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ABSTRACT 
 

 

Leaf area index (LAI), defined as half of the two-sided leaf area per unit horizontal ground 

surface area, is an essential variable that describes forest canopy structure. It is a key input in 

various biosphere-atmosphere models and an important indicator of biodiversity. Temporally 

and spatially accurate large-area LAI maps are highly needed, but measuring LAI in the field 

is labour-intensive and time-consuming, especially over large areas. The aim of this thesis 

was to investigate the feasibility of estimating LAI at large scales using multiple airborne 

laser scanning (ALS) datasets. Various ALS-derived penetration indices were first compared 

with field-measured gap fractions at near-vertical angles. The all-echo penetration index 

(API) showed the least bias among the indices, making it a suitable input following the semi-

physical modelling approach. I also explored the utility of ALS polar metrics following the 

empirical modelling approach, which were found useful and led to improved model accuracy. 

Furthermore, the performance of both empirical and semi-physical modelling approaches for 

LAI estimation was assessed at both regional and nationwide scales. While empirical LAI 

models achieved slightly higher accuracy, the semi-physical model demonstrated better 

potential for transferability across regions. The nationwide LAI model accuracy could be 

further improved by incorporating local plots into model calibration. Finally, we proposed a 

gamified framework for LAI data collection. It may become a valuable data source for 

validation and calibration of nationwide LAI models.  

 

 

Keywords: plant area index, LiDAR, model transferability, forest canopy, citizen science, 

gamification  
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1. INTRODUCTION 

 

 

1.1 Background 

 

The primary objectives of forest inventories (FIs) have traditionally focused on assessing 

commercially valuable forest attributes, such as timber volume and stand productivity. These 

conventional FIs have played a vital role in ensuring timber supply, supporting forest 

management and informing economic decision-making. However, they often largely 

overlook the broader ecological and social functions of forests, which are increasingly 

recognised as integral to modern societies. From an ecological perspective, the forest canopy 

is a three-dimensional subsystem that plays a critical role in ecosystem functioning. It is 

considered the most species-rich environment within forests, earning it the title of the “last 

biotic frontier” (Levin 2013). Among various parameters (e.g., canopy cover and canopy 

closure) used to describe canopy structure, leaf area index (LAI) is one of the most important 

ones.  

LAI is here defined as half of the two-sided leaf area per unit horizontal ground surface 

area (Chen and Black 1992). It quantifies the amount of foliage present in the canopy, where 

the vital mass and energy exchanges occur between the biosphere and the atmosphere. Due 

to its central role in these interactions, LAI has been recognised by the Global Climate 

Observing System (GCOS) as one of the key variables in global biosphere-atmosphere 

models, influencing processes such as photosynthesis, evapotranspiration and carbon cycles 

(Norman and Jarvis 1974; Broge and Leblanc 2001; Baldocchi et al. 2002; Ryu et al. 2011; 

GCOS 2022). In forestry, LAI serves as a versatile input for various forest-related 

applications, including growth and yield modelling, surface albedo estimation, forest 

disturbance assessment and soil nutrient cycling analysis (Pierce et al. 1994; Heiskanen et al. 

2012; Härkönen et al. 2013; Hardwick et al. 2015; Wang et al. 2016). Furthermore, LAI plays 

a fundamental role in biodiversity studies, as it shapes ecosystem structure and functions 

(Skidmore et al. 2015).  

Therefore, temporally and spatially accurate LAI data are of great importance for forest 

ecology and environmental research. Consequently, high-resolution LAI maps at national 

and global scales are highly desired.  

 

 

1.2 LAI estimation methods  

 

1.2.1 In situ measurements 

 

There are two methods of measuring LAI in the field: direct and indirect methods (Breda 

2003). Direct methods involve measuring the leaf area of litterfall or destructively sampled 

leaves, which produces the ‘true’ LAI (Asner et al. 1998). However, such methods are time-

consuming and labour-intensive when applied to large areas (Weiss et al. 2004). LAI can be 

indirectly estimated based on the allometric relationships with other forest attributes such as 

basal area and canopy cover. Different allometric models, however, can result in significantly 

different LAI estimates (Fang et al. 2019).  
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So far, the majority of in situ LAI measurements has been obtained indirectly by optical 

instruments, based on the logarithmic relationship between LAI and gap fraction according 

to the Beer-Lambert law (Eq. 1) (Ross 1981).  

𝑇(𝜃) = 𝑒
−𝐿𝐴𝐼 Ω(𝜃)𝐺(𝜃)

cos(θ)
 

(1) 

where T(θ) denotes canopy gap fraction at the viewing angle θ, Ω(θ) is the canopy clumping 

index, and G(θ) is the leaf projection function that is the projection coefficient function of 

unit foliage area on a plane perpendicular to the viewing direction θ.   

Devices designed for LAI measurements include the LAI-2200C Plant Canopy Analyser 

and its predecessor, the LAI-2000 (LI-COR Environmental 2025), as well as digital cameras 

equipped with standard or hemispherical lenses (Macfarlane et al. 2007; Díaz and Lencinas 

2018). 

Eq. 1 can be simplified by integrating the entire hemispherical gap fraction measurements 

without the prior knowledge of G(θ) (Eq. 2) (Miller 1967). Assuming that the foliage is 

randomly distributed in the canopy (Ω = 1), the LAI derived this way is more precisely called 

effective LAI (LAIe).  

𝐿𝐴𝐼𝑒 = −2 ∫ ln(𝑇(𝜃))

2
𝜋

0

cos(𝜃) sin(𝜃) 𝑑𝜃 (2) 

When data are only available at a series of discrete viewing angles, Eq. 2 is approximated 

by the sum (Eq. 3): 

𝐿𝐴𝐼𝑒 = −2 ∑ ln(�̅�𝑖) cos(𝜃𝑖)
𝑛

𝑖=1
𝑤𝑖 (3) 

Another method of calculating LAIe is by using the gap fraction at the so-called ‘hinge 

angle’ (57° from the zenith), which relies on the advantage that the G(θ) function at this angle 

remains constant as 0.5 (Eq. 4) (Wilson 1963; Zhao et al. 2019): 

𝐿𝐴𝐼𝐻𝐴 = −
cos(𝜃)

𝐺(𝜃)
ln(𝑇(𝜃)) = −1.089 × ln (𝑇(𝜃)) (4) 

 

1.2.2 Remote sensing 

 

Remote sensing offers a viable alternative for efficiently collecting LAI information over 

large geographical areas. Over the past decades, extensive research has focused on estimating 

LAI using remotely sensed data (Breda 2003; Chen 2018; Fang et al. 2019; Yan et al. 2019). 

Remotely sensed LAI products are primarily derived from passive optical sensors and active 

Light Detection and Ranging (LiDAR) instruments across multiple platforms (Chen 1996; 

Zhao et al. 2011; Fernandes et al. 2014; Li et al. 2017).   

Using data acquired from passive optical sensors, LAI is typically estimated by 

establishing statistical relationships with canopy reflectance or vegetation indices (VIs) (le 

Maire et al. 2004; Houborg et al. 2009; Chen 2018). While the near-infrared band has been 

widely used for LAI estimation, many studies recommend incorporating multiple spectral 

bands to mitigate atmospheric effects and background noise (Cohen et al. 2003; Kobayashi 

et al. 2007). Consequently, multi-band VI methods have gained popularity, with commonly 

used indices including the normalised difference vegetation index (NDVI) and the enhanced 

vegetation index (EVI) (Huete et al. 2002; Wang et al. 2005; Bajocco et al. 2024). Although 

optical imagery enables large-scale LAI estimation, also at global level through satellite 

missions such as Sentinel-2, it is often limited by coarse spatial resolution and susceptibility 
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to atmospheric effects and background noise. Additionally, LAI products from passive 

optical sensors are often constrained by saturation effects in dense canopies (Gower et al. 

1999).  

Light Detection and Ranging (LiDAR) is a technique that uses laser light to measure 

distances and general detailed 3D representations of the targets (forests in this case). 

Estimating LAI using active LiDAR data often relies on gap fraction analysis, from which 

LAI is subsequently derived (Eq. 1). LiDAR systems operate across multiple platforms, 

including spaceborne, airborne (mounted on aircrafts or drones) and terrestrial systems. 

Spaceborne LiDAR instruments, such as the Global Ecosystem Dynamics Investigation 

(GEDI), provide a great opportunity of collecting LAI sampling data (rather than continuous 

wall-to-wall coverage) at the global scale (Dubayah et al. 2020). However, GEDI operates 

only between 51.6° N and S latitude, limiting its applicability in high-altitude boreal forests 

in countries such as Finland. While terrestrial and drone-based LiDAR systems offer highly 

detailed 3D canopy information, their limited spatial coverage makes them impractical for 

large-area mapping at nationwide level (Zhu et al. 2018; Tian et al. 2025).  

