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ABSTRACT 

The warming climate, biodiversity loss, and escalating natural disturbances emphasize the 

need for sustainable forest management, which relies on understanding tree growth and 

competition. Laser scanning has opened new possibilities for measuring these processes. This 

thesis aims to develop approaches to evaluate stem and crown growth and competition using 

laser scanning point clouds, exploring their utility in assessing and quantifying competition 

dynamics and growth patterns in forest stands. 

Study I developed approaches for assessing stem and crown competition using terrestrial 

laser scanning (TLS) point clouds and investigated the effect of different thinning treatments 

on competition in Scots pine (Pinus sylvestris L.)-dominated forests. The results indicated 

that TLS-derived competition decreased across different thinning methods compared to the 

control plots for both moderate and intensive thinning. Thinning from below showed the 

greatest reduction in competition, followed by thinning from above and systematic thinning. 

Study I demonstrates that TLS provides an advanced solution for assessing tree crown 

characteristics and growing space, highlighting a novel approach to understanding 

competition between trees. 

Study II investigated the use of bi-temporal TLS and low-altitude airborne laser scanning 

(ALS), individually and in combination, to assess the relationship between tree stem volume 

growth (ΔV) and crown structure, including its change (ΔC), over a 7-year monitoring period. 

The results showed a strong correlation between ΔV and crown metrics (top height, 

projection area, and perimeter) for Scots pine. For Norway spruce, ΔV weakly correlated 

with 3D crown area (CA3D), volume (CV), and its change (ΔCV). Birch ΔV showed weak to 

moderate correlations with CA2D, crown perimeter, and ΔCV. Random Forest (RF) analyses 

revealed that changes in crown structure were important for explaining ΔV variations for 

Norway spruce and birch, while top height (CHmax) was the key metric for Scots pine. In 

conclusion, Study II showed that multisensor laser scanning data can serve to evaluate the 

relationships between ΔV and tree crown structure. 

Study III examined the utility of TLS and low-altitude ALS data in describing the 

competitive stress of individual trees using two approaches. The object-based approach 

quantified competition by identifying and characterizing neighboring trees, while the point 

cloud-based approach evaluated competition through point cloud structures representing 

competitive vegetation around a target tree. The results showed that object-based competition 

indices (CIs) correlated more strongly with in situ-based CIs compared to point cloud-based 

CIs and were more consistent between TLS and ALS. Overall, Study III demonstrated that 

TLS is effective for small-scale competition assessments, while low-altitude ALS has similar 

potential for describing competition on a large scale. 

This thesis demonstrates the capability of the developed laser scanning-based approaches 

to assess stem and crown growth and competition. It shows how TLS and ALS enhance our 

understanding of tree growth and their responses to neighboring trees, helping identify 

processes driving changes in forest dynamics. These findings offer concrete steps toward 

more precise and efficient forest management, although further refinement of the 

methodologies is needed to optimize their use across varying forest ecosystems.  

 

Keywords: Boreal forests, Terrestrial laser scanning (TLS), Airborne laser scanning (ALS), 

Forest monitoring, Point cloud. 
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1 INTRODUCTION 
 

 

1.1 Background  

 

The increasing impacts of climate change, biodiversity decline, and the rising occurrence of 

natural disturbances have emphasized the importance of sustainable forest utilization. This 

necessitates a deep understanding of tree growth and competition for resources. Forests are 

one of the most valuable terrestrial ecosystems, and studying them is essential to ensure their 

effective management and high productivity. Trees require key resources for growth, 

including sunlight, soil nutrients, water, appropriate temperatures, and growing space 

(Burkhart and Tomé 2012; Tomé and Burkhart 1989). Limited growth resources lead to 

competition between trees (Burkhart and Tomé 2012). Competition is the main driver of 

growth in forest stands and for individual trees. It can be quantified using traditional in situ-

based competition indices (CIs) by considering the dimensions and positions (i.e., diameter 

at breast height [dbh] and height) of neighboring trees.  

Quantifying competition using in situ-based CIs is time-consuming and labor-intensive. 

In addition, the range of suitable tree attributes available for calculating in situ-based CIs is 

quite restricted (Burkhart and Tomé 2012; Tompalski et al. 2016). Crown structure is one of 

the most critical attributes, but its characteristics are practically impossible to measure 

accurately (Ma et al. 2018; Weiskittel et al. 2011), requiring destructive sampling in some 

cases. Therefore, developing alternative approaches to quantifying competition between trees 

is crucial for enhancing our understanding of tree and forest growth dynamics (Ma et al. 

2018; Olivier et al. 2016). The use of laser scanning technology is an effective approach to 

overcoming these limitations.  

Laser scanning has been utilized extensively over the past three decades to collect forest 

resource information and investigate tree and forest structures by obtaining three-

dimensional (3D) information (Fassnacht et al. 2024; Su et al. 2016; Wulder and Franklin 

2003). It has also been used to quantify competition between trees in several studies (Metz 

et al. 2013; Olivier et al. 2016; Pedersen et al. 2012, 2013; Seidel et al. 2015; Yrttimaa et al. 

2022a). Nonetheless, quantifying competition through laser scanning is still in its infancy and 

requires further research and understanding (Ma et al. 2018; Pedersen et al. 2012). On the 

other hand, laser scanning is anticipated to present alternative solutions for describing the 

competition between trees by generating highly detailed 3D point clouds. Therefore, 

accurately quantifying competition using laser scanning point clouds will enhance growth 

modeling (Bollandsås and Næsset 2009; Twery and Weiskittel 2013). It will also enable 

forest managers to make more informed and practical decisions regarding activities such as 

thinning, harvesting, and planning sustainable forest management strategies (Tomé and 

Burkhart 1989). 
 

 

1.2 Quantifying competition between trees using in situ data 

 

Using in situ data in forest stands, competition between trees has traditionally been quantified 

using two main types of CIs, namely distance-dependent and distance-independent (Pont et 

al. 2021; Versace et al. 2019). Distance-dependent CIs quantify the competitive stress of trees 

by considering the distance between a target tree and its neighboring trees, while distance-

independent CIs do not rely on the spatial arrangement of individual trees (Burkhart and 
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Tomé 2012). Both distance-dependent and distance-independent CIs utilize in situ 

measurement information, such as dbh and the height of individual trees, to quantify 

competition.  

Field measurements are needed to describe the competitive stress of trees using in situ 

data and traditional CIs. However, measuring tree attributes, especially for a large number of 

stands, is time-consuming and labor-intensive. Furthermore, this method is primarily suitable 

for measuring stem characteristics, such as dbh and tree height, and cannot capture crown 

structure information, which is essential for accurately quantifying competition among trees. 

Crown structure plays a significant role in tree interactions and influences overall forest 

dynamics (Ma et al. 2018). Crown structure refers to the three-dimensional arrangement of 

foliage and branches within a tree's crown. Key parameters describing crown structure 

include crown diameter, crown length, crown base height, crown volume, and crown surface 

area (Zhu et al. 2021). Forest structure, on the other hand, encompasses the spatial 

organization and vertical layering of trees and vegetation within a stand. It is typically 

characterized using variables such as tree density, basal area, canopy cover, canopy height, 

and vertical foliage distribution (Latham et al. 1998). These structural attributes are critical 

for understanding competition, light availability, and ecosystem functioning (LaRue et al. 

2019). 

To overcome these limitations, an alternative approach that can accurately and 

comprehensively capture tree and forest structures is needed. In this regard, laser scanning 

technology has proven to be a viable approach to the 3D characterization of trees and forests 

(Tempel et al. 2015; Wulder and Franklin 2003). Laser scanning allows for accurate 

measurements of tree dimensions, spatial distribution, and crown structures, establishing 

itself as a promising tool for assessing competition in forest stands (Ma et al. 2018; Olivier 

et al. 2016). 

 

 

1.3 Characterizing competition using point clouds 

 

1.3.1 Laser scanning to characterize trees and forests 

 

Laser scanning is an active remote sensing technology that operates based on light detection 

and ranging (LiDAR) principles, wherein laser light, typically at a specific wavelength, is 

emitted toward a target and reflected back to the sensor. The sensor records this back-

scattered energy and determines the distance to the target using either the phase difference 

between emitted and received signals (phase-shift approach) or the time it takes for the pulse 

to travel to the target and back (time-of-flight approach). By repeating this process hundreds 

of thousands of times per second, laser scanning rapidly reconstructs the 3D structure of 

objects of interest. This non-destructive technology generates a point cloud—a detailed 3D 

reconstruction of tree and forest structures—using reflected laser pulses from surfaces such 

as tree stems and crowns (Tempel et al. 2015; Wulder and Franklin 2003). To ensure accurate 

georeferencing of the scanned data, the system also incorporates Global Navigation Satellite 

System (GNSS) and Inertial Measurement Unit (IMU) sensors, which together with the Scan 

Origin Coordinate System (SOCS), provide the necessary positional and orientation 

information during data acquisition (Maltamo et al. 2014). 

Two important types of laser scanning systems, namely terrestrial laser scanning (TLS) 

and airborne laser scanning (ALS), have been developed, offering unique potential for 

studying forest ecosystems (Dassot et al. 2011; Vauhkonen et al. 2014).  
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TLS is a ground-based LiDAR system important for addressing key ecological questions, 

enabling us to advance our understanding of fundamental ecological processes (Calders et al. 

2020). It is a close-range sensing system that can capture detailed information from tree stems 

and crown structures (Maas et al. 2008; Muhojoki et al. 2024). TLS point clouds have been 

successfully applied in various forest inventory measurements, canopy characterization, and 

aspects of ecology (Dassot et al. 2011). Some of these studies focus on key parameters such 

as  volume (Lefsky and McHale 2008) and biomass (Holopainen et al. 2012; Kaasalainen et 

al. 2014), wood properties (Pyörälä et al. 2019), and forest inventory (Liang et al. 2016; 

Newnham et al. 2015).  

ALS data is collected from above the canopy using scanners mounted on aerial platforms 

(e.g., airplanes, helicopters, and drones). These platforms transmit multiple laser pulses from 

various angles, enabling the acquisition of detailed 3D point clouds of the target. ALS is 

optimal for studying trees and forests in larger areas to measure canopy height and tree 

density. It has been used more frequently than TLS for growth and competition studies due 

to its earlier development. One limitation of the current generation of ALS data is its inability 

to capture under-canopy details, such as tree stem structure (Terryn et al. 2022).  

In general, the differences between TLS and ALS arise from their scanning geometries: 

TLS favors horizontal forest characterization with high-resolution detail, while ALS provides 

vertical characterization suitable for large-scale assessments. Thus, they offer 

complementary approaches to forest measurement.  

 

1.3.2 Utilizing point clouds to characterize competition between trees 

 

In contrast to conventional in situ-based methods, point cloud data from TLS and ALS 

provide more precise measurements of tree space occupancy, allowing for a more accurate 

estimation of competitive pressure by analyzing the spatial arrangement and proximity of 

neighboring trees. Point cloud-based approaches, such as the upside-down search cone 

method, enable the identification of competitive interactions by quantifying the space around 

each tree, providing a clearer understanding of how competition affects tree growth. These 

techniques offer an advantage in assessing a large number of forest stands, as traditional 

methods often lack spatial continuity and are limited by the absence of area-wide data, 

making it difficult to capture fine-grained competition dynamics. 

