum of 30 cm of Euclidian distance between 

each, and considering their dimensions. Small and horizontal clusters were neglected, large 

and vertical clusters were preferred in an attempt to find stem points. Third, a random sample 

consensus (RANSAC)-cylinder filtering procedure was implemented to remove non-

cylindrical structures deviating more than 1.5 cm of Euclidian distance from the surface of 

the fitted cylinder, with the aim of confirming the cylindrical shape of the candidate stem 

point clusters. Finally, an alpha shape was created to envelope the candidate stem points and 

separate them from the crown points. The TLS points falling inside the alpha shape and the 

TLS and ALS points falling outside the alpha shape were classified as stem and crown points, 

respectively. The center of the RANSAC cylinder fitted into the stem points at breast height 

was considered as the tree location. 

By applying a height threshold of 2 m (Nilsson 1996), the point clouds of the individual 

trees belonging to the tree crowns from the airborne datasets were kept and further used for 

characterizing tree crown structures (Studies I and III). The location of each tree in the 

airborne datasets was defined based on the planar location of the highest point in each crown 

segment. As an example, Figure 5 provides an illustration of the point clouds of an individual 

tree crown dynamic over time in cross-sectional view (Study III).  
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Figure 5. A cross-sectional view of ALS 2009 (T1, blue) and Heli-ALS 2023 (T2, green) point 

clouds depicting individual trees along a transect (Study III). 

 

 

2.6 Characterizing individual trees into tree and crown metrics 

 

The individual tree stem points derived from TLS 2014 and TLS 2021 were used to compute 

the stem volume (V) in Study II. The procedure developed by Yrttimaa et al. (2019) was 

utilized to estimate the taper curve, which represents the stem diameter as a function of H. 

First, the stem points were divided into horizontal slices at 20-cm vertical intervals, starting 

from 1.30 m above the ground and moving toward the stump and treetop. Then, circles were 

fitted to those intervals to measure the tree diameters. Outliers in the diameter-height 

observations were removed following the method in Saarinen et al. (2017). In this method, 

each diameter is compared with the mean of the three previous diameters and identified as 

an outlier if the relative difference exceeds 10% for diameters above, and 20% for diameters 

below, breast height. To level unevenness and interpolate missing values in the diameter-

height observations, a cubic spline curve, with a smoothing parameter of 0.5, was fitted. 

Finally, a taper curve was obtained at 10-cm intervals up to the top of the tree. Considering 

the stem as a sequence of vertical cylinders in predefined sections at 10-cm height intervals, 

the Huber formula was used to estimate V based on the estimated taper curve (Equation 1).  

𝑉 = ∑
𝜋ℎ𝑖

16
(𝑑𝑖 + 𝑑𝑖+1)

2𝑛
𝑖=1                                                                                                     (1) 

where ℎ𝑖 and 𝑑𝑖 are the height and diameter of cylinder i, respectively, and n is the total 

number of cylinders.  

To characterize the tree crowns in Study II, the individual tree crown points derived from 

Heli-ALS 2014 and TLS 2014 in T1, and Heli-ALS 2021 and TLS 2021 in T2 were 

combined. We assumed a higher capability of multisensorial datasets in comprehensively 

reconstructing tree crown structures. Similarly, in Studies I and III, the individual tree crown 

points of the airborne datasets in T1 and T2 were used to characterize the tree crown 
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structures. These datasets included ALS 2009 and ALS 2014 for Study I and ALS 2009 and 

Heli-ALS 2023 for Study III. 

In Studies I–III, the tree crown metrics were determined using geometrical descriptors. 

A 2D convex hull was applied to calculate the CD and CA. This formed the smallest polygon 

that could contain all the crown points. The identified points lying on the 2D convex hull 

were considered for CD calculation, this being the distance between the two outermost crown 

points in x–y space. The CV and crown surface area (CSA) were computed using a 3D convex 

hull that encompassed all the crown points within a closed convex made of triangles. In Study 

II, the crown perimeter (CP) was one of the 2D metrics calculated instead of the CD, and the 

lowest point in the 3D convex hull was considered as the crown base height (CHmin). In 

addition, the CV was computed by voxelizing the points into a 10-cm regular 3D grid, each 

representing a volume of 1 dm3. The volume of each voxel containing at least one point was 

summed to calculate the CV of the individual trees. As a measure of how efficiently a tree 

utilized resources to achieve a certain architectural structure, the CP/CA and CSA/CV ratios 

were calculated in Study II (Yrttimaa et al. 2022). The H was always determined as the 

highest point return within the crown segment (Studies I–III).  

 

 

2.7 Tree-to-tree matching to calculate increments in the tree and crown metrics 

 

Detecting and analyzing the growth of individual trees over time, and the effect on the wood 

properties, required links to be established between corresponding point cloud-derived and 

field-measured trees, known as tree-to-tree matching. In Study I, both the tree locations and 

crown segments were used for the matching processes. Initially, tree species information was 

obtained by matching T2 ALS 2014 trees to the field-measured trees inventoried in the same 

year. The crown segment of T2 ALS 2014 was matched with the tallest field tree co-existing 

within each segment. Next, we overlaid the crown segments of T2 ALS 2014 with the tree 

locations of T1 ALS 2009, and vice versa. However, the different segmentation accuracy 

between T1 ALS 2009 and T2 ALS 2014 was observed by the presence of under- and over-

segmentation errors. To address this, and ensure proper matching, only those T2 ALS 2014 

crown segments that contained a single T1 ALS 2009 tree location were retained, and vice 

versa. Additionally, we kept the matched trees that existed in both datasets and that did not 

exhibit a height reduction exceeding 3 m. These heuristic rules accounted for tree mortality, 

logging, and damage over the 5 years, ensuring that only living trees, which should not have 

decreased in height, were included. The tree-to-tree matching method was expected to 

compensate for potential spatial mismatches between tree locations resulting from 

discrepancies in ALS acquisition and prevailing wind patterns at the time of data collection.  

In Study II, however, tree-to-tree matching was conducted employing both tree location 

and similarity in tree metrics. The species information for the T1 trees was obtained by 

searching for field trees within a distance of 1.5 m. The matched trees were then chosen based 

on similarity in tree metrics among the possible candidates. Similarly, the trees derived at T1 

and T2 were matched to each other. We further concentrated our analysis on those trees that 

had sufficient point cloud reconstructions at both T1 and T2 by accepting the following 

threshold for variability between measurements: a difference of less than 3 cm in field and 

TLS-derived dbh, less than 4 cm in diameter at 6 m height, less than 70% in crown volume, 

and less than 6 m in H.  