Among the available remote sensing platforms, airborne laser scanning (ALS), a LiDAR 

system mounted on an aircraft with a scanning mechanism, has been widely adopted for 

large-scale forest data collection. Recent implementations have taken place in many 

countries, including the Netherlands (Kissling et al. 2023), Norway (Astrup et al. 2019), 

Sweden (Nilsson et al. 2017), Denmark (Magnussen et al. 2018) and Canada (Wulder et al. 

2017). ALS has also proven successful in mapping LAI at local (i.e., site level) and regional 

levels (Solberg 2010; Korhonen et al. 2011). It offers a cost-effective balance between spatial 

coverage and resolution, making it a well-suited tool for nationwide LAI mapping.  

Using ALS data, LAI is typically estimated through statistical regression models (Lim et 

al. 2003; Riaño et al. 2004; Korhonen and Morsdorf 2014; Heiskanen et al. 2015). Empirical 

modelling is one of the most common approaches, where parameters are estimated using 

methods such as ordinary least squares, among other algorithms (Fang et al. 2019). ALS-

derived metrics used in these models can be categorised into three main types: height-based, 

density-based, and penetration indices (PIs), which are derived from different echo types or 

intensity values. While empirical models are straightforward to implement and often yield 

high accuracy, their applicability outside the calibration domain is often limited (Richardson 

et al. 2009). As an alternative, the semi-physical model estimates LAI by establishing 

relationships with ALS-derived PI alone, which is simpler and more general (Solberg et al. 

2009). Thus, the semi-physical model potentially has a better transferability, which is a 

desired merit when it comes to nationwide LAI mapping. 

Given the country-specific objectives of nationwide ALS campaigns, variations in sensor 

specifications and acquisition parameters are expected. Previous research has extensively 

examined the influence of flying altitude and speed, scanning angle (off nadir), pulse density, 

beam divergence, footprint size and pulse repetition frequency (Næsset et al. 2004; 

Hopkinson 2007; Næsset 2009; Ørka et al. 2010; Bater et al. 2011). Notably, Næsset (2002) 

found that these ALS parameters did not significantly affect forest attribute predictions in the 

area-based approach (ABA). However, for LAI prediction, one of the most critical ALS 

parameters is arguably the scan angle. Previous studies have shown that enlarging the scan 

angle reduces the probability of receiving ground echoes while increasing the likelihood of 

vegetation echoes (Disney et al. 2010; Montaghi 2013). As a result, models that rely on ALS 

PIs may be especially sensitive to variations in scan angle.   
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1.3 Research gaps  

 

Despite substantial technological and methodological advances in large-scale LAI 

estimation, notable gaps remain. While current optical LAI products are valuable for large-

scale applications, they often fall short in providing accurate LAI predictions at high spatial 

resolution. Meanwhile, national ALS campaigns represent an underutilised opportunity for 

LAI mapping, offering both high-resolution data quality and extensive geographical 

coverage. However, to realise this potential, robust models that are transferable across 

regions are needed, and their performance remain to be evaluated.  

A fundamental requirement for developing such large-scale ALS-based LAI models is 

the availability of reliable in situ LAI reference data. Yet, collecting in situ LAI data remains 

challenging, as it is not routinely measured by conventional FIs and requires specialised 

instruments as well as favourable weather conditions. Consequently, in situ LAI data remain 

scarce, especially across large areas.  

To address this challenge, citizen science has emerged as a promising approach. By 

involving the public in structured data collection efforts, citizen science programmes can 

significantly expand the spatial distribution of LAI reference datasets. This approach offers 

a practical solution to the current data shortage and can play a crucial role in supporting the 

development, calibration and validation of large-scale ALS-based LAI models. 

 

 

1.4 Objectives  

 

The primary objective of this thesis is to evaluate the feasibility of developing nationwide 

LAI models using multiple ALS datasets following both empirical and semi-physical 

modelling approaches. Specifically, the study investigates whether incorporating ‘novel’ 

polar ALS metrics can improve LAI estimation, assesses the performance of different LAI 

modelling approaches at both regional and nationwide scales, examines the effectiveness of 

calibrating nationwide models using local sample plots, and proposes a gamified framework 

for innovative in situ LAI data collection. This thesis comprises three sub-studies: 

• Study I examines the utility of ALS-derived polar metrics in empirical models. It 

assesses model accuracy by comparing different modelling approaches using a subset of 

the study areas at the regional level.  

• Study II extends the first study by introducing nationwide models involving all study 

areas. It discusses the advantages and limitations of empirical and semi-physical 

modelling approaches and assesses the effectiveness of calibrating nationwide LAI 

models using a limited sample of local plots.  

• Study III addresses the challenge of in situ LAI data collection that can be potentially 

used for validating nationwide models. It explores the potential of integrating citizen 

science and forest gamification as an innovative approach to collecting LAI data and 

assesses its feasibility using simulated data. 

Through these studies, this research aims to advance the development of ALS-based 

large-scale LAI estimation while addressing its key challenges, recommending modelling 

techniques, and proposing data collection strategies (Figure 1).  
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Figure 1. Thesis framework and interconnections of the sub-studies. Abbreviations: DHP 

(digital hemispherical photography), DCP (digital cover photography) and ALS (airborne 

laser scanning). 

 

 

2. MATERIALS AND METHODS 

 

 
2.1 Study sites  

 

A total of 253 field plots from nine study sites across Finland were included in this study 

(Figure 2). The main species consisted of Scots pine (Pinus sylvestris L.), Norway spruce 

(Picea abies (L.) Karst.) and birches (Betula spp L.). The plots were selected in a way that 

would cover a wide range of forest structures. The plot centres were recorded using a Trimble 

Geo 7 GNSS. Common forest inventory attributes, such as diameter at breast height (DBH), 

dominant tree height (Hdom) and basal area (BA), were measured at plot level (Table 1).  

 

 

2.2 Data acquisitions and processing 

 

Given the use of different data types and multiple datasets in the sub-studies, we provide 

Figure 3 for clarity. While each type of data followed specific processing methods, the 

datasets obtained from different sites were processed using the standardised procedure.  
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Figure 2. Locations of the study sites and their subordinate plots in Finland 

 

 

Table 1. Forest attributes of LAI plots across different study sites in Finland  

 

Study sites n 
Dominant height (m) Basal area (m2ha-1) 

min mean max sd min mean max sd 

Hyytiälä (2011) 73 2.2 16.8 34.3 7.0 0.5 22.9 51.3 10.7 

Suonenjoki (2014) 20 4.0 15.7 26.9 6.7 4.0 18.0 34.0 8.5 

Liperi (2016) 20 4.2 16.2 32.6 7.2 1.0 18.1 44.0 11.4 

Outokumpu (2021) 20 6.0 17.0 26.3 6.2 2.5 19.7 44.0 12.8 

Sotkamo (2021) 16 6.3 15.4 22.9 5.5 2.0 17.5 34.0 10.1 

Heinola (2022) 30 2.6 13.8 26.9 7.5 1.0 14.8 34.0 8.2 

Merikarvia (2022) 30 3.8 16.9 26.6 7.1 3.0 27.0 83.0 18.5 

Pello (2022) 27 1.7 12.5 19.3 4.8 2.0 19.9 50.0 9.8 

Joensuu (2023) 17 4.5 18.1 38.5 8.6 5.0 18.71 33.0 7.7 

 

Note: The names of individual study sites and their measurement years in brackets. 

Abbreviations: n (the number of plots); min (minimum); max (maximum) and sd (standard 

deviation). The mean values represent the basal area median trees of the dominant tree 

species.  
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Figure 3. Illustration of datasets used in the three sub-studies 

 

 

2.2.1 Digital hemispherical photographs 

 

Digital hemispherical photography (DHP) using two sets of digital camera equipment was 

employed to measure in situ LAI as reference data. A Nikon Coolpix 8800 camera equipped 

with an FC-E9 fisheye converter was used at the Hyytiälä, Suonenjoki, Liperi and Sotkamo 

sites, while a Canon EOS2000 camera with a Sigma 4.5 mm fisheye lens was used at the 

Outokumpu, Merikarvia, Heinola, Pello and Joensuu sites. The image acquisition schemes 

differed slightly across the sites. Twelve images per plot were captured at Hyytiälä, Joensuu, 

Liperi and Suonenjoki, while five images were taken at Heinola, Merikarvia, Outokumpu, 

Pello and Sotkamo sites (Figure 4). All measurements were taken under diffuse sky 

conditions, either under uniform overcast skies or soon after sunset. The cameras were 

mounted on a tripod at a height of approximately 1.3 m above ground level, pointed upwards 

and levelled using a two-axis bubble level. They were set to aperture priority with the aperture 

fixed at f/8. Focus was set to infinity for the Nikon camera and autofocus for the Canon 

camera. Auto exposure bracketing function was enabled, with the base exposure value (EV) 

set at -2 and a bracketing range of ± 1, producing a sequence of three images at EVs of -3, -

2 and -1. All DHPs were saved in raw image format, and the image with the optimal exposure 

was manually selected for further processing. 
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Figure 4. Measurement schemes of digital hemispherical photography (DHP) and digital 

cover photography (DCP) at plot level. DHP1 refers to twelve DHP measurement scheme at 

Hyytiälä, Joensuu, Liperi and Suonenjoki sites, and DHP2 refers to five DHP measurement 

scheme at Heinola, Merikarvia, Outokumpu, Pello and Sotkamo sites. Polar ALS means the 

reference spots where polar ALS metrics were computed. 