In recent years, several studies have implemented ALS data to describe tree growth and 

the competition between trees. For example, Pedersen et al. (2012) quantified individual tree-

level competition using ALS data and revealed that these data are preferable to field data. Ma 

et al. (2018) used bi-temporal ALS data to quantify individual tree growth and competition. 

Their study showed that ALS is an accurate and robust tool on large scales. Versace et al. 

(2019) utilized ALS data to predict CIs and concluded that they have a high capacity for 

quantifying competition at the individual tree level. A few studies have also implemented 

TLS to describe the competition between trees. For example, Seidel et al. (2015) used TLS 

point clouds to investigate the effects of competition on tree diameter increment, 

demonstrating the potential of TLS data. Pitkänen et al. (2022) also showed that TLS is an 

appropriate technology for quantifying the effects of competition on Scots pine and Norway 

spruce crown dimensions. Olivier et al. (2016) also used TLS point clouds to examine the 

effect of competition on sugar maple tree crown growth.  
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1.4 Thesis objectives  

 

The main objective of this thesis is to develop methodologies  for assessing (a) tree growth 

and (b) the competition between trees using laser scanning data. This is particularly valuable 

because measuring tree crown structure and dimensions accurately through traditional in situ-

based methods is challenging and labor-intensive. To accomplish this, the thesis is structured 

into three interrelated studies that investigate different aspects of competition, growth, and 

structural characteristics using TLS and ALS point clouds. 

The main objective of Study I is to develop approaches for assessing crown and stem 

competition using TLS point clouds and evaluate how different thinning treatments, varying 

in type (i.e., thinning from below, thinning from above, and systematic thinning) and intensity 

(i.e., moderate and intensive) affect stem- and crown-based competition between trees. The 

study aims to answer the following question: 
 
- How do different thinning types and intensities influence the stem and crown 

competition of Scots pine trees? 

 

Study II investigates how bi-temporal TLS and ALS point clouds and their combination 

can be used to assess the relationship between tree stem volume growth and crown structural 

changes. In this study, we assume that the combined use of TLS and ALS data will improve 

tree growth monitoring compared to the use of single-sensor data. The study aims to answer 

the following question: 

 

- To what extent can a combination of bi-temporal TLS and ALS point clouds reveal 

the variation in stem volume growth, explained by stem and crown metrics, along 

with their changes? 

 

Study III complements the previous studies by evaluating the capacity of TLS and ALS 

data to characterize the competitive stress of individual trees. This study addresses how these 

two data sources can be used to accurately quantify competition through object-based and 

point cloud-based CIs. The study aims to answer the following question: 

 

- How can the competitive stress of individual trees be described using TLS and ALS 

data? 

Overall, these three studies provide a comprehensive evaluation of tree growth and 

competition between trees using laser scanning data. Study I develops approaches for 

assessing stem and crown competition using TLS point clouds and examines how thinning 

treatments with different types and intensities influence stem- and crown-based competition 

between trees. Study II uses bi-temporal TLS and ALS data and their combination to examine 

the relationship between crown structure changes and stem volume growth. Finally, Study 

III examines the potential of TLS and ALS point clouds in describing the competitive stress 

of individual trees. The findings from these three studies enhance our understanding of tree 

dynamics in boreal forests by utilizing different sources of laser scanning 3D point clouds. 
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2 MATERIALS 
 
 
2.1 Study sites and field inventory data 

 

Study I was carried out in three forest locations: Palomäki (62°3.6′N 24°19.9′E), Pollari 

(62°4.4′N 24°30.1′E), and Vesijako (61°21.8′N 25°6.3′E) located in the southern boreal 

forest zone in the municipalities of Mänttä-Vilppula and Padasjoki (Figure 1). The Palomäki 

study site was established in 2005, and the Pollari and Vesijako study sites were established 

in 2006 to evaluate the effects of different thinning treatments on Scots pine trees. The 

Natural Resources Institute Finland (Luke) established and manages all these study sites. The 

dominant species in these three sites is Scots pine (Pinus sylvestris L.), and the stands are 

considered even-aged, approximately 50 years old. All these forests have relatively flat 

terrain, and the mean elevation above sea level in Palomäki, Pollari, and Vesijako is 135 m, 

155 m, and 120 m, respectively. 

A total of 27 rectangular sample plots with varying sizes (1000 m2 to 1200 m2) were used 

to conduct this study (Figure 1). Each of the three study sites had nine sample plots. The 

thinning experimental design in Study I for each study site included three thinning types and 

two thinning intensities, resulting in six different thinning treatments: (1) moderate thinning 

from above (four plots), (2) moderate thinning from below (three plots), (3) moderate 

systematic thinning from above (five plots), (4) intensive thinning from below (three plots), 

(5) intensive thinning from above (four plots), and (6) intensive systematic thinning from 

above (five plots). In addition, one un-thinned sample plot (three plots in total without 

thinning treatment) was established at each study site as a control.  

 

 

 
Figure 1. Location of Evo forest (Studies II and III), along with the Palomäki, Pollari, and 

Vesijako study sites (Study I). 
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Trees to be removed in each thinning treatment were selected as follows. In thinning from 

below, co-dominant and suppressed trees were removed, whereas, in thinning from above, 

mostly dominant trees were considered for removal. In systematic thinning from above, only 

dominant trees were removed, while small and suppressed trees were left to grow. Moderate 

thinning resulted in the removal of 32% of the initial basal area, while intensive thinning led 

to the removal of 66% of the initial basal area. The post-thinning period for evaluating 

competition response in the remaining trees was 13 years at the Palomäki site and 12 years 

at the Pollari and Vesijako sites. Table 1 presents a plot-level comparison of different 

thinning treatment characteristics, including control plots, both before (2005–2006) and after 

(2005–2006) thinning treatments, as well as after the growth period (2018–2019). 

Studies II and III were conducted in the Evo study site (61°19.6′ N, 25°10.8′ E), located 

in the southern boreal forest of Finland (Figure 1). Scots pine and Norway spruce (Picea 

abies (L.) H. Karst.) are the two dominant species in this study site. The altitude in the study 

area ranges from 125 m to 182 m above sea level. The experimental design of Studies II and 

III included 22 rectangular sample plots, each measuring 32 m × 32 m, established in 2014 

as part of the TLS benchmarking project (Liang et al. 2018). The sample plots were selected 

to capture a range of stand conditions typical of boreal forests. As a result, they encompass a 

variety of forest structures, comprising both managed and single-layered forests, as well as 

unmanaged and multi-layered forests. Field measurements were conducted in situ during the 

summer of 2014. In each sample plot, the dbh, height, and species of all trees with a dbh 

exceeding 5 cm were measured and recorded. The dbh and height of trees were measured 

using a caliper and electronic clinometer, respectively. Table 2 summarizes the structural 

characteristics of the sample plots derived from the in situ measurements for the years 2014 

(T1) and 2021 (T2). 
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Table 1. Mean plot-level characteristics before thinning treatments (2005–2006), following 

thinning treatments (2005–2006), and after the growth period (2018–2019). G = basal area 

(m2/ha), N = stem number per hectare, V = volume (m3/ha), Dg = mean diameter weighted 

by basal area (cm), Hg = mean height weighted by basal area (m). 

 

Before Thinning (2005–2006) 

 
No 

Treatment 

Thinning from Below 

(Moderate/Intensive) 

Thinning from Above 

(Moderate/Intensive) 

Systematic Thinning 

(Moderate/Intensive) 

G (m2/ha) 27.6 26.9/26.9 27.8/24.7 25.4/26.0 

N/ha 1336 1285/1260 1417/1201 1256/1218 

V (m3/ha) 224.4 215.4/216.6 216.9/191.0 199.7/210.6 

Dg (cm) 17.8 17.5/18.0 17.3/17.6 17.5/18.0 

Hg (m) 16.1 16.1/16.3 15.9/15.6 15.9/16.2 

After Thinning (2005–2006) 

 
No 

Treatment 

Thinning from Below 

(Moderate/Intensive) 

Thinning from Above 

(Moderate/Intensive) 

Systematic Thinning 

(Moderate/Intensive) 

G (m2/ha) 27.6 18.3/8.9 18.5/9.1 18.2/8.7 

N/ha 1336 719/292 955/479 988/522 

V (m3/ha) 224.4 148.8/72.9 144.0/69.1 141.3/67.3 

Dg (cm) 17.8 18.7/20.4 16.9/16.5 16.5/15.7 

Hg (m) 16.1 16.5/16.9 15.7/15.3 15.6/15.5 

After the Growth Period (2018–2019) 

 
No 

Treatment 

Thinning from Below 

(Moderate/Intensive) 

Thinning from Above 

(Moderate/Intensive) 

Systematic Thinning 

(Moderate/Intensive) 

G (m2/ha) 37.1 28.4/15.9 28.3/16.1 27.6/15.9 

N/ha 1249 705/286 915/446 937/466 

V (m3/ha) 380.3 291.8/160.8 282.3/150.5 267.9/150.4 

Dg (cm) 21.2 23.5/27.5 21.2/22.3 20.7/22.2 

Hg (m) 21.3 21.7/21.6 21.0/19.5 20.3/20.0 

 

 

 

Table 2. Summary statistics of the structural characteristics of the plots based on in situ 

measurements for Studies II and III, including the minimum (Min), mean, maximum (Max), and 

standard deviation (Std.) of the number of trees per hectare (N), mean volume (V), mean 

diameter weighted by basal area (Dg), and mean height weighted by basal area (Hg). 

 

Study Year Attribute N (n/ha) V (m3/ha) Dg (cm) Hg (m) 

 
 

2014 

 

Min 430 110.64 13.91 13.03 

 Mean 1238 297.24 25.93 21.01 

II & III Max 3008 482.33 41.58 27.04 

 Std. 731 115.21 9.10 4.14 

 
 

2021 

 

Min 430 143.89 16.08 14.80 

 Mean 1197 356.42 27.91 22.50 

II Max 2568 537.24 42.41 28.14 

 Std. 674 117.14 8.79 3.80 
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2.2 Laser scanning data acquisition 

 

2.2.1 Laser scanning data in Study I 

 

TLS data in Study I were acquired using a Trimble TX5 3D (Trimble Inc., Sunnyvale, 

California, USA) phase-shift laser scanner between September and October 2018 (Table 3). 

This scanner operates at a wavelength of 905 nm and can measure up to 976,000 points per 

second, with a beam divergence of 0.19 mrad. Each scan covers 360 degrees horizontally and 

300 degrees vertically. A multi-scan approach was used for TLS data acquisition to ensure 

that the point clouds characterized all trees. The scanner was positioned at eight distinct 

locations evenly distributed around each sample plot to collect point clouds. Two of these 

locations (referred to as central scans) were near the center of the plot, a few meters apart, 

while the remaining six (referred to as auxiliary scans) were evenly distributed around the 

perimeter of the plot, favoring positions near the plot borders. Point clouds from the various 

scan locations were registered using artificial reference targets—white spheres with a 

diameter of 198 mm—mounted on tripods and distributed around the sample plot. The 

maximum horizontal distance between the scanner and a tree was about 7 m. At this distance, 

the scanning parameters used produced a point spacing of 2.7 mm in the point cloud from a 

single scan. Depending on the structure of the sample plot, the resulting overall point density 

ranged from 52,000 to 91,000 pts/m2 (Table 3). 

