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ABSTRACT 
 

This dissertation evaluates the applicability of airborne laser scanning (ALS)-based forest 

attribute interpretation, mobile-based machine vision methods and operational harvester data 

for improving forest inventories and management. The research focuses on assessing the 

accuracy of remotely-sensed forest attributes and mobile machine vision-derived volume 

attributes against operational harvester data, and improving remote sensing-based volume 

attribute estimates by applying harvester measurements and other Big Geodata.  

My first study examined the accuracy of Metsään.fi forest inventory data, derived from 

ALS, by comparing it to operational harvester data. The findings revealed a tendency to 

overestimate sawlog removals, particularly Norway spruce (Picea abies (L.) Karst.)  in clear-

cut areas, although dominant tree species were accurately determined.  

My second study assessed the Trestima smartphone app for pre-harvest measurements 

and my results showed that an insufficient number of photographs per forest stand led to poor 

accuracy levels, although when the recommended data collection protocol was closely 

followed there was an improvement in performance. The app provided accurate estimates of 

Norway spruce volume but slightly underestimated Scots pine (Pinus sylvestris L.) volume.  

My third study explored the use of operational harvester data for the prediction of sawlog 

volumes using Metsään.fi attributes and other Big Geodata sources. A Random Forest model 

provided the best results with regard to factual sawlog volumes. The model-based approach 

notably improved sawlog predictions for Scots pine compared to the original Metsään.fi 

estimates.  

Findings of this thesis indicate that remote sensing and machine vision-based methods 

are satisfactory when timber assortments and sawlog proportions are predicted but could be 

improved by additions. While certain limitations remain, improved data collection practices 

and advanced modelling techniques can further enhance the accuracy and usability of forest 

inventory systems. The results of this dissertation will contribute to the development of more 

efficient and data-driven forest inventory practices that may facilitate better resource 

allocation and sustainability in Nordic forestry. 
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1 INTRODUCTION 
 

 

1.1 Development of forest inventories in Nordic countries 

 

The Nordic countries have a long tradition in forest inventories that has evolved from 

traditional field-based approaches to advanced remote sensing techniques (Maltamo et al. 

2021). The two main types of forest inventories are National Forest Inventories (NFI) and 

Forest Management Inventories (FMI). Nowadays, both inventory types utilise remotely 

sensed data but also need field measurements.  

The NFI are large-scale, statistically designed forest inventories that are conducted and 

utilised at national or regional levels to monitor forest resources, carbon stocks, biodiversity 

and other ecosystem services (Maltamo et al. 2021). The FMI are designed for operational 

forest planning at local or forest property levels and focus on stand-level management 

decisions.  In this thesis, the focus is on FMI and the datasets consist of the forest stands 

where the management decisions were made. While NFI and FMI serve different purposes, 

they complement each other in sustainable forest management. 

Field-based inventories rely on direct observations and measurements by forestry 

professionals. Recent advancements in remote sensing have transformed forest inventories, 

improving efficiency and scalability. In Finland, remotely sensed forest information is freely 

available for all forest owners. Nevertheless, the increasing use of remote sensing enhances 

efficiency, yet field measurements remain essential for calibration and validation of the 

models that are developed (Maltamo et al. 2021).  Future developments are expected to 

further refine inventory methods, thereby ensuring accurate and timely forest resource 

assessments. 

In FMI, inventory information is obtained at the stand-level using wall-to-wall auxiliary 

information (Maltamo et al. 2021). The inventory cycle is typically 6–10 years and forest 

stands are classified by categorial attributes, such as main tree species, and measurement, 

modelling and predictions can be done by tree species. In this dissertation, the focus is on the 

three main tree species of Finland: Norway spruce (Picea abies (L.) Karst.), hereafter referred 

to as spruce, Scots pine (Pinus sylvestris L.), hereafter referred to as pine, and silver birch 

(Betula pendula Roth) and downy birch (Betula pubescens Ehrh.), hereafter referred to as 

birch. 

Special case of FMI is the pre-harvest inventory, where wood purchasing organisations 

and buyers gather information on tree species-specific log length-top diameter distribution 

and log quality from marked stands (Pitkänen et al. 2021). Many studies have shown that 

remote sensing methods are not sufficiently accurate for pre-harvest measurements per se 

(Vergara et al. 2015, Haara et al. 2019). In particular, information on sawlog and pulpwood 

removal by tree species, as well as information on the quality characteristics of the trees are 

needed for pre-harvest inventory purposes (Holopainen et al. 2013). Over the past decade, 

proximal sensing methods have started to emerge in forest resource inventories. Proximal 

sensors are mounted on standing or mobile platforms (Mulla 2013). For example, the use of 

smartphones in forest inventories can be considered as proximal sensing (Talbot et al. 2017). 

