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ABSTRACT 
 

Forest fires threaten carbon storage but are vital to boreal ecosystem dynamics. While crown 

fires are well-studied, low-intensity surface fires, common in Fennoscandia, are less 

understood. This thesis used remote sensing techniques to examine surface fires across eight 

Scots pine-dominated test sites (~1 ha each) in southern Finland, with controlled burnings 

simulating surface fires. Terrestrial laser scanning (TLS) reconstructed forest structure before 

and after these fires for change detection. 

Study I utilized bitemporal TLS to identify burned areas and estimate volumetric changes 

in ground vegetation. A surface differencing-based classification method was developed, 

achieving high accuracy (recall, precision, F1-score = 0.9). On average, 85% of the test site 

areas were burned, with a mean reduction in ground vegetation volume of 1200 m³/ha, though 

variability was observed. 

Study II examined the effects of ground vegetation on TLS-derived digital terrain models 

(DTMs) and tree/forest attributes. In burned areas, post-fire DTMs averaged 10 cm lower 

than pre-fire DTMs, with greater changes and root mean square differences compared to 

unburned controls. A 10 cm overestimation in DTMs led to underestimates in tree/forest 

attributes: 1.3 mm (0.6%) in diameter at breast height, 4.8 dm³ (3.1%) in stem volume, and 

~3 m³/ha (1.3%) in total stem volume. 

Study III assessed the normalized burn ratio (NBR) index from Sentinel-2 data for 

detecting surface fires. Breakpoint analysis identified most fires, with undetected cases linked 

to sparser vegetation loss and denser canopy cover. A moderate negative correlation (r = –

0.5) was found between NBR changes and TLS-derived volumetric changes in ground 

vegetation. Variations in NBR were explained by vegetation changes, canopy cover, and site 

conditions (R2 = 84%). 

This thesis demonstrates the potential of remote sensing to identify surface fires and 

quantify their effects on ground vegetation, supporting method development and advancing 

understanding of their role in boreal forest ecosystems. 

 

Keywords: forest fires, terrestrial laser scanning, multispectral satellite imaging, Sentinel-2, 

burn severity, digital terrain model  
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1 INTRODUCTION 
 

 

1.1 Fire in boreal forests 

 

Each year, approximately 340–370 million hectares of the Earth’s surface are affected by 

fire, though the actual burned area is likely higher due to technical limits and difficulties in 

detecting small fires, full time coverage, and cloud cover (FAO 2024). Forests, which serve 

as carbon sinks by absorbing carbon dioxide (CO2) from the atmosphere, release stored 

carbon when they burn, contributing to greenhouse gas emissions and accelerating global 

warming (Szpakowski & Jensen 2019, Gajendiran et al. 2024). This creates a dangerous 

positive feedback loop, where climate change leads to warmer temperatures, drier conditions, 

and prolonged droughts, which in turn increase the frequency and intensity of wildfires 

(Flannigan et al. 2005, Keywood et al. 2013, Szpakowski & Jensen 2019). Additionally, 

forest fires cause habitat and ecosystem destruction, soil degradation, air pollution, and 

substantial economic losses in agriculture and forestry (Keywood et al. 2013, Gajendiran et 

al. 2024). 

Boreal forests cover 27% of the global forest area, approximately 1 100 million hectares 

(FAO 2020). They span vast regions across North America and Eurasia, and are characterized 

by mild, short summers and cold winters. The growing season is relatively short, typically 

lasting 80 to 150 days (Saucier et al. 2015). The canopy layer is predominantly composed of 

coniferous species from the genera Picea, Pinus, Abies, and Larix, with deciduous trees from 

the genera Betula, Populus, Alnus, Sorbus, and Salix also present (Saucier et al. 2015). These 

trees are well-adapted to cold temperatures, nutrient-poor soils, and frequent stand-replacing 

disturbances (Saucier et al. 2015). The ground vegetation typically includes ericaceous dwarf 

shrubs such as Vaccinium myrtillus and Vaccinium vitis-idaea, feather mosses like 

Pleurozium schreberi, Hylocomium splendens, and Ptilium crista-castrensis, and herbaceous 

species suited to acidic soils, including Deschampsia flexuosa, Luzula pilosa, Linnaea 

borealis, and Melampyrum pratense (Palviainen et al. 2005, Saucier et al. 2015).  

Despite their negative impacts, fires are a natural part of boreal forest dynamics. They 

create variability in forest age, structure, and composition, along with varying amounts of 

charred and decaying wood, which in turn provide habitats for diverse species (Parviainen 

1996, Ryan 2002, Jonsson et al. 2005, Keywood et al. 2013). Fire particularly benefits 

pyrophilic and saproxylic species, such as certain insects and fungi, which are crucial for 

maintaining ecological balance in forest ecosystems (Penttilä et al. 2013, Bell 2023). Fires 

release nutrients back into the soil, reduce soil acidity, and provide optimal conditions for 

new seedlings to sprout and grow (Keeley & Fotheringham 2000, Laurila & Vierula 2020). 

By reducing fuel loads, fires can prevent larger, more destructive wildfires (Kreider et al. 

2024). They also contribute to forest health, as the remaining vegetation tends to be stronger 

and more resilient. This resilience is further enhanced by increased biodiversity, which 

strengthens the forest’s ability to recover from future disturbances (Thompson et al. 2009). 

Therefore, studying forest fires in boreal environments is essential for understanding both the 

ecological impacts and the resulting structural and functional changes. 

While wildfires are becoming more frequent globally, their occurrence in Fennoscandian 

boreal forests has significantly decreased, largely due to intensive forestry practices, an 

extensive forest road network, and efficient fire detection and suppression systems (Vanha-

Majamaa et al. 2004, Lindberg et al. 2018). Intensive forestry has reduced the amount of dry 

and dead wood, as well as other fuel loads in forests, and forest roads serve both as firebreaks 
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and enable quick access for fire suppression (Kennedy et al. 2019). This decline in natural 

fires has increased the need for controlled burnings to maintain forest biodiversity. Controlled 

or prescribed burning – the deliberate use of fire for silvicultural and ecological management 

– serves multiple functions worldwide, such as reducing fuel loads to prevent larger fires, 

managing pests and diseases, and restoring ecosystems. In Fennoscandian forests, controlled 

burnings were historically used after final felling to facilitate reforestation (Karjalainen 1994, 

Lemberg & Puttonen 2002), but today they are primarily employed for ecological restoration.  

Forest fires can be classified into crown, surface, and ground fires based on the type of 

fuel they consume (Lindberg et al. 2011, Greene & Michaletz 2015). Crown fires burn the 

forest canopy, surface fires primarily consume ground vegetation and detritus, while ground 

fires burn organic topsoil and roots near the surface in a slow, smoldering process (Greene & 

Michaletz 2015, Pérez-Izquierdo et al. 2020). In North America, severe stand-replacing 

crown fires are more common, whereas in the Fennoscandian region, wildfires are 

predominantly ground and surface fires (Päätalo 1998, Shorohova et al. 2011, Gauthier et al. 

2015, Rogers et al. 2015). Surface fires typically consume shrub, herbaceous, and moss layers 

(Marozas et al. 2007, Buriánek et al. 2013), and may also affect understory trees and 

accumulated fuel loads, such as thinned trees left on the forest floor. Nowadays, controlled 

burnings in Fennoscandia are primarily designed to target forest floor vegetation while 

preventing the fire from reaching the canopy, thereby simulating the effects of natural surface 

fires. 

Overall, monitoring and studying forest fires is essential due to their profound impacts on 

ecosystems, climate, and human health. A deeper understanding of fire behaviour enhances 

fire management and ecological restoration strategies, mitigates risks to communities and 

wildlife, and aids in assessing long-term effects on climate change and forest resilience. 

 

 

1.2 Forest fire research: Field surveys and laboratory experiments  

 

Forest fire research utilizes various methods, including field surveys, laboratory experiments, 

modelling, and remote sensing. Field measurements are used for tasks such as mapping 

burned areas, assessing burn severity, and monitoring post-fire recovery. Global navigation 

satellite systems (GNSS) can be employed to delineate fire-affected areas, but dense canopies 

may weaken signals, and rough terrain or remaining vegetation complicate data collection 

(Corona et al. 2008). Additionally, fires often burn in a patchy manner, complicating 

boundary definition, while large size of burned areas presents further challenges (Corona et 

al. 2008, Lazzeri et al. 2021). Burn severity is typically assessed in the field using the 

composite burn index (CBI), which provides a visual estimate of fire effects across five forest 

strata, combining these observations into a single index value (Szpakowski & Jensen 2019, 

Fassnacht et al. 2021, Gallagher et al. 2021). The five strata assessed are: 1) substrates, 2) 

herbs, low shrubs, and trees under 1 m, 3) tall shrubs and trees from 1–5 m, 4) intermediate 

trees, and 5) tall trees (Key & Benson 2006). However, the CBI tends to emphasize upper 

canopy effects, overlooking the forest floor, where surface fires have the greatest impact 

(Gallagher et al. 2021). Moreover, the CBI does not quantify the amount of burned 

vegetation, which is crucial for assessing climatic impacts. Monitoring vegetation recovery 

in the field can involve assessing seedling germination and regrowth (García-Morote et al. 

2017). In addition to these challenges, field surveys face issues such as safety risks, limited 

accessibility, and significant time and labour demands (Gitas et al. 2012, Lazzeri et al. 2021).  

Laboratory measurements are conducted to simulate fire behaviour and combustion 

processes, allowing for a detailed examination of how fire affects vegetation and soil in a 
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controlled environment. Key metrics in these studies include heat release rate, which 

quantifies the energy released during combustion (Wang et al. 2023), particulate matter, 

which significantly impacts air quality (Hosseini et al. 2013), and fuel moisture content, a 

critical factor influencing ignition and burn characteristics (Rossa et al. 2016). To 

complement these experimental studies, mathematical and computational modelling 

techniques are employed to simulate fire behaviour (Cardil et al. 2021), predict fire spread 

(Ning et al. 2024), and assess the ecological impacts of fires (Or et al. 2023). Despite their 

value, both laboratory experiments and modelling approaches face limitations in accounting 

for all relevant environmental variables and the complex interactions between fire and 

atmospheric conditions (Ning et al. 2024). 

 

 

1.3 Forest fire research: Remote sensing 

 

1.3.1 Overview of remote sensing in forest fire research 

 

Remote sensing addresses many of the above-mentioned limitations related to field surveys 

and laboratory experiments by providing extensive spatial and temporal coverage in a cost-

effective manner, and by enabling a more comprehensive assessment of topographical, 

ecological, and climatic influences as it captures data under real-world conditions. Remote 

sensing plays a critical role in forest fire research across multiple domains, such as fire risk 

assessment, fuel mapping, active fire detection, burned area estimation, post-fire vegetation 

recovery monitoring, and burn severity estimation (Szpakowski & Jensen 2019). 

Rapid advancements in technology have increased the availability of sensors, data, and 

processing capabilities (Szpakowski & Jensen 2019, Fernández-García et al. 2023a). Remote 

sensing platforms, including satellites, aircraft, drones, and ground stations, gather 

environmental data using either active or passive techniques. Passive sensors encompass both 

thermal and optical technologies. Thermal sensors, which detect infrared radiation, are 

widely used for various applications, such as monitoring urban heat islands (Kasniza Jumari 

et al. 2023), detecting wildfires (Hendel & Ross 2020), and observing volcanic activity 

(Corradino et al. 2024). A key advantage of thermal sensors is their ability to operate at night, 

although they are limited by their inability to penetrate cloud cover. Prominent instruments 

equipped with thermal sensors include Landsat (TIRS), MODIS, ASTER, VIIRS, and earlier 

systems like TIMS. Optical technologies, which are more widely used in forest fire research, 

are discussed in detail in subsequent sections. 