 

2.2.2 Laser scanning data in Study II 

 

TLS data in Study II were acquired in 2014 (T1) and 2021 (T2) across the studied sample 

plots (Table 3). The T1-TLS data were collected by a Leica HDS6100 (Leica Geosystems, 

St. Gallen, Switzerland) phase-shift scanner in April–May 2014. The scanner operated at a 

wavelength of 690 nm and could capture high-density point clouds with a scanning rate of 

508,000 points per second. The resulting point cloud from a single scan exhibited 

hemispherical (360° horizontal × 310° vertical) coverage, providing detailed 3D information 

in both the horizontal and vertical directions, with an angular resolution of 0.018° (Table 3). 

To obtain a comprehensive point cloud for each sample plot, five individual scans were 

performed from different locations. The scan configuration included a central scan positioned 

at the plot center, along with four auxiliary scans strategically placed in the quadrant 

directions (northeast, southeast, southwest, and northwest), each approximately 11 m from 

the center. Different individual scans were co-registered using artificial reference targets as 

control points in Z + F LaserControl (Zoller + Fröhlich GmbH, Wangen im Allgäu, Germany) 

point cloud processing software to generate a unified point cloud.  
A Leica RTC360 3D time-of-flight scanner (Leica Geosystems, St. Gallen, Switzerland) 

acquired the T2-TLS data in April–May 2021 (Table 3). The scan setup was different from 

that for T1-TLS, and in addition to the central scan, eight auxiliary scans were performed 

approximately at the plot borders (angular resolution of 0.009°); see Table 3. The same co-

registration process with a similar level of accuracy was applied to the T2-TLS point clouds 

using Leica Cyclone 3D point cloud processing software (Leica Geosystems AG, Heerbrugg, 

Switzerland). The existing tree maps were updated to include trees that had reached the 

measurement threshold (dbh of at least 5 cm). Additionally, trees that had been harvested or 

had fallen during the monitoring period were removed from the tree maps.  

The low-altitude ALS data in Study II were also acquired in 2014 (T1) and 2021 (T2) 

across the study area (Table 3). The T1-ALS data in Study II were acquired using a Riegl 
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VQ-480-U scanner (RIEGL Laser Measurement Systems GmbH, Horn, Austria) from a 

helicopter flying at an altitude of 75 m. A constant flight speed of 50 km/h was maintained. 

The ground footprint size was about 2.3 cm. In addition, on-ground pulse spacing along the 

scan line and between scan lines was approximately 4.7 cm and 9.3 cm, respectively. To 

ensure data quality, erroneous points were manually removed. This involved carefully 

identifying and eliminating points that originated from incorrect returns, such as isolated 

points in the sky or below ground level. The ALS point clouds were captured with a high 

level of detail and precision, resulting in a point density of approximately 450 pts/m2.  

The T2-ALS data were acquired using a multi-sensorial system carried by a helicopter 

with a target flying speed of 50 km/h in June 2021. The implemented scanners included three 

Riegl laser scanners: the VUX-1HA, the MiniVUX-3UAV, and the VQ-840-G (RIEGL Laser 

Measurement Systems GmbH, Horn, Austria). The flight height was approximately 80 m 

above ground level, resulting in a point density of 3200 pts/m2 and a point spacing of 2.0 cm 

on the ground (Table 3).  

 

2.2.3 Laser scanning data in Study III 

 

The data used in Study III were the same T1-TLS (2014) and T1-ALS (2014) data used in 

Study II (Table 3). 

 

 

Table 3. Acquisition setup of laser scanning datasets, including terrestrial laser scanning 

(TLS) and airborne laser scanning (ALS), performed in 2014, 2018, and 2021. 

 

Specification 

2014 

(Studies II & III) 

2018 

(Study I) 

2021 

(Study II) 

TLS ALS TLS TLS ALS 

Sensor 
Leica 

HDS6100 

Riegl VQ 

480-U 
Trimble TX5 3D Leica RTC360 3D 

Riegl VUX-1HA / 

MiniVUX-3UAV / 

VQ-840-G 

Wavelength 690 nm 1550 nm 905 nm 1550 nm 1550/905/532 nm 

Beam 

divergence 
0.22 mrad 0.3 mrad 0.19 mrad 0.16 mrad 

0.5/0.5 × 1.6/1 

mrad 

Field of view 

310° vertically 

and 360° 

horizontally 

60° 

300° vertically 

and 360° 

horizontally 

300° vertically 

and 360° 

horizontally 

360°/120°/40° 

Pulse 

repetition rate 
508 kHz 550 kHz 976 kHz 2000 kHz 

1017, 300, 200 

kHz 

Platform Tripod 
Low-altitude 

helicopter 
Tripod Tripod 

Low-altitude 

helicopter 
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2.3 Deriving individual tree structural metrics from point clouds 

 

In this section, the methods for deriving individual tree structural metrics from TLS and ALS 

point clouds from the three studies were integrated to characterize tree structure. The first 

step in the analysis involved classifying point clouds into ground and non-ground points. TLS 

and ALS data were processed using LAStools software (rapidlasso GmbH, Gilching, 

Germany). Using the lidR package, triangulated irregular network models were created to 

generate TLS- and ALS-based digital terrain models (DTMs) with a resolution of 0.5 m 

(Roussel and Auty 2018). Subsequently, the TLS and ALS point clouds were normalized 

using their respective DTMs, and only the points representing vegetation were selected for 

further analysis. TLS- and ALS-derived canopy height models (CHMs) were created from 

the height-normalized TLS and ALS point clouds using the pit-free algorithm (Khosravipour 

et al. 2016) in LAStools. This algorithm combines a standard CHM with partial surface 

models generated from the highest return points near pits. This study produced partial CHMs 

using height thresholds of 2, 5, 10, 15, 20, 25, 30, 35, and 40 m. The normalized point clouds 

were thinned to half the pixel size for this process. A near-ground surface model was created 

to address potential holes by excluding points above 10 cm (Isenburg 2019). Finally, the 

CHM and partial surface models were combined into a single CHM with a 0.5 m pixel size, 

using the highest values from all the CHM or partial surface models. In Study I, the resolution 

of the CHM obtained was 0.2 m. 

To analyze individual trees, the local maxima filter algorithm was applied to the final 

CHM of the sample plot using the lidR package in R. A fixed window size of 3 × 3 pixels, 

determined through experimental testing, was used to identify the treetops. An exception to 

this approach can be found in Study I, where a variable window size was used for segmenting 

trees from TLS data. In the next step, the final CHM was segmented into individual tree 

crowns (i.e., 2D crown segments) utilizing a marker-controlled watershed segmentation 

algorithm (Meyer and Beucher 1990). The identified tree crown segments were used to clip 

out the points corresponding to each tree using a point-in-polygon approach applied to the 

XY plane. Moreover, TLS-derived individual tree point clouds were classified per the 

methodology developed by Yrttimaa et al. (2020). It is based on separating points originating 

from the stem and crown. It applies surface normal filtering and random sample consensus 

(RANSAC)-cylinder filtering across height intervals to identify point cloud clusters that 

formed smooth, vertical, and cylindrical structures representing the tree stem. An alpha shape 

was then generated to enclose these points, while any points outside the alpha shape were 

assumed to represent the tree crown. In the ALS point clouds, points delineated by individual 

trees were classified as crown points if they fell outside the alpha shape but remained within 

the 2D crown segment. Ultimately, individual tree locations were identified from the TLS 

point clouds as the center points (XY coordinates) of the RANSAC cylinders fitted to the 

stem points at breast height. For the ALS point clouds, the tree location was derived as the 

mean XY coordinates of all points within each 2D crown segment.  

Table 4 presents the computed attributes used to characterize individual trees based on 

the TLS and ALS point clouds. Tree height was determined using the highest point return 

within each tree segment. Additionally, to extract the crown structure and relevant geometric 

features, a 2D convex hull was employed to enclose the crown points from both TLS and 

ALS data using the rLiDAR package. This approach allowed for the characterization of 

crown morphology using two key attributes: the 2D crown area (CA2D) and the maximum 

crown diameter (MCD); see Table 4.  
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The dbh of individual trees was either directly measured (TLS) or predicted based on tree 

height (ALS). In the case of TLS, the dbh was calculated by fitting RANSAC cylinders to 

stem points collected from various heights around breast height (specifically at height 

intervals of 1.25–1.30 m and 1.30–1.35 m). The average of these diameter measurements 

from different heights was then used as the dbh estimate (Table 4). For trees where the dbh 

measurement was either unreasonable (i.e., not falling within the range of approximately 5 

cm to 65 cm) or could not be obtained, the dbh was estimated based on tree height using 

allometric models (Kalliovirta and Tokola 2005). This approach was necessary due to the 

limitations in characterizing all trees through TLS measurement in this study. For instance, 

some trees were not fully scanned from all perspectives, resulting in incomplete point cloud 

representations, which could lead to an overestimation of dbh when derived from point cloud 

measurements. Similarly, for ALS data, the dbh was estimated using the same allometric 

equation based on tree height (Kalliovirta and Tokola 2005). 

 

 

Table 4. Description of metrics characterizing the stem and crown derived from terrestrial 

laser scanning (TLS), airborne laser scanning (ALS), and a combination of TLS and ALS. In 

Study II, metrics were extracted at two time points in 2014 (T1) and 2021 (T2), while in Study 

III, only T1 (2014) was used. In addition, the change in these metrics over the monitoring 

period of Study II was calculated by subtracting T1 measures from the respective T2 measures 

(Δ = T2 − T1). dbh: diameter at breast height, H: tree height, MCD: maximum crown diameter, 

CA2D: crown area 2D, CA3D: crown area 3D, CV: crown volume, CS: crown surface area, V: 

stem volume, CP: crown perimeter, CP/CA2D: crown perimeter-to-projection area ratio, 

CA3D/CV: crown surface area-to-volume ratio, CHmin: crown base height, CHmax (m): crown 

top height. 

 

Study 
Characteristic 

(Unit) 
Description/Calculation 

I, III dbh (cm) 

Diameter at breast height (1.30 m) of the individual trees obtained 

by fitting a RANSAC cylinder in TLS/predicted using allometry 

(Kalliovirta and Tokola 2005) with tree height for ALS. 

I, III H (m) 
Maximum height (Z value) of individual tree point clouds for TLS 

and/or ALS. 

I, III MCD (m) 
Maximum crown diameter based on the 2D convex hull for TLS 

and/or ALS. 

I, II, III CA2D (m
2) 

Area of the crown 2D convex hull projected onto an XY plane for 

TLS and/or ALS. 

II CA3D (m3) Area of a 3D convex hull enveloping crown points. 

I, II CV (m3) 
Volume of the 3D convex hull enveloping crown points calculated 

as the sum of the volumes of 0.1 m voxels occupied by crown points. 

I CS (m2) Surface area enveloping crown points based on the 3D convex hull.  

II V (dm3) 
Calculated by considering the stem as a sequence of vertical 

cylinders. 

II CP (m) Perimeter of a 2D convex hull enveloping crown points. 

II CP/CA2D (m/m2) Ratio of CP to CA2D. 

II CA3D/CV (m2/m3) Ratio of CA3D to CV. 

II CHmin (m) 
Height at which the 3D convex hull enveloping crown points reaches 

its lowest points. 