Different smartphone applications have been used specifically for pre-harvest inventories of 

marked stands. 
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Figure 1. Field measurements remain crucial for calibration and validation of prediction 

models (Lusto/Metsäteollisuus ry:n kokoelma 2025).  
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1.2 Operational forestry 

 

In Finland, the production of sawn wood and paper products had already commenced in the 

19th century (Ministry of Agriculture and Forestry of Finland, 2025). Today, the forest 

industry has expanded beyond traditional paper and sawn goods to include a wide range of 

wood-based products, such as packaging material, as wood serves as an alternative to many 

fossil fuel-based materials. Given its size, Finland is among the most forest-dependent 

countries in the world, possessing unique expertise in forest management and the forest 

industry. 

The forestry sector is a cornerstone of the Finnish economy, with timber and energy 

among the most valuable commercial forest products (Alvites et al., 2022). Effective 

management of this sector necessitates precise information of forests and their growing stock. 

Wood purchasing organisations and buyers require accurate data on sawlog and pulpwood 

removals prior to harvesting (Pitkänen et al., 2021). Since whole trees are seldom marketable, 

stems are segmented into various products (e.g. sawlogs, plywood logs, pulpwood, and 

energywood) with differing prices (Marshall, 2007). Quality standards are set by the 

customers, which include sawmills, plywood mills and pulp mills. 

In 2023, industrial roundwood removals in Finland were 61 million m-³ (Natural 

Resources Institute Finland 2024). Slightly less than half of the removals were sawlogs and 

the remainder were pulpwood. Most of the wood in Finland is logged by three large forestry 

companies: Metsä Group Cooperative, UPM-Kymmene Plc and Stora Enso Plc, which are 

also quoted on the Finnish stock exchange (Forest 2024). With this volume of removals, 

precise information on the growing stock is needed to ensure that planning is efficient at both 

strategic and operation levels. In addition to the amount of wood, precise information about 

wood quality and timber assortments is also needed. In 2023, the average cost of timber 

harvesting was €13.29 m-³ (over bark) (Strandström 2023), which was 7.5% higher than in 

2022. For regeneration felling, the cost was €9.85 m-³ in 2023, an increase of 4.6% 

(Strandström 2023). In 2023, the overall costs of harvesting operations were over €600 

million (Strandström 2024), so more accurate information could provide substantial savings 

in the costs of harvesting.  

In operative forest planning, the planning period is usually one month. The forest stands 

to be harvested are chained for the harvesting entrepreneurs and the demand for certain timber 

assortments comes from the mills that use the harvested wood. Wood buyers buy specific 

forest stands, depending on their need for different timber assortments. When the information 

on timber assortment removals is more accurate, planning of harvesting operations becomes 

more efficient. On the other hand, if the pre-harvest information is not accurate, deviations 

between assortment supplies and demand can occur, which will affect overall wood supply 

logistics, and this increases the costs and work of operative forest planning. The relative net 

present value (NPV) and the timing of the loggings are significantly affected by the accuracy 

of the input data (Holopainen et al., 2010). This is because the input data influences the 

simulations used in both tree- and stand-level simulators. 
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1.3 Current methods used in forest inventories 

 

Different remote sensing technologies, particularly airborne laser scanning (ALS), have 

become operational in forest inventories (Karjalainen et al., 2020). In Finland, stand-level 

forest management inventories predominantly rely on a combination of remotely sensed data, 

local field sample plots and the k-nearest neighbour (k-NN) method (Maltamo and Packalén, 

2014). Specifically, ALS is the primary method for information collection in management-

oriented forest inventories in Finland. Regardless of the type of ALS-based forest resource 

inventory, the inclusion of field training data is mandatory. These data facilitate the 

development of models that link forest stand attributes, such as timber volume, to metrics 

derived from remote sensing (Maltamo et al., 2019). Moreover, ALS is a promising source 

of information for other types of forest inventories, such as NFI or pre-harvest stand 

measurements (Maltamo et al. 2019, Räty et al. 2019). In practical forest planning, 

information is required for each tree species (Packalén 2009). Thus, aerial imagery is often 

used to predict attributes that are difficult to predict from laser data (e.g. Packalén and 

Maltamo 2007; Holopainen et al. 2008). 