 

 

The acquired DHPs were later processed with the image processing software 

Hemispherical Project Manager which implements the LinearRatio method (Cescatti 2007). 

This method considers the camera’s linear response to light for a single camera operated 

below the canopy (Lang et al. 2010). The software first extracts the original blue pixels with 

the help of dcraw (version 9.28), using the following switches: -d (document mode, no colour 

and interpretation), -W (do not automatically brighten the image), - g 1 1 (linear 16-bit 

custom gamma curve). Camera-specific parameters were used to correct lens projection 

distortion, and the default value of 1.0 was used to minimise the effects of vignetting. By 

fitting unobscured sky pixel sampled from canopy gaps and interpolated pixel values nearby 

to a standard overcast sky radiance model (ISO/CIE), the above-canopy reference images 

were reconstructed (Lang et al. 2017). Finally, binarized DHPs were exported using 

automatic thresholds that yielded the same gap fraction as in the ratio images. Gap fraction 

was subsequently derived from the binarized DHPs using a ring-wise analysis, in which each 

image was divided into six concentric rings at 15° interval, following the same design of the 

widely used LAI-2200C plant canopy analyser (LI-COR Environmental 2025). The weight 

assigned to each ring was calculated using Eq. 5: 

𝑊𝑖 = sin 𝜃𝑖   ∑ sin 𝜃𝑖

𝑛

𝑗=1

⁄ (5) 
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where 𝜃𝑖 represents the mean zenith angle of the ring (7°, 23°, 38°, 53°, 68° and 83°), and 𝑊𝑖 

is the corresponding weight for ring 𝑖. Note that the weight for the sixth ring was reassigned 

to the fifth ring.  

Morphological operations were performed on the DHPs to extract between- and within- 

crown gaps (Korhonen and Heikkinen 2009). The operations were controlled by a parameter 

known as the structuring element size (SES), which was set to 8 for DHPs taken with the 

Nikon Camera and 10 for those from the Canon camera due to their difference in image 

resolution. The SES values were selected to best match manually estimated between-crown 

gaps at plot level. It was kept consistent across all five concentric rings, as the impact on the 

derived T(θ) was negligible. The resulting mask was assumed to effectively separate the 

binarized DHPs into large between-crown gaps and a continuous canopy layer containing 

small within-canopy gaps.  

Based on the T(θ) obtained at plot level, LAIe can be calculated using Eq. 3. Various 

methods of canopy clumping correction have been proposed in the literature, such as the LX 

(Lang and Xiang 1986), CC (Chen and Cihlar 1995), CLX (Leblanc et al. 2005) and LXG 

methods (Chianucci et al. 2019). A detailed review on the clumping correction methods can 

be found in (Fang 2021). Overall, all methods align with the physical meanings of the 

definition of canopy clumping Ω. We selected the CC method (Eq. 6), as it intuitively 

corresponds to morphological image analysis described above:  

Ω𝐶𝐶(𝜃) =  
ln[𝐹𝑚(0, 𝜃)]

ln[𝐹𝑚𝑟(0, 𝜃)]
 
[1 − 𝐹𝑚𝑟(0, 𝜃)]

[1 − 𝐹𝑚(0, 𝜃)]
(6) 

where 𝐹𝑚(0, 𝜃) represents the mean canopy gap fraction at each concentric ring measured at 

plot level. 𝐹𝑚𝑟(0, 𝜃) refers to the gap fraction when the canopy has a random foliage 

distribution, estimated by subtracting the mean between-crown gap fraction from the mean 

total gap fraction.  

The element clumping index ΩE, which quantifies the plot-level foliage clumping, was 

calculated as the mean of the directional Ω𝐶𝐶(𝜃) obtained from the five concentric rings, as 

defined in Eq. 7: 

Ω𝐸 =  
1

𝑛
∑ Ω𝐶𝐶 (𝜃𝑖)

𝑛

𝑖=1

 (7) 

For plots dominated by coniferous trees, an additional correction was made to account 

for clumping at the shoot level. The clumping-corrected LAI (LAIc) was then derived from 

using Eq. 8:  

𝐿𝐴𝐼𝑐 =
𝐿𝐴𝐼𝑒

Ω𝐸 × Ω𝑠

× 𝑃𝑐 +
𝐿𝐴𝐼𝑒

Ω𝐸

× (1 − 𝑃𝑐) (8) 

where Pc denotes the field-measured proportion of coniferous trees basal area, and Ω𝑠 is the 

ratio of shoot silhouette area to total needle area, which was assumed to be a fixed value of 

0.56 (Stenberg 1996; Stenberg et al. 2003). Throughout this thesis, the term LAI refers to 

both LAIe and LAIc, unless otherwise specified.   

 

2.2.2 Digital cover photographs  

 

Digital cover photographs (DCPs) were acquired alongside DHPs, with 30 images collected 

per plot (Figure 4), using an Olympus µ700 at Hyytiälä site or Canon SX200 IS at other sites. 

The cameras operated in aperture priority mode, with automatic exposure values decreased 
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by 1–2 stops. For plots with dense forest canopies, aperture and shutter speed settings were 

adjusted to prevent overexposure. The DCPs were then taken with the cameras pointed 

upwards and saved in JPEG format. 

The DCPs were processed using a custom MATLAB script to obtain gap fraction T(θ) 

estimates around zenith. The images were converted to binary format to distinguish between 

sky and background using the thresholding method proposed by Nobis and Hunziker (2005). 

The JPEG format was considered sufficient for this thresholding method, as it is relatively 

robust to compression artifacts. To maintain a near-vertical geometry, only the view angles 

0°–15° from the zenith were used in calculating T(θ).  

 

2.2.3 Airborne laser scanning data 

 

Discrete-return airborne laser scanning (ALS) data were acquired during leaf-on seasons of 

the same year as field measurements. Note that the Hyytiälä site was also scanned prior to 

(2011) and after (2013) the field measurements. Thus, the Hyytiälä plots were included in 

the nationwide modelling three times to better consider sensor effects. We assumed that the 

forest condition over the one-year period remained the same, as none of the plots appeared 

as an outlier in the models. Details of the sensor specifications and scanning parameters of 

the ALS campaigns were listed in Table 2.  

Although the ALS data came from different surveys, the data processing had the same 

procedure. First, all echoes were classified into four types: single, first of many, middle, and 

last of many, based on their echo number and the number of echoes per pulse. Ground echoes 

were classified using the Triangular Irregular Network (TIN) method and Digital terrain 

models (DTMs) were constructed from the ground echoes. Next, the echo heights above the 

ground were normalised by subtracting their DTM values from the recorded heights. As the 

scan angle effects were not within the scope of this study, we only kept echoes having the 

scan angles ≤ 15 degrees to minimise the sensor effects. Finally, ALS metrics were calculated 

at plot level using a radius of 20 m, following the area-based approach (ABA) (Næsset 2002; 

Bouvier et al. 2015).  

The main ALS metrics included in this study were height and density-based metrics, ALS 

polar metrics and various ALS penetration indices (PIs). Height (h*) and density (d*) 

percentiles were calculated at 5% increments (i.e., 5%, 10%, ..., 95%). The minimum, 

maximum, mean and standard deviation values were also calculated.  

Polar metrics were derived by converting the Cartesian coordinates (X, Y, Z) of all ALS 

echoes into polar coordinates defined by azimuth (φ) and zenith (θ) angles. The location spots 

for which polar metrics were computed followed the same layout as DHP image acquisition 

(Figure 4). To account for the broader area captured by DHP due to its wide field of view 

(FOV > 180°), an extended plot radius (40 m) was used for calculating polar metrics. After 

coordinate transformation, DHP-like images were constructed from ALS data by binning all 

ALS echoes into a systematic grid defined by polar angles (φ, θ) before being rasterized to 

an image of 480 × 480 pixels covering the full hemisphere (Figure 5A). We tested various 

image resolutions and selected this one as a balance of spatial detail and echo density per 

pixel. Initially, each pixel’s value reflected the number of echoes (n) it contained. The 

maximum echo count within the 0°–75° zenith range (nmax) was used to normalise fractional 

cover as n/(nmax/2), with values > 1 truncated to 1. The corresponding gap fraction was 

calculated as 1- n/(nmax/2). Hereafter this rasterization is referred to as greyscale polar image 

(Figure 5B). This greyscale image was then binarized to separate canopy (1) and gaps (0), 
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hereafter referred to as binarized polar image (Figure 5C). Finally, the binarized polar image 

underwent morphological operations using a SES of 7, similar to the processing method 

applied to the real DHPs (Figure 5D). Gap fractions were calculated following the same ring-

wise analysis at each location spot, and their means were used to obtain the plot-level ALS 

polar metrics. The terms binarized-gaps* and greyscale-gaps* refer to gap fractions at 1–5 

rings derived from the binarized and greyscale polar images respectively, and the term 

morphological-gaps* denotes between-crown gaps derived from using morphologically 

processed polar images. For instance, greyscale-gaps2 refers to the gap fraction of the second 

ring derived from the greyscale polar images. Collectively, these three terms are referred to 

as “polar ALS metrics”. The main motivation of computing this novel set of polar ALS 

metrics was the possibility of calculating between- and within- crown gap fractions in a 

similar manner as with real DHPs that are naturally displayed in polar angles. As a result, 

they were expected to improve the accuracy of LAI estimation.   