II CHmax (m) Highest point within the crown segment; represents tree height. 
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2.4 Describing the competitive stress of individual trees using laser scanning data 

 

2.4.1 Object-based approach 

 

In Studies I and III, a distance-dependent object-based approach was used to quantify 

the competitive stress of each target tree within the plot. In this approach, the size and 

locations of the target tree and its neighbors are considered. To find the neighboring trees of 

each target tree, a fixed 8 m distance search zone was defined, as proposed by previous 

studies (Pedersen et al. 2012; Pont et al. 2021; Zhou et al. 2022). In Study I, six different 

stem- and crown-based CIs were computed for each target tree as a sum of inverse distances 

to the neighboring trees weighted by the dbh (CIdbh), tree height (CIH), tree maximum crown 

diameter (CIMCD), crown projection area (CICA), crown volume (CIcv), and crown surface area 

(CIcs) following the Hegyi equation (Hegyi 1974); see Equation (1). In Study III, only the 

first three CIs (CIdbh, CIH, and CIMCD) were utilized.  

 

CI = ∑ (Xi/(X × disti)) n
i=1  (1) 

 

where CI indicates the competition index for a given individual target tree; n represents 

the total number of neighboring trees located within an 8 m search zone; Xi represents the 

dbh, height, maximum crown diameter (MCD), crown projection area (CA), crown volume 

(CV), and crown surface area (CS) of the ith neighboring tree; X refers to the corresponding 

attributes of the target tree; and disti indicates the horizontal distance between the target tree 

and the i-th neighboring tree. 

To avoid edge effects, trees located within 8 m of the plot border were excluded from the 

computation of CIs. However, in Study I, a larger buffer of 11 m was applied for this 

exclusion. This also ensured that the TLS scan setup provided a complete, multi-viewpoint 

reconstruction of the trees (Yrttimaa et al. 2019). In addition, non-normalized tree height was 

restored via DTMs to consider the effect of topography on CIs based on tree height. 

 
2.4.2 Point cloud-based approach 

 

In Study III, a point cloud-based approach was used to quantify competition as an alternative 

to the object-based approach. In this approach, the competitive stress of the target trees was 

quantified based on canopy occupancy within the crown neighborhood and the geometric 

relationships between the target tree and its neighbors. Here, two methods were used to 

identify the vegetative structures of neighboring trees that contribute to competition. This 

included (1) a search-cone method that determined the competitive space as an upside-down 

cone with an opening angle of 60° positioned at a 60% relative tree height (Seidel et al. 

2015)and (2) a search-cylinder method that determined the competitive space as a vertical 

cylinder expanding around the target tree with a radius of 4 m. To account for the impact of 

topography on the quantified CIs, non-normalized TLS and ALS point clouds were utilized 

for this point cloud-based approach. Notably, CIs were not calculated for trees located within 

8 m of the plot boundary to minimize edge effects, consistent with the object-based approach. 

 In the search-cone method, the search cone was first established based on tree 

dimensions. The cone was set to extend from the 60% relative height to the top of the tree. 

The small-end diameter of the search cone at the 60% relative tree height was defined as the 

corresponding crown diameter. This was derived by enveloping a horizontal cross-section of 

the non-stem points of each target tree with a 2D convex hull. After establishing the search 
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cone, points that were located within the search cone but outside the 3D convex hull of the 

target tree crown were delineated utilizing the non-normalized point clouds from the sample 

plots. These points were classified as neighboring points and considered to represent 

competing vegetative structures. These points were further voxelized into a 0.1 m × 0.1 m × 

0.1 m grid, with each voxel indicating 0.001 m3 of vegetation-occupied space around the 

crown of the target tree. 

Using three elements, namely neighboring point clouds, the search cone’s geometry, and 

the target tree’s crown characteristics, the canopy density index (CDI) and competitive 

pressure index (CPI) were calculated. The initial step consisted of a volumetric analysis to 

assess the presence of vegetative structures within the competitive space. The volume of 

space occupied by neighboring point clouds (CV) was calculated by multiplying the number 

of neighboring points (with Z ≤ the height of the target tree) by their representative volume 

of 0.001 m³. The relative volume of the space occupied by neighboring trees (i.e., CDI) was 

defined as the ratio between the CV and the volume of the search cone whose top surface 

was constrained to the height corresponding to the tree height (Vcone), excluding the volume 

of the target tree’s crown (Vcrown). Vcone was calculated using the geometric equation for the 

volume of a truncated cone. A 3D version of the CPI was utilized to consider the distance of 

the neighboring trees. Hence, the CPI was computed as a mean inverse Euclidean distance 

between the neighboring points and the surface of the 3D convex hull of the target tree crown 

(Figure 2).  

As mentioned before, the search cylinder method was also used to quantify 

the competitive stress of target trees. Calculating the filling of the cylindrical space was 

significantly more straightforward with this method than with the conical filling method, as 

it did not require conversion into spherical coordinates (Seidel et al. 2015). Consequently, 

the number of 1 dm³ voxels with centers located within a 4 m radius of the search cylinder 

were counted, which allowed for determining the corresponding vegetation-occupied 

volume, referred to as CICylinder (Figure 2). In line with Seidel et al. (2015), the 4 m radius 

search cylinder was utilized due to its better performance compared to larger or smaller 

search cylinders, according to our initial experiments.  

 

 

Figure 2. Depiction of (a) the search-cone method and (b) the cylinder-based method to 

describe the competitive stress of target trees. The target tree is highlighted in green, while 

the point cloud structures identified as competing neighbors are represented in purple. 
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 2.5 Quantifying the competitive stress of individual trees using in situ data 

 

In Study III, CIs derived from in situ data were used to evaluate the reliability of the 

competition between trees quantified from laser scanning techniques. In the same way as the 

object-based CIs (Section 2.4.1), the Hegyi equation was calculated using dbh (CIdbh-In situ) 

and height (CIH-In situ) to compute the magnitude of competition affecting each in situ target 

tree. Like before, the computed in situ-based CIs for trees closer than 8 m from the plot border 

were excluded to mitigate the edge effect. It is important to note that CIH-In situ was solely 

utilized to evaluate the accuracy of the predicted CIH, while the other CIs were compared 

against CIdbh-In situ. In addition, based on findings from previous studies (Contreras et al. 2011; 

Pedersen et al. 2013; Seidel et al. 2015), relative basal area increment was used to evaluate 

the reliability of CIs. Hence, in Study III, our predicted laser scanning-based CIs were 

assessed against relative basal area increment, calculated by subtracting the in situ basal area 

in 2014 from the corresponding measure in 2021 and dividing the result by the initial basal 

area in 2014. 

 

 

 2.6 Tree-to-tree matching  

 

A tree-to-tree matching process was used to link field-measured trees with point cloud-

derived trees. Hence, the geospatial locations of the trees were initially used to identify 

potential counterpart candidates within a defined search range. If multiple candidates were 

found within the search range, tree characteristic similarity was used as the criterion to 

determine the correct match. Specifically, in Studies I (Table 5) and III (Table 7), a search 

range maximum distance of 2 m was considered. If multiple detected or in situ trees fell 

within this search radius, correspondences were established based on the similarity of their 

heights. This matching procedure in Study III, along with the applied constraints, resulted in 

the inclusion of a total of 225 TLS trees and 213 ALS trees in the analysis. In Study III, the 

same approach was used to match TLS and ALS trees, allowing the evaluation of the 

consistency of the CIs derived from both methods. This process resulted in the inclusion of 

126 trees in both datasets. In Study I, 2076 TLS-derived trees were matched with field-

measured trees and used for further analysis. In Study II, species information for each 

extracted tree was determined by identifying the corresponding field-measured tree within a 

1.5 m search range around each T1-TLS-measured tree. A similar approach was also used to 

link T1-TLS measurements with T2-TLS measurements. In both scenarios, if multiple 

candidates were identified within the search range, tree metrics similarity was used to validate 

matches, both between field measurements and T1-TLS data and between T1-TLS and T2-

TLS measurements. To focus the analysis on trees with adequate point cloud reconstruction 

at both T1 and T2, the following thresholds for acceptable variability in tree metrics between 

the subsequent measurements were applied: difference in the field-measured and TLS-

derived dbh < 3 cm, difference in TLS-derived diameter at 6 m height < 4 cm, difference in 

TLS-derived crown volume < 70%, and difference in TLS-derived tree height < 6 m. These 

thresholds were set based on prior experience with the accuracy and variability of TLS-based 

tree characterization in the sample plots. The matched trees were categorized by species: 

Scots pine, Norway spruce, and birch. Summary statistics for the matched trees from the field 

plots are shown in Table 6. 
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Table 5. Summary statistics of sample trees in each treatment measured by TLS data in 

Study I. 

 

Attribute Statistic 

No 

Treatment  

(n = 129) 

Thinning  

from Below 

Thinning  

from Above 

Systematic  

Thinning  

Moderate 

(n = 76) 

Intensive 

(n = 34) 

Moderate 

(n = 141) 

Intensive 

(n = 62) 

Moderate 

(n = 183) 

Intensive 

(n = 95) 

DBH  

(cm) 

Min 9.75 14.25 17.9 11 14.3 9 11.75 

Mean 16.56 21.77 26.19 19.05 21.87 19.03 21.1 

Max 34.4 31.35 34.65 32.25 28.35 28.8 29.1 

Std. 4.76 3.81 4.04 4.15 2.96 3.74 3.96 

Height  

(m) 

Min 14.94 16.98 18.2 16.7 14.9 13.7 13.9 

Mean 20.76 21.13 21.18 20.38 19.28 19.7 19.14 

Max 30.3 25.2 24.8 24.7 22.7 24.9 23.3 

Std. 3.06 2.24 1.66 1.47 1.49 1.85 2.24 

Volume  

(m3) 

Min 0.06 0.13 0.23 0.08 0.12 0.04 0.07 

Mean 0.33 0.39 0.56 0.3 0.36 0.29 0.34 

Max 1.27 0.89 1.03 0.92 0.66 0.73 0.72 

Std. 0.2 0.16 0.19 0.14 0.11 0.12 0.14 

  

 

Table 6. Summary statistics of the matched trees measured in the field plots by tree species 

in the years 2014 (T1) and 2021 (T2) for Study II. The minimum (Min), maximum (Max), mean, 

and standard deviation (Std.) of the diameter at breast height (dbh), volume, and height have 

been reported. 

  

Attributes/ 

Species Group 

Scots Pine 

(n = 219) 

Norway Spruce 

(n = 112) 

Birch 

(n = 77) 

2014 2021 2014 2021 2014 2021 

Dbh  

(cm) 

Min 5.45 5.20 6.35 6.20 6.50 6.45 

Max 57.10 58.60 50.70 54.00 29.75 32.50 

Mean 19.10 20.76 21.54 23.04 16.60 18.10 

Std. 7.77 8.36 10.02 10.43 5.63 6.04 

Volume 

(m3) 

Min 0.01 0.01 0.01 0.01 0.01 0.01 

Max 3.34 3.87 2.78 3.38 0.77 1.02 

Mean 0.31 0.40 0.52 0.62 0.24 0.31 

Std. 0.37 0.44 0.51 0.59 0.20 0.24 

Height 

(m) 

Min 5.80 6.00 5.30 5.40 7.60 7.10 

Max 34.30 36.00 34.40 37.40 29.70 29.50 

Mean 16.75 18.75 19.74 21.23 19.18 20.76 

Std. 4.65 5.09 7.49 7.70 4.66 4.81 
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Table 7. Minimum (Min), mean, maximum (Max), and standard deviation (Std.) values of 

structural attributes and competition indices (CIs) for the matched trees of terrestrial laser 

scanning (TLS) and airborne laser scanning (ALS), along with their in situ correspondence for 

Study III. dbh, H, and MCD indicate tree diameter at breast height, height, and maximum 

crown diameter, respectively. CIdbh, CIH, and CIMCD are the object-based CIs based on dbh, 

H, and MCD, respectively. The canopy density index (CDI), competitive pressure index (CPI), 

and CICylinder (i.e., vegetation-occupied volume) are point cloud-based CIs. From the TLS point 

clouds, 225 trees could be identified and matched with in situ trees, while the corresponding 

number for the ALS point clouds was 213. This accounts for the small differences in the 

characteristics of the in situ trees between the TLS and ALS datasets. 