Active remote sensing sensors generate electromagnetic radiation that they emit towards 

the monitored environment, capturing the back-scattered energy as observations. Techniques 

that utilize this approach include radar (radio detection and ranging), such as synthetic 

aperture radar (SAR), and lidar (light detection and ranging). Radar operates in the 

microwave spectrum and is unaffected by daylight or weather, making it highly effective for 

Earth monitoring. Its ability to penetrate vegetation, snow, and clouds enables diverse 

applications, such as environmental monitoring (Amitrano et al. 2021), disaster response 

(Kaku 2019), topographic mapping (Bürgmann et al. 2000), and snow and glacier studies 

(Tsang et al. 2022). Key radar satellites like Sentinel-1, Radarsat-2, and TerraSAR-X have 

been used for tasks such as mapping burned areas and estimating burn severity (Tanase et al. 

2010, Goodenough et al. 2011, Hosseini & Lim 2023). Lidar technologies are discussed in 

detail in subsequent sections. 
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1.3.2 Multispectral satellite imaging 

 

Optical remote sensing utilizes satellite or aerial sensors to capture data from the Earth’s 

surface using optical wavelengths, primarily within the visible spectrum, near-infrared (NIR), 

shortwave infrared (SWIR), and infrared ranges (Zhu et al. 2017). Optical sensors are 

generally classified into three types: panchromatic sensors, which capture radiation across a 

broad wavelength range; multispectral sensors, which measure radiation in several discrete 

spectral bands; and hyperspectral sensors, which collect data across 10 to 100 narrow bands 

(Zhu et al. 2017). 

Optical remote sensing provides detailed information applicable to a variety of fields, 

including land cover classification and large-scale environmental monitoring. In forest fire 

research, optical satellite data is extensively utilized for numerous tasks, including fire risk 

forecasting, fire detection, burned area mapping, biomass estimation, vegetation recovery 

monitoring, and burn severity assessment (Corona et al. 2008, Leblon et al. 2012, Zhao et al. 

2023, Avetisyan et al. 2023). 

Fire risk mapping using remote sensing assesses the likelihood of fire occurrence, while 

fuel mapping focuses on identifying the distribution and quantity of combustible materials 

(Szpakowski & Jensen 2019). Various indices, such as the fire weather index and live fuel 

moisture content, are utilized to assess fire risks and hazards (Yebra et al. 2013, Miller et al. 

2024). Detecting active fires is critical for effective wildfire management and control efforts. 

Burned area estimation, typically conducted using satellite data, provides accurate spatial 

representations of fire extent and perimeter (Nolde et al. 2020). Understanding post-fire 

vegetation recovery is essential for assessing the long-term ecological impacts of fires. 

Remote sensing-based post-fire monitoring commonly utilizes image classification, 

vegetation indices, or spectral mixture analysis (Gitas et al. 2012, Szpakowski & Jensen 

2019). Image classification categorises satellite data into land cover types such as forest, 

water, or burned areas. Vegetation indices assess plant health by analysing reflectance in 

different wavelengths of light, while spectral mixture analysis distinguishes between surface 

components like soil, ash, and vegetation, offering a more detailed view of post-fire 

landscapes. 

Forest fire research frequently focuses on the NIR and SWIR regions (Gallagher et al. 

2020), as these wavelengths are highly sensitive to changes in soil and vegetation reflectance 

caused by fire (López García & Caselles 1991, Plenious & Koutsias 2013). Fire-affected 

vegetation exhibits distinct responses in these wavelengths: NIR reflectance decreases, while 

SWIR reflectance increases (López García & Caselles 1991, Fassnacht et al. 2021, Gallagher 

et al. 2021). NIR wavelengths are sensitive to chlorophyll in living plants, and the presence 

of charcoal and ash reduces the reflectivity (Miller & Thode 2007, Ji et al. 2011, Zhao et al. 

2023). In contrast, SWIR reflectance is influenced by moisture content in soil and vegetation, 

increasing as vegetation cover decreases. 

A widely used spectral index derived from these wavelengths, the normalized burn ratio 

(NBR), is commonly applied to assess burn severity (Escuin et al. 2008, Veraverbeke et al. 

2011, Mallinis et al. 2018, Kato et al. 2019). Burn severity refers to the extent of 

environmental damage caused by a fire, encompassing factors such as biomass loss, tree 

mortality, vegetation recovery, and impacts on soil (Lentile et al. 2006, Keeley 2009, Soverel 

et al. 2010, Fernández-García et al. 2023b). Burn severity is not a direct measurement, and 

results can vary depending on the specific context or ecosystem under study (Lentile et al. 

2006, Fassnacht et al. 2021). Since fire alters the optical properties of vegetation and soil, 

burn severity can be estimated by analysing changes in reflectance across different regions 

of the electromagnetic spectrum (Leblon et al. 2012, Fassnacht et al. 2021). NBR has largely 

replaced the normalized difference vegetation index (NDVI) as the standard index for burn 
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severity, as it is less sensitive to atmospheric scattering and phenological changes (Epting & 

Verbyla 2005, Escuin et al. 2008, Veraverbeke et al. 2011, Szpakowski & Jensen 2019, 

Zagalikis 2023). 

NBR values are typically calculated for both pre- and post-fire conditions, with changes 

measured using the difference normalized burn ratio (dNBR) (Szpakowski & Jensen 2019). 

The dNBR quantifies the absolute change between these conditions, offering an estimate of 

burn severity but without accounting for pre-fire vegetation variability. In contrast, the 

relative difference normalized burn ratio (RdNBR) measures the relative change caused by 

fire (Miller & Thode 2007, Soverel et al. 2010, Fassnacht et al. 2021). Studies comparing the 

accuracy of dNBR and RdNBR in representing burn severity have produced mixed results, 

often influenced by local environmental conditions (Miller & Thode 2007, Soverel et al. 

2010, Cai & Wang 2022, Avetisyan et al. 2023). Furthermore, the factors driving variability 

in these indices are not yet fully understood (Fassnacht et al. 2021). 

Validating burn severity assessments from satellite imagery requires field measurements 

(French et al. 2008), with the CBI commonly used for this purpose. However, the CBI relies 

on visual interpretation, making it subjective and prone to human error. Initially developed 

to validate satellite-derived NBR values (Lentile et al. 2006), the CBI shows a strong 

correlation with NBR in the ecosystems where it was originated (Key & Benson 2006). Yet, 

this relationship varies across different ecosystems (French et al. 2008, Fassnacht et al. 2021). 

The primary spaceborne optical platforms used for assessing burn severity are the Landsat 

series, managed by the United States Geological Survey, and the Sentinel-2 mission, operated 

by the European Space Agency. Both missions are dedicated to Earth observation and operate 

in sun-synchronous orbits, yet they differ in terms of spectral, spatial, and temporal 

resolutions. Optical satellite data from these platforms is collected exclusively during 

daylight and under favourable atmospheric conditions, such as clear skies. Importantly, 

imagery from both Landsat and Sentinel-2 is freely accessible, facilitating widespread use in 

research (Phiri et al. 2020, Wulder et al. 2022).  

The Landsat program currently includes Landsat 8 and Landsat 9 satellites, launched in 

2013 and 2021, respectively. These satellites provide multispectral data through the 

Operational Land Imager (OLI), capturing nine spectral bands with a spatial resolution of 30 

m for most bands. In contrast, Sentinel-2 consists of two satellites, Sentinel-2A and Sentinel-

2B, launched in 2015 and 2017, respectively. Sentinel-2 offers multispectral data across 13 

spectral bands, with four bands (red, green, blue, and NIR) at a 10 m resolution, while the 

remaining bands have resolutions of 20 or 60 m. Sentinel-2 has a revisit time of two to three 

days for mid-latitude regions, while the combined revisit time for Landsat 8 and 9 is eight 

days. 

Forest fires are extensively mapped using multispectral imaging, as it is well known that 

forest fires alter forest reflectance, leading to a decrease in NBR values (Escuin et al. 2008, 

French et al. 2008). However, this phenomenon has been less studied in the context of low-

intensity surface fires. While satellite-based NBR values typically exhibit a notable 

correlation with changes in the upper canopy, they may not accurately reflect the effects of 

fire on the forest floor due to canopy occlusion (Hudak et al. 2007, Lentile et al. 2006). 

Additionally, the impact of fire-induced structural changes on the forest floor on burn severity 

estimates is not well understood. 

 

1.3.3 Laser scanning 

 

Laser scanning is an active remote sensing technology that employs lidar to measure 

distances and create three-dimensional (3D) representations of environments. Two primary 

principles are used for distance measurement: phase-shift and time-of-flight methods. In 
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phase-shift scanners, a continuous laser wave is directed toward a target, and the distance is 

determined by analysing the phase difference between the emitted and received signals (Yoon 

et al. 2011). Such instruments provide wide coverage, dense point data, and fast data 

collection. Phase-shift scanners are especially suitable for detailed measurements at short 

distances, typically up to 100 meters (Dassot et al 2011). In contrast, time-of-flight scanners 

emit pulsed laser light and calculate the distance by measuring the time it takes for a pulse to 

travel to the object and return to the sensor. By utilizing the speed of light in the given 

medium, the time for each pulse to return to the sensor is converted into a precise distance 

measurement (Melin et al. 2017). When combined with a GNSS and an inertial measurement 

unit (IMU), which record the position and orientation of the sensor, these distance 

measurements can be converted into a 3D representation of the environment. The returning 

laser signals are assigned 3D coordinates (XYZ), each depicting the position of the reflective 

target, collectively forming a point could. These point clouds can then be utilized to quantify 

various structural attributes, such as vegetation height, canopy density, surface elevation, or 

building geometry. 

Laser scanning systems are generally classified into two main types: full-waveform and 

discrete-return. Full-waveform systems capture the entire return signal from each laser pulse, 

allowing for more detailed analysis (Kim et al. 2012). In contrast, discrete-return systems 

record only specific points, typically 1–5 per pulse, resulting in a simpler dataset (Hilker et 

al. 2010). The laser wavelength impacts a system’s ability to characterize objects (Rosette et 

al. 2012). Shorter wavelengths, like green light (~550 nm), are better suited for water 

penetration, while NIR wavelengths are highly reflective in healthy vegetation, enabling 

more pulse energy to scatter through the canopy and reach the ground (Mandlburger et al. 

2013). A commonly used wavelength for vegetation analysis is 1064 nm, which falls within 

the NIR spectrum (Rosette et al. 2012). Longer wavelengths, such as 1550 nm, help 

differentiate plant components like leaves, stems, and bark (Douglas et al. 2015). Using 

multiple wavelengths can enhance classification accuracy, particularly for object 

identification (Zhu et al. 2017).  

Laser scanning encompasses satellite-based, aerial, and terrestrial applications. While the 

core principles are similar between these applications, differences arise in the size of the laser 

footprint. In this context, the footprint refers to the area illuminated by a single laser pulse, 

which is influenced by the laser’s divergence and the distance to the target (Rosette et al. 