Inventory verifications have shown that ALS-based inventory results can be more 

accurate for stand totals than results obtained using traditional field-based methods (Suvanto 

et al., 2005; Wallenius et al., 2012). In addition, both tree species-specific attributes (e.g. 

Packalén and Maltamo, 2007; Holopainen et al., 2010) and the measurements of individual 

tree attributes (e.g. Korpela et al., 2010; Vauhkonen, 2010) have been at least comparable to 

traditional field assessments. Nevertheless, further research is needed to improve the 

accuracy of tree quality assessments in ALS-based forest inventories (Wallenius et al., 2012). 

The Finnish Forest Centre (FFC) collects and distributes forest inventory information on 

Finnish forests. This information is available in the Metsään.fi data repository, which is an 

electronic transaction service maintained by the FFC (Finnish Forest Centre 2019). The data 

includes information on stand attributes, forest use and the habitats that are important for 

biodiversity. Due to the amendment of the Forest Information Act, which came into force in 

early March 2018, much information has been made publicly available through the 

Metsään.fi service. Public access to the information is provided through a technical 

connection, provided that the transferee has the right to store and use such personal 

information in accordance with the Personal Data Protection Act (Laki Suomen 

metsäkeskuksen metsätietojärjestelmästä 2011). The amendment was a starting point for this 

thesis. Most of the information in Metsään.fi service is based on remote sensing, and in 

particular ALS data. One of the aims of this thesis was to investigate if the information is 

sufficiently accurate for the needs of the timber trade.  Metsään.fi forest inventory data are 

widely used for forest management and planning. 

Metsään.fi forest inventory information has been obtained using low-pulse ALS data and 

aerial photographs interpreted using the area-based approach (ABA) (Finnish Forest Centre 

2019). ABA combines the metrics of remote sensing data with accurately measured field 

data. The estimation method varies bnetween inventory areas, but the k-NN approach is the 

most implemented (Maltamo and Packalén 2014). The resulting tree species-specific stand 

characteristics are predicted using a continuous grid of cells, and the stand results are 

aggregated from the cell results. In the case of timber assortments, the theoretical diameter 

distribution and tree heights are first predicted from the stand attribute estimates. The trees 

in the predicted diameter distribution are bucked and the theoretical sawlog reduction model 

developed by Mehtätalo (2002) is applied to account for defects. Correspondingly, theoretical 
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thinning models (Äijälä 2001) are applied to determine the need for thinning. Metsään.fi 

estimates are also annually updated with growth models (Finnish Forest Centre 2019).  

Another approach widely employed in ALS-based forest inventories is Individual Tree 

Detection (ITD) (Hyyppä et al. 2001, Vastaranta et al. 2012). Nowadays, ITD methods have 

become more common in forest mensuration as well as in operational forestry (Keefe et al. 

2022). Usually, local maxima in the canopy height model (CHM) are considered to be trees 

and are further segmented to delineate tree crowns (Kaartinen et al 2012). From the tree 

heights, it is then possible to derive different attributes, such as stem volume (Hyyppä et al. 

2001).  

In addition, different proximal sensing applications have emerged in forest inventories in 

recent years. In particular, the use of smartphones for forest measurements has been studied 

intensively (e.g. Wu et al. 2019, Fan et al. 2020a, Fan et al. 2020b, Marzulli et al. 2020, Täll 

2020, Aguilera et al. 2021, Kim et al. 2021, Pitkänen et al. 2021) due to the development of 

advanced remote sensors and computer vision (Kärhä et al. 2019, Wu et al. 2019). For 

example, a commercial app called Trestima has been developed in Finland for forest attribute 

estimation, especially the pre-harvest inventory of marked stands. Trestima uses monocular 

vision combined with the classic relascope theory (Bitterlich 1984). Stem diameter, tree 

height and tree species are estimated on a cloud computing platform using data that are 

extracted from photographs taken with a smartphone camera (Siipilehto et al. 2016, Trestima 

2021). 

 

 

1.4 Using harvester data in forest research 

 

To date, research on the utilisation of harvester data for forest inventory purposes remains 

limited, primarily due to the complexities and high costs of collecting and integrating 

harvester data with remotely sensed data (Holopainen et al., 2013). Harvester data are 

collected for timber transaction purposes and research needs are seldom considered. 

However, when timber assortments are predicted, training data should include precise stand-

level information on sawlog and pulpwood removals, which can only be measured with 

sufficient accuracy in practice by a harvester (Malinen et al. 2003). Labour-intensive field 

inventories have already been replaced in FMI by ALS-based methods (Vauhkonen et al. 