 

Attribute/Competition 

index (CI) 
Dataset Min Mean Max Std. 

 

dbh (cm) 

In situ 5.25 20.03 38.80 7.17 

TLS 8.25 21.61 36.24 5.95 

In situ 5.25 20.32 38.80 6.76 

ALS 13.32 24.27 35.04 4.97 

H (m) 

In situ 10.40 20.50 30.20 4.62 

TLS 12.57 20.95 29.45 3.94 

In situ 10.50 20.92 30.20 4.38 

ALS 11.58 21.03 30.32 4.29 

MCD (m) 
TLS 2.92 5.21 7.72 6.89 

ALS 2.31 5.21 8.53 1.21 

CIdbh 

In situ 0.63 1.84 7.95 1.06 

TLS 0.95 2.41 4.60 0.77 

In situ 0.63 1.70 2.93 0.51 

ALS 0.63 1.95 3.56 0.73 

CIH 

In situ 0.83 1.82 2.77 0.45 

TLS 1.27 2.39 3.56 0.55 

In situ 0.83 1.82 2.77 0.45 

ALS 0.52 1.93 3.47 0.71 

CIMCD 
TLS 0.74 2.37 4.16 0.77 

ALS 0.34 2 4.03 0.74 

CDI 
TLS 0.0005 0.03 0.08 0.02 

ALS 0 0.006 0.015 0.004 

CPI 
TLS 0.5 89.51 242.82 57.68 

ALS 0 16.10 54.58 11.99 

CICylinder 
TLS 6322 64949 124297 27151.59 

ALS 0 4935 11352 2872 

 

 

2.7 Assessments of growth and competition 

 

In Study I, a mixed-effects model was applied to assess whether CIs varied across different 

thinning treatments, as it is suitable for analyzing multiple observations that are often 

correlated within independent sampling units (Mehtätalo and Lappi 2020). Given that 

different thinning treatments were applied across multiple plots at three study sites, a nested 
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two-level linear mixed-effects model was used, fitted with Restricted Maximum Likelihood, 

as implemented in the nlme package in R (Pinheiro et al. 2014); see Equation (2). Tukey’s 

honest significance test was utilized to identify statistically significant differences in CIs 

resulting from the different thinning treatments. 

 

𝑦𝑖𝑗 = 𝛽1𝑁𝑜 𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡1 + 𝛽2𝑀𝑜𝑑𝑒𝑟𝑎𝑡𝑒 𝑏𝑒𝑙𝑜𝑤𝑖 + 𝛽3𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑣𝑒 𝑏𝑒𝑙𝑜𝑤𝑖 +

𝛽4𝑀𝑜𝑑𝑒𝑟𝑎𝑡𝑒 𝑎𝑏𝑜𝑣𝑒𝑖 + 𝛽5𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑣𝑒 𝑎𝑏𝑜𝑣𝑒𝑖 + 𝛽6𝑀𝑜𝑑𝑒𝑟𝑎𝑡𝑒 𝑠𝑦𝑠𝑡𝑒𝑚𝑎𝑡𝑖𝑐𝑖 +

𝛽7𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑣𝑒 𝑠𝑦𝑠𝑡𝑒𝑚𝑎𝑡𝑖𝑐𝑖 + 𝛼𝑖 + 𝑐𝑖𝑗 +∈𝑖𝑗                                                                                         (2) 

 

where 𝑦𝑖𝑗 is each competition index at a time; 𝛽1, …, 𝛽7 refers to fixed parameters; i = 1, 

…, M are study sites; j = 1, …, 𝑛𝑖 refers to a sample plot; 𝛼𝑖 and 𝑐𝑖𝑗  are normally distributed 

random effects for study site i and sample plot j within study site i, respectively, with mean 

zero and an unknown, unrestricted variance–covariance matrix; and ∈𝑖𝑗 is a residual error 

with mean zero and unknown variance.  

In Study II, first outliers—defined as values more than three times the interquartile range 

from the first and third quartiles of ΔV—were removed, resulting in the inclusion of 219 

Scots pine, 112 Norway spruce, and 77 birch trees in the analysis. Then, the reliability of 

measurements derived from bi-temporal, multisensor point clouds was assessed by 

examining the consistency of tree attributes (e.g., stem volume and crown structure metrics) 

between T1 and T2. This was done using Pearson’s correlation coefficient (r) and visual 

inspection with scatterplots to validate the use of the applied methodologies for observing 

changes in tree structures. The linear relationships between ΔV and crown structural metrics 

at T1, along with ΔC, were subsequently examined using r to gauge relationship strength. 

Statistical significance was assessed through p-values (p), with a 95% confidence level. 

These analyses were conducted across various tree species to identify growth dependencies 

unique to each species.  

To further explore species-specific relationships between ΔV, crown structure, and ΔC, 

a random forest (RF) model was used. This approach enabled the exploration of potential 

non-linearities in the relationships, especially regarding the distribution of ΔV. Additionally, 

the RF model is ideal for handling complex predictor interactions and can mitigate 

collinearity to some extent, owing to its ensemble structure of decision trees (Breiman 2001). 

The full sample size was used to build the RF model to leverage all available data for 

identifying tree growth dependencies, ensuring that the model captured the complete 

variability present. To address collinearity among crown metrics, only the most strongly 

correlating crown metrics at T1 (with r > 0.8) were retained, while redundant ones were 

removed. This step minimized excessive correlation among predictors, reducing the risk of 

multicollinearity impacting model performance. The Gini index was then applied to calculate 

the relative importance of each selected predictor, quantifying the extent to which each metric 

contributes to reducing node impurity in the decision trees (Hapfelmeier et al. 2014). These 

importance values were scaled to a 0–100 range for easier comparison. 
In Study III, r was utilized to assess the relationships between laser scanning-derived and 

in situ-based CIs. It was also used to evaluate which CIdbh/CIH or basal area increment had a 

stronger association with the laser scanning-based CIs. The consistency between the TLS-

based and their corresponding ALS-based CIs was evaluated using r. In Study III, the 

potential difference between the laser scanning-derived CIs and in situ-based CIs was also 

analyzed, along with the effects of forest structural variability in the observed differences 

(ΔCIs). This was done to improve our knowledge of the performance of the implemented 

methodologies in boreal forest conditions. Hence, for the object-based CIs, the corresponding 
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ΔCIs were calculated by subtracting the in situ-based CIdbh values from those based on laser 

scanning. For the point cloud-based CIs, the initial CI values were first normalized by 

dividing them by the maximum observed values. The ΔCIs were then calculated by 

subtracting the rescaled in situ-based CIdbh values from the laser scanning-based CI values.  

According to existing knowledge, increased tree density and complexity decrease the 

potential of current-generation laser scanning technology to detect all trees (Maltamo et al. 

2004; Yrttimaa et al. 2019). The object-based and point cloud-based CIs implemented in this 

thesis must account for all vegetative structures around the target tree. Failure to include these 

structures may result in inaccurate CI predictions. Given these considerations, it can be 

assumed that as the number of surrounding trees in the field competing with the target tree 

increases, the uncertainty in laser scanning-based CI estimates will also rise. To investigate 

this, initially, the relationship between ΔCIs and the number of competitor trees, as identified 

through in situ measurements, was examined, using r to assess the strength of this 

relationship. Additionally, the relationship between the plot-level tree detection rate and tree 

density within the sample plots was explored to better understand how forest structure affects 

the ability of laser scanning point clouds to characterize tree competition. Accurate detection 

of trees is critical for reliable CI prediction, making it essential for assessing competitive 

stress. It is important to note that the relationships mentioned above were also evaluated for 

statistical significance using p-values. 

 

 

 

3 RESULTS AND DISCUSSION 
 

 

3.1 Influence of thinning treatments on stem and crown CIs derived from TLS (Study 

I)  

 

The results of Study I showed that overall, as anticipated, competition levels were highest in 

the control plots (without thinning); see Figure 3. This aligns with studies by Baniya and 

Mandal (2018) and del Río et al. (2017) and can be explained by limited tree growth space. 

In addition, the results showed that competition magnitudes, as identified by CIs, were 12.8–

52.7% smaller under moderate thinning treatments and 63.1–82.5% smaller under intensive 

thinning treatments compared to the control plots (no thinning). This declining trend was 

evident for both stem- and crown-based CIs (Figure 3). Moreover, intensive thinning from 

below, followed by intensive thinning from above, mainly led to a smaller mean and standard 

deviation compared to other thinning treatments of varying types and intensities (Figure 3). 

For moderate and intensive thinning from below, the magnitude of competition was 50.7% 

to 52.7% and 81.6% to 82.5%, respectively, smaller compared to the control plots when 

measured by CIs based on stem characteristics (CIdbh and CIH). In contrast, for moderate and 

intensive thinning from above, the magnitude of competition was 23% to 25% and 71.2% to 

73.2%, respectively, smaller compared to the control plots when measured by CIs based on 

stem characteristics.  

As mentioned above, most thinning treatments reduced competition, except systematic 

treatment and moderate-intensity thinning from above (Figure 3). These treatments produced 

a competition magnitude comparable to that of the control plots in terms of both mean and 

standard deviation. In general, more intensive thinning treatments resulted in greater 

reductions in competition as measured by the CIs compared to moderate thinning treatments. 
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As a result, we anticipate greater availability of growth resources, including space, nutrients, 

water, and sunlight, following intensive thinning treatments as they increase the space 

available for individual trees (Pretzsch 2009). In addition, thinning from below greatly 

reduced competition magnitude compared to thinning from above and systematic thinning 

(Figure 3). This can be attributed to the removal of smaller trees, which play a substantial 

role in taking up available growth resources, in the thinning from below treatment (Thorpe 

et al. 2010).  

The findings from the nested two-level linear mixed-effects model provide quantitative 

insights into the differences in CIs across various thinning treatments and intensities. 

Moderate and intensive thinning from below, intensive thinning from above, and intensive 

systematic thinning all showed statistically significant differences from the control plots 

across all crown- and stem-based CIs (p ≤ 0.05). However, only the stem-based CIs in 

moderate thinning from above differed significantly from control plots at the 95% confidence 

level. In contrast, there was no significant difference between control plots and moderate 

systematic thinning regarding all CIs (p ≥ 0.05). There was also no statistically significant 

difference in competition between moderate thinning from above and systematic thinning 

treatments. This similarity could stem from both treatments’ focus on removing larger 

individual trees (Saarinen et al. 2020). Although moderate-intensity systematic thinning 

created additional growing space for remaining trees, it did not significantly impact 

competition responses among individual Scots pine trees. 