A different matching was considered for Study III, where we first matched T1 ALS 2009 

trees with the closest T2 Heli-ALS 2023 trees within a maximum distance of 2 m. Then, each 



29 

 

 

 

sample tree with wood properties measured by ITRAX was assigned to the closest respective 

crown segment left from the first step. This matching rate was also maximized by visual 

interpretation. These matched trees were used for the tree- and plot-level assessment of wood 

properties. 

The matched trees from Studies I and II were further divided into three groups by tree 

species––Scots pine, Norway spruce, and birch. In Study III, we considered Scots pine and 

Norway spruce because we only collected wood samples from these species. An example of 

species-specific matched trees with their consecutive crown metrics from Study I is shown 

in Figure 6.  

To calculate the species-specific increments in the tree (Δ) and crown metrics (ΔC) during 

the monitoring period, the measurements at T1 were subtracted from the respective 

measurements at T2. This resulted in ΔV, ΔH, ΔCD, ΔCA, ΔCP, ΔCV, ΔCSA, ΔCHmin, 

Δ(CP/CA), and Δ(CSA/CV). In Study I, the relative ΔC (rΔC) was also computed by dividing 

the ΔC of a specific metric by that metric at T1 in order to minimize the inherent differences 

in scale between the different trees (Pommerening and Muszta 2015). Each species-specific 

crown metric having observations three times the inter-quartile larger than the first and third 

quartile was removed from Study I. This was done, in particular, to reduce the probability of 

a Type II error (Zimmerman 1994) and resulted in sample sizes of 947, 749, and 402 for the 

Scots pine, Norway spruce, and birch, respectively. A similar approach was considered for 

removing outliers in Study II, but based on growth in stem volume (ΔV), resulting in 219 

Scots pine, 112 Norway spruce, and 77 birch trees.  

 

 

 
 

Figure 6. Illustration of the ALS-derived crown metrics in 2009 (T1) and the respective 

measures in 2014 (T2) for each of the investigated tree species. CD, CA, CV, and CSA are 

crown width, projection area, volume, and surface area, respectively (Study I). 
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Table 5. Structural characteristics of the matched trees measured in the field plots by tree 

species in 2014. The mean and standard deviation (Std.) of diameter at breast height (dbh), 

volume, and height have been reported (Studies I–III). 

 

Species Study 
Sample 

size (n) 

Diameter at 

breast height 

(cm) 

Volume 

(m3) 

Height 

(m) 

Mean Std. Mean Std. Mean Std. 

Scots 

pine 

 

I 947 21.74 6.77 0.41 0.36 19.65 4.27 

II 219 19.10 7.77 0.31 0.37 16.75 4.65 

III 257 25.26 7.49 0.58 0.55 20.92 4.61 

Norway 

spruce 

 

I 749 20.42 10.37 0.46 0.50 22.09 5.66 

II 112 21.54 10.02 0.52 0.51 19.74 7.49 

III 142 30.18 8.49 0.96 0.63 25.63 4.49 

Birch 

 

I 402 15.73 6.46 0.22 0.24 19.71 4.10 

II 77 16.60 5.63 0.24 0.20 19.18 4.66 

 

 

In Study III, which was based on wood property measurements at an annual resolution, 

the mean annual increments in H and other crown metrics of individual trees were calculated 

by dividing the change observed between T1 and T2 by the number of growing seasons 

between the measurements. Considering two levels of analysis in Study III, these tree-level 

measures were called ΔHmean_tree and ΔCmean_tree, respectively, with a sample size of 257 Scots 

pines and 142 Norway spruces. To conduct this analysis at the plot level, their means 

(ΔHmean_plot, ΔCmean_plot) were calculated for 44 and 24 sample plots represented by Scots pines 

and Norway spruces, respectively. However, to calculate the plot-level standard deviations 

(ΔHstd_plot, ΔCstd_plot), only sample plots with at least three observations per species were 

considered, leaving 38 sample plots for Scots pine and 21 sample plots for Norway spruce. 

The field-measured structural characteristics for the final sets of trees used in the analysis are 

provided in Table 5. 

 

 

2.8 Statistical analysis and accuracy assessment 

 

For Study I, a paired-sample t-test was employed to evaluate the statistical significance of 

species-specific differences in the means of the crown metrics measured at the beginning and 

end of the 5-year monitoring period (within-group comparison). Considering the skewed 

distributions of CA, CV, and CSA and the potential deviation from normality, the Wilcoxon 

signed-rank test was also conducted in order to compare within-group species-specific 

differences in the crown metric medians. Although we can assume that the sample means 

came from a normal distribution, this does not guarantee the normal distribution of the 

population (Kim and Park 2019). The rstatic package of R (Kassambara 2023) was used for 

this task, and the results are reported at a 95% confidence interval. To evaluate statistical 

differences in the means/medians of the rΔCD, rΔCA, rΔCV, and rΔCSA between-species 

groups (between-groups comparison), a Welch analysis of variance/Kruskal–Wallis test was 

performed due to violation of the variance homogeneity and non-normal distribution. This 

was followed by paired-sample t-test and Wilcoxon test comparisons of the between-species 
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groups. We applied the Bonferroni correction to control the probability of committing a Type 

I error. Thus, the p values were divided by the number of comparisons (Triola et al. 2006). 

The effect size was also measured, using Cohen’s D and the generalized eta squared (η2) 

in Study I (Cohen 2013; Olejnik and Algina 2003). These helped us to understand the strength 

of the difference in this study. Cohen’s D quantifies the size of the difference between the 

means of two groups using their standard deviation. Contrastingly, η2 was used to explain the 

variability caused by the different groups, while minimizing the dependency on the research 

design. To interpret the results, the following rules of thumb were used: Cohen’s D values of 

0.2, 0.5, and 0.8, and η2 values of 0.01, 0.06, and 0.14 denote a small, medium, and large 

effect size, respectively.  

In Studies I and II, the consistency of the tree and crown metrics derived from the bi-

temporal point clouds at T1 and T2 were assessed using Pearson’s r and the visual inspection 

of scatterplots. Consistency was achieved if the measurements were not significantly 

influenced by random measurement error, the observed variations then instead reflecting a 

real change. Employing r, the linear relationships between ΔV and the crown metrics in T1 

were assessed, as well as their ΔC, in Study I. This was also used in Study III, in assessing 

the relationship between WDmean_tree and RWmean_tree with ΔHmean_tree and ΔCmean_tree, as well 

as their respective plot-level measures of means and standard deviations. These analyses were 

applied across different tree species and a 95% confidence interval was used.  