2012). Footprint size determines the level of detail in observations, ranging from tens of 

meters in satellite-based systems, to centimetres in airborne laser scanning (ALS) and down 

to millimetres in terrestrial laser scanning (TLS) (Rosette et al. 2012). Although TLS offers 

the smallest footprint and therefore the most precise measurements, it is limited to smaller 

spatial extents compared to ALS or satellite lidar.  

In forest research, satellite lidar is essential for large-scale mapping of forest structures 

and biomass, providing data on canopy height, density, and vegetation cover over extensive 

area (Sun et al. 2020). This technology facilitates the monitoring of long-term forest 

dynamics, such as deforestation, reforestation, and the effects of climate change. While lidar 

operates at shorter wavelengths than radar, offering more precise surface measurements 

(Fouladinejad et al. 2019), it cannot penetrate clouds, though it is not dependent on daylight. 

Key satellite lidar systems include ICESat (2003–2009), ICESat-2 (2018 onwards), and 

GEDI (2019 onwards). Despite its potential, the relatively recent availability of satellite lidar 

has limited its widespread use in forest research. Furthermore, the GEDI mission, while 

optimized for studying forest structure, primarily focuses on tropical and subtropical forests, 

resulting in limited data coverage for boreal regions. 

By utilizing laser scanning systems mounted on aircraft, ALS provides detailed data on 

forest structure across landscapes, particularly regarding tree height and crown dimensions 
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(Vauhkonen et al. 2014). Applications of ALS include forest inventory (Kauranne et al. 

2017), a wide range of change detection tasks (Okyay et al. 2019), and tree species 

classification (Michałowska & Rapiński 2021). In the context of forest fire research, ALS 

has been used to assess burn severity (Montealegre et al. 2014), analyse vegetation recovery 

(Magnussen & Wulder 2012), map fuel loads (Cameron et al. 2022), quantify fuel 

consumption (McCarley et al. 2024), and examine the impacts of fire on tree growth (Sparks 

et al. 2023). 

Small and portable TLS systems are designed for detailed reconstruction of trees and 

sample plots. They can be mounted on a static tripod, typically positioned 1–2 meters above 

ground level, or on a moving vehicle (Rosette et al. 2012). TLS offers millimetre-scale 

geometric accuracy in point cloud reconstruction (Liang et al. 2016), making it ideal for 

detecting small-scale changes in trees or, in the context of surface fires, in ground vegetation. 

However, TLS has a limited capacity to capture point cloud reconstructions only from objects 

directly visible to the scanner, with occlusion caused by vegetation being a primary challenge 

when applied in forest conditions (Abegg et al. 2017). This limitation can be mitigated by 

adopting a multi-scan approach, where point cloud data is captured from different locations 

to provide a more complete view. 

In forest research, TLS has been applied in various areas, including forest inventories 

(Liang et al. 2016), ecological monitoring (Orwig et al. 2018), and biomass estimation 

(Calders et al. 2020). In the context of forest fires, TLS has proven particularly useful for 

quantifying vegetation structure (Penman et al. 2023) and fuel loads (Rowell et al. 2016, 

Wallace et al. 2016). Unlike airborne and satellite sensors that view the forest from above, 

TLS uses a hemispherical measurement geometry inside the forest, providing detailed 

insights into lower forest layers – such as tree stems, understory, and ground vegetation – 

making it especially valuable for assessing the effects of surface fires (Gallagher et al. 2021). 

As a result, TLS is emerging as a promising alternative to the CBI, offering a more consistent, 

repeatable, and objective method for burn severity assessment (Gallagher et al. 2021). While 

TLS has been extensively studied for estimating the aboveground biomass and volume of 

individual trees (Lin et al. 2010, Seidel et al. 2011, Yao et al. 2011, Moskal & Zheng 2012), 

its application in quantifying ground vegetation dynamics remains relatively unexplored. 

One important application of point clouds in forest characterization is the creation of 

digital elevation models (DEMs), which represent surface elevation relative to a reference 

point, such as sea level. DEMs include digital terrain models (DTMs), which represent bare 

ground, and digital surface models (DSMs), which account for vegetation and buildings. 

Subtracting the DTM from the DSM results in a canopy height model (CHM), useful for 

analysing forest structure (Rai et al. 2024). The accuracy of DTMs is critical across 

applications where point cloud-based measurements are conducted relative to the ground 

level. Accurately determined DTMs are therefore crucial for determining structural attributes 

such as tree height, diameter at breast height (DBH), and basal area (Bohlin et al. 2012, Muir 

et al. 2017). These attributes are essential for forest inventories and management, as they also 

serve as the basis for estimating volume and biomass. 

Both ALS and TLS are routinely used for ground surface characterization (Montealegre 

et al. 2015, Baltensweiler et al. 2017). ALS is preferred for large-scale mapping tasks, such 

as national elevation models, due to its broad coverage. In contrast, TLS offers higher-

resolution elevation models for smaller areas, making it particularly useful in forest 

surveying. While ALS may struggle with canopy penetration due to its larger footprint and 

lower point density (Guarnieri et al. 2009), TLS can generate dense point clouds, with 

hundreds of ground points per square meter (Muir et al. 2017). However, the field of view in 

TLS results in longer optical paths through vegetation, potentially obscuring the ground 

surface compared to the nadir view provided by ALS (Coveney & Fotheringham 2011). 
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Studies have found that DTMs generated by both ALS and TLS tend to overestimate ground 

elevation (Hodgson & Bresnahan 2004, Hopkinson et al. 2005, Guarnieri et al. 2009, Fan et 

al. 2014, Baltensweiler et al. 2017, Jurjević et al. 2021).  

TLS elevation errors arise from various factors, including displacements, scan co-

registration, point cloud georeferencing, interpolation, and ground point classification (Su & 

Bork 2006, Coveney & Fotheringham 2011, Fan & Atkinson 2015, Moudrý et al. 2019, 

Nelson et al. 2022). However, studies indicate that the most significant error source is 

vegetation cover, as dense vegetation can block laser penetration, causing occlusion 

(Coveney & Fotheringham 2011, Fan et al. 2014, Baltensweiler et al. 2017). Despite this, the 

influence of different vegetation types on DTM accuracy remains poorly understood. 

 

 

1.4 Objectives of the thesis 

 

This thesis utilized remote sensing technologies, specifically TLS and multispectral satellite 

imaging, to investigate low-intensity surface fires in boreal forests. The study was conducted 

across eight Scots pine-dominated test sites, each approximately one hectare in size, located 

in southern Finland. All sites underwent controlled burning as part of ecological restoration, 

with TLS measurements collected before and after the fires for change detection. 

Additionally, multispectral time-series data from the Sentinel-2 satellite was used to 

complement the analysis. Three sub-studies were conducted within this experimental design, 

each focusing on specific objectives to address the research questions presented in Table 1.  

The objective of study I was to use bitemporal TLS data to quantify changes in ground 

vegetation following low-intensity surface fires. Quantifying such changes is crucial for 

planning, evaluating, and monitoring forest management strategies, as well as for providing 

inputs for fire behaviour and effects models (Loudermilk et al. 2023). Accurate assessments 

of ground vegetation can improve predictions related to low-intensity surface fire behaviour 

and their impact on carbon balance. The first research question examined whether surface 

fire-induced changes could be detected using bitemporal TLS. A method for identifying 

burned areas was developed, its accuracy was tested, and maps of the fire-affected areas were 

created. The second research question addressed the magnitude of volumetric changes in 

ground vegetation due to the surface fires and how these changes varied within and between 

the test sites. 

The study II aimed to understand how ground vegetation affects TLS-derived DTMs. The 

controlled burnings removed forest floor vegetation, providing an opportunity to examine the 

effects of ground vegetation on TLS-derived DTMs. DTM measurements were taken both 

before and after vegetation removal, enabling comparisons between burned and unburned 

areas. The TLS data helped distinguish these areas, allowing for direct comparisons of the 

DTMs in areas where ground vegetation obscured the ground returns and in those where it 

did not. The first research question in study II examined whether elevation values are higher 

when ground vegetation is included in the dataset used to generate the DTMs. The second 

question explored how the height of ground vegetation influenced the differences between 

burned and unburned areas. To contextualize the findings, the study also analysed how 

changes in elevation within the DTMs affected tree and forest characteristics, such as DBH, 

tree volume, and stand volume. To ensure that the observed differences were due to 

vegetation changes rather than geolocation errors, the change between pre- and post-fire 

DTMs (ΔDTM) and root mean square difference (RMSD) were analysed for both burned and 

control areas. It was hypothesized that burned areas would exhibit higher ΔDTM and RMSD 

values compared to unburned controls. 
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Table 1. Research question. TLS=terrestrial laser scanning, DTM=digital terrain model. 
 

Sub-study Question 1 Question 2 

I Can changes caused by 
surface fires be detected using 
bitemporal TLS? 

What is the magnitude of these 
changes, and how does it vary within 
and between different areas? 
 

II Are elevation values higher 
when ground vegetation is 
included in the DTM dataset? 
 

How does the height of ground 
vegetation affect the differences 
between burned and unburned areas? 

III Can surface fires be identified 
from multispectral satellite time 
series? 
 

Is there a correlation between satellite-
derived spectral change and TLS-
derived structural change? 

 

 

Study III incorporated multispectral imagery from the Sentinel-2 satellites. While the 

effectiveness of multispectral satellite imagery in detecting severe crown fires is well-

established (Escuin et al. 2008, French et al. 2008), its ability to detect low-intensity surface 

fires remains underexplored. Consequently, the first research question evaluated the ability 

of the Sentinel-2 time series to identify low-intensity surface fires, based on the hypothesis 

that such fires induce a detectable decline in the NBR values, which could serve as a reliable 

indicator for future satellite-based detection. The second research question examined the 

relationship between the dNBR values and structural changes in the ground vegetation, 

assuming that higher burn severity estimates would correspond to a greater decrease in 

ground vegetation volume. The impact of canopy cover on this relationship was also 

considered, with a hypothesis that denser canopy cover may hinder the ability of satellite 

imagery to capture fine-scale changes on the forest floor. 

 

 

2 MATERIAL AND METHODS  
 
 

2.1 Study area 

 

The study area for this thesis included eight test sites, each approximately one hectare in size, 

located in national parks or protected areas across southern Finland (Figure 1). Controlled 

burnings were conducted in these areas by Metsähallitus (a state-owned enterprise managing 

and protecting state-owned land and water areas) during the summers of 2021 and 2022 as 

part of ecological restoration efforts. Most of the burnings occurred in June and July, with 

two sites treated in August (Table 2). While the ideal period for controlled burnings typically 

falls between mid-May and Midsummer (Laurila & Vierula 2020), favourable weather 

conditions can extend the burning season into August (Perkiö et al. 2012). 

All the test sites located in central or southern boreal zone and were dominated by Scots 

pine (Pinus sylvestris) (Table 2). The test sites also contained Norway spruce (Picea abies) 

and small amounts of silver birch (Betula pendula). Forest types included dry heath, sub-

xeric heath, and mesic heath forests (Calluna, Vaccinium, and Myrtillus types according to 

Cajander’s (1926) categorization). The stand age ranged from 50 to 150 years. The ground 

vegetation consisted of species commonly found in Fennoscandian pine forests, including 

feather mosses (Pleurozium schreberi, Hylocomium splendens) and dwarf shrubs (Vaccinium 
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myrtillus, Vaccinium vitis-idaea) (Palviainen et al. 2005). With a few exceptions, the test 

sites were thinned before the controlled burnings, resulting in logging residues on the forest 

floor.  