Through Study  I, we found that TLS is an effective tool for quantifying competition by 

characterizing stem and crown structure in great detail. The ability to quantify both stem-

based and crown-based CIs with TLS allowed us to distinguish subtle differences in tree 

competition under varying thinning treatments. However, it is important to note that the 

sample plots of this study are managed forest stands (the TLS tree detection rate was 98.8%), 

where structural characteristics are often influenced by silvicultural interventions and do not 

fully represent the complexity of unmanaged or natural forest ecosystems. 
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Figure 3. Variation in competition indices resulting from seven thinning treatments applied 

during 2005–2006. The treatments are as follows: 1 = control plots, 2 = moderate thinning 

from below, 3 = intensive thinning from below, 4 = moderate thinning from above, 5 = intensive 

thinning from above, 6 = moderate systematic thinning from above, and 7 = intensive 

systematic thinning from above. 
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3.2 Feasibility of using point clouds to detect crown metric increments and explain 

species-specific stem volume growth (Study II) 

 
The assessment of consistency between individual tree characteristics measured at T1 and T2 

showed that CHmax had the most consistent change over time (r > 0.97). In addition, CV 

showed an increasing trend over time, with correlations of 0.85 for Scots pine, 0.82 for 

Norway spruce, and 0.74 for birch trees, although there was a moderate degree of variability. 

Other crown metrics showed more variability around the 1:1 line. The least consistency was 

noted for CA3D/CV in Scots pine, Norway spruce, and birch trees, with correlations of 0.65, 

0.56, and 0.40, respectively. 

The results also showed that both initial crown metrics and their changes had a significant 

relationship with ΔV, with explanatory power varying across different tree species, although 

it may reflect dynamics that differ from those observed over a longer period. Moreover, 

depending on internal tree characteristics and the stem itself, beyond the crown structure, 

growth allocation might vary (Pretzsch 2020), an aspect that was not addressed in our study. 

Other factors such as site conditions, tree age, mean tree size of the stand, and provenance 

could also influence the observed relationships (Pretzsch et al. 2022). Further research is 

required to explore how multisensor point clouds can contribute to understanding the growth 

distribution of various tree species. 

 Crown metrics at T1 demonstrated a stronger linear correlation with ΔV than metrics 

related to crown changes, which is consistent with the work of Yrttimaa et al. (2022b). This 

suggests that trees might initially expand their crowns, with larger crown sizes contributing 

to a higher ΔV. A strong relationship was observed between the ΔV of Scots pine and various 

crown metrics, such as CHmax, CA2D, and CP. Additionally, the two 2D crown metrics, CA2D 

and CP, demonstrated a significant correlation with the ΔV in birch. In contrast to pine trees, 

the volume change ΔV in Norway spruce showed the strongest correlations with 3D crown 

metrics, such as CA3D, CV, and ΔCV. 

By incorporating crown structural metrics and their ΔC into the RF model, we could 

explain 50%, 20%, and 6% of the variation in ΔV of Scots pine, Norway spruce, and birch, 

respectively (Figure 4). Based on the scaled mean decrease in the Gini index, CHmax was the 

most important metric for determining Scots pine ΔV, with CP and CA3D also being 

important metrics. When predicting Norway spruce ΔV, ΔCV emerged as the most effective 

metric, followed by CV and ΔCA3D as the second and third most influential metrics, 

respectively. For birch ΔV, ΔCV was identified as the primary predictor, with CP and CA3D 

ranking as the next two most important metrics.  
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Figure 4. Scatter plot illustrating the relationship between observed and predicted stem 

volume growth (ΔV, in dm3) for Scots pine, Norway spruce, and birch trees. The dashed line 

indicates the 1:1 relationship. 

 

 

The similarity in key metrics for predicting ΔV of Norway spruce and birch indicates that 

both species continue to develop their crowns to sustain their growth rates. CHmax was also 

identified as one of the most important metrics for Norway spruces and birches, albeit with 

a lesser impact. This implies that trees with a higher CHmax may possess a competitive 

advantage, contributing to an increase in ΔV. In particular, the importance of CHmax in 

explaining the stem volume growth of Scots pine emphasizes the species’ need for light, as 

it grows rapidly in height to optimize light acquisition (Givnish 1988). As seen above, CP 

was also an important metric for explaining the ΔV of Scots pine and birch. This can be 

attributed to the fact that a larger CP allows for greater light capture, which enhances 

photosynthetic activity and subsequently boosts the tree’s growth, leading to an increase in 

ΔV (Poorter et al. 2012). The findings of this study must be interpreted with caution, as the 

relationships observed are inherently complex and may be influenced by a range of factors, 

such as stand density, site conditions, tree age, and mean tree size (Pretzsch et al. 2022). For 

example, Valentine et al. (2012) showed that higher stand density can limit crown expansion, 

with the reduced crown size potentially restricting the tree’s ability to capture light and 

ultimately slowing its growth. Such complexities underscore the importance of considering 

these results in the broader context of forest dynamics and management practices. 

 

 

3.3 Ability of TLS and ALS data to describe stem and crown competition (Study III) 

 

The results of Study III showed that the effectiveness of laser scanning point clouds in 

reflecting individual trees’ competitive status differed based on the competition index used, 

with correlations reaching up to 0.44 for TLS and 0.48 for ALS. However, object-based CIs 

were better correlated (r = 0.33 to 0.48) with in situ-based CIs than point cloud-based CIs (r 

= −0.22 to 0.37). This difference can arise from the distinct methodologies of the two CI 

types in characterizing competition compared to the in situ-based CIs. While object-based 

CIs were calculated using the Hegyi equation, similar to in situ-based CIs, with the main 

difference being the use of tree attributes derived from TLS and ALS point clouds as input 

data, point cloud-based CIs focused on assessing competitive stress by measuring the extent 

of vegetative structures within the target tree’s estimated growing space, which was assumed 
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to better characterize competition. Unlike point cloud-based CIs, neither object-based nor in 

situ CIs considered the shape of neighboring tree crowns or their shading impact, which may 

partly explain the varying correlations observed between point cloud-based and in situ CIs. 

Regarding consistency between predicted TLS CIs and the corresponding ALS CIs, 

object-based CIs (r = 0.65 to 0.71, p < 0.001) were more consistent than point cloud-based 

CIs (r = 0.29 to 0.53, p < 0.001). Within the object-based CIs, CIH exhibited the strongest 

correlation between TLS and ALS, while among the point cloud-based CIs, CDI showed the 

strongest correlation between TLS and ALS (r = 0.53), followed by CICylinder (r = 0.45, p < 

0.001) and CPI (r = 0.29, p < 0.001). Inconsistency between the same CIs derived from TLS 

and ALS most likely originates from the distinct viewing angles and acquisition geometry of 

each system (Hilker et al. 2012; Kükenbrink et al. 2017). In other words, TLS produces a 

distinct point cloud reconstruction of trees compared to low-altitude ALS data. Consequently, 

it is reasonable to anticipate that point cloud-based CIs may vary depending on the type of 

point cloud data utilized. For example, the inconsistency between CPITLS and CPIALS can be 

attributed to varying occlusion effects caused by their distinct measurement geometries. In 

TLS, occlusion primarily affects the upper and middle parts of the tree crown (Béland et al. 

2011, 2014)whereas ALS tends to capture treetops with less occlusion but may overlook 

lower canopy layers, especially in dense canopies (Kükenbrink et al. 2017). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. An example of the relationship between plot-level tree detection rate and difference 

(Δ) in competition indices (CIs) derived from terrestrial laser scanning (TLS) and airborne laser 

scanning (ALS) in comparison to in situ data. The analyzed CIs were based on diameter at 

breast height (CIdbh) and canopy density index (CDI). 
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Based on the results, as the number of neighboring trees increased and the tree detection 

rate decreased, the difference between laser scanning-based CIs and in situ-based CIs (ΔCIs) 

increased (Figure 5). Overall, object-based CIs were more influenced (r = 0.68 to 0.84, p < 

0.001) by detection rate than point cloud-based CIs (r = 0.25 to 0.49, p < 0.001). The number 

of neighboring trees in the field representing the complexity of the forest structure had a 

negative effect on the accuracy of estimations, especially for object-based CIs (r = −0.79 to 

−0.96, p < 0.001). In this study, both TLS and ALS tended to underestimate trees’ competitive 

status relative to in situ-based CIs, primarily because they could not detect all competitive 

neighboring trees surrounding the target trees. In practice, the tree detection rate is linked to 

the complexity of the forest structure, often due to the omission of intermediate and 

suppressed trees (Wang et al. 2016). Vauhkonen et al. (2012) reported that forest structure 

significantly impacts detection accuracy, with complex structures negatively affecting 

detection rates. In this study, neither TLS nor ALS could detect all trees, leading to an 

underestimation of the resulting competitive stress. Figure 5 illustrates an example of the 

relationship between the plot-level tree detection rate and ΔCIs, comparing both TLS- and 

ALS-based object-based and point cloud-based CIs.  

 

 

3.4 Constraints and future research 

 

In Study I, we aimed to develop approaches for assessing stem and crown competition using 

TLS data to evaluate the effects of different types and intensities of thinning treatments on 

stem- and crown-based CIs in Scots pine stands. Although this study yielded promising 

results in describing stem- and crown-based competition between trees, further research is 

needed due to its limitations. The scanning setup, tree delineation, and segmentation 

algorithms could create uncertainties, such as point cloud occlusion and inaccurate 

delineation of tree crowns, in this study. However, advances in laser scanning technologies 

such as TLS, ALS, and multisensor approaches, along with methodological improvements 

(e.g., in crown segmentation algorithms), are expected to enhance the accuracy of results in 

similar studies in the future. With the availability of time series of laser scanning point cloud 

data, monitoring the impact of thinning treatments on competition between trees, especially 

by employing point cloud-based CIs, is recommended for future research. 

The objective of Study II was to understand the dependencies between individual tree 

stem volume growth (ΔV) and crown structure, including its change (ΔC), using TLS and 

ALS point clouds. This study revealed some negative ΔV values, likely due to inaccurate 

taper curve estimation due to point cloud occlusion. The co-registration accuracy between 

the terrestrial and aerial point clouds and the discrepancy in the methods used at T1 and T2 

are also sources of uncertainty that may have affected the results. These uncertainties could 

have led to a spatial mismatch between the trees identified at T1 and T2, which could have 

decreased the reliability of the tree-to-tree matching. In addition, our data in Study II were 

mostly collected during leaf-off conditions, likely resulting in an underestimation of the 

crown characteristics of the birch trees. Incorporating partial dependency plots or using 

Generalized Additive Models could enhance the interpretability of the results.  For future 

studies, a deeper investigation into the role of multisensor point clouds in analyzing growth 

allocation patterns for different tree species is recommended. One possibility can be focusing 

on understanding appropriate time intervals to filter out excessive noise and reveal genuine 

patterns in forest change detection, especially in slow-growth boreal forests. 
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In Study III, we investigated the capacity of TLS and ALS data to characterize 

competitive stress affecting individual trees. Based on the results of this study, the predicted 

competition through laser scanning data was subject to underestimation compared to in situ-

based competition. The primary reason for this underestimation is that the laser scanning 

systems used in this study could not capture all the competitive neighbor trees surrounding 

the target trees, especially in complex forest stands. Hence, point cloud occlusion was an 

uncertainty source. This limitation can be addressed in future studies through careful 

planning of the data acquisition campaign, with a focus on obtaining a comprehensive point 

cloud reconstruction of all individual trees and capturing the full extent of vegetative 

structures within the competitive neighborhood of the target trees. One alternative approach 

to overcoming the challenge of point cloud occlusion is the fusion of terrestrial and aerial 

point clouds, as each system offers different viewpoints. Automatic segmentation of point 

clouds often faces issues such as data omissions and the inaccurate delineation of tree crowns 

in aerial point clouds or stems in terrestrial point clouds (Kwak et al. 2007), which can lead 

to errors in the prediction of object-based CIs. Thus, methodological improvements are 

needed to enhance tree characterization for more accurate competition assessments. Since the 

laser scanning datasets for Studies II and III are identical, the limitations and 

recommendations outlined for Study III are largely applicable to Study II as well. 