In additon, a random forest (RF) regression was used to explain these species-specific 

relationships in Study II, allowing us to assess the potential nonlinearity in these 

relationships. Also, RF is well-suited to address interaction effects due to its ensemble 

structure, which combines multiple decision trees to achieve more-accurate predictions 

(Breiman 2001). Despite its capacity to somewhat handle collinearity, we retained the 

highest-correlating metrics and eliminated their most redundant counterparts (r > 0.8). In 

addition, the relative importance of selected predictors was computed using the Gini index 

and scaled into a range of 0–100. This quantified the extent to which the metrics contributed 

to reducing the impurity of the decision tree nodes (Hapfelmeier et al. 2014). In Study III, 

instead, a multiple linear mixed-effect regression, accounting for the variability caused by 

the different sample plots, was used for assessing species-specific wood properties at the 

individual tree level (Equation 2). The LME4 package in R software was used for this purpose 

(Bates et al. 2015). 

𝑦𝑖𝑗 = 𝛽0 + 𝛽1𝑥1𝑖𝑗 + 𝛽2𝑥2𝑖𝑗 +⋯𝛽𝑛𝑥𝑛𝑖𝑗 + 𝑏0𝑖 + 𝜀𝑖𝑗                                                            (2) 

where 𝑦𝑖𝑗is the response variable of interest (i.e., WDmean_tree or RWmean_tree) for tree 𝑗 within 

sample plot 𝑖, 𝑥1𝑖𝑗 ,…,𝑥𝑛𝑖𝑗  represent the fixed effects variables, 𝛽0, 𝛽1,…,𝛽𝑛 are the 

corresponding coefficients, 𝑏0𝑖 and 𝜀𝑖𝑗 denote a normally distributed random effect for plot 𝑖 
and the residual error, respectively, with a mean zero and an unknown, unrestricted variance–

covariance matrix. The fixed effects were all also scaled into a range of 0–1, using the min–

max method to compare their contribution to the model. The formula is f(x) = (xi–xmin)/(xmax–

xmin), where xi stands for the fixed effect variable of interest for tree i, and xmin and xmax are its 

minimum and maximum values across all trees, respectively. It is worth mentioning that the 

best model was selected based on the balance between the model fit and its complexity, as 

measured by the Akaike information criterion. For this purpose, models with different 

combinations of predictors were developed utilizing the MuMIn package in R (Barton 2015). 

At the plot level, multiple linear regression was applied to the WDmean_plot and RWmean_plot 

models, employing the Stats package in R (R Core Team 2021). A similar systematic 
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approach to linear mixed-effect regression was conducted to find the best combination of 

predictors based on the Akaike information criterion. 

To quantify the proportion of observed variation in the variable of interest that could be 

explained by the above-mentioned metrics, R2 was used in Study II and the plot-level models 

of Study III. However, the proportion of variance explained by fixed effects and both fixed 

and random effects was separately explained by marginal R2 (R2
m) and conditional R2 (R2

c) 

values in the individual tree-level models of Study III, respectively.  

 

 

3 RESULTS 

 

 

3.1 Feasibility of bi-temporal ALS data in detecting increments in crown metrics 

(Studies I and II) 

 

The results of the paired t-test in Study I revealed a statistically significant (p < 0.0001) 

difference across all species in the mean values of the ALS-derived CD, CA, CV, and CSA 

between T1 and T2, indicating a change in the examined metrics. Within a 5-year time 

interval, the estimated ΔCD ranged from 0.30 to 0.56 m, with corresponding Cohen’s D 

values ranging from 0.32 to 0.62 across all species. A maximum ΔCA was found for Scots 

pine (3.57 m2) and indicated a large size of effect (Cohen’s D = 0.93). The estimated ΔCA 

also differed by 0.75 and 0.42 standard deviations for Norway spruce and birch, respectively. 

Cohen’s D was the highest for ΔCV, ranging from 1.09 to 1.22, and ΔCSA, ranging from 

1.26 to 1.46. The observed ΔCV was 86.30 m³ for Norway spruce, 62.86 m³ for birch, and 

61.90 m³ for Scots pine. Meanwhile, the ΔCSA varied from 51.73 to 60.44 m² across all 

species. The results of the Wilcoxon signed-rank test also showed a statistically significant 

difference in the median values of the crown metrics between T1 and T2.  

A further exploration of the variability of the point cloud-based stem and crown 

measurements between tree individuals was depicted in scatter plots representing the T1 

versus T2 measurements. Figure 7 shows an example from Study II where the relationship 

between the stem and crown metrics is shown and measured by the correlation coefficients. 

The H and V are shown as the most consistent measurements over time, with r > 0.97, 

regardless of tree species. The CV also showed the greatest agreement between the T1 and 

T2 measurements for Scots pine (r = 0.85), followed by Norway spruce (r = 0.82) and birches 

(r = 0.74). In general, rather consistent measurements were achieved for CA, CSA, CP, and 

CP/CA as well, although the observations were more scattered around the 1:1 line. The lowest 

correlations were obtained for CSA/CV (r = 0.4–0.65), followed by CHmin (r = 0.58–0.7), 

indicating moderate consistency and thus less reliable measurements over time. Similar 

results were obtained in Study I, where the crown metrics of all the tree species showed 

consistency over the 5-year time interval (r = 0.70–0.94).  
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Figure 7. Scatter plots and Pearson’s correlation coefficient (r) visualize the consistency of 

species-specific individual tree and crown metrics measured using T1 Heli-ALS (2014) and 

T2 Heli-ALS (2021). These metrics include tree stem volume (V) and height (H), as well as 

the crown metrics of volume (CV), 2D projection area (CA), surface area (CSA), perimeter 

(CP), perimeter to projection area ratio (CP/CA), surface area to volume ratio (CSA/CV), and 

base height (CHmin) (Study II).  

 

 

In addition, the results of the Welch analysis of variance, as implemented in Study I, 

demonstrated that the means of rΔC varied significantly among the species groups, with p-

value < 0.0001 (Table 6). The pairwise t-test comparisons revealed a statistically significant 

difference in rΔCD between Scots pine and birch, as well as between Scots pine and Norway 

spruce (p-value < 0.0001). However, there was no significant difference in the rΔCD between 

Norway spruce and birch (Figure 8). 
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Table 6. Species-specific relative increments in the crown metrics (rΔC) derived from ALS 

2009 (T1) and 2014 (T2). These metrics include width (CD), projection area (CA), volume 

(CV), and surface area (CSA). Mean, standard deviation (Std.), p-value, and generalized eta 

squared effect size (η2) have been reported (Study I). 

 

Metric 
Species 

group 

rΔC (%) 
P-value η2 

Mean Std. 