 

  

  
 

Figure 5. A) DHP-like image from polar transformed ALS data. B) Greyscale polar image 

coloured by fractional gaps. C) Binarized polar image. D) Between-crown canopy gaps 

extracted through morphological operations, with gaps displayed in black. 



 

 

Table 2. ALS sensor specifications for the leaf area index modelling study sites 

 

Sensor 
Properties 

Hyytiälä2010 Hyytiälä2011 Hyytiälä2012 Suonenjoki Liperi Outokumpu Sotkamo Heinola Merikarvia Pello Joensuu 

Models 
Leica 

ALS60 
Leica 

ALS60 
Leica 

ALS60 
Leica 

ALS70-HA 
Optech 
Titanb 

Riegl VQ-
1560 II 

Riegl 
VQ-1560 

II 

Riegl 
VQ-780i 

Riegl VQ-
780i  

Riegl 
VQ-
780II 

Leica 
ALS70-

HA 

Dates 19 Jul 2010 2 Aug 2011 5 Jul 2012 4 Sep 2014 
2–10 
Jul 

2016 
12 Jun 2020 

25 Jun – 
6 Jul, 
2021 

14 Jun 
2021 

6–9 Jun 
2021 

3-6 
Jul 

2021 

15–16 
Jun 2020 

Max scan 
angle, ° 

30 17 15 30 22 15 20 20 20 20 22 

Flying 
altitude AGLa 

(m) 
1180 760 2000 2000 900 2100 2100 1265 1265 1292 2561 

Strip overlap 
(%) 

60 55 45 20 55 40 33 40 21 24 31 

Pulse density 
(m-2) 

14.4 9.4 10.5 0.8 18.4 5.6 5.8 6.8 6.5 7.4 0.7 

Pulse 
repetition 
frequency 

(kHz) 

173 118 59 140 250 134 134 100 100 120 106 

Beam 
divergence 

(mrad) 
0.26 0.22 0.22 0.22 0.35 0.25 0.25 0.25 0.25 0.25 0.25 

Footprint 
diameter (cm) 

30 17 44 44 32 52 52 31 31 32 64 

a above ground level  
b Only the 1064 nm band was use



 

Various ALS PIs were used in this study, including the all-echo penetration index (API, 

Eq. 9), first-echo penetration index (FPI, Eq. 10), last-echo penetration index (LPI, Eq. 11) 

and Solberg’s penetration index (SPI, Eq. 12). Another echo-weighted penetration index 

(EWI, Eq. 13) based on echo numbers was also included. We intentionally omitted intensity-

based ALS PIs (Hopkinson and Chasmer 2009; Armston et al. 2013), because intensities can 

be substantially different for different sensors, and normalizing them between the areas was 

beyond our scope. 

𝐴𝑃𝐼 =  1 −
∑ 𝐴𝑙𝑙𝑣

 ∑ 𝐴𝑙𝑙
(9) 

𝐹𝑃𝐼 =  1 −
∑ 𝑆𝑖𝑛𝑔𝑙𝑒𝑣+ ∑ 𝐹𝑖𝑟𝑠𝑡𝑣

∑ 𝑆𝑖𝑛𝑔𝑙𝑒+ ∑ 𝐹𝑖𝑟𝑠𝑡
(10) 

𝐿𝑃𝐼 =  1 −
∑ 𝑆𝑖𝑛𝑔𝑙𝑒𝑣+ ∑ 𝐿𝑎𝑠𝑡𝑣

∑ 𝑆𝑖𝑛𝑔𝑙𝑒+ ∑ 𝐿𝑎𝑠𝑡
(11) 

𝑆𝑃𝐼 = 1 −
∑ 𝑆𝑖𝑛𝑔𝑙𝑒𝑣+ 0.5 ∗ (∑ 𝐹𝑖𝑟𝑠𝑡𝑣 + ∑ 𝐿𝑎𝑠𝑡𝑣)

∑ 𝑆𝑖𝑛𝑔𝑙𝑒 +0.5 ∗ (∑ 𝐹𝑖𝑟𝑠𝑡+ ∑ 𝐿𝑎𝑠𝑡)
(12) 

𝐸𝑊𝐼 =  1 −
𝑁𝑣

𝑁𝑣 + 𝑁𝑔

 (13) 

where All, Single, First and Last denote echo types and their subscripts denote that the echo 

hits vegetation (v) or ground (g). For EWI, a weight was added to each echo as (
1

𝑖
) and 𝑖 was 

the number of echoes of the given pulse. Hence, 𝑁𝑣 = 𝑣1 +
1

2
𝑣2 +

1

3
𝑣3 + ⋯ +

1

𝑛
𝑣𝑛 and 𝑁𝑔 =

𝑔1 +
1

2
𝑔2 +

1

3
𝑔3 + ⋯ +

1

𝑛
𝑔𝑛.  

 

 

2.3 Model construction and validation 

 

2.3.1 Direct comparison 

 

We directly compared ALS-based PIs with DCP-derived gap fraction at near-vertical angles 

of 0°–15° without modelling. We evaluated how well the ALS PIs can represent near-vertical 

gap fraction based on RMSE (Eq. 14) and bias (Eq. 15).   

𝑅𝑀𝑆𝐸 = √   
1

𝑛
∑(𝑦𝑖 − �̂�𝑖)

2

𝑛

𝑖=1

(14) 

𝐵𝑖𝑎𝑠 = ∑
(𝑦𝑖 − �̂�𝑖)

𝑛

𝑛

𝑖=1

(15) 

 

2.3.2 Empirical modelling approach 

 

We constructed empirical LAI models using ordinary least squares. We decided to use 

empirical models with two ALS-based predictors to make the models as general as they 

possibly can. The predictors were selected using an exhaustive search of all different variable 

combinations. We also verified that the selected predictors of the models were statistically 

significant.  
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2.3.3 Semi-physical modelling approach  

 

The semi-physical LAI model shape (Eq. 16), which requires only one model input T, is 

simpler and more general.  

𝐿𝐴𝐼 = −𝛽 ∗ ln (𝑇) (16) 

where β is the coefficient to be estimated and T denotes the ALS PI through the canopy. The 

value of β is influenced by the foliage angle distribution and the technical properties of the 

ALS sensors. If T accurately represents the near-vertical gap fraction (i.e., is unbiased), β can 

serve as an estimate of the foliage angle distribution of the canopy. If T is biased, the model 

remains functional by re-estimating the value through regression analysis using field-

measured LAI. In cases where ALS-derived T is unbiased, the model can be applied across 

forest types assuming β values are similar. Thus, the semi-physical model has a great 

potential for model transferability, which is a desired merit when it comes to large-scale LAI 

mapping. 

 

2.3.4 Model validation  

 

All models were validated using leaving-one-out cross-validation (LOOCV). Specifically, 

the nationwide models were cross validated by leaving each study site out at a time. The 

regional models were validated by leaving one plot out at a time. All ALS-based LAI models 

were cross validated and compared by their relative root mean square error (RMSE%, Eq. 

17) and their relative mean absolute error (MAE%, Eq. 18). 

𝑅𝑀𝑆𝐸% =
100% × 𝑅𝑀𝑆𝐸

�̅�𝑖

(17)  

𝑀𝐴𝐸% = 100% ×   
∑ |𝑦𝑖 − �̂�𝑖|

𝑛
𝑖=1

𝑛
�̅�𝑖⁄  (18) 

 

 

2.4 Nationwide model calibration using local samples 

 

In Paper II, we tested to what extent local calibration of the nationwide models would 

improve the accuracy of estimation. The local calibration was performed by using mixed-

effects models. The same predictors used in the basic nationwide models were used as fixed 

effects, and the study site was included as the random effect (i.e. grouping variable). In sites 

with multiple ALS acquisitions (Hyytiälä), each scan was considered as a separate site. 