 

 

 
Figure 1. Eight test sites in southern Finland. Inset (right) adapted from the Europe blank 
political border map on Wikimedia Commons. 

 

 

Table 2. Test sites in sub-studies, boreal subzone, forest type, stand age (~years), thinning 

information, dates of controlled burnings and pre- and post-fire terrestrial laser scanning (TLS) 

measurements. Stand age was provided by Metsähallitus. 

 
Test site Sub-

study 
Boreal 
subzone 

Forest  
type 

Age 
(~y) 

Thin- 
ning 

Pre-fire  
TLS, date 

Burning 
date 

Post-fire 
TLS, date 

Kivimäensalo I, III southern mesic heath 60 yes 10 Jun 2021 06 Jul 2021 09 Sep 2021 
Liesjärvi I, III southern sub-xeric heath  60 yes 16 Jun 2021 17 Jun 2021 05 Sep 2021 
Pyhä-Häkki I, III central sub-xeric heath  70 no 13 Jun 2021 30 Jun 2021 07 Sep 2021 
Nuuksio I, II, III  southern sub-xeric heath  150 yes 06 Jun 2021 07 Jun 2021 30 Jun 2021 
Seitseminen I, II, III central sub-xeric heath  50 yes 20 Jun 2021 01 Jul 2021 06 Sep 2021 
Evo I, III southern mesic heath 60 yes 03 Jun 2022 15 Aug 2022 18 Aug 2022 
Ruunaa I, II central sub-xeric heath  120 no 09 Jun 2022 30 Jun 2022 03 Jul 2022 
Salamajärvi I, II, III central dry heath 70 no 13 Jul 2022 16 Aug 2022 13 Sep 2022 
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2.2 Terrestrial laser scanning data collection and processing 

 

The TLS measurements were conducted on the test sites both before and after the controlled 

burnings. The time interval between pre- and post-fire measurements ranged from one to 

three months (Table 2). A multi-scan method was employed to ensure full point cloud 

coverage. This involved collecting multiple individual scans at a 10 × 10 m grid, resulting in 

approximately 120 scans per test site. The coordinates of the test site corners were measured 

using Trimble Geo 7X (Trimble Inc., Westminster, USA) equipped with real-time extended 

(RTX) GNSS positioning. 

A Riegl VZ-400i time-of-flight laser scanner (RIEGL Laser Measurement Systems, Horn, 

Austria) was used to perform the TLS measurements. The scanner operates at a wavelength 

of 1550 nm and provides a 100° × 360° field of view with a beam divergence of 0.35 mrad. 

The ‘Panorama 40’ scan configuration was utilized, featuring a pulse repetition rate of 600 

kHz, which enabled capturing up to eight returns per each emitted laser pulse. With these 

settings, the point spacing is 3.5 mm at a 10 m distance with an angular resolution of 0.04°. 

The pre- and post-fire scans for each test site were filtered and registered into a single merged 

point cloud using the RiSCAN PRO software (version 2.14.1) provided by the scanner 

manufacturer. The filtering process involved removing points with extreme reflectance 

values below –25 dB and above 5 dB. The scanner was equipped with integrated orientation 

and positioning sensors (i.e., IMU and GNSS receiver), which allowed for the registration of 

multiple scans without the need for artificial reference targets. Further processing of point 

clouds was conducted using LAStools software (version 211218) (Isenburg 2021).  

The merged point clouds were first clipped with polygons based on the test site corner 

coordinates. To achieve precise alignment between the pre- and post-fire point clouds, the 

XYZ coordinates of tie points common to both measurements were manually extracted. 

These coordinates were then used to compute the necessary XYZ translation and XY rotation 

along the Z-axis, aligning the pre-fire point clouds with the post-fire ones. The XYZ 

translation was calculated as an arithmetic mean of the coordinate differences between the 

tie points. For the XY rotation, the angle and centre of rotation for each test site were 

identified by examining the intersections of bisectors of line segments connecting pairs of 

misaligned tie points (Ryan 2019). The alignments were visually inspected and further 

refined to achieve the closest possible match. Accuracy assessment showed a mean difference 

of 1–2 cm in all directions between the pre- and post-fire point clouds.  

The point cloud coordinates were then rescaled to an accuracy of 1 mm to reduce the 

number of decimals and the overall data size. To eliminate noise from erroneous 

measurements, isolate points with fewer than six neighbouring points within a 2 cm radius 

were removed. Following this, the point clouds were voxelized into a 5 mm 3D grid to ensure 

a uniform point density and further reduce data size. Points were classified into ground and 

non-ground points following the procedure described in Ritter et al. (2017). Pre- and post-

fire DTMs were subsequently generated by temporarily triangulating the ground points 

(originating from last or only returns) into a triangulated irregular network (TIN), which form 

a mesh of triangles connecting surface points. The TINs were then rasterized into DTMs 

using linear interpolation. The DTMs were produced at a 1 m resolution, a widely used 

standard in forestry applications. As the ground surface was expected to be more visible after 

the fire, the post-fire DTMs were used to normalize both the pre- and post-fire point clouds. 

The processing workflow is detailed in Table 3. 
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Table 3. Point cloud processing workflow. 

 
Stage LAStools Settings 

1) Clipping point clouds with polygons lasclip  

2) Extracting tie points lasview  

3) Translating and rotating pre-fire point clouds las2las -translate_xyz 
-rotate_xy 

4) Rescaling the coordinates las2las -rescale 0.001 0.001 0.001 

5) Removing noisy points lasnoise -step 0.02 
-isolated 6 
-remove noise 

6) Thinning point clouds lasvoxel -step 0.005 

7) Generating DTMs 
 

lasground_new -step 1 
-spike 0.4 
-bulge 0.5 
-offset 0.1 

las2las -keep_classification 2 
las2dem -step 1 

-last_only 

8) Normalizing point clouds with post-fire DTMs lasheight -replace_z 

9) Cutting point clouds to a height of 2 m las2las -keep_x -0.5 2 

10) Generating vegetation surface models lascanopy -step 0.1 
-p99 

 

 

Table 4. Stand characteristics and mean elevation of the test sites. N=number of stems, 

G=basal area, Dg=basal area-weighted mean diameter at breast height, Hg=basal area-

weighted mean height, Vol=stem volume, CC=canopy cover. 

 

Test site N 
(/ha) 

G 
(m2/ha) 

Dg 
(cm) 

Hg 

(m) 
Vol 
(m3/ha) 

CC 
(%) 

Elevation 
(m) 

Kivimäensalo 732 17.1 18.7 16.9 140 54  164 
Liesjärvi 527 12.7 19.2 16.1 93 42  140 
Pyhä-Häkki 1 147 31.4 21.7 18.3 261 79  176 
Nuuksio 369 21.2 31.0 20.6 205 55  100 
Seitseminen 687 25.3 24.3 21.6 260 55  184 
Evo 751 23.7 26.3 18.6 210 68  171 
Ruunaa 948 28.5 21.5 19.6 274 76  152 
Salamajärvi 919 30.7 23.0 19.6 272 65  190 

 

 

Stand characteristics for each test site (Table 4) were derived from the pre-fire TLS point 

clouds using computational methods presented in Yrttimaa et al. (2019, 2020) and available 

in Yrttimaa (2021). These methods involved automatic tree detection, the separation of stem 

points from non-stem points, and the computation of single tree attributes, which were then 

used to derive the stand characteristics for each test site. The analysis was conducted using 

MATLAB (version R2023a). The stand characteristics included the number of stems, basal 

area, basal area-weighted mean diameter at breast height, basal area-weighted mean height, 

stem volume, and canopy cover. Canopy cover was calculated by first creating a boundary 

polygon for points associated with each tree, representing crown projection area on an XY 

plane, and then computing the ratio of their combined area to the test site area. Elevation data 

was derived from the post-fire DTMs.  
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As the controlled burnings only affected the ground vegetation, points located more than 

2 m above the ground surface were omitted from further analyses (Table 3). Vegetation 

surface models for both the pre- and post-fire point clouds were generated on a two-

dimensional grid with a resolution of 0.1 m, where each cell represented vegetation height 

(Table 3). The 99th height percentile was used to create the vegetation surface model instead 

of the maximum height to avoid noise and inaccuracies caused by extreme points (Friedli et 

al. 2016, Malambo et al. 2018). Despite the dense scanning setup, vegetation, topography, 

and obstacles like rocks inevitably caused some degree of occlusion. To fill in the missing 

values for cells with no point returns, the pre- and post-fire vegetation surface models were 

interpolated using the mean value of the nearest 9 × 9 cells. As a result of the TLS data 

processing, the height of the ground vegetation was determined for each 0.1 × 0.1 m cell, 

both pre- and post-fire. 

 

 

2.3 Satellite data collection and processing 

 

Sentinel-2 L2A (bottom of atmosphere) data for the test sites was downloaded from the ESA 

SciHub. The dataset spanned the summer months (May–August) of both the fire year and the 

five years prior. Given the small size of the test sites (1 ha), data was extracted from Sentinel-

2 tiles (1 000 000 ha) with up to 95% cloud cover, as even heavily clouded scenes could 

contain clear pixels over the site. Cloud-related and defective pixels, as identified in the scene 

classification provided by the L2A product, were masked out. For the fire year, all data was 

visually inspected to ensure it was cloud-free at the test sites using true-colour images. For 

the five preceding years, true-colour images were reviewed whenever anomalies were 

detected in the derived values. Data from the cloud-covered dates was excluded from further 

processing. The EODIE toolkit (Wittke et al. 2023) was used for preprocessing the data.  

The burn severity indices were calculated by using the NIR and SWIR bands, with central 

wavelengths of 842 nm and 2190 nm, respectively. The original pixel sizes for the NIR and 

SWIR bands were 10 m and 20 m, respectively, and both were resampled to a uniform 10 m 

pixel size. The NBR and dNBR values were then computed for each pixel at the test sites (n 

= 600) across all available dates, using the following equations: 

 

 
𝑁𝐵𝑅 =

𝑁𝐼𝑅 − 𝑆𝑊𝐼𝑅

𝑁𝐼𝑅 + 𝑆𝑊𝐼𝑅
 

 

(1) 

 𝑑𝑁𝐵𝑅 = 𝑝𝑟𝑒𝑁𝐵𝑅 − 𝑝𝑜𝑠𝑡𝑁𝐵𝑅 (2) 

 

where NBR refers to normalized burn ratio, NIR to near infrared band, SWIR to short-

wave infrared band, dNBR to difference normalized burn ratio, preNBR to NBR values 

before the fire, and postNBR to NBR values after the fire.  

The study also examined RdNBR, but since a strong correlation was found between 

dNBR and RdNBR (> 0.95 for each test site), only dNBR values are reported in the results. 

The NBR produces values ranging from –1 to 1 with positive values indicating healthy, dense 

vegetation, and negative values suggesting recently burned areas (Escuin et al. 2008, Cai & 

Wang 2022). In contrast, the dNBR ranges from –2 to 2 with positive values reflecting high 

burn severity and negative values indicating increased vegetation cover (Miller & Thode 

2007, Cai & Wang 2022). 
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In previous studies, a single satellite image closest in time to the comparative 

measurements has typically been used (e.g., Fassnacht et al. 2021). However, in this study, 

the TLS measurements were conducted at some test sites up to eleven weeks before or after 

the controlled burnings. Consequently, the pre- and post-fire NBR values for each cell were 

calculated by averaging the NBR values from the month preceding and the month following 

the fire. The number of cloud-free acquisitions within this period varied by test site, ranging 

from 2 to 9 before the fire and 2 to 7 after the fire.  