CD 

Scots pine 15.38 23.30 

2.18e-8 0.02 
Norway 

spruce 
10.50 18.50 

Birch 8.54 20.89 

CA 

Scots pine 35.42 41.05 

2.4e-22 0.05 
Norway 

spruce 
21.96 26.98 

Birch 15.64 32.16 

CV 

Scots pine 97.67 94.77 

1.93e-16 0.03 
Norway 

spruce 
58.21 48.32 

Birch 74.97 96.86 

CSA 

Scots pine 55.80 53.48 

1.73e-19 0.04 
Norway 

spruce 
34.14 27.24 

Birch 46.89 58.91 

 

 

Using the Kruskal–Wallis test, a statistically significant difference was found, in Study I, 

among species groups for the medians of rΔCA, rΔCV, and rΔCSA (Table 6). The pairwise 

Wilcoxon test indicated significant differences in the median values of rΔCV and rΔCSA 

between Scots pine and Norway spruce and between Scots pine and birch (Figure 8). 

However, there was no significant difference in rΔCV and rΔCSA between Norway spruce 

and birch. Unlike rΔCD, rΔCA showed a significant difference between Norway spruce and 

birch (p-value < 0.0001). On average, the rΔCD, rΔCA, rΔV, and rΔCSA of Norway spruce 

showed lower standard deviations compared to the other species, ranging from 18.50 to 

48.32%. The highest variability was observed in the rΔCSA and rΔCV of birch (Std. of 58.91 

to 96.86%) and in the rΔCD and rΔCA of Scots pine (Std. of 23.30 to 41.05%) (Table 6). The 

η² values were moderate for rΔCA (0.05), and lower for rΔCSA (0.04), rΔCV (0.03), and 

rΔCD (0.02) (Table 6). 
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Figure 8. Pairwise comparisons of relative crown increments (rΔC) between different species 

groups. **** and ns (not significant) denote p-value < 0.0001 and > 0.05, respectively (Study 

I). 

 

 

3.2 The relationship between stem volume growth and crown metrics, including their 

increments characterized by multisensorial point clouds (Study II) 

 

Table 7 presents the relationships between various crown metrics, including their increments 

and the ΔV for Scots pine, Norway spruce, and birch, as analyzed in Study II. For Scots pine, 

H, CA, and CP showed the strongest positive correlations with ΔV (r = 0.61–0.62, p-values 

< 0.05), with CSA, CV, and ΔCV also having significant positive correlations (r = 0.52-0.54, 

p-values < 0.001), while CP/CA had a negative correlation with ΔV (r = –0.46). For Norway 

spruce, CSA, ΔCV, CV, and CP had the highest correlations with ΔV (r = 0.37–0.38), 

followed by CA and H (r = 0.34–0.35). The birch ΔV was most strongly correlated with ΔCV 

(r = 0.45, p-values < 0.001), with CP and CA showing weaker correlations (r = 0.38 and 0.39, 

respectively). 
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Table 7. Species-specific Pearson’s correlation coefficients measuring the relationships 

between stem volume growth (ΔV) and tree height (H) and its increment (ΔH) as well as other 

crown metrics and their increments (ΔC): 2D projection area (CA), perimeter (CP), volume 

(CV), surface area (CSA), perimeter to projection area ratio (CP/CA), surface area to volume 

ratio (CSA/CV), and base height (CHmin). These metrics were calculated using ALS 2014 (T1) 

and HeliALS-2021 (T2). Significance level denoted as ns (not significant) for p-value > 0.05, * 

for p-value < 0.05, ** for p-value < 0.01, and *** for p-value < 0.001. Metrics sharing the same 

superscript letter represent collinear pairs with a correlation coefficient (r) exceeding 0.8 

(Study II). 

 

Species/Tree 

and crown 

metrics 

Scots pine 

(n = 219) 

Norway spruce 

(n = 112) 

Birch 

(n = 77) 

ΔV 

Cor p-value Cor p-value Cor p-value 

CA 0.61ac < 0.001*** 0.35ade < 0.001*** 0.39a < 0.001*** 

CP 0.61bcd < 0.001*** 0.37cef < 0.001*** 0.38ab < 0.001*** 

CV 0.52ab < 0.001*** 0.37abc < 0.001*** 0.27 0.016* 

CSA 0.54 < 0.001*** 0.38bdf < 0.001*** 0.31 0.006** 

CP/CA –0.46d < 0.001*** –0.27 0.004** –0.29b 0.010* 

CSA/CV –0.23 < 0.001*** –0.30g 0.001** –0.15c 0.183ns 

CHmin 0.41 < 0.001*** 0.31 < 0.001*** 0.09 0.456ns 

H 0.62 < 0.001*** 0.34 < 0.001*** 0.27 0.015* 

ΔCA 0.20e 0.002** 0.21h 0.026* 0.18d 0.111ns 

ΔCP 0.13e 0.045* 0.20h 0.030* 0.20de 0.073ns 

ΔCV 0.52 < 0.001*** 0.38 < 0.001*** 0.45 < 0.001*** 

ΔCSA 0.15 0.021* –0.05 0.611ns 0.08 0.500ns 

Δ(CP/CA) –0.12 0.066ns –0.13 0.169ns –0.09e 0.451ns 

Δ(CSA/CV) 0.04 0.588ns 0.15g 0.107ns 0.07c 0.557ns 

ΔCHmin 0.10f 0.154ns 0.17i 0.075ns 0.24f 0.035* 

ΔH 0.10f 0.124ns 0.18i 0.056ns 0.24f 0.038* 

 

 

In addition, three RF models were developed to explain the ΔV of the Scots pine, Norway 

spruce, and birch trees (Study II). Figure 9 shows the importance of predictor variables in 

the mentioned models, based on the scaled mean decrease in the Gini index. The most 

important metric for explaining the Scots pine ΔV was H, followed by CP and CP/CA, with 

relative importance values of 45.09 and 44.19, respectively (Figure 9). For Norway spruce, 

ΔCV had the highest relative importance in explaining ΔV, while it was 86.46 for CV, 77.28 

for ΔCSA, and 65.21 for H. For birches, ΔCV was identified as the most important predictor, 

with CP and CSA emerging as the second- and third-ranked metrics in explaining the birch 

ΔV, with relative importance values of 90.44 and 80.17, respectively. The substantial impact 

on the birch ΔV was also found for its CV (75.95), ΔCP (70.07), and H (69.52) (Figure 9). 

Using these metrics, the model explained 50% of the variation in the Scots pine ΔV (R2 = 

0.50). By contrast, only 20 and 6% of the variation in the ΔV of Norway spruce and birch 

trees, respectively, were explained by the models incorporating crown metrics and their 

changes.  



37 

 

 

 

 

 

Figure 9. Relative importance of tree and crown metrics in determining stem volume growth 

(ΔV) for Scots pine, Norway spruce, and birches. These metrics include tree height (H), crown 

metrics of projection area (CA), perimeter (CP), volume (CV), surface area (CSA), perimeter 

to projection area ratio (CP/CA), surface area to volume ratio (CSA/CV), and base height 

(CHmin), as well as their increments––ΔH and ΔC (Study II). 