Specifically, the calibration started by 1) sequencing one study site as calibration dataset and 

the remaining ten sites as training data; 2) building linear mixed-effects models with the 

training dataset; 3) randomly selecting 20% of the calibration dataset to estimate the random 

effect with the best linear unbiased predictor (BLUP) estimator; 4) predicting LAIe and LAIc 

with fixed and random effects. Local calibration was iterated 1000 times and the mean 

RMSE% was reported for each study site. The BLUP estimator of random effect was 

calculated as Eq. 19: 

�̃� = 𝐷𝑍′
𝑘(𝑍𝑘𝐷𝑍′

𝑘  +  𝑅𝑘)−1(𝑦𝑘  −  𝑋𝑘𝛽) (19) 

where 𝐷 is the variance-covariance matrix of random effects, 𝑅 is the variance-covariance 

matrix of residuals, 𝑍 and 𝑋 contain the same ALS metrics, and 𝑦 information of the field 
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metrics of the randomly sampled calibration plots, 𝛽 is the fixed effects of the fitted model 

(Mehtätalo and Lappi 2020). In our case, the residual variance-covariance matrix was 

approximated by the residual variance.  

 

 

2.5 Simulating directional photography for gamified LAI data collection 

 

While we attempted to build nationwide LAI models using ALS data, validating these large-

scale models with local in situ LAI measurements remains essential. In Paper III, we explored 

the potential of using citizen science (CS) and forest gamification (FG) for LAIe data 

collection through a simulation study. The question under investigation was simplified to 

determine how many locations within a plot should be used for taking directional 

photographs, and how many images should be taken at each location. 

The simulation was based on sub-sampling the DHP datasets from the Suonenjoki, 

Hyytiälä2011 and Liperi sites. Thus, there were twelve potential locations where directional 

photographs could be simulated. Different simulation scenarios were designed, each varying 

in the number of images to be taken at different locations. 

The simulation began by randomly selecting the centre coordinates (φ, θ) of the simulated 

directional photographs. The azimuth angle (φ) was randomly drawn from 0° to 360°, 

reflecting the flexibility of citizen scientists to capture canopy images from any direction in 

a forest gamification setting. The zenith angle (θ) was fixed at 57°, as calculating LAIe at this 

angle does not need to consider the full hemisphere. To emulate the field of view of modern 

smartphone cameras, which generally have a horizontal viewing angle of approximately 60° 

and a vertical viewing angle of approximately 50°, the simulated image extent was adjusted 

accordingly: horizontally from φ ± 30° and vertically within to ± 7.5° of the hinge angle (i.e., 

49.5° to 64.5°). This angle-defined bounding box was applied to real DHPs collected in the 

field to extract gap fractions, which were subsequently used to calculate the LAIe (Figure 6).  

 

 

 
 
Figure 6. Illustration of a hemispherical photograph with the dash line representing the 
hinge angle (θ = 57°). The bounding box covering a 60° azimuth range and ± 7.5° around 
the hinge angle was used to simulate smartphone directional photograph. 
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Assuming the gap fraction extracted from the bounding box could represent the gap 

fraction at the full hinge angle, the LAIe at the hinge angle (LAIHA) was calculated for each 

simulation using Eq. 4. At each plot, this simulation was repeated 100 times. The 

performance of each simulation scenario was evaluated based on the mean RMSE% 

(𝑅𝑀𝑆𝐸%̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅, Eq. 20) and mean standard deviation (𝑆𝐷̅̅ ̅̅ , Eq. 21).  

𝑅𝑀𝑆𝐸%̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ =
∑ 𝑅𝑀𝑆𝐸𝑚

𝑖=1 %

𝑚
(20) 

𝑆𝐷̅̅ ̅̅ =
∑ √∑ (𝐿𝐴𝐼𝐻𝐴 − 𝐿𝐴𝐼𝐻𝐴

̅̅ ̅̅ ̅̅ ̅̅ )2𝑛
𝑖=1

𝑛
 𝑚

𝑖=1

𝑚
(21)

 

where LAIHA was derived from the simulated images using the truncated gap fraction in each 

simulation, 𝐿𝐴𝐼𝐻𝐴
̅̅ ̅̅ ̅̅ ̅̅  was the mean of LAIHA, m was the total number of plots (127), and n was 

the number of simulations per scenario (100). 

 

 

3. RESULTS AND DISCUSSION 

 

 

3.1 DCP-measured vs. ALS-derived near vertical gap fraction (sub-studies I and II) 

 

We directly compared gap fraction obtained from DCPs and ALS PIs at near-vertical angles 

(0°–15°). In Paper I, the comparison was done using data from three study sites, including 

Heinola, Hyytiälä2011 and Outokumpu, while all study sites were included in Paper II. The 

combined results are shown in Table 3.  

Overall, all ALS PIs were able to represent DCP-measured near-vertical gap fraction with 

varying performance. The FPI underestimated gap fraction with a positive (0.13) across sites. 

Conversely, the LPI overestimated gap fraction with a negative mean bias (-0.22). Both SPI 

and EWI had considerably smaller biases but were inconsistent across sites, with SPI (mean 

bias: -0.04) in general overestimating gap fraction and EWI (mean bias: 0.05) 

underestimating gap fraction. The API had the smallest mean bias (0.01) among all ALS PIs 

and was relatively stable across sites (ranging from -0.06 to 0.07).  

The purpose of this direct comparison was to identify the most suitable ALS PI for the 

semi-physical model, which is only valid when the input T is strongly correlated with field-

measured near-vertical gap fraction. Although ALS (top-down) and DCP (bottom-up) have 

inherently different viewing directions, both measurement devices capture comparable gap 

fractions since ALS beams travel similarly to light. To ensure the accuracy of the comparison, 

we only included ALS echoes with scan angles ≤ 15° to match the view angles of ALS and 

DCP. 
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Table 3. Direct comparison of DCP-measured near-vertical gap fraction with ALS PIs 

 

Sites 
API SPI FPI LPI EWI 

RMSE Bias RMSE Bias RMSE Bias RMSE Bias RMSE Bias 

Heinola 0.10 -0.03 0.19 -0.13 0.10 0.04 0.35 -0.30 0.10 -0.01 

Hyytiälä2010 0.11 -0.06 0.11 -0.06 0.09 0.05 0.20 -0.17 0.20 0.12 

Hyytiälä2011 0.11 -0.05 0.10 -0.05 0.09 0.05 0.19 -0.15 0.08 -0.01 

Hyytiälä2012 0.13 -0.05 0.12 -0.05 0.11 0.05 0.21 -0.15 0.10 -0.01 

Joensuu 0.13 0.02 0.12 -0.01 0.23 0.22 0.30 -0.24 0.14 0.10 

Liperi 0.09 0.06 0.05 -0.01 0.15 0.14 0.17 -0.16 0.11 0.10 

Merikarvia 0.10 0.03 0.11 -0.05 0.16 0.14 0.29 -0.25 0.11 0.08 

Outokumpu 0.05 -0.02 0.08 -0.07 0.12 0.10 0.26 -0.25 0.46 -0.16 

Pello 0.11 0.07 0.07 -0.03 0.17 0.16 0.25 -0.21 0.12 0.11 

Sotkamo 0.07 0.05 0.04 -0.02 0.15 0.14 0.20 -0.18 0.10 0.09 

Suonenjoki 0.13 0.07 0.12 0.01 0.37 0.35 0.38 -0.33 0.20 0.18 

Mean 0.10 0.01 0.10 -0.04 0.16 0.13 0.25 -0.22 0.16 0.05 

 

 

Our findings aligned with previous research. Studies have also found that the FPI is not 

sensitive to detect small within-crown gaps due to the relatively larger size of ALS footprints, 

which leads to underestimated gap fractions (Lovell et al. 2003; Morsdorf et al. 2006). 

Conversely, the LPI tends to overestimate gap fractions (Korhonen et al. 2011). While the 

SPI and EWI can represent near-vertical gap fractions with some biases, the API is robust 

across sites and thus is suitable for large-scale estimation. Therefore, among all the ALS PIs, 

the API may best serve as a proxy of gap fraction and is a suitable input for the semi-physical 

model.  

 

 

3.2 Utility of polar metrics (Sub-study I) 

 

We first tested the utility of polar metrics in training empirical LAIc and ΩE models using 

data from the Hyytiälä2011 site. Results showed that using polar metrics alone as predictors 

achieved good accuracy, with RMSE% values of 24.9% and 9.0% for LAIc and ΩE 

respectively. Incorporating polar metrics with other types of ALS metrics resulted in higher 

accuracy (20.6% for LAIc and 4.3% for ΩE), while excluding polar metrics from the 

predictors yielded similar RMSE% values of 21.8% and 4.1% respectively. The test results 

therefore suggested that polar metrics may store canopy information that is not captured by 

commonly used ALS metrics (e.g., height- and density-based metrics), which may enhance 

LAIc and ΩE estimations.  