  

 

2.4 Identifying burned areas and quantifying the volume of burned vegetation (I) 

 

In study I, the TLS-derived vegetation height models were utilized to identify burned areas 

and to estimate volumetric changes in the ground vegetation. In this study, all eight test sites 

were included. It was assumed that a reduction in vegetation height indicated burned 

vegetation, while an increase or stability in height indicated unburned vegetation. Changes 

in ground vegetation height were estimated through surface differencing, which involved 

subtracting the pre-fire surface models from post-fire surface models. As a result of surface 

differencing, negative values indicated a fire-induced decrease in vegetation height, while 

positive values indicated a growth-induced increase. 

The detailed surface models of changes in ground vegetation height were then aggregated 

into 1 × 1 m cells to provide a more concise view of the changes and to reduce noise from 

small-scale variation. These cells were then assigned a classification ’burned’ if more than 

half of the associated 0.1 × 0.1 m cells in each 1 × 1 m cell indicated a negative change. 

Otherwise, the cell was classified as ’unburned’. This classification allowed for the 

assessment of burn severity based on the proportion of the total test site area that was 

consumed by the fire. 

The performance of the classification method was evaluated by randomly sampling 20 

‘burned’ and 20 ‘unburned’ cells from each test site and visually inspecting the associated 

point clouds. Overlaid pre- and post-fire point clouds from these cells were analysed, with a 

cell confirmed to have ‘burned’ if most pre-fire points appeared higher than those post-fire. 

Classification accuracy was assessed using recall, precision, and F1-score. The recall 

measures the proportion of true positives identified by the method versus the total true 

positives from visual inspection. The precision measures the proportion of true positives 

among all identified positives. The F1-score combines precision and recall into a single 

metric for comprehensive performance evaluation. In this context, true positives were those 

1 × 1 m cells that were classified as ‘burned’ by both the TLS measurements and the visual 

inspection. False positives were cells incorrectly classified as ‘burned’, while true negatives 

were correctly identified as ‘unburned’, and false negatives were incorrectly classified as 

‘unburned’. The accuracy measures were calculated with equations:  

 

 
𝑅𝑒𝑐𝑎𝑙𝑙 =  

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

 

(3) 

 
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =

𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

 

(4) 

 
𝐹1 = 2 ×

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 

(5) 
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where TP refers to the number of true positives, FN to the number of false negatives, and FP 

to the number of false positives. 

To estimate the volumetric extent of ground vegetation, the pre- and post-fire vegetation 

surface models at a 0.1 m resolution were used. The volume for each cell was calculated by 

multiplying the cell area by its associated vegetation height value, and the total volume was 

obtained by summing up these values for both time points. During the generation of surface 

models, all points below 2 m in height were included, resulting in the pre- and post-fire 

volumes accounting for not only ground vegetation but also tree stems. The change in this 

volume was determined by subtracting the pre-fire volume from the post-fire volume, with 

the contribution of tree stems eliminated as they remained stationary between the data 

captures. The observed changes, encompassing both fire-induced decreases and growth-

related increases in vegetation height, were analysed separately at 0.1 m resolution. 

Variations in volume changes within the test sites were assessed using 1 × 1 m cells classified 

as either ‘burned’ or ‘unburned’, and the distributions of these changes were visualized using 

Tukey’s boxplots. 

 

 

2.5 Effect of ground vegetation on digital terrain models (II) 

 

In study II, the TLS-derived vegetation height models were utilized to evaluate the effect of 

ground vegetation on DTM accuracy. Four test sites were used in this research: Nuuksio, 

Seitseminen, Ruunaa, and Salamajärvi. At these test sites, the alignment accuracy between 

pre- and post-fire point clouds showed a mean difference of 1.5 cm in the XY-plane and 1.2 

cm in the Z-direction, with corresponding root mean square errors (RMSEs) of 7.5 cm and 

3.2 cm, respectively. 

It was hypothesized that the post-fire DTMs would characterize ground elevation at lower 

levels than the pre-fire DTMs due to the increased visibility of the ground surface following 

the removal of ground vegetation by the fire. Following the methodology outlined in study I, 

the 1 × 1 m cells representing changes in ground vegetation height were also classified based 

on the respective 0.1 × 0.1 m cells. However, the classification criteria were slightly adjusted 

as the analysis on DTM accuracy was targeted on cells with ground vegetation removed by 

the fire and cells where the vegetation had remained as intact as possible. A 1 × 1 m cell was 

classified as ‘burned’ if ≥ 80% of the 0.1 × 0.1 m cells exhibited a height decrease of > 5 cm, 

while it was classified as ‘control’ if ≥ 50% of the associated 0.1 × 0.1 m cells showed an 

absolute height change of ≤ 5 cm. The 5-cm height threshold was selected based on the 

evaluation of pre- and post-fire point cloud alignment, ensuring it surpassed the 3.2-cm 

RMSE achieved for the Z-coordinate accuracy. Cells that did not meet these criteria were 

excluded from further analysis. Based on this classification, the burned areas ranged from 

3% to 60%, while control areas covered 10% to 25% of the total area of the test sites. Overall, 

the burned areas across all test sites totalled 1.2 ha, and the control areas covered 0.8 ha. 

To assess the effects of ground vegetation on TLS-derived DTMs, ΔDTM was analysed 

separately for burned and control cells. This comparison ensured that any observed deviation 

between pre- and post-fire DTMs was due to the presence of vegetation in the pre-fire point 

clouds and its absence in the post-fire point clouds, rather than measurement errors or co-

registration issues. The analysis focused on ΔDTMs and RMSDs between the pre- and post-

fire DTMs. ΔDTMs were calculated by subtracting the pre-fire DTMs from the post-fire 

DTMs, and the mean ΔDTMs for burned and control areas were compared using Welch’s 

two-sample t-test. The null hypothesis, assuming no difference between the means, was 

rejected if the p-value was ≤ 0.05. 
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While DTM accuracy is typically assessed by comparing it to a higher-accuracy 

validation dataset (e.g., points from a total station or differential global positioning system) 

and calculating RMSEs (Guarnieri et al. 2009, Fan & Atkinson 2015, Muir et al. 2017), study 

II did not include such validation. Instead, the focus was on evaluating the differences 

between bitemporal DTM measurements, with vegetation removal occurring in between. 

This approach allowed for a direct assessment of vegetation effects using RMSD rather than 

RMSE. While RMSE measures the difference between predicted and actual values, RMSD 

quantifies the difference between two sets of observed data. The equation for RMSD is as 

follows: 
 

𝑅𝑀𝑆𝐷 =  √
∑ (𝑝𝑟𝑒𝐷𝑇𝑀𝑖 − 𝑝𝑜𝑠𝑡𝐷𝑇𝑀𝑖)2𝑛

𝑖=1

𝑛
 

 (6) 

 

 

where RMSD = root mean square difference, preDTM = pre-fire DTM, postDTM = post-fire 

DTM, and n = the number of observations. 

To assess the effect of vegetation height on DTM accuracy, burned 1 x 1 m cells were 

categorized into three classes based on their mean pre-fire vegetation height: ≤15 cm, 15–30 

cm, and >30 cm. The number of cells in each class was 1105, 6393, and 4951, respectively. 

ΔDTM was calculated for each class. The first class represents areas dominated by mosses 

and lichens, the second by common heather and lingonberry twigs, and the third by more 

fertile sites with bilberry twigs and various grasses, which resulted in higher vegetation 

heights. 

Next, to evaluate the impact of DTM inaccuracies on forest characterization, the effect of 

ground height overestimation on diameter at breast height (DBH) and stem volume 

measurements was examined. Trees within the study sites were first identified in the post-

fire TLS point clouds, and their stem taper curves were measured using automated processing 

tools from Yrttimaa et al. (2019, 2020). DBH was defined at 1.3 m based on the stem taper 

curves. The stem was modelled as a series of vertical cylinders, and volume was calculated 

for each 1-cm section using the cylinder volume formula. The total stem volume was obtained 

by summing the volumes of all sections. The sampled trees had an average DBH of 23.6 cm 

(range: 4.9–69.3 cm) and an average stem volume of 222.7 dm3 (range: 8.9–1701.0 dm3). 

Stand density (trees per hectare) was calculated by dividing the number of trees detected in 

the point clouds by the area of the study site. Total stem volume per hectare was obtained by 

summing the volumes of the detected trees and dividing by the same area. The results for the 

study sites were: 369 trees/ha and 205 m3/ha for Nuuksio, 687 trees/ha and 260 m3/ha for 

Seitseminen, 948 trees/ha and 274 m3/ha for Ruunaa, and 919 trees/ha and 272 m3/ha for 

Salamajärvi. 

To further understand the impact of height offset on DBH measurements, a total of 100 

trees were randomly sampled from each study site (n = 400 trees in total). For each tree, DBH 

was measured with a height offset of 0–30 cm from the actual measurement height of 1.3 m. 

This involved measuring stem diameter from post-fire taper curves at 1-cm intervals between 

1.30 m and 1.60 m, with 1.30 m representing the correct height (0 cm offset) and 1.60 m 

representing the scenario where the ground level is overestimated by 30 cm, leading to a 30 

cm higher DBH measurement. For each offset, the medium and 99% confidence intervals of 

diameter deviation from the true value were calculated. 

To assess the impact of DTM inaccuracy on stem volume estimation, the focus was on 

the lower part of the stem, which may be omitted if the DTM overestimates due to ground 

vegetation. Using the taper curve, stem volume was calculated for cylinders with height 

offsets of 0–30 cm. The actual stem volume was first calculated from the base to the top of 

the tree, then volumes were recalculated for sections from 1 cm to 30 cm above the base, 
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moving upward by 1 cm at a time. This approach allowed evaluation of how ground 

vegetation affects stem volume. Medium and 99% confidence intervals were computed for 

each height offset to quantify the volume of stem sections omitted due to DTM inaccuracy. 

Finally, to understand how uncertainties in DTM estimation affect stand-level forest 

characterization, the impact of height offsets in stem volume estimation on total stem volume 

was calculated. The potentially omitted stem volumes of the sampled trees within each site 

(i.e., volume per 100 sample trees) were summed. These values were then scaled by the 

known stand density (trees per hectare) to estimate the omitted volume per hectare due to 

DTM inaccuracies. 

 

 

2.6 Identifying surface fires via satellites and associations with TLS (III) 

 

In study III, the ability to identify low-intensity surface fires from Sentinel-2 data was 

assessed by analysing the changes in forest reflectance during the fire year. This study 

focused on seven test sites (excluding Ruunaa), where sufficient satellite data were available. 

It was hypothesized that surface fires would lead to a significant drop in NBR values. To 

identify this change, a breakpoint analysis was performed. The NBR changes detected were 

then compared to the actual fire dates, with the temporal alignment providing quantitative 

evidence that surface fires can be identified through Sentinel-2 time series data. Daily NBR 

values from May 1 to August 31 of the fire year were estimated using cloud-free observations 

for each 10 x 10 m cell within the test sites, and a site-specific mean was calculated. Gaps 

between observation dates were filled and values beyond the last observation were extended 

using a Gaussian 30-day moving average smoothing and linear interpolation. 