2014). Remote sensing-based methods are more objective and can lead to more constant 

predictions compared to field inventories, which are more subjective because of human 

errors. 

Previous studies that have evaluated the accuracy of ALS inventories have typically 

compared ALS-based estimates of stand attributes with field measurements (e.g. Wallenius 

et al., 2012). Attempts have also been made to use harvest data for similar comparisons 

(Siipilehto et al., 2016; Pesonen, 2017). In addition, harvester data have been used as training 

data for modelling various stand attributes such as volume, basal area and diameter 

distribution using laser scanning metrics as predictors (Bollandsås et al., 2011; Peuhkurinen 

et al., 2011; Holmgren et al., 2012; Barth and Holmgren, 2013; Hauglin et al., 2018; Saukkola 

et al., 2019). 

Until recently, the Global Navigation Satellite System (GNSS) positioning of operational 

harvester data has generally been inaccurate (Lindroos et al. 2015). However, Hauglin et al. 

(2018) presented an approach to improve GPS positioning so that the tree level positioning 

error was approximately 1 m. The forest machine manufacturer, Komatsu, has promised a 

positioning error of only a few centimetres for their harvesters, for both the machine and the 
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harvester head (Komatsu 2024): Hannrup and Möller (2022) studied the accuracy of the 

Komatsu precision-positioned harvester and obtained an error value of 0.56 m in relation to 

tree position. 

 

 
Figure 2. Harvesters collect large amounts of information that is only marginally utilised for 

scientific research purposes. A John Deere 1170G harvester working in a clear-cut forest 

area. Photograph by Kalle Kärhä. 
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Furthermore, a significant challenge in using operational harvester data for scientific 

research is its limited suitability. For instance, data processing can substantially decrease the 

number of stands that are acceptable for research purposes. The main reasons that stands are 

discarded from a dataset can include the unavailability of remotely sensed data for the 

harvester stands, the fact that cuttings were made before information collection, and that 

geolocation information is not always available or suitable for research purposes.  

 

 

1.5 Quality estimation in remotely-sensed forest inventories 

 

The need for better estimates on timber assortments will increase in the future as climate 

change impacts the growth and quality of wood. However, timber quality is often missing 

from pre-harvest information. In earlier studies that considered the estimation of tree quality 

with remote-sensing, factual sawlog volumes have usually been predicted (Karjalainen et al. 

2019). More efficient forest management and resource optimisation would be possible in 

operational forestry provided that the quality of the information obtained from remote-

sensing based forest inventories could be improved. Applications that combine operational 

harvester data and Big Geodata (i.e. openly available georeferenced data for large areas) are 

one potential approach to improve the quality of estimated timber assortments (Barth and 

Holmgren 2013). For example, Bollandsås et al. (2011) studied the prediction of tree volume 

and quality characteristics in northeastern Norway and concluded that there is a need for more 

auxiliary information to generalise the models across stands. Korhonen et al. (2008) predicted 

factual sawlog volumes using mixed effects regression models with low point density ALS 

data and concluded that the method is suitable for operational pre-harvest estimation of 

sawlog volume. Sanz et al. (2021) integrated detailed timber assortments into ALS-based 

information and concluded that their non-parametric approach can assist in locating stands 

with the desired timber assortments for harvesting operations.  

Alternatively, terrestrial laser scanning (TLS) can be used for the estimation of wood 

quality. This can be done using three-dimensional stem geometry obtained from TLS point 

clouds (Pyörälä et al. 2019a). In operational forestry, mobile platforms would probably work 

better to obtain such data (Pyörälä et al. 2019a). While Pyörälä et al. (2019b) concluded that 

the fusion of TLS and ALS could assist in the estimation of wood quality, TLS methods are 

beyond the scope of this thesis.  

 

 

1.6 Objectives 

 

The primary aim of this thesis was to investigate the accuracy of up-to-date forest inventory 

methods and their usability to support the timber trade, especially for pre-harvest inventory 

purposes. I used operational harvester data as a reference in the research. In addition, I 

developed methods to improve ALS-based forest information by integrating harvester 

measurements with forest databases and other open Big Geodata sources. Below are the 

specific aims for studies I–III: 

 

(1) Validate the accuracy of remotely sensed and smartphone-based  estimates of total 

volume, species specific volume and timber assortments in an operational context (I and 

II). 
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(2) Increase the accuracy of ALS-based predictions of sawlog recoveries by using open 

Big Geodata sources (III). 