Next, we extended the assessment of polar metrics in estimating LAIe, LAIc and ΩE in 

three study sites, including Heinola, Hyytiälä2011 and Outokumpu (Paper I). The results 

showed that polar metrics were frequently selected as predictors in regional models following 

the empirical modelling approach (Table 4). Notably, combining polar metrics with ALS PIs 

obtained reliable ΩE estimation (RMSE%: 4.2%–8.5%). This provided new insights into 

generating high-resolution ΩE maps using ALS data.  
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Table 4. Selected ALS metrics in the empirical models 

 

Sites Variables Predictors RMSE% 

Heinola LAIe log(API) 17.2% 

greyscale-gaps5, log(API) 16.4% 

h5, log(FPI), log(API) 15.6% 

sqrt(LAIc)a log(FPI), log(API) 19.7% 

ΩE FPI, greyscale-gaps5 7.1% 

Hyytiälä2011 LAIe log(API) 16.9% 

log(LPI), morphological-gaps5 14.2% 

d60, morphological-gaps4, 

log(LPI) 

13.0% 

log(LAIc) b LPI, morphological-gaps5 18.9% 

ΩE FPI, morphological-gaps5 4.2% 

Outokumpu LAIe log(API) 9.4% 

d95, log(API) 9.4% 

h10, d95, log(API) 8.8% 

LAIc SPI, log(API) 18.7% 

ΩE FPI, binarized-gaps5 8.5% 

 a square root transformation and b log transformation was applied to the variables.  

 

 

Unlike the angle-based polar grid suggested by Vaughn et al (2013), we calculated polar 

metrics from pixel-based raster images. We computed a 2D planar systematic grid, allowing 

the derived DHP-like polar images to undergo the same morphological operations as real 

DHPs. The resolution of the image was optimised by maintaining the spatial details and 

having enough ALS echoes pixelwise.  

In addition to satisfactory accuracy, polar metrics may offer other benefits. Each polar 

image corresponds to a specific sample spot at plot level, accounting for the local canopy 

variation. In contrast, common ALS metrics only describe a fixed area. Furthermore, 

integrating polar metrics with other ALS metrics may help mitigate LAI saturation effect 

(Luo et al. 2018). More discussion of ALS polar metrics can be found in Paper I.  

 

 

3.3 Regional LAI models (Sub-studies I and II) 

 

Building on the regional LAI models from the three study sites examined in Paper I, we 

incorporated six additional study sites across Finland in Paper II to construct nationwide 

models. Although polar metrics proved to be useful, we did not include them this time as we 

wanted to make the LAI models as general as possible with common ALS metrics. For the 

semi-physical model, we used API as the input T in the semi-physical model as it 

demonstrated more stability across sites.  

The results showed that the empirical and semi-physical LAIe models achieved 

comparable accuracy at regional level (Table 5). The smallest RMSE% was observed at 

Outokumpu site (empirical: 9.4%; semi-physical: 9.0%) while the lowest accuracy was 

observed at Suonenjoki sites (empirical: 21.8%; semi-physical: 24.6%). While semi-physical 
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LAIe models showed slightly better accuracy at the Heinola and Outokumpu sites, empirical 

LAIe models considerably outperformed at the Hyytiälä, Joensuu, Liperi, Pello, Sotkamo and 

Suonenjoki sites. In Merikarvia, no difference was found between the two modelling 

approaches.  

For empirical LAIe models, the commonly selected predictors consisted of various ALS 

PIs and their logarithmic transformations as well as height- and density- based metrics at 

upper or lower thresholds (e.g., h95, d5). For semi-physical LAIe models, the β parameter 

ranged from 2.09 (Liperi) to 2.63 (Outokumpu), with a mean of 2.25.  

 

 

Table 5. Regional empirical and semi-physical LAIe models and their accuracies 

 

Regions Regional models RMSE% MAE% 

Heinola 

𝐿𝐴𝐼𝑒 = −0.132 − 2.647 × ln(𝐴𝑃𝐼) + 0.278 × ln (𝐹𝑃𝐼) 17.6% 12.6% 

𝐿𝐴𝐼𝑒 = −2.13 × ln (𝐴𝑃𝐼) 16.9% 12.4% 

Difference: 0.7% 0.2% 

Hyytiälä2010 

𝐿𝐴𝐼𝑒 = 15.215 + 14.923 × 𝑚𝑖𝑛 − 5.142 × API 15.6% 12.0% 

𝐿𝐴𝐼𝑒 = −2.15 × ln (𝐴𝑃𝐼) 17.6% 13.4% 

Difference: -2.0% -1.4% 

Hyytiälä2011 

𝐿𝐴𝐼𝑒 = 4.943 − 0.037 × 𝑑20 − 5.072 × 𝐿𝑃𝐼 13.3% 10.6% 

𝐿𝐴𝐼𝑒 = −2.12 × ln (𝐴𝑃𝐼) 16.2% 12.5% 

Difference: -2.9% -1.9% 

Hyytiälä2012 

𝐿𝐴𝐼𝑒 = −0.261 + 0.055 × ℎ95 − 0.991 × ln (𝐹𝑃𝐼) 14.8% 12.1% 

𝐿𝐴𝐼𝑒 = −2.12 × ln (𝐴𝑃𝐼) 18.0% 13.8% 

Difference: -3.2% -1.7% 

Joensuu 

𝐿𝐴𝐼𝑒 = −0.214 + 0.119 × ℎ05 − 2.111 × ln (𝑆𝑃𝐼) 19.6% 15.8% 

𝐿𝐴𝐼𝑒 = −2.51 × ln (𝐴𝑃𝐼) 24.2% 20.0% 

Difference: -4.6% -4.2% 

Liperi 

𝐿𝐴𝐼𝑒 = −0.111 + 0.061 × ℎ05 − 1.854 × ln (𝐴𝑃𝐼) 11.3% 8.5% 

𝐿𝐴𝐼𝑒 = −2.09 × ln (𝐴𝑃𝐼) 13.7% 10.7% 

Difference: -2.4% -2.2% 

Merikarvia 

𝐿𝐴𝐼𝑒 = 0.402 − 0.061 × 𝑑05 − 2.667 × ln (𝑆𝑃𝐼) 20.5% 15.3% 

𝐿𝐴𝐼𝑒 = −2.42 × ln (𝐴𝑃𝐼) 20.5% 15.5% 

Difference: 0% -0.2% 

Outokumpu 

𝐿𝐴𝐼𝑒 = −2.644 + 0.029 × 𝑑95 − 2.659 × ln (𝐴𝑃𝐼) 9.4% 7.9% 

𝐿𝐴𝐼𝑒 = −2.63 × ln (𝐴𝑃𝐼) 9.0% 7.3% 

Difference: 0.4% 0.6% 

Pello 

𝐿𝐴𝐼𝑒 = 1.871 − 1.971 × 𝐸𝑊𝐼 − 0.604 × ln (𝐹𝑃𝐼) 10.5% 8.4% 

𝐿𝐴𝐼𝑒 = −2.25 × ln (𝐴𝑃𝐼) 14.5% 12.3% 

Difference: -4.0% -3.9% 

Sotkamo 

𝐿𝐴𝐼𝑒 = −0.379 − 7.062 × ln(𝐴𝑃𝐼) + 3.796 × ln (𝐸𝑊𝐼) 14.2% 13.3% 

𝐿𝐴𝐼𝑒 = −2.14 × ln (𝐴𝑃𝐼) 19.0% 15.9% 

Difference: -4.8% -2.6% 

Suonenjoki 

𝐿𝐴𝐼𝑒 = −2.571 + 1.302 × 𝑚𝑖𝑛 − 2.136 × ln (𝐸𝑊𝐼) 21.8% 16.8% 

𝐿𝐴𝐼𝑒 = −2.19 × ln (𝐴𝑃𝐼) 24.6% 19.5% 

Difference: -2.8% -2.7% 
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Although the LAIc model accuracies were slightly lower compared to the regional LAIe 

model, the regional LAIc models overall yielded satisfactory results (Table 6). Empirical 

LAIc models had RMSE% values ranging from 15.5% (Liperi) to 27.1% (Suonenjoki) while 

semi-physical models had RMSE% values ranging 23.6% (Merikarvia) to 32.1% (Sotkamo). 

The empirical models consistently outperformed their semi-physical counterparts across all 

sites, with varying accuracy differences. The largest accuracy difference was observed at the 

Liperi site, where the empirical model outperformed the semi-physical model by 14.1%; 

while only a minor gain of 2.2% was obtained at the Suonenjoki site. The selected LAIc 

model predictors also included various ALS PIs and their logarithmic transformations as well 

as height- and density- based metrics at upper or lower thresholds (e.g., d95, min). For semi-

physical LAIe models, the β parameter ranged from 3.94 (Hyytiälä2012) to 5.01 (Outokumpu), 

with the mean of 4.24.  

Various ALS-based predictors were used in different regional empirical LAI models and 

the value of the β parameter also varied in regional semi-physical LAI models. This likely 

originated from different ALS acquisition settings, highlighting the specific sensor effects on 

both modelling approaches. On one hand, the empirical modelling approach in general 

yielded higher accuracy. On the other hand, the semi-physical modelling approach is simple 

and robust. It requires only one model input and yielded a comparable accuracy.  