To ensure that any decline in the NBR values was due to surface fires rather than seasonal 

variation, a moving average of NBR values from the five years before the fire year was 

calculated and subtracted from the daily NBR estimates. This process yielded trend-removed 

NBR values. These adjusted values were then analysed for abrupt changes to identify signal 

change points, which were interpreted as indications of spectral changes in the test sites, 

suggesting fire events. The signal change point was determined by averaging three change 

points for each test site. The first two change points were identified using MATLAB’s 

findchangepts function, which detected shifts in the mean and slope of both daily and trend-

removed NBR estimates. The third change point was found by locating the minimum value 

of the 1st derivative of the trend-removed daily NBR estimates (representing the steepest 

negative slope). For each test site, the fire year’s NBR values, the average from the preceding 

years, and the breakpoint analysis results were plotted together on the same graph. 

It was hypothesized that higher burn severity values from Sentinel-2 data would align 

with greater reductions in TLS-derived ground vegetation volume. The volumetric changes 

in ground vegetation, initially calculated at 0.1 m resolution, were aggregated to match the 

10 m resolution of the satellite imagery. Pearson’s correlation coefficient and the coefficient 

of determination (R²) were calculated between dNBR values and volumetric changes, and the 

results were visualized using scatter plots.  

To identify factors influencing this relationship, the cells (n = 600) were first classified 

into four equal-sized groups (n = 150) based on the TLS-measured volume change: unburned, 

low burn, medium burn, and high burn. Volume change in the unburned group ranged from 

–6 to 32 m³, while the low, medium, and high burn groups showed volume decreases of 6–

13, 13–21, and 21–47 m³, respectively. To assess how canopy cover affects this relationship, 

the dNBR values were analysed across these volume change groups under different levels of 
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canopy cover. The 10 × 10 m cells were classified into three equal-sized groups (n = 200), 

representing low (≤ 54%), moderate (54–72%), and high (> 72%) canopy coverage. The 

mean dNBR values were examined within these groups, with results visualized using 

boxplots. 

To assess how volumetric changes in ground vegetation, both alone and combined with 

canopy cover, affect dNBR values, two types of linear regression models were created, with 

dNBR as the response variable: 1) volume change as the sole fixed predictor, and 2) both 

volume change and canopy cover as fixed predictors. Additionally, mixed-effects models 

were used to examine the impact of ground vegetation volume and canopy cover changes on 

dNBR values, including the test site as a random effect to account for site-specific influences. 

Model performance was evaluated using the R2 and the Akaike information criterion (AIC).  

  

 

3 RESULTS AND DISCUSSION 
 

 

3.1 Identifying burned and unburned areas 

 

The classification method developed in study I for identifying ‘burned’ and ‘unburned’ areas 

by comparing the TLS-derived pre- and post-fire surfaces models proved effective. Out of 

the 320 1 × 1 m cells inspected for classification accuracy, 160 were classified as ’burned’ 

and 160 as ’unburned’ using the presented method. Visual inspection of these cells confirmed 

a correct classification assigned for 89% of the ’burned’ cells and 89% of the ’unburned’ 

cells. This resulted in an overall precision of 0.89, implying a high user’s accuracy. Out of 

the 160 cells that actually burned based on the visual inspection of the point clouds, 90% 

were correctly identified as ‘burned’ by the proposed method as well. This resulted in an 

overall recall of 0.90, indicating a high producer’s accuracy. Altogether, the F1-score 

combining both the recall and precision showed an overall accuracy of 0.88. The accuracy 

assessed through the F1-score varied slightly (from 0.74 to 0.98) across the test sites (Table 

5A). The proportion of the cells classified as ‘burned’ was 51–96%, depending on the test 

site, and the proportion of the ‘unburned’ cells was 4–49% (Table 5B). Maps of the fire-

exposed areas are presented in Figure 2. 

 

 

Table 5. A) Recall, precision, and F1-score quantifying the performance of the classification 

method for identifying ‘burned’ and ‘unburned’ areas. B) Proportions of ‘burned’ and 

‘unburned’ 1 × 1 m cells for each test site. 

 
 A) Classification accuracy B) Proportion of cells (%) 
Site Recall Precision  F1-score ‘Burned’ ‘Unburned’ 

Kivimäensalo 0.95 1.00 0.98 95  5  
Liesjärvi 0.77 1.00 0.87 95  5  
Pyhä-Häkki 0.95 0.95 0.95 92  8  
Nuuksio 0.94 0.80 0.86 83  17  
Seitseminen 0.80 1.00 0.89 94  6  
Evo 0.87 0.65 0.74 51  49  
Ruunaa 0.95 0.95 0.95 96  4  
Salamajärvi 0.94 0.75 0.83 71  29  
Mean 0.90 0.89 0.88 85  15  



27  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. The spatial distribution of 1 × 1 m cells classified as ‘burned’ (black) and ‘unburned’ 

(white) in the north-south oriented test sites. 1 = Kivimäensalo, 2 = Liesjärvi, 3 = Pyhä-Häkki, 

4 = Nuuksio, 5 = Seitseminen, 6 = Evo, 7 = Ruunaa, 8 = Salamajärvi. 

 

 

The maps of the fire-exposed areas of this study were consistent with previous studies, 

showing that controlled burnings create a mosaic of burned and unburned areas (Penman et 

al. 2007, Perkiö et al. 2012, Loudermilk et al. 2023). For instance, controlled burnings in 

sclerophyll eucalypt forests affected about 60–70% of the area (Gupta et al. 2015). This 

uneven fire distribution is ecologically beneficial in many biomes, as it promotes habitat 

diversity through varying structures and functions. The observed variability in burn patterns 

is driven by complex forest conditions, such as differences in topography, fuel distribution, 

and interactions between fire and weather. The results of this study demonstrate that the 

bitemporal TLS was able to capture these variations.  

Fire behaviour during controlled burnings is also influenced by practical factors such as 

ignition, control, extinguishing, and timing (Lemberg & Puttonen 2002, Laurila & Vierula 

2020). To prevent fire spread beyond target areas, extensive watering is often applied before, 

during, and after the burning. Target areas are typically bordered by firebreaks (5–25 m wide, 

cleared of trees and combustibles) or fire lines (narrow strips of exposed mineral soil) 

(Lindberg et al. 2011, Perkiö et al. 2012, Laurila & Vierula 2020). These barriers remain 
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unburned through watering or soil exposure. The impact of these artificial barriers as well as 

the practical factors were not assessed in this study, as it would have required continuous 

monitoring during the fire, which was beyond the scope. 

 

 

3.2 Variability in the magnitude of fire-induced changes in ground vegetation 

 

Study I utilized bitemporal TLS measurements also to estimate the extent and variation in 

the volumetric changes in the ground vegetation across the test sites. On average, the total 

change was –1 200 m³/ha, with burning reducing it by 1 700 m³/ha and vegetation growth 

increasing it by 500 m³/ha. However, substantial variations in the volume changes were 

observed between the test sites (Figure 3A). The total volumetric changes ranged from –2 

420 to 30 m³/ha, with fire-induced reductions ranging from –2 640 to –980 m³/ha, and 

growth-related increases ranging from 120 to 1 680 m³/ha. Variations in the extent of pre-fire 

ground vegetation (Figure 3B) may have influenced the observed differences by affecting 

fuel availability. Substantial variation was also observed within the test sites when analysing 

cell-level changes (Figure 4). The ‘burned’ cells exhibited standard deviations of 0.10–0.22 

m³, while the respective range for the ‘unburned’ cells was 0.07–0.23 m³.  

Variations in the extent of these fire-induced changes can be partly explained by the site 

characteristics, such as the number and size of trees, which affect light and nutrient 

availability through competition, as well as soil moisture levels and the accumulation of leaf 

litter (Xiong & Nilsson 1999, Ludwig et al. 2004). These factors affect both the quantity and 

quality of ground vegetation and fuel load. For instance, the Kivimäensalo and Evo sites, that 

were characterized by a more nutrient-rich forest type (Table 2), exhibited considerable 

internal variability in the volumetric changes among both ‘burned’ and ‘unburned’ cells 

(Figure 4).  

At Salamajärvi, the ground vegetation volume decreased only slightly (154 m3/ha), while 

at Evo, it increased (33 m3/ha) (Figure 3B). This could be due to the longer time gap between 

the pre-fire TLS measurements and the burnings compared to other test sites (Table 2). 

Additionally, the burnings at Evo and Salamajärvi took place in August, representing a 

suboptimal timing outside the preferred time window from mid-May to late June (Laurila & 

Vierula 2020), which may further explain these anomalies. 

The Evo test site stands out from the other controlled burning sites in several ways. It had 

the largest unburned area (Table 5) and was the only site where ground vegetation volume 

increased (Figure 3A). The Evo test site also represented the highest extent in pre- and post-

fire vegetation (Figure 3B), with the largest standard deviations in the observed volumetric 

changes, indicating more inconsistent fire impacts.  

The unique fire behaviour observed at the Evo test site highlights the substantial 

variability in fire-induced biomass changes among the test sites as documented in other 

studies as well. For instance, Loudermilk et al. (2023) reported a mean biomass consumption 

of 580 g/m2 with a standard deviation of 353 g/m2 following controlled burnings in temperate 

coniferous forests. The large standard deviation emphasizes the importance of considering 

variations beyond stand-level averages. Relying solely on data from a single area may lead 

to misleading conclusions. In contrast, analysing changes across multiple controlled burning 

sites offers a more comprehensive understanding of variability and patterns in fire behaviour. 

This broader approach enhances the reliability and generalizability of the findings. 
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Figure 3. A) Total changes in ground vegetation volume (black) with burned (red) and growth 

(green) volume. B) Ground vegetation volume (including tree stems below 2 m) before and 

after the controlled burnings (pre- and post-fire, respectively). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
Figure 4. Variation in ground vegetation volume changes (m3) in 1 × 1 m cells classified as 
‘burned’ (red) and ‘unburned’ (green) across the test sites. Outliers (0.35% of observations 
above and below the whiskers) are omitted to enhance data clarity. 
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3.3 Ground vegetation affects DTMs 

 

Study II evaluated the effects of ground vegetation on DTM estimation within the context of 

point cloud-based forest characterization. The research involved removing ground vegetation 

through controlled burnings conducted at four boreal forest test sites, and characterizing 

topography and ground vegetation height before and after the burnings using TLS. It was 

assumed that post-fire DTMs would more accurately represent the ground surface, showing 

lower elevation values than pre-fire DTMs due to the removal of occluding vegetation. The 

study confirmed this, with ground elevation found to be approximately 10 cm lower after 

vegetation removal. 

In burned cells, where ground vegetation was removed, pre-fire DTMs indicated ground 

surface levels that were, on average, 8–13 cm higher than the corresponding post-fire DTMs, 

depending on the test site (Table 6). These mean differences were statistically significant (p 

< 0.001) in all test sites. Analysis of ΔDTM values between burned and control cells 

confirmed that these discrepancies resulted from vegetation removal, not geolocation errors 

between the datasets, as the burned areas featured an average of 9 cm larger |ΔDTM| and 8 

cm larger RMSD in the DTM values compared to the control areas (Table 6). At the Nuuksio 

site, control cells showed a positive mean ΔDTM, suggesting post-fire DTMs were higher 

than pre-fire, likely due to vegetation regrowth between measurements. This anomaly did not 

affect the results, as the focus was on the burned cells. The variation in ΔDTM within test 

sites, illustrated by the Nuuksio test site in Figure 5, was primarily driven by differences in 

vegetation height.  