 

 

3.3 The relationship between wood properties and ALS-derived increments in crown 

metrics (Study III) 

 

At both the tree and plot levels, the increased mean annual increment in H (i.e., ΔHmean_tree 

and ΔHmean_plot) was significantly associated with increased RWmean_tree and RWmean_plot (p-

value < 0.001). This association was r = 0.43–0.44 at the tree level and r = 0.47–0.48 at the 

plot level, regardless of species. Additionally, ΔCAmean_tree, ΔCVmean_tree, and ΔCSAmean_tree 

were among the correlated metrics with Scots pine RWmean_tree, with correlations of 0.21, 0.17, 

and 0.16, respectively.  

In terms of WDmean_tree, ΔHmean_tree was the only metric with a low, but significant, 

correlation to WDmean_tree in Norway spruce (r = –0.17 and p-value < 0.05). However, we did 

not find any significant correlations between WDmean_tree and the studied metrics in Scots pine 

(p-value > 0.05). At the plot-level, instead, a correlation of 0.36 was observed between the 

WDmean_plot and ΔCSAmean_plot of Scots pine, whereas no metrics were significant in relation 

to WDmean_plot in Norway spruce (p-value > 0.05). 

When assessing the standard deviations of wood properties at the plot level, neither ΔHstd_plot 

nor ΔCstd_plot showed any significant correlation with RWstd_plot or WDstd_plot in both species 

(p-value > 0.05). 

The models used for assessing wood properties in Study III are summarized in Table 8. 

The ΔHmean_tree, along with the ΔCVmean_tree and ΔCSAmean_tree, significantly contributed to the 

Scots pine RWmean_tree, with coefficient estimates of 2.39, –1.57, and 0.99, respectively (Table 

8). This means an increase in ΔHmean_tree and ΔCSAmean_tree led to an increase in RWmean_tree, 
while a higher ΔCVmean_tree was associated with a decrease in RWmean_tree (R2

m = 0.20). For 

Norway spruce, ΔHmean_tree was the only metric affecting RWmean_tree, with a coefficient 

estimate of 1.20 and a standard error of 0.27, suggesting that an increase in ΔHmean_tree will 

increase the RWmean_tree (R2
m = 0.16). Utilizing these metrics and sample plots as a random 

effect, 40–41% of the variations in RWmean_tree were explained, regardless of species.  
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For the WDmean_tree of Scots pine, both ΔCVmean_tree and ΔCSAmean_tree significantly contributed to 

the model. Their coefficient estimates were –0.18 and 0.15, explaining 4% of the variation (R2
m = 0.04). 

However, the inclusion of variability between sample plots slightly improved the model performance 

(R2
c = 0.14). None of the metrics were statistically significant in explaining the Norway spruce 

WDmean_tree (Table 8). At the plot level, the WDmean_plot model of Scots pine included 

ΔCSAmean_plot as the only significant predictor, with a low coefficient estimate of 0.06 (R2 = 

0.11) (Table 8). In addition, none of the studied metrics were statistically significant in 

explaining the WDmean_plot of Norway spruce. For RWmean_plot, however, ΔHmean_plot was 

significantly incorporated into the Scots pine and Norway spruce models, explaining 21 and 

18% of the observed variations, respectively. The coefficient estimates of ΔHmean_plot were 

0.73 (p-value < 0.001) for Scots pine and 0.71 (p-value < 0.05) for Norway spruces (Table 

8). This indicates that, as the change in ΔHmean_plot increases, the RWmean_plot also tends to 

increase. 

 

 

Table 8. The coefficient estimates (CE), standard errors (SE), and p-values for the models 

predicting basal area weighted mean wood density and mean ring width using ALS 2009 (T1) 

and HeliALS 2023 (T2) at the levels of the individual tree (WDmean_tree, RWmean_tree) and plot 

(WDmean_plot, RWmean_plot). The level of significance is denoted as ns (not significant) for p-values 

> 0.05, * for p-value < 0.05, ** for p-value < 0.01, and *** for p-value < 0.001 (Study III). 

 

Model  

parameters 

CE SE p-value CE SE p-value 

WDmean_tree RWmean_tree 

T
re

e
 l
e

v
e
l 

S
c
o
ts

 p
in

e
 

(n
 =

 2
5
7
) 

Intercept 

 

0.55 0.01 2e-16*** 0.42 0.13 0.002** 

ΔCVmean_tree 

 

–0.18 0.06 0.003** 2.39 0.57 <0.001*** 

ΔCSAmean_tree 

 

0.15 0.05 0.003** –1.57 0.49 0.002** 

ΔHmean_tree 

 

–– –– –– 0.99 0.17 <0.001*** 

N
o
rw

a
y
 

s
p
ru

c
e
  

(n
 =

 1
4
2
) Intercept 

 

0.46 0.01 2e-16*** 0.77 0.12 <0.001*** 

ΔHmean_tree 

 

–– –– –– 1.20 0.27 <0.001*** 

   WDmean_plot RWmean_plot 

P
lo

t 
le

v
e
l 

S
c
o
ts

 p
in

e
 

(n
 =

 4
4
) 

Intercept 0.50 0.01 2e-16*** 0.90 0.11 3.58e-10*** 

ΔHmean_plot 

 

–– –– –– 0.73 0.20 <0.001*** 

ΔCSAmean_plot 

 

0.06 0.02 0.01* –– –– –– 

N
o
rw

a
y
 

s
p
ru

c
e
 

(n
 =

 2
4
) Intercept 

 

0.46 0.01 2e-16*** 1.02 0.11 8.56e-09*** 

ΔHmean_plot 

 

–– –– –– 0.71 0.28 0.02* 
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4 DISCUSSION 

 

 

4.1 Feasibility of point clouds in the detection of increments in crown metrics as well as 

species-specific differences 

 

The experiments carried out in Study I showed that it was possible to used bi-temporal ALS 

data to detect increments in CD, CA, CV, and CSA over a 5-year monitoring period, 

providing empirical evidence to answer the set research question (RQ1). We observed an 

overall growth trend for all the investigated crown metrics and, based on statistical tests, the 

observed trend was unlikely to be due to chance (p-value < 0.0001). This finding 

acknowledges that while there may be some degree of error or variability in the consequent 

measurements, the observed growth trend can be considered strong enough to exceed what 

would be expected from random chance alone. The most prominent change was observed in 

the ΔCSA of Norway spruce, followed by Scots pine, and birch. A similar pattern was found 

for ΔCV, indicating large to very large size effects, which is in line with the findings of Frew 

et al. (2016). They examined the capability of ALS to detect an increase in CV across Douglas 

fir trees based on field measurements. This included an overall assessment of 220 sample 

trees, manually segmented over four growing seasons. They found no difference between the 

predicted CV growth in the field and the corresponding CV growth derived from the ALS 

data at a 95% confidence interval. The characterization of crown metrics, particularly CV 

and CSA, was also consistently repeated over time using ALS, as per the findings obtained 

in Study I. Similar results were also obtained in Study II, regarding the capacity of the 

combined point clouds of TLS and low-altitude ALS, where H, V, and CV represented the 

most consistent measurements over time. This overall consistency was also achieved for 

other crown metrics, despite the observed variation, which could be attributed to the plasticity 

of the crown over time and/or potential measurement errors (Figure 7). This is in line with 

the results of Ma et al. (2018), in which the increments in tree H, CA, and CV of 114,000 

trees in conifer-dominated forests were assessed using bi-temporal ALS data. Tree crowns 

delineated by marker-controlled watershed algorithms showed overall increments in the 

studied metrics over a 5-year time interval. However, the presence of negative values and 

high standard deviations also indicated a disparity in the crown metrics. Duncanson and 