 

 

3.4 Nationwide LAI models (Sub-study II) 

 

We attempted to build nationwide LAI models using plots from all study sites to reach 

nationwide representation. In a leave-one-site out cross validation, the nationwide LAI 

models following both the empirical and semi-physical modelling approaches overall 

achieved comparable accuracies (Table 7).  

The empirical approach outperformed the semi-physical approach in predicting both LAIe 

(RMSE% by 6.4%) and LAIc (RMSE% by 9.3%). Both modelling approaches employed the 

API and its logarithmic transformation as model predictors, indicating the importance of this 

ALS PI in predicting LAI.  

For the semi-physical LAI models, the β values were 2.19 for LAIe and 4.11 for LAIc, 

which was similar to the regional means of 2.25 (LAIe) and 4.24 (LAIc). The β values in the 

API-coupled semi-physical LAI model are influenced by both canopy foliage distribution 

and ALS sensor properties. So far, no study has investigated the value range for LAIc. For 

LAIe, Solberg et al (2009) suggested that in theory the value is expected to take 2 if the foliage 

distribution is spherical and the API is unbiased against gap fraction. In our case, the β value 

for LAIe proved to be relatively stable. This suggests that although forest conditions and 

canopy structures vary among different regions across Finland, the foliage angle distribution 

is relatively consistent in boreal forests. The estimated β value of 2.2 in our nationwide model 

suggests that API generally overestimates vertical gap fraction. It also indicates an 

erectophile foliage angle distribution with lower contact frequency in zenith direction than in 

horizontal direction, which is often the case in boreal forests where trees have long and 

narrow crowns.  
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Table 6. Regional empirical and semi-physical LAIc models and their accuracies 

 

Regions Regional models RMSE% MAE% 

Heinola 

𝐿𝐴𝐼𝑐 = 0.472 − 8.149 × ln (𝐸𝑊𝐼) + 3.771 × ln (𝐹𝑃𝐼) 23.8% 17.4% 

𝐿𝐴𝐼𝑐 = −4.07 × ln (𝐴𝑃𝐼) 30.2% 22.2% 

Difference: -6.4% -4.8% 

Hyytiälä2010 

𝐿𝐴𝐼𝑐 = 50.918 + 44.476 × 𝑚𝑖𝑛 − 6.876 × 𝐴𝑃𝐼 19.6% 15.8% 

𝐿𝐴𝐼𝑐 = −4.01 × ln (𝐴𝑃𝐼) 27.1% 21.5% 

Difference: -7.5% -5.7% 

Hyytiälä2011 

𝐿𝐴𝐼𝑐 = 5.366 + 0.067 × 𝑚𝑎𝑥 − 5.167 × 𝐿𝑃𝐼 20.0% 15.5% 

𝐿𝐴𝐼𝑐 = −4.00 × ln (𝐴𝑃𝐼) 26.7% 20.3% 

Difference: -6.7% -4.8% 

Hyytiälä2012 

𝐿𝐴𝐼𝑐 = 3.452 + 0.112 × ℎ95 − 4.195 × 𝐹𝑃𝐼 20.2% 16.0% 

𝐿𝐴𝐼𝑐 = −3.94 × ln (𝐴𝑃𝐼) 28.6% 21.8% 

Difference: -8.4% -5.8% 

Joensuu 

𝐿𝐴𝐼𝑐 = 77.647 − 0.781 × 𝑑95 − 2.702 × ln (𝑆𝑃𝐼) 20.7% 15.5% 

𝐿𝐴𝐼𝑐 = −4.41 × ln (𝐴𝑃𝐼) 27.7% 22.0% 

Difference: -7.0% -6.5% 

Liperi 

𝐿𝐴𝐼𝑐 = 25.527 − 0.279 × 𝑑60 − 6.924 × 𝐿𝑃𝐼 15.5% 12.0% 

𝐿𝐴𝐼𝑐 = −3.97 × ln (𝐴𝑃𝐼) 29.6% 23.8% 

Difference: -14.1% -11.8% 

Merikarvia 

𝐿𝐴𝐼𝑐 = 5.356 − 4.936 × 𝐴𝑃𝐼 − 0.757 × ln (𝐹𝑃𝐼) 17.4% 12.8% 

𝐿𝐴𝐼𝑐 = −4.50 × ln (𝐴𝑃𝐼) 23.6% 18.8% 

Difference: -6.2% -6.0% 

Outokumpu 

𝐿𝐴𝐼𝑐 = 0.815 − 9.970 × ln(𝐴𝑃𝐼) + 6.314 × ln (𝑆𝑃𝐼) 18.7% 14.3% 

𝐿𝐴𝐼𝑐 = −5.01 × ln (𝐴𝑃𝐼) 25.7% 22.4% 

Difference: -7.0% -8.1% 

Pello 

𝐿𝐴𝐼𝑐 = 7.165 + 12.027 × 𝐹𝑃𝐼 − 18.585 × ln (𝐸𝑊𝐼) 19.7% 16.8% 

𝐿𝐴𝐼𝑐 = −4.46 × ln (𝐴𝑃𝐼) 26.0% 21.8% 

Difference: -6.3% -5.0% 

Sotkamo 

𝐿𝐴𝐼𝑐 = 43.089 − 42.723 × 𝐿𝑃𝐼 + 24.118 × ln (𝐿𝑃𝐼) 23.9% 19.7% 

𝐿𝐴𝐼𝑐 = −4.50 × ln (𝐴𝑃𝐼) 32.1% 20.3% 

Difference: -8.2% -0.6% 

Suonenjoki 

𝐿𝐴𝐼𝑐 = −7.718 + 4.895 × 𝑚𝑖𝑛 − 4.989 × ln (𝐴𝑃𝐼) 27.1% 21.1% 

𝐿𝐴𝐼𝑐 = −4.19 × ln (𝐴𝑃𝐼) 29.3% 23.9% 

Difference: -2.2% -2.8% 

 

 

Table 7. Nationwide empirical and semi-physical LAI models and their accuracies 

 

Variables Approaches Nationwide models RMSE% MAE% 

LAIe Empirical 𝐿𝐴𝐼𝑒 = 0.9052 − 1.1158 × 𝐹𝑃𝐼 − 1.6086 × ln(𝐴𝑃𝐼) 23.8% 17.4% 

Semi-physical 𝐿𝐴𝐼𝑒 = −2.19 × ln (𝐴𝑃𝐼)  30.2% 22.2% 

 Difference: -6.4% -4.8% 

LAIc Empirical 𝐿𝐴𝐼𝑐 = 6.0342 + 0.0450 × ℎ95 − 6.2456 × 𝐴𝑃𝐼 18.9% 14.1% 

Semi-physical 𝐿𝐴𝐼𝑐 = −4.11 × ln (𝐴𝑃𝐼)  28.2% 21.3% 

 Difference: -9.3% -7.2% 
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3.5 Calibrating nationwide models with local plots (Sub-study II) 

 

In Paper II, we also tested how much the accuracy of nationwide LAI models would improve 

when calibrated using a small sample of local plots. In general, local calibration improved 

nationwide model performance, although the improvement was modest and not consistent 

across sites. 

Table 8 shows that the calibrated nationwide models had improved performance over the 

cross-validated nationwide models for both LAIe and LAIc. Following the empirical 

modelling approach, the calibrated nationwide models had slight improvements, with the 

decreased mean RMSE% by 0.6% for both LAIe and LAIc. The semi-physical LAIe model 

also showed a mean RMSE% improvement of 0.6% with local calibration, whereas no overall 

improvement was observed for the semi-physical LAIc model. Regional LAI models in 

general had the best accuracy when compared to the nationwide and calibrated nationwide 

models.  