Analysis of ΔDTM across the three vegetation height classes revealed that the amount of 

ground vegetation influenced the degree of DTM overestimation. The lowest vegetation class 

had an average ΔDTM of –6 cm (±4 cm), the second class had an average of –8 cm (±6 cm), 

and the third class, with the tallest vegetation, showed an average ΔDTM of –12 cm (±11 

cm) (Figure 6). Statistical tests confirmed that ΔDTM differed significantly (p < 0.05) across 

all vegetation classes. 

 

 
Table 6. Mean change in DTM (ΔDTM; pre-fire DTMs subtracted from post-fire DTMs) and 
root mean square difference (RMSD) between pre- and post-fire DTMs in burned and control 
areas. 
 

  ΔDTM (cm) RMSD (cm)  
Site burned control burned control 

Nuuksio –9±11 2±4 15 4 
Seitseminen –11±7 –3±5 13 6 
Ruunaa –8±5 –5±3 9 5 
Salamajärvi –13±8 –2±5 15 5 

Average –10±8 –1±5 13 5 
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Figure 5. A) Changes in the digital elevation models (ΔDTM; pre-fire DTMs subtracted from 
post-fire DTMs) of the test site Nuuksio. B) a 20 x 20 m section of pre-fire DTM, C) post-fire 
DTM, and D) ΔDTM with points marking burned cells (black) and control cells (white) (bottom 
row).  

 
Figure 6. Changes in digital elevation models (ΔDTM; pre-fire DTMs subtracted from post-fire 
DTMs) within three classes representing different ground vegetation types based on their 
mean height above the ground within the investigated 1 m x 1 m cells. Negative values indicate 
overestimation of ground height due to vegetation (i.e., pre-fire DTM appearing higher than 
post-fire DTM). Bold lines represent the medians, boxes show the interquartile range (IQR), 
and whiskers extend to 1.5 x IQR, covering the range within a 99.3% confidence interval for 
normally distributed data. Outliers beyond this range are omitted for clarity.  
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In the context of forest characterization, the observed DTM overestimation likely leads 

to an underestimation of tree height and inaccurate stem diameter measurements due to the 

offset in measurement heights. This, in turn, can cause stem volume to be underestimated. 

The average ΔDTM of –10 cm resulted in DBH being measured at 1.4 m instead of the actual 

1.3 m measurement height. According to the experiments, this offset caused a mean 

underestimation of DBH by 1.3 mm (0.6%), with the 99% confidence interval ranging from 

a 0.1 mm overestimation to a 3.7 mm underestimation (Figure 7). In the highest vegetation 

class, the ΔDTM range extended to approximately –30 cm (Figure 6), reflecting the most 

extreme overestimation. This resulted in a 3.6 mm (1.5%) mean underestimation of DBH, 

with a 99% confidence interval ranging from a 0.4 mm overestimation to a 10.3 mm 

underestimation.  

Inaccurate DTM estimation not only affects DBH measurements but also impacts stem 

volume calculations. An average ΔDTM of –10 cm led to the omission of the lowest 10 cm 

of the stem when estimating total volume using pre-fire point clouds. Analysis of 400 trees 

revealed an average underestimation of stem volume by 4.8 dm³ (±3.6 dm³), or 3.1%. In the 

extreme case of a 30 cm height offset, the underestimation increased to an average of 13.7 

dm³ (±10.3 dm³), or 8.8%. At the stand level, a 10 cm DTM overestimate caused 

underestimations in total stem volume, ranging from 2.7 m³/ha at Nuuksio to 3.6 m³/ha at 

Ruunaa, with an overall average of approximately 3 m³/ha (1.3%). While the impact of DTM 

inaccuracies may seem minor at a single time point, it can become more significant when 

tracking structural changes over time. However, if follow-up measurements are taken under 

similar seasonal conditions, the DTM-induced uncertainty in tree measurements is expected 

to be minimal. 

 

 

Figure 7. Illustration of the magnitude of stem diameter deviation (top) and volume (bottom) 

from their actual measured values when the measurement height offsets by 0 to 30 cm higher 

on the stem due to ground height overestimated because of the presence of ground 

vegetation. The bold line shows the median deviation, and the shading shows its 99% 

confidence interval among 400 randomly selected trees (100 trees across each four test sites). 
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Previous studies have consistently shown that TLS-derived DTMs tend to overestimate 

elevation by a few centimetres, with discrepancies of up to approximately ten centimetres 

when compared to values obtained from total station or DGPS measurements at a resolution 

of 0.3–1.2 m (Guarnieri et al. 2009, Baltensweiler et al. 2017, Jurjević et al., 2021). The 

results of this study align with these findings, demonstrating that the presence of ground 

vegetation contributed to an increase in observed elevation values by 8–13 cm. However, it 

is important to note that this study did not validate TLS-derived DTMs against independent 

ground elevation measurements. Rather, the study focused on assessing the influence of 

ground vegetation on DTM accuracy. By comparing DTMs generated from TLS campaigns 

conducted before and after vegetation removal, the study evaluated how the removal of 

ground-occluding vegetation affected elevation estimates. Controlled burnings were 

employed to remove the vegetation. This experimental setup enabled a direct assessment of 

the effects of vegetation on DTM estimation, which was the primary objective of this study.  

The differences observed between pre- and post-fire DTMs can be attributed to the ground 

vegetation characteristics of the study sites. Around 60% of the 1 m x 1 m cells had a mean 

vegetation height of <30 cm, with ground-occluding vegetation primarily composed of 

feather mosses (Pleurozium schreberi, Hylocomium splendens) and dwarf shrubs (Vaccinium 

myrtillus, Vaccinium vitis-idaea) (Palviainen et al. 2005). The degree of DTM overestimation 

due to ground vegetation may vary across different forest and vegetation types, underscoring 

the need for further research in diverse ecosystems. For accurate ground characterization in 

these experiments, a scanner capable of recording multiple returns per laser pulse was used, 

following the approach suggested by Fun et al. (2014), with the last or only returns employed 

to ensure accurate capture of the ground surface through occluding vegetation. 

The observed systematic overestimation in ground elevation may also be influenced by 

the TLS measurement geometry. The scanner, mounted 1.7 m above the ground, transmits 

and receives signals at a low oblique angle, which can result in a longer optical path through 

vegetation compared to airborne sensors like ALS (Coveney & Fotheringham 2011, Fan et 

al. 2014). As the distance from the TLS scanner increases, laser returns thought to represent 

the ground may actually come from vegetation. With a 10 x 10 m scan grid, the theoretical 

maximum horizontal distance for ground surface observations was about 7.1 m, with an off-

nadir angle of 76.5°. A denser grid (e.g., 5 × 5 m) would reduce the obliquity (3.5 m distance, 

64.3° angle) but would require more time for measurements. ALS’s vertical geometry could 

provide more accurate ground surface data, though at a lower resolution. ALS offers 

consistent vertical accuracy across the entire area, whereas TLS-derived DTM uncertainties 

would vary locally as a function of the scan locations. Future research could compare DTMs 

derived from various remote sensing techniques, including mobile laser scanning methods 

such as handheld and drone-based scanners. 

 

 

3.4 Satellite data detects surface fires 

 

Forest fires are extensively monitored with multispectral satellite time series, as fires alter 

forest reflectance, leading to lower NBR values. The aim of study III was to investigate 

whether low-intensity surface fires could also be detected using these data. A noticeable 

decline in NBR values was observed after the surface fires in four out of seven test sites: 

Kivimäensalo, Liesjärvi, Nuuksio, and Seitseminen (Figure 6). These findings suggest that 

Sentinel-2 within-year time series data can effectively identify low-intensity surface fires. In 

these four test sites, the NBR-based fire timing estimation closely matched the actual burning 
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time, with an average difference of 2.5 days. In Pyhä-Häkki and Evo, the NBR values also 

declined after the fires, but the change was less pronounced. In these sites, the average 

difference between the actual burning time and NBR-based estimation was 23 days. In 

Salamajärvi, the surface fire was not detected in the recorded dataset.  

The variations in the results can be attributed to site-specific factors, including 1) the 

extent of change in ground vegetation volume, 2) variations in canopy cover, and 3) the 

number of available NBR observations for each test site. In the test sites where the decline in 

the NBR values was most pronounced (i.e., Kivimäensalo, Liesjärvi, Nuuksio, and 

Seitseminen), the TLS-measured total decrease in the ground vegetation volume ranged from 

1600 to 2400 m3/ha (Table 7). In contrast, other sites exhibited smaller volume decreases 

(Pyhä-Häkki and Salamajärvi) or even an increase (Evo). Essentially, in the test sites with 

more extensive burning, as indicated by the TLS measurements, the occurrence of fire was 

more discernible in the satellite imagery. The test sites with notable changes in the NBR 

values also had a lower mean canopy cover (53%) compared to other test sites (72%) (Table 

7), suggesting that denser canopy cover hindered the fire detection. Additionally, the average 

number of the post-fire NBR values (i.e., cloud-free observations) was higher (n = 9) in the 

test sites with notable declines compared to those with smaller changes (n = 3) (Table 7). 

This indicates that a scarcity of cloud-free observations may amplify potential errors in the 

satellite data, contributing to smaller declines in the NBR values. However, the Kivimäensalo 

test site was an exception, as there were only two cloud-free observations after the fire, yet a 

clear change in the NBR values was observed. 

In summary, while surface fires generally caused declines in NBR values, these changes 

were unidentifiable when the forest floor did not burn adequately, when the canopy was too 

dense, or when there were insufficient cloud-free satellite observations. However, the number 

of cloud-free observations did not appear to influence the results as significantly as the extent 

of burned ground vegetation and canopy cover. 

Reviewing the NBR values over the five-year period preceding the fire year revealed that, 

in undisturbed conditions, the NBR values remained relatively stable throughout the summer 

months (Figure 6). This stability suggests that the decline in the NBR values during the fire 

year was primarily due to surface fires, rather than normal seasonal variation. The slight 

increase in the NBR values likely reflected the growth of green vegetation. During the fire 

year, the NBR values started at lower levels compared to previous years, likely due to 

thinning operations carried out during the previous winter (Table 2). However, in 

Salamajärvi, where no thinnings were conducted, a notable gap between the fire year and 

previous years was still observed. This discrepancy would need further investigation to be 

understood. 
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Figure 6. Smoothed development of satellite-based normalized burn ratio (NBR) values 
during the summer months of the fire year (red curve) and actual values (red dots), trend-
removed mean of NBR values for the five years preceding the fire (black curve), actual time 
of the controlled burning (black vertical line), and an NBR-based signal change point (red 
vertical line) for each test site. 
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Table 7. Total changes in ground vegetation volume (vol change) measured using bitemporal 
terrestrial laser scanning (TLS). Total canopy cover measured using TLS. Number of satellite-
based normalized burn ratio (NBR) values (i.e., the number of cloud-free observations) for the 
fire year. Averages (x̄) for detected and undetected fires.  