 

 

4 CONCLUSIONS 
 

  

In recent decades, laser scanning has become an increasingly important tool in forest mapping 

due to its capability to provide highly detailed 3D information on trees and forest stands. This 

thesis emphasizes the feasibility of using laser scanning point clouds to understand forest 

dynamics, particularly in the context of competition, tree growth, and forest management 

strategies in boreal forests.  

Study I highlighted the utility of TLS technology in deriving both stem and crown metrics, 

allowing for a more comprehensive assessment of how different thinning treatments affect 

competition between trees at both stem and crown levels. This approach increased our 

understanding of how thinning influences tree growth dynamics. In addition, this study 

demonstrated the impact of various thinning treatments on TLS-derived stem and crown CIs, 

offering insights for optimizing forest management practices. For example, it showed that 

intensive thinning from below significantly reduced competition by up to 82.5% compared 

with other treatments. In contrast, moderate thinning treatments showed limited effects, 

underscoring the need for management strategies. This study also emphasized the importance 

of TLS point clouds in characterizing crown metrics for competition assessments, which are 

often overlooked in traditional methods.  

Study II underscored the potential of bi-temporal, multisensor point clouds from TLS and 

ALS in linking crown structural changes to stem volume growth across three important 

species in boreal forests. The results of Study II revealed species-specific variations in how 

crown metrics and their changes influence growth, with Scots pine showing the strongest 

correlations (explaining 50% of ΔV), while Norway spruce and birch trees had a ΔV of 20% 

and 6%, respectively. In addition, we found that crown structural metrics at T1 exhibited a 

stronger correlation with species-specific ΔV compared to ΔC-related metrics at a 95% 

confidence interval. The study highlighted the potential of detailed point cloud data in 

monitoring tree growth and inventorying forests on larger scales, although operational 
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challenges, such as the cost of data collection, remain significant barriers to large-scale 

application.  

Study III confirmed the ability of TLS and low-altitude ALS point clouds to effectively 

quantify the competitive stress of individual trees. However, it also identified challenges, 

such as point cloud occlusion and the subsequent non-detection of all relevant neighboring 

trees, including both individual trees and vegetative structures. Overall, the competition 

effects described using low-altitude ALS and TLS data were very similar. This finding opens 

pathways for integrating competition assessments into operational forest management 

workflows, such as determining thinning priorities. 

Together, the findings of these three studies underscore the value of laser scanning 

technologies in advancing forest ecology research and informing sustainable forest 

management practices. By bridging gaps in competition assessment, growth prediction, and 

large-scale inventory methods, this research provides valuable insights for developing 

sustainable forest management strategies, particularly in the boreal context. Future 

advancements in sensor technology and data affordability could further enhance the practical 

applications of these methodologies. 

 

 

REFERENCES 
 

 

Baniya B, Mandal RA (2018) Assessment of Plant Competition and Tree Typical Crown 

Area in Thinned and Unthinned Stands of Community Managed Pine Plantation. Ann 

Archaeol 1: 42–47 

Béland M, Widlowski J-L, Fournier RA, Côté J-F, Verstraete MM (2011) Estimating leaf 

area distribution in savanna trees from terrestrial LiDAR measurements. Agric For 

Meteorol 151: 1252–1266. https://doi.org/10.1016/j.agrformet.2011.05.004 

Béland M, Baldocchi DD, Widlowski J-L, Fournier RA, Verstraete MM (2014) On seeing 

the wood from the leaves and the role of voxel size in determining leaf area distribution 

of forests with terrestrial LiDAR. Agric For Meteorol 184: 82–97. 

https://doi.org/10.1016/j.agrformet.2013.09.005 

Bollandsås OM, Næsset E (2009) Weibull models for single-tree increment of Norway 

spruce, Scots pine, birch and other broadleaves in Norway. Scand J For Res 24: 54–66. 

https://doi.org/10.1080/02827580802477875 

Breiman L (2001) Random forests. Mach Learn 45: 5–32. 

https://doi.org/10.1023/A:1010933404324/METRICS 

Burkhart HE, Tomé M (2012) Modeling forest trees and stands. Model For Trees Stands 

9789048131: 1–457. https://doi.org/10.1007/978-90-481-3170-9 

Calders K, Adams J, Armston J, Bartholomeus H, Bauwens S, Bentley LP, Chave J, Danson 

FM, Demol M, Disney M, Gaulton R, Krishna Moorthy SM, Levick SR, Saarinen N, 

Schaaf C, Stovall A, Terryn L, Wilkes P, Verbeeck H (2020) Terrestrial laser scanning 

in forest ecology: Expanding the horizon. Remote Sens Environ 251: 112102. 

https://doi.org/10.1016/j.rse.2020.112102 

Contreras MA, Affleck D, Chung W (2011) Evaluating tree competition indices as predictors 

of basal area increment in western Montana forests. For Ecol Manage 262: 1939–1949. 

https://doi.org/10.1016/j.foreco.2011.08.031 

Dassot M, Constant T, Fournier M (2011) The use of terrestrial LiDAR technology in forest 

science: Application fields, benefits and challenges. Ann For Sci 68: 959–974. 



35  

https://doi.org/10.1007/s13595-011-0102-2 

Del Río M, Bravo-Oviedo A, Pretzsch H, Löf M, Ruiz-Peinado R (2017) A review of 

thinning effects on Scots pine stands: From growth and yield to new challenges under 

global change. For Syst 26: eR03S. https://doi.org/10.5424/fs/2017262-11325 

Fassnacht FE, White JC, Wulder MA, Næsset E (2024) Remote sensing in forestry: current 

challenges, considerations and directions. For An Int J For Res 97: 11–37. 

https://doi.org/10.1093/forestry/cpad024 

Givnish T (1988) Adaptation to Sun and Shade: a Whole-Plant Perspective. Funct Plant Biol 

15: 63. https://doi.org/10.1071/PP9880063 

Hapfelmeier A, Hothorn T, Ulm K, Strobl C (2014) A new variable importance measure for 

random forests with missing data. Stat Comput 24: 21–34. 

https://doi.org/10.1007/s11222-012-9349-1 

Hegyi F (1974) A simulation model for managing jack-pine stands. Growth Model tree stand 

Simul 74–90 

Hilker T, Coops NC, Newnham GJ, van Leeuwen M, Wulder MA, Stewart J, Culvenor DS 

(2012) Comparison of Terrestrial and Airborne LiDAR in Describing Stand Structure 

of a Thinned Lodgepole Pine Forest. J For 110: 97–104. https://doi.org/10.5849/jof.11-

003 

Holopainen M, Vastaranta M, Kankare V, Räty M, Vaaja M, Liang X, Yu X, Hyyppä J, 

Hyyppä H, Viitala R, Kaasalainen S (2012) BIOMASS ESTIMATION OF 

INDIVIDUAL TREES USING STEM AND CROWN DIAMETER TLS 

MEASUREMENTS. Int Arch Photogramm Remote Sens Spat Inf Sci XXXVIII-5/: 

91–95. https://doi.org/10.5194/isprsarchives-XXXVIII-5-W12-91-2011 

Isenburg M (2019) LAStools—Efficient LiDAR Processing Software,(version 181001 

academic); rapidlasso GmbH: Gilching, Germany 

Kaasalainen S, Krooks A, Liski J, Raumonen P, Kaartinen H, Kaasalainen M, Puttonen E, 

Anttila K, Mäkipää R (2014) Change Detection of Tree Biomass with Terrestrial Laser 

Scanning and Quantitative Structure Modelling. Remote Sens 6: 3906–3922. 

https://doi.org/10.3390/rs6053906 

Kalliovirta J, Tokola T (2005) Functions for estimating stem diameter and tree age using tree 

height, crown width and existing stand database information. Silva Fenn 39: 227–248 

Khosravipour A, Skidmore AK, Isenburg M (2016) Generating spike-free digital surface 

models using LiDAR raw point clouds: A new approach for forestry applications. Int J 

Appl Earth Obs Geoinf 52: 104–114. https://doi.org/10.1016/j.jag.2016.06.005 

Kükenbrink D, Schneider FD, Leiterer R, Schaepman ME, Morsdorf F (2017) Quantification 

of hidden canopy volume of airborne laser scanning data using a voxel traversal 

algorithm. Remote Sens Environ 194: 424–436. 

https://doi.org/10.1016/j.rse.2016.10.023 

Kwak D-A, Lee W-K, Lee J-H, Biging GS, Gong P (2007) Detection of individual trees and 

estimation of tree height using LiDAR data. J For Res 12: 425–434. 

https://doi.org/10.1007/s10310-007-0041-9 

LaRue EA, Hardiman BS, Elliott JM, Fei S (2019) Structural diversity as a predictor of 

ecosystem function. Environ Res Lett 14: 114011. https://doi.org/10.1088/1748-

9326/ab49bb 

Latham PA, Zuuring HR, Coble DW (1998) A method for quantifying vertical forest 

structure. For Ecol Manage 104: 157–170 

Lefsky MA, McHale MR (2008) Volume estimates of trees with complex architecture from 

terrestrial laser scanning. J Appl Remote Sens 2: 023521. 



36 

https://doi.org/10.1117/1.2939008 

Liang X, Kankare V, Hyyppä J, Wang Y, Kukko A, Haggrén H, Yu X, Kaartinen H, Jaakkola 

A, Guan F, Holopainen M, Vastaranta M (2016) Terrestrial laser scanning in forest 

inventories. ISPRS J Photogramm Remote Sens 115: 63–77. 

https://doi.org/10.1016/j.isprsjprs.2016.01.006 

Liang X, Hyyppä J, Kaartinen H, Lehtomäki M, Pyörälä J, Pfeifer N, Holopainen M, Brolly 

G, Francesco P, Hackenberg J, Huang H, Jo HW, Katoh M, Liu L, Mokroš M, Morel 

J, Olofsson K, Poveda-Lopez J, Trochta J, Wang D, Wang J, Xi Z, Yang B, Zheng G, 

Kankare V, Luoma V, Yu X, Chen L, Vastaranta M, Saarinen N, Wang Y (2018) 

International benchmarking of terrestrial laser scanning approaches for forest 

inventories. ISPRS J Photogramm Remote Sens 144: 137–179. 

https://doi.org/10.1016/j.isprsjprs.2018.06.021 

Ma Q, Su Y, Tao S, Guo Q (2018) Quantifying individual tree growth and tree competition 

using bi-temporal airborne laser scanning data: a case study in the Sierra Nevada 

Mountains, California. Int J Digit Earth 11: 485–503. 

https://doi.org/10.1080/17538947.2017.1336578 

Maas H ‐G., Bienert A, Scheller S, Keane E (2008) Automatic forest inventory parameter 

determination from terrestrial laser scanner data. Int J Remote Sens 29: 1579–1593. 

https://doi.org/10.1080/01431160701736406 

Maltamo M, Mustonen K, Hyyppä J, Pitkänen J, Yu X (2004) The accuracy of estimating 

individual tree variables with airborne laser scanning in a boreal nature reserve. Can J 

For Res 34: 1791–1801. https://doi.org/10.1139/x04-055 

Maltamo M, Næsset E, Vauhkonen J (2014) Forestry applications of airborne laser scanning. 