 

 

Table 8. Comparison of nationwide, calibrated nationwide and regional LAI models 

 

Approaches Sites 
LAIe (RMSE%) LAIc (RMSE%) 

Nationwide Calibrated Regional Nationwide Calibrated Regional 

Empirical Heinola 17.2 17.2 17.6 25.9 25.8 23.8 

 Hyytiälä2010 16.4 16.4 15.6 19.4 19.4 19.6 

 Hyytiälä2011 15.1 15.1 13.3 20.0 20.1 20.0 

 Hyytiälä2012 17.1 17.1 14.8 20.9 20.9 20.2 

 Joensuu 23.0 22.3 19.6 22.9 22.7 20.7 

 Liperi 12.8 12.9 11.3 20.0 20.0 15.5 

 Merikarvia 23.3 22.4 20.5 22.6 22.4 17.4 

 Outokumpu 20.5 16.7 9.4 25.9 25.9 18.7 

 Pello 12.0 12.0 10.5 20.0 20.0 19.7 

 Sotkamo 17.5 16.7 14.2 26.9 22.6 23.9 

 Suonenjoki 28.9 28.3 21.8 29.1 29.2 27.1 

 Mean (sd) 18.5 (4.8) 17.9 (4.5) 15.3 (4.0) 23.1 (3.2) 22.6 (3.1) 20.6 (3.1) 

Semi-

physical 
Heinola 16.2 16.5 16.9 28.3 30.4 30.2 

 Hyytiälä2010 17.5 17.2 17.6 26.8 27.9 27.1 

 Hyytiälä2011 16.5 17.1 16.2 26.6 27.8 26.7 

 Hyytiälä2012 18.2 18.8 18.0 28.3 29.3 28.6 

 Joensuu 26.7 24.5 24.2 26.2 26.0 27.7 

 Liperi 13.7 15.2 13.7 27.2 30.3 29.6 

 Merikarvia 23.2 21.5 20.5 24.8 22.1 23.6 

 Outokumpu 21.2 14.4 9.0 31.9 23.9 25.7 

 Pello 14.2 14.2 14.5 26.2 24.5 26.0 

 Sotkamo 17.5 18.8 19.0 35.7 38.7 32.1 

 Suonenjoki 23.6 23.6 24.6 27.7 29.1 29.3 

 Mean (sd) 18.9 (4.0) 18.3 (3.4) 17.7 (4.3) 28.2 (2.9) 28.2 (4.2) 27.9 (2.3) 

 

Note: Nationwide: accuracies of nationwide models applied to respective regions using leave-

one-site-out cross-validation. Calibrated: accuracies of nationwide models calibrated at 
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respective regions with local sample plots. Regional: accuracies of regional models using 

leave-one-plot-out cross-validation. sd: standard deviation.  

 

 

Overall, calibration with local plots proved effective. While improvements were not 

consistent across all sites, calibration led to an average increase in accuracy compared to the 

cross-validated nationwide models. This suggests that the nationwide LAI models are robust 

enough to be applied directly to new regions. Using only 20% of local plots for calibration 

achieved comparable or slightly improved accuracy than the cross-validated nationwide 

models. However, the results of local calibration may vary depending on the selected sample 

plots. In sites like Sotkamo and Joensuu, as few as four plots were sufficient for calibrating 

the nationwide models. Given the time-consuming nature of in situ LAI data collection, this 

finding has important implications for optimising field data collection. Another approach to 

calibration is to incorporate additional predictors from external data sources or to use sample 

plots that represent the study site (Kotivuori et al. 2018).  

 

 

3.6 Gamified directional photography data for validating LAI nationwide models 

(Sub-study III) 

 

The fundamental basis for estimating LAIe used in Study III involves inferring the complete 

gap fraction at the hinge angle using a truncated gap fraction, as the projection 

function G(θ) remains constant at 0.5 at this angle. Our simulations showed that twenty 

directional canopy photographs at the hinge angle (Scenario 18) yielded LAIe estimates 

comparable to those derived from twelve DHPs at plot level, with an RMSE% of 10.2% 

(Figure 7). However, additional images may be required in forests with dense or 

heterogeneous canopy structures.  
Alternatively, taking four images at a single location with 90° azimuth intervals (Scenario 

4) produced adequate results (with reduced 𝑅𝑀𝑆𝐸%̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ by 4.3%). The optimal data collection 

scheme involves balancing the desired accuracy with the practical feasibility of image 

acquisition in the field.  

 

 

 
 

Figure 7. Non-linear relationship between the numbers of simulated images and both the 

RMSE%̅̅ ̅̅ ̅̅ ̅̅ ̅̅  and SD̅̅̅̅  across scenarios. Scenario IDs were shown, with red colour indicating those 

where images were simulated 90° azimuth intervals 
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Drawing on previous CS project experience, we observed that simply asking participants 

to follow scientific protocols without adequate engagement or clear guidance often led to 

suboptimal data quality. In response, we propose a gamified data collection framework where 

citizen scientists capture canopy photographs guided by an interactive on-screen element — 

such as a virtual bird appearing between forest canopies. Birds are natural forest inhabitants 

capable of moving freely across the hemisphere, making them an intuitive guide to help 

participants locate the hinge angle. In this framework, the simulated bird appears at specific 

azimuth (φ) and zenith (θ) angles, with azimuth 0° aligned to the magnetic north and zenith 

angle fixed at 57° off vertical to ensure the correct image orientation. Participants take a 

directional image each time they spot the bird in the canopy. After taking the initial image, 

three additional images are taken at the same location by following with the virtual bird’s 

movements at 90° azimuth intervals. To further improve accuracy, citizen scientists can be 

encouraged to take images from four additional locations within the plot boundaries and 

repeat the same process. However, this introduces a trade-off between improving the 

accuracy and the potential risk of the task becoming overly burdensome for the participants.  

 

 

4. CONCLUSIONS AND FUTURE PERSPECTIVES 

 

 
This thesis investigated the feasibility of various modelling approaches and multiple discrete-

return ALS datasets for large-area mapping of LAI at both regional and nationwide scales. It 

concluded that both empirical and semi-physical modelling approaches can achieve 

satisfactory accuracy. While empirical models yielded slightly higher accuracy, semi-

physical models offered greater robustness and transferability across varying conditions. 

Each modelling approach has distinct benefits and limitations, and the determination of 

appropriate modelling approach should be guided by the specific objectives of future 

projects.  

Despite these strengths, ALS-based LAI estimation faces several key challenges. First, 

LAI estimation using remotely sensed data remains constraint by the saturation effect. In the 

context of ALS, saturation refers to situations where ALS pulses are unable to sufficiently 

penetrate through the forest canopy, resulting in reduced ground echoes and consequently 

biased LAI estimates, especially in structurally complex forests. Additionally, it may be 

argued that there exists an inherent discrepancy between ALS and DHP. ALS, with its top-

down perspective, tends to capture more information on foliage, whereas DHP, with its 

bottom-up perspective, is more sensitive to other canopy elements such as branches and 

trunks.  

As an attempt to address these challenges, this thesis introduced novel polar ALS metrics, 

based on the suggestion that incorporating various types of ALS metrics could mitigate the 

saturation effect. This improvement may be attributed to the increased information derived 

from different types of ALS metrics. With empirical models, the incorporation of polar ALS 

metrics notably improved model performance, particularly in the estimation of ΩE. Following 

the semi-physical modelling approach, the ALS penetration index API was the least biased 

against vertical gap fraction, making it a reliable input for semi-physical models. Both ALS- 

and DHP- derived LAI estimates were obtained through gap fraction analysis, albeit over 

different angular ranges (i.e., near-vertical for ALS and hemispherical for DHP). Since gap 
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fraction is independent of specific canopy elements, this helps address the measurement 

mismatch that stems from their different viewing geometries.  

Looking forward, a key recommendation of this thesis is the simultaneous modelling of 

LAIe, LAIc and ΩE. Each of these parameters describe distinct biophysical functions of the 

canopy and has specific applications in forest ecosystem modelling. While empirical models 

allow the simultaneous estimation of all three parameters, the semi-physical approach is 

limited to LAIe and LAIc. This gives empirical models a practical advantage in applications 

where a comprehensive suite of canopy parameters is required.  

The modelling approaches examined in this thesis showcased the feasibility of mapping 

LAI at nationwide level. However, these maps are inherently static, as they are based on data 

collected during a single acquisition period, typically corresponding to peak growing season. 

Consequently, they are unable to capture temporal dynamics or provide temporarily 

continuous LAI estimates. Although the National Land Survey of Finland acquires ALS data 

on a six-year cycle, this frequency is insufficient to support multi-temporal LAI estimation. 

The integration of satellite-based remote sensing data, such as from the Sentinel-2 mission, 

may provide a viable solution for achieving time-series LAI estimation and near-real-time 

updates.  

Calibrating nationwide models using a small sample of local plots generally resulted in 

improved model accuracy. Although the improvement was modest, it indicated that the 

models are robust and relatively transferable across different regions. In practical terms, 

calibration with as few as four field plots can improve model performance. This would 

significantly reduce the labour and costs associated with extensive field data collection.  

A final and important consideration concerns the validation of large-area LAI products. 

While satellite-based LAI products could have been used for intercomparison, doing so 

would treat other remotely sensed datasets as ground truth and consequently ignore the 

uncertainties inherent in those products. Field-based validation remains the most reliable 

method. Therefore, this thesis strongly advocates the use of in situ LAI measurements as the 

primary means of validating LAI products derived from remote sensing data. To address the 

limited availability of in situ reference data, a novel gamified framework was proposed to 

engage citizen scientists in LAI data collection. Data gathered through this framework could 

be instrumental in validating the nationwide LAI models as well as other LAI products. A 

key future step involves the development of a mobile application to operationalise the 

proposed gamified approach. This application will engage users in structured and game-like 

tasks as they collect directional photographic data for LAI estimation. Future work should 

focus on testing the application in real-world conditions to evaluate both the quality of the 

collected data and its suitability for validating large-scale ALS-based models.  
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