Dubayah (2018) determined a limited feasibility of bi-temporal ALS in monitoring the 

growth of tree H, crown radius, and CA over 5 years. Their study was conducted over 12 

sample plots in California, consisting of mature forests. A modified watershed algorithm was 

also implemented for crown segmentation to identify both over- and understory trees. The 

results showed a preserved pattern between the T1 and T2 measures, but a systematic 

negative bias was observed in the T2 measures of crown radius and CA in the histograms, 

acknowledging the effect of disparities between the ALS acquisitions. The H estimates 

appeared to be generally unbiased, however.  

A significant difference was also found in the growth patterns of Scots pine, Norway 

spruce, and birch trees, as assessed by relative increments in the crown metrics (rΔC) (RQ2). 

Study I showed that Scots pine featured higher rΔCD, rΔCA, rΔCV, and rΔCSA values 

during the 5-year time interval compared to Norway spruce and birches, highlighting 

significant differences between the species (Figure 8). Contrastingly, birch differed from 

Norway spruce only in terms of the magnitude of the rΔCA recorded during the monitoring 

period. As shown in Table 5, birches as pioneer tree species prioritize H growth over dbh, 



40 

 

 

reaching the canopy to compete for light and maximize their photosynthesis efficiency. Our 

findings align with this, with more relative growth in the CV and CSA of birches than in the 

CD and CA (Table 6). Generally, coniferous trees are among the least flexible in their crown 

development, with a low ability to close gaps (Getzin and Wiegand 2007), although our 

experiments did not provide statistical evidence for the rΔCD being different between birch 

and Norway spruce, which partially corresponds with the results obtained by Vepakomma et 

al. (2011) (Figure 8). However, only 2–5% percent of rΔC variations can be explained by 

tree species. This finding can be attributed to the highest variability of rΔC within each 

species group, with the highest variability recorded for CV, followed by CSA. This means 

other biotic factors, such as tree size or age, stem density, and competition, as well as abiotic 

factors, such as the soil nutrient level, local climate, topography, and water balance, are likely 

to have more control over the growth process (Aakala et al. 2013; Kaitaniemi and Lintunen 

2010; Rapp et al. 2012; Stephenson et al. 2014; Weiskittel et al. 2011). In addition, the 

reliable characterization of structural changes in trees using ALS largely depends on the 

accuracy of detecting the trees, correctly delineating them from the point clouds, and 

accurately estimating their metrics. The ALS point density is an important factor that affects 

raster-based tree detection methods, as applied in this work. According to Zhao et al. (2018), 

growth analysis at the tree level required densities of at least 7 points/m2, which was almost 

met in our studies, based on the ALS data. However, the rate and accuracy of detection are 

higher for dominant and co-dominant trees than for intermediate and suppressed trees 

(Jakubowski et al. 2013; Vastaranta et al. 2011). This leads to a bias in plot-level analysis 

because of erroneous parameter estimations or the omission of intermediate and suppressed 

trees, especially in complex forests (Tompalski et al. 2021; Yu et al. 2004).  

 

 

4.2 Explaining species-specific stem volume growth 

 

In Study II, crown metrics and their increments, derived from multisensorial point clouds, 

demonstrated varying relationships in explaining the ΔV across different tree species (RQ3). 

The H, CP, and CA were strongly correlated with the Scots pine ΔV, with CP and CA 

moderately related to the ΔV of birches (Table 7). The most dominant role of H was in 

predicting the ΔV in Scots pine, as obtained by RF, but with relatively lower impacts for 

Norway spruce and birches (Figure 9). This suggests that taller trees may have had a 

competitive advantage over smaller trees, leading to the increased ΔV. In particular, the 

strong effect of H in explaining the variation in the ΔV of Scots pine underlines its higher 

demand for light compared to Norway spruce (Givnish 1988). Additionally, CP was found 

to be a more significant predictor for Scots pine and birch compared to a late-successional 

Norway spruce (Figure 9). An increase in CP can secure access to light by providing greater 

leaf area for photosynthesis, ultimately leading to stem volume growth (Poorter et al., 2012). 

A similar study was conducted by Pretzsch (2021), who used an experimental setup, 

consisting of 1,596 trees, including Norway spruce, Scots pine, European beech (Fagus 

sylvatica L.), and sessile oak (Quercus petraea [Matt.] Liebl.). The results showed the effects 

of internal, structural, and morphological characteristics on predicting the stem volume 

growth that reduced the RMSE by 43% compared with the baseline model, with stem volume 

as a predictor (RMSE = 0.67 m3/year). Consistent with our findings, there was a strong 

positive effect related to the CA, with coefficient estimates of 0.21. However, these 

relationships are complex and might also be caused by other drivers, such as stand density. 
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As discussed in Valentine et al. (2012), H is highly affected by stand density, and constrained 

crown sizes due to high stand density could affect the overall growth rate of trees. 

The Norway spruce ΔV was moderately correlated with the metrics representing the 3D 

structure of the crown, including CSA, CV, and ΔCV (Table 7). Similarly, ΔCV, CV, and 

ΔCSA also showed high relative importance in assessing the combined effects of crown 

metrics. This is in line with the Norway spruce’s preference to effectively capture light 

throughout expanding its crown as a shade tolerance species (Givnish 1988). A theoretical 

approach to how stem mass density at crown base height can affect the growth of an entire 

tree has been presented by Osawa et al. (1991). This is the so-called profile theory of tree 

growth, and it has shown promising results in predicting tree growth in different species by 

incorporating height growth, foliage mass, and length of clear bole into the model. In our 

study, the CHmin of Norway spruce also showed a significant relationship with ΔV––both 

individually, as well as in combination with other metrics. This finding is consistent with that 

of Yrttimaa et al. (2022), who utilized TLS in a boreal forest. They found the strongest 

correlation in Norway spruce, with an R² of 0.59, linking the CHmin to growth in the volume 

of the stem section below the height corresponding to 50% of the H. However, the observed 

variation in CHmin might influence these relationships (Figure 7). This is likely associated 

with measurement errors, such as inaccuracy in the classification of points into stem and 

crown categories, the presence of neighbors in the tree’s branch architecture, and imputed 

values for the trees for which CHmin could not be directly calculated. Notably, CHmin was not 

a highly-ranked metric for explaining the Scots pine ΔV in our study (Figure 8). However, 

previous research has shown that variation in CHmin driven by stand density can affect stem 

growth (Beekhuis 1965; Fish et al. 2006; Mäkelä and Valentine 2006). 