Concepts case Stud Manag Ecosys 27: 460 

Mehtätalo L, Lappi J (2020) Biometry for Forestry and Environmental Data. Chapman and 

Hall/CRC, Boca Raton, FL : CRC Press, 2020. | Series: Chapman & Hall/CRC applied 

environmental statistics 

Metz J, Seidel D, Schall P, Scheffer D, Schulze E-D, Ammer C (2013) Crown modeling by 

terrestrial laser scanning as an approach to assess the effect of aboveground intra- and 

interspecific competition on tree growth. For Ecol Manage 310: 275–288. 

https://doi.org/10.1016/j.foreco.2013.08.014 

Meyer F, Beucher S (1990) Morphological segmentation. J Vis Commun Image Represent 

1: 21–46. https://doi.org/10.1016/1047-3203(90)90014-M 

Muhojoki J, Tavi D, Hyyppä E, Lehtomäki M, Faitli T, Kaartinen H, Kukko A, Hakala T, 

Hyyppä J (2024) Benchmarking Under- and Above-Canopy Laser Scanning Solutions 

for Deriving Stem Curve and Volume in Easy and Difficult Boreal Forest Conditions. 

Remote Sens 16: 1721. https://doi.org/10.3390/rs16101721 

Newnham GJ, Armston JD, Calders K, Disney MI, Lovell JL, Schaaf CB, Strahler AH, 

Danson FM (2015) Terrestrial Laser Scanning for Plot-Scale Forest Measurement. Curr 

For Reports 1: 239–251. https://doi.org/10.1007/s40725-015-0025-5 

Olivier M-D, Robert S, Fournier RA (2016) Response of sugar maple (Acer saccharum, 

Marsh.) tree crown structure to competition in pure versus mixed stands. For Ecol 

Manage 374: 20–32. https://doi.org/10.1016/j.foreco.2016.04.047 

Pedersen RØ, Bollandsås OM, Gobakken T, Næsset E (2012) Deriving individual tree 

competition indices from airborne laser scanning. For Ecol Manage 280: 150–165. 

https://doi.org/10.1016/j.foreco.2012.05.043 

Pedersen RØ, Næsset E, Gobakken T, Bollandsås OM (2013) On the evaluation of 

competition indices - The problem of overlapping samples. For Ecol Manage 310: 120–



37  

133. https://doi.org/10.1016/j.foreco.2013.07.040 

Pinheiro J, Bates D, DebRoy S, Sarkar D (2014) R Core Team (2014) nlme: linear and 

nonlinear mixed effects models. R package version 3.1-117 

Pitkänen TP, Bianchi S, Kangas A (2022) Quantifying the effects of competition on the 

dimensions of Scots pine and Norway spruce crowns. Int J Appl Earth Obs Geoinf 112: 

102941. https://doi.org/10.1016/j.jag.2022.102941 

Pont D, Dungey HS, Suontama M, Stovold GT (2021) Spatial Models With Inter-Tree 

Competition From Airborne Laser Scanning Improve Estimates of Genetic Variance. 

Front Plant Sci 11. https://doi.org/10.3389/fpls.2020.596315 

Poorter L, Lianes E, Moreno-de las Heras M, Zavala MA (2012) Architecture of Iberian 

canopy tree species in relation to wood density, shade tolerance and climate. Plant Ecol 

213: 707–722. https://doi.org/10.1007/s11258-012-0032-6 

Pretzsch H (2009) Growing Space and Competitive Situation of Individual Trees. In: Forest 

Dynamics, Growth and Yield. Springer Berlin Heidelberg, Berlin, Heidelberg, pp 291–

336 

Pretzsch H (2020) The course of tree growth. Theory and reality. For Ecol Manage 478: 

118508. https://doi.org/10.1016/j.foreco.2020.118508 

Pretzsch H, Ahmed S, Jacobs M, Schmied G, Hilmers T (2022) Linking crown structure with 

tree ring pattern: methodological considerations and proof of concept. Trees 36: 1349–

1367. https://doi.org/10.1007/s00468-022-02297-x 

Pyörälä J, Saarinen N, Kankare V, Coops NC, Liang X, Wang Y, Holopainen M, Hyyppä J, 

Vastaranta M (2019) Variability of wood properties using airborne and terrestrial laser 

scanning. Remote Sens Environ 235: 111474. 

https://doi.org/10.1016/j.rse.2019.111474 

Roussel JR, Auty D (2018) LidR: Airborne LiDAR data manipulation and visualization for 

forestry applications. R CRAN Proj 1: 1 

Saarinen N, Kankare V, Yrttimaa T, Viljanen N, Honkavaara E, Holopainen M, Hyyppä J, 

Huuskonen S, Hynynen J, Vastaranta M (2020) Assessing the effects of thinning on 

stem growth allocation of individual Scots pine trees. For Ecol Manage 474: 118344. 

https://doi.org/10.1016/j.foreco.2020.118344 

Seidel D, Hoffmann N, Ehbrecht M, Juchheim J, Ammer C (2015) How neighborhood affects 

tree diameter increment – New insights from terrestrial laser scanning and some 

methodical considerations. For Ecol Manage 336: 119–128. 

https://doi.org/10.1016/j.foreco.2014.10.020 

Su Y, Guo Q, Fry DL, Collins BM, Kelly M, Flanagan JP, Battles JJ (2016) A Vegetation 

Mapping Strategy for Conifer Forests by Combining Airborne LiDAR Data and Aerial 

Imagery. Can J Remote Sens 42: 1–15. 

https://doi.org/10.1080/07038992.2016.1131114 

Tempel DJ, Gutiérrez RJ, Battles JJ, Fry DL, Su Y, Guo Q, Reetz MJ, Whitmore SA, Jones 

GM, Collins BM, Stephens SL, Kelly M, Berigan WJ, Peery MZ (2015) Evaluating 

short- and long-term impacts of fuels treatments and simulated wildfire on an old-forest 

species. Ecosphere 6. https://doi.org/10.1890/ES15-00234.1 

Terryn L, Calders K, Bartholomeus H, Bartolo RE, Brede B, D’hont B, Disney M, Herold 

M, Lau A, Shenkin A, Whiteside TG, Wilkes P, Verbeeck H (2022) Quantifying 

tropical forest structure through terrestrial and UAV laser scanning fusion in Australian 

rainforests. Remote Sens Environ 271: 112912. 

https://doi.org/10.1016/j.rse.2022.112912 

Thorpe HC, Astrup R, Trowbridge A, Coates KD (2010) Competition and tree crowns: A 



38 

neighborhood analysis of three boreal tree species. For Ecol Manage 259: 1586–1596. 

https://doi.org/10.1016/j.foreco.2010.01.035 

Tomé M, Burkhart HE (1989) Distance-Dependent Competition Measures for Predicting 

Growth of Individual Trees. For Sci 35: 816–831. 

https://doi.org/10.1093/forestscience/35.3.816 

Tompalski P, Coops N, White J, Wulder M (2016) Enhancing Forest Growth and Yield 

Predictions with Airborne Laser Scanning Data: Increasing Spatial Detail and 

Optimizing Yield Curve Selection through Template Matching. Forests 7: 255. 

https://doi.org/10.3390/f7110255 

Twery MJ, Weiskittel AR (2013) Forest‐Management Modelling. In: Environmental 

Modelling. Wiley, pp 379–398 

Valentine HT, Mäkelä A, Green EJ, Amateis RL, Mäkinen H, Ducey MJ (2012) Models 

relating stem growth to crown length dynamics: Application to loblolly pine and 

Norway spruce. Trees - Struct Funct 26: 469–478. https://doi.org/10.1007/s00468-011-

0608-0 

Vauhkonen J, Ene L, Gupta S, Heinzel J, Holmgren J, Pitkanen J, Solberg S, Wang Y, 

Weinacker H, Hauglin KM, Lien V, Packalen P, Gobakken T, Koch B, Naesset E, 

Tokola T, Maltamo M (2012) Comparative testing of single-tree detection algorithms 

under different types of forest. Forestry 85: 27–40. 

https://doi.org/10.1093/forestry/cpr051 

Vauhkonen J, Maltamo M, McRoberts RE, Næsset E (2014) Introduction to Forestry 

Applications of Airborne Laser Scanning. 1–16. https://doi.org/10.1007/978-94-017-

8663-8_1 

Versace, Gianelle, Frizzera, Tognetti, Garfì, Dalponte (2019) Prediction of Competition 

Indices in a Norway Spruce and Silver Fir-Dominated Forest Using Lidar Data. Remote 

Sens 11: 2734. https://doi.org/10.3390/rs11232734 

Wang Y, Hyyppa J, Liang X, Kaartinen H, Yu X, Lindberg E, Holmgren J, Qin Y, Mallet C, 

Ferraz A, Torabzadeh H, Morsdorf F, Zhu L, Liu J, Alho P (2016) International 

Benchmarking of the Individual Tree Detection Methods for Modeling 3-D Canopy 

Structure for Silviculture and Forest Ecology Using Airborne Laser Scanning. IEEE 

Trans Geosci Remote Sens 54: 5011–5027. 

https://doi.org/10.1109/TGRS.2016.2543225 

Weiskittel AR, Hann DW, Kershaw JA, Vanclay JK (2011) Forest Growth and Yield 

Modeling. For Growth Yield Model. https://doi.org/10.1002/9781119998518 

Wulder MA, Franklin SE (2003) Remote Sensing of Forest Environments, Introduction. The 

transition from theory to information. Remote Sens For Environ 3–12 

Yrttimaa T, Saarinen N, Kankare V, Liang X, Hyyppä J, Holopainen M, Vastaranta M (2019) 

Investigating the Feasibility of Multi-Scan Terrestrial Laser Scanning to Characterize 

Tree Communities in Southern Boreal Forests. Remote Sens 11: 1423. 

https://doi.org/10.3390/rs11121423 

Yrttimaa T, Saarinen N, Kankare V, Hynynen J, Huuskonen S, Holopainen M, Hyyppä J, 

Vastaranta M (2020) Performance of terrestrial laser scanning to characterize managed 

Scots pine (Pinus sylvestris L.) stands is dependent on forest structural variation. 

ISPRS J Photogramm Remote Sens 168: 277–287. 

https://doi.org/10.1016/j.isprsjprs.2020.08.017 

Yrttimaa T, Luoma V, Saarinen N, Kankare V, Junttila S, Holopainen M, Hyyppä J, 

Vastaranta M (2022a) Exploring tree growth allometry using two-date terrestrial laser 

scanning. For Ecol Manage 518. https://doi.org/10.1016/j.foreco.2022.120303 



39  

Yrttimaa T, Luoma V, Saarinen N, Kankare V, Junttila S, Holopainen M, Hyyppä J, 

Vastaranta M (2022b) Monitoring Tree Growth Allometry Using Two-Date Terrestrial 

Laser Scanning. SSRN Electron J. https://doi.org/10.2139/ssrn.4021680 

Zhou M, Lei X, Lu J, Gao W, Zhang H (2022) Comparisons of competitor selection 

approaches for spatially explicit competition indices of natural spruce-fir-broadleaf 

mixed forests. Eur J For Res 141: 177–211. https://doi.org/10.1007/s10342-021-

01430-8 

Zhu Z, Kleinn C, Nölke N (2021) Assessing tree crown volume—a review. For An Int J For 

Res 94: 18–35. https://doi.org/10.1093/forestry/cpaa037 

 