 

 

By addressing these objectives, this thesis aims to enhance the integration of remote 

sensing methods into practical forestry applications. The findings will contribute to improved 

forest inventory methodologies, thereby ensuring better data reliability, support for informed 

decision-making, and more efficient forest management. 

 
 

2 MATERIALS AND METHODS 
 

 

2.1 Research areas  

 

In study I, most of the stands were located in southeastern Finland (Fig. 3). After removing 

all inconsistencies, a total of 82 clear-cut stands were selected for the study (Table 1). These 

comprised 121 stands with a total area of 148.3 hectares. Consequently, 79 thinning blocks 

were selected for the study and consisted of 149 stands with a total area of 223.6 hectares. 

Harvester data played a central role in study II as well, where 37 clear-cut stands in 

southeastern Finland were analysed (Fig. 3). The harvesting period was from December 2018 

until August 2020. In study III, harvester data were extended to include 683 clear-cut stands 

from eastern Finland from the seashore up to the Kainuu region (Fig. 3). The study stands 

covered 1,250 hectares.  

 

 

Table 1 Number of stands and total removals as measured by a harvester in the different 

studies of this thesis.  

Study Number of 

stands 

Measured removal by harvester 

(m³, solid over bark) 

Main tree species 

I (clear-cut) 121 33,507 Spruce 

I (thinnings) 149 16,609 Pine 

II 37 21,531 Spruce 

III 683 318,154 Spruce 
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Figure 3. Location of the study stands in Finland. Datasets used in studies I, II and III are 

shown from left to right. Map data source: © EuroGeographics for the administrative 

boundaries (EuroGraphics 2020). [Colour online.] 

 

 

2.2 Datasets 

 

2.2.1 Harvester data 

 

Harvester data played a significant role in the research presented in this dissertation. The 

harvester data included detailed information on harvested tree stems and enabled precise 

volume and assortment comparisons. Harvester data were used to ground truth harvested 

removals in each of the studies. In all studies (I, II and III), the harvester data included all 

usable stem pieces harvested from the forest stands, excluding decayed wood (i.e. offcuts) 

and treetops (Kärhä et al. 2019). Sawlog lengths typically varied between 3.7 and 5.5 m, but 

there was some variation including shorter (3.1 or 3.4 m) and longer (5.8 and 6.1 m) lengths. 

The minimum top diameters (over bark) of spruce, pine and birch sawlogs were 16, 15 and 

17 cm, respectively. The length of pulpwood logs ranged from 2.7 to 5.0 m, with minimum 

top diameters (over bark) generally set at 7, 6 and 5 cm for spruce, pine and birch, 

respectively). Harvester measurement is regulated in Finland under the Decree of the 

Ministry of Agriculture and Forestry (Laki puutavaran mittauksesta 2013). 

In all studies (I, II and III), the starting datasets were much larger than those ultimately 

utilised in the research. The main reasons for discarding a large proportion of the stands were 

the unavailability of ALS-data for the harvested stands, instances where clear-cutting had 

already taken place before information collection, or when geolocated information was not 
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always suitable. Furthermore, geolocated harvester information was available only for 

studies II and III.  

The stands selected in study I had to be consistent with the metsään.fi stand-level forest 

inventory data provided by the Finnish Forest Centre. The deviations were analysed on a 

case-by-case basis from the harvester files (prd and hpr) (Skogforsk 2021). At the same time, 

it was verified that no abnormal harvesting had occurred. In addition, incomplete logging 

areas were excluded from the study. Harvesting data were available per logging area, so it 

was possible that more than one stand may have been included in the same file. On the other 

hand, there could be more than one harvester file for a single stand. Each file was matched 

with data in the Metsään.fi inventory. When the logging data contained several stands 

consistent with the forest resource data, the stands were also combined in the Metsään.fi 

dataset.  

In study II, the final 37 stands had accurate stand delineations derived from harvester 

position data (Melkas et al. 2020). In this study, I also started with a much larger dataset. 

Trestima-based smartphone information was available from 2,043 stands and harvester data 

(harvested production (hpr) files) from 29,803 stands. In these data, the stand borders were 

obtained from stand databases as they were before harvesting. However, in practice, the 

harvested areas deviated from the nominal stand borders. A preliminary analysis indicated 

that there were 42 matching clear-cut stands that had both Trestima and geolocated harvesting 

data available. In the end there were 37 study stands after discarding non-suitable stands and 

combining stands that were physically connected.  