As can be seen, the crown metrics measured in T1 had a stronger linear correlation with 

ΔV across all species, aligning with the findings presented by Yrttimaa et al. (2022) (Table 

7). This implies that trees with initially larger crowns are more likely to exhibit an increased 

ΔV compared to those with smaller crowns, suggesting a weaker competitive status. 

However, the ΔCV and ΔCSA in Norway spruce trees and the ΔCV, ΔCP, and ΔCSA in birch 

trees were found to be influential metrics for describing ΔV using RF (Figure 9). This 

suggests that Norway spruce and birch continue to develop their crowns to maintain their 

growth rates. Overall, Scots pine had the strongest relationship between H and other crown 

metrics and their increments with ΔV, followed by Norway spruce and birches, as indicated 

by the higher R2 values. However, it should be mentioned that the smaller sample size and 

the leaf-off season during data acquisition likely contributed to the lowest R2 recorded for 

birch trees. It is also important to note that the relationships presented here might have been 

influenced by various factors, including site conditions, provenance, and tree age (Pretzsch 

et al. 2022). Therefore, generalizing these findings requires their further exploration. 

Additionally, while this study focused on crown characteristics, it is essential to acknowledge 

that tree growth is a complex process, influenced by a combination of factors, including 

internal tree and stem characteristics, as demonstrated by Pretzsch (Pretzsch 2021). In this 

study, we assumed the potential capabilities of multisensorial point clouds to improve 

occlusion within a crown segment, and the segmentation was also optimized for cases where 

multiple trees were identified within a segment. However, the correctness of crown 

segmentation, extraction of tree and crown metrics, and their consistency over time may still 

be limited. The errors related to the co-registration accuracy between Heli-ALS and TLS may 

also have resulted in a mismatch between the trees identified at T1 and T2, thus reducing the 

number of trees that were correctly linked to the field-measured trees. Another source of 

uncertainty is that, in a slow-growth boreal forest, detecting change with a magnitude that 
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falls within the accuracy limits of the measurement technique can be problematic (Luoma et 

al. 2021; Yu et al. 2004). For instance, the presence of negative ΔV observations in this study, 

most likely attributed to point cloud occlusion and inaccurate taper curve estimation, has 

caused uncertainty in the analysis and interpretation of the relationships. Accordingly, 

understanding the time interval to overcome excess noise and reveal real patterns can be 

crucial in forest change detection (Coops 2015; Socha et al. 2017a; Yu et al. 2004). 

 

 

4.3 Assessing wood properties and their variations  

 

In Study III, we demonstrated the link between ALS-derived mean annual increments in H 

and crown metrics over 15 growing seasons to the wood properties of individual trees or 

sample plots (RQ4). When assessing the relationship at the tree level, a significant correlation 

was observed between the Scots pine RWmean_tree and its ΔHmean_tree, along with all the other 

crown metrics. Notably, ΔHmean_tree was also the only metric that significantly correlated with 

the RWmean_tree of Norway spruce in our experiment. This association was also observed at 

the plot level between the ΔHmean_plot and RWmean_plot of both Scots pine and Norway spruce. 
The results from modeling RW also revealed the importance of H increment as a significant 

predictor at the tree and plot levels for both tree species (Table 8). Accordingly, increased H 

directly impacts the tree’s radial growth, as reflected in the width of the growth rings. This is 

in agreement with previous findings that showed the effect of height growth on radial growth, 

modulated by stand density, such as Valentine et al. (2012). By contrast, Kankare et al. (2022) 

found no significant correlation between increment in H, obtained from the difference 

between TLS-derived and field-measured height, and the past mean RW of trees. This 

difference might be attributable to the enhanced capability of ALS in accurate height 

estimation due to its above-canopy viewpoint (Wang et al. 2019). This also suggests a more 

complex interplay between tree H increment and mean RW over a longer time scale than the 

applied 15 growing seasons, which is still considered a rather short period considering the 

lifespan of boreal trees. In addition to ΔHmean_tree, we observed significant correlations 

between the other crown metrics and the RWmean_tree of Scots pine at the tree level. In 

particular, ΔCSAmean_tree and ΔCVmean_tree, included in the Scots pine RWmean_tree model, imply 

an interplay between photosynthetic leaves and growth rate (Pretzsch et al. 2022). ΔHmean_tree, 

however, was the only significant predictor in the RWmean_tree model of Norway spruce (Table 

8), whereas a recent study conducted by Ahmed et al. (2024) reported correlations of 0.73 

and 0.54 when investigating the mean RW of 122 Norway spruce trees in relation to their 

crown radius and tree H, respectively. They employed single time-point TLS using an 

intensive scan setup with manual tree segmentation and dendrochronological RW patterns 

under diverse growing conditions. Similarly, Pretzsch et al. (2022) explained variation in the 

annual diameter growth of Norway spruces using a TLS-derived standard deviation in the 

maximum crown radius along the stem axis, and crown top-heaviness.  

In terms of WDmean_tree, neither ΔHmean_tree nor ΔCmean_tree were significantly correlated 

with the WDmean_tree of Scots pine. However, ΔCSAmean_tree and ΔCVmean_tree were included in 

the model as significant predictors for Scots pine. Our findings were consistent with those of 

Kankare et al. (2022), who used single time-point TLS with automatic segmentation to study 

the wood properties of an even-aged Scots pine forest. They found no statistical evidence that 

initial tree H and crown metrics, including width, area, volume, length, and height increment, 

related to the mean wood density of Scots pine trees. Instead, they found the mean branch 

angle was a significant predictor, explaining 31% of the WD variation between the trees. 
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Pyörälä et al. (2019) also showed the capability of stem taper and volume, derived from TLS, 

to assess the WD obtained from the Wood-X 4D Tomo device. Their study was conducted in 

Southern Finland and covered 52 Scots pine trees that were scanned in groups of 2–5 trees 

by applying adjustable scanning locations to maximize data coverage and manual tree 

extraction to ensure correct tree segmentation. The resulting correlations were –0.49 and –

0.61 for stem taper and volume, respectively. For Norway spruce, however, the ΔHmean_tree 

had a statistically significant, although rather low, correlation with WDmean_tree, but no ALS 

metric was significant for predicting the WDmean_tree of Norway spruce (Table 8). It is worth 

mentioning that the short time window in our study, focusing only on the last 15 growing 

seasons, might have limited the observed dependencies of WDmean_tree with growth in tree H 

and crown metrics. In particular, WD is primarily influenced by tree age as a result of 

cambium maturation, and varies significantly from the corewood to outerwood (Wylie et al. 