 
  Vol  

change 
Canopy 
cover 

Number of NBR  
observations 

 Site (m3/ha) x̄ (%) x̄ pre-fire x̄ post-fire x̄ 

d
e

te
c

te
d

 Kivimäensalo –2400 –1900 59  53 10 9 2 9 
Liesjärvi –1800 46  3 10 
Nuuksio –1600 55  5 14 
Seitseminen 
 
 

–1700 53  18 9 

u
n

d
e

te
c

t

e
d

 Evo 300 –300 66  72 10 9 2 3 

Pyhä-Häkki –1100 75  9 5 
Salamajärvi –100 76  9 2 

 
 

3.5 Moderate correlation between Sentinel-2 and TLS data 

 

Study III also examined the relationship between the satellite-derived dNBR values and TLS-

derived volumetric changes in ground vegetation. A moderate negative correlation of –0.5 

was observed between the satellite and TLS measurements. As the dNBR values increased 

and the ground vegetation volumes decreased with greater burn severity, the observed 

negative correlation aligned with expectations. The R2 was 0.25, suggesting that 25% of the 

variance in the dNBR values could be explained by the fire-induced changes on the forest 

floor. However, this association varied among the test sites, with site-specific R2 values 

ranging from 0 to 17% (Figure 7). Additionally, observations were visually clustered by the 

test site, indicating that site-specific conditions influenced the relationship between the 

satellite and TLS measurements.  

To identify factors influencing this relationship, mean dNBR values were analysed across 

the groups based on volume change and canopy cover. Within the same volume change 

group, the dNBR values decreased as the canopy cover increased (Figure 8). The lowest 

mean dNBR values were found in unburned areas with high canopy cover, while the highest 

values occurred in heavily burned areas with low canopy cover. This indicates that dense 

canopy cover reduces the effectiveness of satellite imagery in detecting changes in forest 

reflectance caused by small-scale alterations on the forest floor. Similarly, Yin et al. (2020) 

found that integrating canopy cover into dNBR parameterization significantly improved burn 

severity estimation. 

Given the considerable variability in the relationship between dNBR values and 

volumetric changes in ground vegetation across the test sites, the effects of canopy cover and 

site conditions were further investigated through statistical analysis. Initially, changes in 

ground vegetation volume alone explained 25% of the variation in dNBR values. When 

canopy cover was included as a second predictor, the R2 increased to 50%. Adding site 

information as a random effect further enhanced the model’s explanatory power, increasing 

the R2 to 84%. Based on the AIC, as well, this mixed-effects model was identified as the most 

suitable. All predictors in the models were statistically significant (p-values < 0.001). 
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Kato et al. (2019) utilized TLS to quantify and compare forest structural attributes with 

Landsat 8 satellite imagery in Canadian boreal forests. They observed a notable, although not 

statistically significant, relationship between dNBR values and TLS-derived voxels, 

particularly in the height strata of 0–0.5 m (R2=56%). Furthermore, the findings of this study 

align with those of Kato et al. (2019), who indicated that the correlation between voxel 

counting, and spectral indices reflected ecological responses to site conditions. 

This study successfully distinguished the effects of the extent of burned ground vegetation 

and canopy cover on satellite-based burn severity estimates, though further research is 

needed, particularly regarding site-specific factors. The variability in the relationship 

between dNBR values and structural changes in ground vegetation across the test sites 

appears largely attributable to substantial site-specific differences, such as vegetation types, 

fuel load, topography, soil moisture, weather conditions, and controlled burning practices. 

These factors collectively shape fire behaviour and influence post-fire reflectance, 

emphasizing the importance of accounting for local conditions when interpreting remote 

sensing data related to forest fire dynamics. 

Detecting surface fires from satellites is more challenging than identifying crown fires, 

primarily due to the limited capability of optical satellites to penetrate the tree canopy. 

Therefore, understanding the effectiveness of surface fire detection is crucial, and this study 

offers valuable insights into this issue. Specifically, study III explored how multispectral 

satellite imagery can be employed to observe fire-induced changes in boreal forests, 

emphasizing the factors influencing the relationship between forest reflectance and ground 

vegetation changes. By integrating on-site laser scanning with satellite-based burn severity 

estimates, the study successfully demonstrated the ability to identify low-intensity surface 

fires and deepen our understanding of fire effects across different forest layers, thereby 

advancing research in fire ecology. 

 

 

 

Figure 7. Scatterplot of satellite-based difference normalized burn ratio (dNBR) in relation to 

volumetric changes in ground vegetation (m3) measured using terrestrial laser scanning (TLS) 

within 10 × 10 m cells. R2=coefficient of determination.  
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Figure 8. Boxplots of satellite-based difference normalized burn ratio (dNBR) in ground 

vegetation volume change groups (unburned, low burn, medium burn, high burn) and canopy 

cover groups (low, moderate, high) measured by terrestrial laser scanning (TLS). 

 

 

3.6 Challenges and future directions 

 

Surface differencing, the method used in all sub-studies to quantify volumetric changes in 

ground vegetation, assumes that the space beneath the observed vegetation surface is fully 

occupied by vegetation or fuel load. This assumption may lead to an overestimation of 

volume in cells where the highest point is represented by loose branches or small twigs, for 

example. Alternative methods for estimating ground vegetation volume include the convex 

hull method and voxel counting (Loudermilk et al. 2009, Olsoy et al. 2014, Graeves et al. 

2015). Surface differencing was chosen for this thesis because, for instance, Zhao et al. 

(2021) demonstrated that it has the strongest correlation with field-measured biomass when 

estimating shrub volume in grasslands, outperforming other methods. While comparing 

results obtained from different methods using boreal forest data could provide valuable 

insights, the primary focus should be on carefully validating the selected method, as done in 

study I.  

In studies I and II, 1 × 1 m cells were categorized based on the proportion of 0.1 × 0.1 m 

cells they contained. In study I, a cell was classified as ‘burned’ if more than half of the 

associated 0.1 × 0.1 m cells showed a negative change in vegetation height. The approach 

aimed to base the classification on recognizing a sufficient proportion of a 1 × 1 m cell area 

representing decreased change, while the magnitude of change was not the determinant. This 

was intended to avoid decisions based on single – possibly erroneous – observations, 

enhancing the robustness of the developed method. In contrast, study II identified burned 

cells by a decrease in ground vegetation height of more than 5 cm in at least 80% of its area. 

This minimum decrease threshold was chosen to ensure that the identified cells represented 

surface patches where the bare ground was exposed to the laser scanner for enhanced DTM 

reconstruction. It also aimed at considering the alignment accuracy of 3.2 cm in the Z-

direction for the pre- and post-fire point clouds. However, alternative thresholds in the studies 

might have yielded slightly different numerical results, though the overall findings are 

expected to remain consistent. For instance, in study II, a higher height threshold might have 

led to even more pronounced differences between pre- and post-fire DTMs. It should be noted 

that some of the applied parameters may be sensitive to the applied technology, the level of 
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detail of the attained point clouds as well as the forest conditions where the methodology was 

developed and tested. Future research is therefore required for assessing the feasibility of 

applying the methodology outside the experimental conditions used here. 

The pre-fire TLS measurements were conducted an average of 20 days before the 

controlled burnings, and post-fire measurements 40 days afterward. As a result, unburned 

areas had an average of 70 days to continue growing (Table 2). Although all test sites were 

used only in study I, this timing issue might contribute to the findings obtained in all sub-

studies. If vegetation growth occurred between pre-fire measurements and burning, the 

magnitude of burned vegetation may have been underestimated, while the increased volume 

may have been overestimated. The vegetation in burned areas likely remained stable until 

post-fire measurements. To improve accuracy of the point cloud-based assessments of the 

magnitude of burned vegetation, future TLS campaigns should be scheduled closer to the 

burning dates. However, this can be challenging due to the dependency of controlled burnings 

on weather conditions and, as in this case, if the burnings are conducted by an external party. 

Acquiring the point cloud data using a more agile laser scanning technology utilizing a 

moving platform may provide a solution. However, future research is needed to assess the 

feasibility of such approaches in assessing the magnitude of burned vegetation.  

The TLS-based estimates of the volumetric extent of ground vegetation exposed to fire 

can serve as a basis for related biomass estimation, but this relationship is significantly 

influenced by the density, distribution, and characteristics of the vegetation occupying the 

observed volume. Accurate biomass estimation would necessitate destructive sampling, 

which involves collecting, drying, and weighing vegetation samples (Houghton 2008). The 

biomass estimates could then be converted into CO2 equivalents, facilitating assessments of 

the climatic impacts of low-intensity fires and enabling a more precise understanding of 

carbon fluxes. Additionally, the vegetation changes can be viewed in terms of fuel 

consumption, as the vegetation consumed represents fuel burned, which is an important factor 

for estimating fire emissions and effects. The use of multispectral laser scanning would 

enable incorporating both geometric and spectral properties of the investigated volumetric 

units (voxels), which would aid in differentiating various material categories that are 

destructively sampled for accurate biomass estimation. Additionally, by monitoring post-fire 

vegetation recovery and tree mortality, future research could evaluate the longer-term 

ecological effects of surface fires, thereby contributing to a more comprehensive 

understanding of forest dynamics and resilience. 

 

 

4 CONCLUSIONS 
 

 

This thesis quantified changes in ground vegetation resulting from low-intensity surface fires 

in Scots pine-dominated boreal forests using TLS point clouds. Bitemporal TLS campaigns 

were conducted at eight one-hectare test sites in Finland, where controlled burnings 

simulating surface fires were performed between the measurements.  

A classification method based on changes in vegetation height was developed to identify 

burned areas with experiments demonstrating that TLS is sensitive enough to capture fine-

scale changes on the forest floor. This method benefits practitioners who conduct controlled 

burnings and assess their effectiveness. Additionally, bitemporal TLS proved effective for 

estimating fire-induced volumetric changes in ground vegetation. The considerable 

variability observed both between and within controlled burning sites highlights the complex 
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dynamics of surface fires and emphasizes the need for studies across diverse environmental 

conditions and sufficiently large experimental plots. 

The experimental setup of this thesis enabled an examination of how ground vegetation 

influences the accuracy of TLS-based estimates of bare ground elevation. Pre- and post-fire 

DTMs were generated and compared for burned areas, revealing an average decrease of 10 

cm following the removal of ground vegetation. Comparing burned and unburned control 

areas confirmed that the observed DTM changes were primarily due to vegetation removal. 

Additionally, taller ground vegetation resulted in greater uncertainty in DTM. Inaccurate 

DTMs can distort key forest attributes, with this study revealing that individual tree stem 

volume was underestimated by 3.1% and stand-level stem volume by 1.3%. This experiment 

offered valuable insights into quantifying vegetation-induced uncertainty in DTMs, 

improving TLS applications in densely vegetated forests, and emphasizing the need to 

address such uncertainty in topographic characterization. 

The TLS-derived observations from surface fires were compared with burn severity 

estimates based on multispectral satellite imagery. The Sentinel-2 time series effectively 

identified most surface fires, showing a significant decrease in NBR values, which reflect 

fire impact on the forest ecosystem. However, identifying surface fires in areas with denser 

canopy cover and less burned ground vegetation proved more challenging for satellite data. 

A moderate negative correlation was observed between spectral and volumetric changes, 

indicating that higher satellite-based burn severity estimates aligned with a greater decrease 

in ground vegetation volume measured by TLS. Further analysis confirmed that both canopy 

cover and, in particular, site-specific conditions significantly influenced the correlation 

between spectral and volumetric changes. 

In conclusion, this thesis demonstrated the effectiveness of TLS in capturing fine-scale, 

fire-induced changes in ground vegetation, providing valuable insights into the complexities 

of surface fires. The findings underscore the potential for integrating TLS data with satellite-

based burn severity estimates to improve the accuracy of forest fire monitoring and to better 

understand the factors influencing burn severity within fire-affected areas. By refining 

assessment methods across different forest layers, this research supports improved fire 

management strategies and advances understanding of the ecological effects of surface fires 

in boreal ecosystems. 
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