For studies II and III, I used stand delineations based on recorded harvester positions 

(Melkas et al. 2020). I began with data from over 1,600 harvested clear-cut stands, but 

ultimately, fewer than half of these stands were suitable for research purposes. 

 

2.2.2 Estimated removals 

 

Metsään.fi forest inventory data was used in studies I and III. I investigated the accuracy of 

Metsään.fi stand level data in study I. At the stand level, the Metsään.fi inventory has timber 

assortments, which allows for direct comparisons with actual logging data. In study III, the 

Metsään.fi grid data was used, which was then extracted to the stand-level and aggregated as 

area-weighted means of intersecting cells. 

In study I, forest stand information was retrieved at the most recent available date prior 

to harvesting for the selected study stands. To ensure consistency, the stand delineations in 

Metsään.fi were compared with the actual harvested stand borders provided by the mapping 

system of Stora Enso. I verified that harvesting had been carried out according to the plan in 

order to ensure accurate volume comparisons. Total and species-specific volumes, as well as 

timber assortments, were analysed for Scots pine, Norway spruce and deciduous trees, 

primarily birch. 

In Study II, the final 37 harvested stands included a total of 48 inventoried stands for 

which Trestima data had been collected (neighbouring stands are often treated as a single 

unit in harvesting). There may also have been a mismatch between stand boundaries. In such 

cases, I intersected the Trestima estimated stand polygons with the actual harvested stand 

polygon and estimated the Trestima volume of the actual stand using an area-weighted 

average. The average number of photographs taken with Trestima was 7.3 photographs per 

actual harvested stand, each of which is an independent sample. The number of photographs 

taken for each stand varied, so I classified the observed stands according to the number of 

photographs (three classes) as follows: ≤ 3 photographs; 4–9 photographs; ≥ 10 photographs.  
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In study III, Metsään.fi data were utilised in a similar fashion. Forest inventory 

information from a 2019 database provided wall-to-wall predictions of forest attributes for 

the study areas. As in I, the predictions were derived from ALS and aerial image data 

combined with field plot measurements, and generalised to a 16 × 16 m grid using a model. 

Stand-level estimates were subsequently extracted as area-weighted means for each selected 

forest stand. This approach ensured robust and consistent comparisons between remotely-

sensed inventory estimates and harvester-measured logging outcomes. The Metsään.fi grid 

data did not have timber assortment estimates in it.  

 

2.2.3 Open Big Geodata 

 

In Study III, I had other sources of information besides Metsään.fi that could be used as 

predictors. First, I had the multi-source Finnish National Forest Inventory Data (MS-NFI). 

In the study was used tree species-specific volumes, tree species-specific volumes and other 

stand characteristics as map layers from 2019. In addition to field data, satellite imagery, 

digital map data, and other georeferenced data were used in the estimation of MS-NFI layers 

(Mäkisara et al. 2022). The MS-NFI attributes were extracted from corresponding raster maps 

for harvester stands as with the Metsään.fi data. In addition, 20 m resolution Sentinel-2 

satellite image mosaic spectral bands were used in this study (Finnish Environment Institute 

Syke 2019). I used ten bands out of twelve, excluding the coastal aerosol and water vapour 

bands. To reduce the adverse effects of mosaics, I did not use the bands as such, but instead 

calculated 90 different normalized difference indices (ND) and spectral ratio indices (SR) for 

vegetation indices that are more resistant to atmospheric effects (see III for detailed 

formulas). 

An open digital terrain model with a resolution of 10 m was also used (Land Survey of 

Finland 2024). Elevation above geoid was extracted as a weighted mean of pixels that 

intersect the stand border and was used as a predictor variable. In addition, hillshade, aspect 

and slope were calculated and extracted in a similar fashion. Further, a cartographic Depth-

to-Water (DTW) index map was downloaded from the Paituli-download service for the study 

stands. A cartographic depth-to-water index (Murphy et al., 2007, 2008, 2009) was calculated 

from a digital terrain model and stream networks. The latter were created based on different 

thresholds to simulate various hydrological situations. Here, I applied a 0.5 hectare threshold 

that represents very moist conditions (Salmivaara et al. 2020).  

A map describing the superficial deposits of Finland was downloaded from the Hakku 

download service maintained by the Finnish Geological Survey to obtain more detailed 

information of the soil in the study stands (Geology Research Centre 2018). The map had a 

scale of 1:200,000 and covered the whole country. In this map, the different sediments were 

included as polygons. In my  dataset, there were a total of seven different soil types when 

clay and mud were combined into a single class. Also, forest vegetation zones were included 

in my data, as the study stands were located in two different zones: the hemi-boreal and south-

boreal zones. I used subzones of the forest vegetation zones as dummy variables in my model. 