2019). In particular, our sample trees, with an average age of 64 years for the Scots pine and 

84 years for the Norway spruce, were well into outerwood production, with high, stable WD. 

This age-related variability and the focus on a relatively recent period may have contributed 

to the findings of our study. However, other environmental factors, such as resource 

availability, precipitation, and temperature in the growing season, could have affected the 

annual variability in the WD, along with tree age (Rocha et al. 2019). While latewood 

production is generally consistent in Norway spruces, earlywood tends to vary more in 

response to environmental factors, with up to 80% of the variation in Norway spruce WD 

coming from differences in the annual rings, which were averaged out in our experimental 

design (Jyske et al. 2008). 

At the plot level, the only significant correlation was found in Scots pine between 

WDmean_plot and ΔCSAmean_plot. This also appeared significant in explaining Scots pine 

WDmean_plot variations, although to a lesser extent. This indicates that plots representing Scots 

pine with a greater increment in crown surface area tend to have higher WDmean_plot values. 

In Norway spruce, however, none of the metrics showed a significant correlation or were 

significant predictors in the developed models. By comparison, Luther et al. (2014) were able 

to explain 40–53% of the variations in plot-level wood properties, including WD, in Canadian 

boreal forests. They utilized ALS-derived parameters extracted for each plot, such as tree 

height, fractal cover, and surface statistics. It is worth mentioning that the variability between 

sample plots caused by environmental conditions likely affected the observed relationship at 

the plot level. This has also been revealed by tree-level modeling when the inclusion of 

variability caused by the sample plots as a random effect improved the explanatory power of 

the models. Our experiment also did not find a significant relationship at the plot level 

between the standard deviations in growth in tree H and crown metrics with RWstd_plot and 

WDstd_plot, likely because of the presence of other influencing factors, such as soil fertility, 

water availability, and microclimatic conditions, which were not considered in the 

experiments. In addition, this might have been due to the low variability in WDmean_tree 

because the sample trees were selected from among the dominant trees. 

Generally, the results in Study III were likely affected by the rather narrow timeframe 

during which the growth was insufficient to adequately explain the wood properties of the 

trees. In addition, errors related to automatic tree segmentation present a significant source 

of uncertainty, particularly due to the occlusion. These can result in the omission of trees that 

are obscured beneath closed canopies, as well as the over- and under-segmentation of tree 

crowns, leading to inaccuracy in the estimated metrics. To date, automatic tree segmentation 

has been challenging in forests with complex structures, albeit it continues to improve in 

terms of both its accuracy and computational efficiency. In addition, the acquisition 
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parameters, such as sensor specifications, the flight pattern, scan angle, and sampling rate, 

can also affect the point cloud properties (Cao et al. 2016; Socha et al. 2017b; Zhao et al. 

2018). This becomes more important as repeated point clouds usually come from different 

instruments due to the continuous development of the technology and the various weather 

conditions at the acquisition times, which result in spatial inconsistencies (Duncanson and 

Dubayah 2018).  

 

 

5 CONCLUSION 

 

 

This thesis contains an amalgamation of Studies I–III, which explored the potential of 

utilizing LS point clouds as a monitoring approach for understanding forest dynamics and 

wood properties. Study I demonstrated the feasibility of using bi-temporal ALS data acquired 

over a 5-year period to detect changes in crown structure. To further explore its feasibility, 

Study II examined how well stem volume growth could be explained based on observations 

of crown characteristics and their development over time. In this study, we used a 

combination of Heli-ALS and TLS to provide a detailed reconstruction of trees, with the aim 

of mitigating the impact of occlusion that is typically associated with single-sensor 

acquisitions. The experiments showed that the ALS-derived crown metrics could explain 

50%, 20%, and 6% of the observed variation in the ΔV of Scots pine, Norway spruce, and 

birches, respectively. For Scots pine, the most important predictors were the initial crown 

metrics, such as H, CP, and CA, which featured a correlation of 0.61–0.62 with the ΔV. By 

contrast, ΔCV emerged as the most important predictor for Norway spruces and birches, with 

correlations of 0.38–0.45 with ΔV. Building on these findings, Study III examined how mean 

annual increments of crown metrics, measured non-destructively using ALS, could be related 

to destructively sampled observations of WD and RW. Correlation analysis revealed stronger 

relationships for RW compared to WD with ALS-derived metrics during the last 15 growing 

seasons at the tree-level. Similar relationships were obtained when the individual tree 

observations were aggregated at the sample plot level. The inclusion of sample plot 

variability in linear mixed-effect modeling, however, enhanced the explanatory power of the 

models at the tree level. In particular, this approach explained 40–41% of the tree-level 

variability in RW, with mean annual increments in H being an important predictor, regardless 

of species.  

This monitoring framework is important because the crown plays a key role in 

photosynthesis, its dimensions are associated with light interception capacity, and changes in 

its characteristics indicate shifts in ecophysiological functioning. Our findings support the 

existing knowledge on the capacity of ALS as an efficient tool for monitoring individual tree 

growth and provide ideas for possible application areas where such information needs to be 

obtained over large areas. The contribution to the current knowledge is further reflected in 

the observed association between crown development and wood properties, suggesting a 

potential trade-off between crown expansion and radial growth. However, reliable 

characterization of structural changes, especially in slow-growth boreal forests, remains a 

challenge. Moreover, the experiments conducted in this thesis focused solely on the 

contribution of initial crown characteristics and their development to growth allocation, while 

tree growth is also influenced by various other biophysical factors. These include resource 

availability (e.g., nutrients, water, and sunlight), competition among individuals, site 
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productivity, and both stem-related and internal tree characteristics. Therefore, future 

research could benefit from incorporating complementary information on site conditions, 

competitive status, and other biophysical drivers to enhance the accuracy and ecological 

relevance of growth monitoring. More detailed tree measurements, in terms of spatial and 

temporal resolution, could advance our current knowledge of tree growth processes, 

representing the baseline for forest monitoring and growth simulation applications. Being 

capable of estimating stem volume growth based on observations of tree crowns, while 

predicting wood properties non-destructively, will improve forest biomass estimations and 

be of benefit in the sustainable use of forest resources. This research also encourages future 

studies to explore the impact of management intervention on tree growth and wood 

properties. Overall, this thesis has demonstrated the feasibility of bi-temporal LS to provide 

repetitive and non-destructive characterizations of individual trees in an attempt to indirectly 

monitor stem volume growth and wood properties. 
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