A temperature sum map from 2016 was also included to extract degree days for each stand. 

The Triangulated Irregular Network (TIN) method was used in the interpolation. Finally, 

geographical coordinates in the ETRS-TM35FIN coordinate system were calculated for 

every stand. I wanted to utilise all open geodata in my research, which could provide more 

accurate information with regard to timber quality and assortments (see III for all the 

available predictor candidates). 
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2.3 Statistical analysis 

 

2.3.1 Modelling approaches 

 

In study III, the predictions were implemented using k-NN imputation with the most similar 

neighbour (MSN) distance metric. This distance metric is based on canonical correlations 

that are used to derive a weighted matrix for the imputation so that the correlations between 

dependent and independent variables are maximised (Moeur and Stage 1995). A heuristic 

optimisation method called simulated annealing was used to find the optimal combination of 

predictors. This algorithm tests different predictor combinations so that the poorer solutions 

can also be randomly accepted for further iterations to avoid getting stuck at a local maxima 

(Packalén et al. 2012), although the best solution is always retained. The algorithm does not 

usually find the global optimum, but it will generally find a solution that is close to it. My 

implementation returned five different optimisation results at each run, and the best result 

was applied in the modelling. I also tested Random Forest (RF) modelling for total sawlog 

proportions and total sawlog volume. It is a powerful and flexible algorithm that can handle 

large and complex datasets (Breiman 2001). However, it can also be prone to overfitting, so 

it is important to tune its hyperparameters carefully and use regularisation techniques to 

prevent overfitting. Of note, Cosenza et al. (2022) were not able to overfit RF under any 

circumstances when testing different models in ALS-based forest inventories. Random Forest 

is a popular machine learning algorithm used for classification and regression tasks, and it is 

effective for modelling one dependent variable.  

 

2.3.2 Accuracy assessment 

 

Separate comparisons were made of total removals, pulpwood and sawlog removals. 

Comparison of timber assortments was made for pine, spruce and birch. The timber 

assortments of each stand selected for the study were combined in order to correspond to the 

timber assortments estimate of Metsään.fi. In study I, hardwoods were combined into a single 

class for sawlog and pulpwood removals. For pine and spruce, sawlog and pulpwood 

removals were available directly from the harvester file. Harvester data were summed, where 

appropriate, by harvested stand to match harvester-measured removals with Metsään.fi 

estimates for total volume and volume by timber assortment. Similar comparisons were made 

in II using the Trestima estimates as predictions compared to the actual harvested volumes. 

In study III, the model-produced estimates were compared to the actual harvested values.  

The root mean square error (RMSE) and bias values between the harvester data and 

Metsään.fi estimates were calculated for total volume, tree species specific volumes and 

timber assortment volumes (Equations 1 and 3). In addition, the corresponding relative 

RMSE and biases values were calculated with Equations 2 and 4. Note that the observed 

value in study I was reduced from the predicted value and, therefore, a positive bias indicated 

overestimation with the Metsään.fi data. This was carried out in reverse for studies II and 

III, which is a more common approach in statistics.  Finally, the correlation between the 

harvester data and Metsään.fi estimates in I and II was calculated using the Pearson product 

moment correlation coefficient. 
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RMSE =√∑
(𝑦𝑜𝑏𝑠−𝑦𝑝𝑟𝑒𝑑)

2

𝑁
,          (1) 

 

RMSE-% = 
𝑅𝑀𝑆𝐸

𝑦̅𝑜𝑏𝑠
∗ 100,            (2) 

 

Bias = 
∑(𝑦𝑜𝑏𝑠−𝑦𝑝𝑟𝑒𝑑)

𝑁
,                      (3) 

 

Bias-% = 
𝐵𝑖𝑎𝑠

𝑦̅𝑜𝑏𝑠
 * 100                      (4) 

 

where 

𝑦𝑜𝑏𝑠 = observed value at logging  

𝑦𝑝𝑟𝑒𝑑 = predicted value at logging  

𝑁 = number of stands 

𝑦̅𝑜𝑏𝑠 = average of observed volumes 

𝑦̅𝑝𝑟𝑒𝑑 = average of predicted volumes 

 

 

 

3 RESULTS 
  

 

In studies I and III, Metsään.fi data was used and proximal sensing information obtained 

with the Trestima smartphone app in study II. Detailed information on the models and other 

specific information can be found in the original articles.  

 

 

3.1 Accuracy of remote sensing-based volume and timber assortment estimates 

 

When removals from clear-cut areas were inspected (I), the scatterplot between total 

measured removals by the harvester and estimated removals with the Metsään.fi data showed 

a somewhat linear relationship (Figure 4). The RMSE value associated with estimated total 

harvested removals in the Metsään.fi data was 26%. The bias in the data was less than 4% 

and the removal estimates in the Metsään.fi data were more often over- than under-

estimations. However, for very large removals (> 450 m³ ha-1), the Metsään.fi data produced 

considerable underestimates (Figure 4). 
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Figure 4. Scatterplot of total logging removals in clear-cut areas between measured removals 

by a harvester and estimated removals with the Metsään.fi inventory data. 

 

 

 

Timber material was dominated by spruce in study I. In the case of spruce sawlogs, there 

was a rather strong relationship between measured and estimated removals with the 

Metsään.fi data (Figure 5). However, the RMSE% value was almost 50% and the bias value 

was more than 20% (Table 2). Estimated removal with Metsään.fi produced a considerable 

systematic overestimation in removals of spruce sawlog. The relationship was less 

pronounced for spruce pulpwood and the RMSE value was more than 50%. For spruce 

pulpwood, the bias value was nearly 30%, and the estimated removals with Metsään.fi 

consistently underestimated actual harvested removals (Figure 5). 

Less than a quarter of the total removal was pine sawlog or pulpwood. There was a rather 

linear relationship between measured pine sawlog removals and the Metsään.fi estimate 

(Figure 5). The relative RMSE value was slightly less than 70% and the bias value averaged 

less than 4% (Table 2). The correlation between harvester-measured removals and the 

Metsään.fi estimate for pine pulpwood was the weakest, after hardwood sawlogs (Table 2). 

The RMSE% value was over 100% for pine pulpwood and the bias value was less than 6%. 

The Metsään.fi data produced a slight systematic underestimation for pine pulpwood 

removal. Notable was the bias value for spruce assortments and the absence of bias for pine 

assortments. In addition, the least accurate results were observed for hardwood assortments, 

which were the smallest removals in the study. Overall, the relative errors for the tree species-

specific assortments were significantly greater than the error associated with total logging 

removals.  
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Figure 5. Tree species-specific scatterplots between timber assortment removals (as 

measured by a harvester) and Metsään.fi estimates. 
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Table 2 Root mean square error (RMSE) and bias values in clear-cuts by tree species-
specific timber assortment. 

Timber assortment 

(m³ ha-1) RMSE  RMSE% Bias Bias% Correlation 

Pine sawlog 27.42 67.12 -1.60 -3.93 0.81** 

Spruce sawlog 63.98 48.61 -29.28 -22.25 0.81** 

Hardwood sawlog 12.66 169.80 -1.06 -14.25 0.55** 

Pine pulpwood 23.23 107.10 1.24 5.73 0.58** 

Spruce pulpwood 30.63 54.80 16.49 29.51 0.65** 

Hardwood pulpwood 20.13 97.74 3.39 16.44 0.66** 

** Correlation statistically significant at 1% (p <0.01) 

  * Correlation statistically significant at 5% (p <0.05) 

 

 

In clear-cuttings, the dominant tree species was interpreted correctly in 87.7% of the 

stands and the kappa value was 0.7, which would imply that there was considerable 

consistency between the materials. According to the logging data, 54 of the 73 stands were 

spruce-dominated and 50 were also spruce-dominated with the Metsään.fi data. On closer 

inspection, it was noted that the main tree species was generally classified incorrectly in 

mixed forest stands (see study I, for more detailed information on the determination of the 

main tree species). 

In study I, we also inspected the accuracy of thinning removals. The correlation between 

measured removals by the harvester and the estimated removal with the Metsään.fi data was 

weak (Figure 6). The thinning removals with the Metsään.fi data were mostly between 50 

and 100 m3 ha-1 and included both over- and under-estimates. The bias value was less than 

1% (see Table 6 in study I). Correspondingly, the correlation between measured removals by 

the harvester and estimated removals with the Metsään.fi data was considerably lower than 

for clear-cutting but was still statistically significant at the 5% level. The RMSE% value was 

slightly above 40%. In the case of thinnings, I worked with a pine-dominated dataset in study 

I. 
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Figure. 6 Scatterplot between measured removals (in thinnings) by a harvester and 

estimated removals with the Metsään.fi data. 

 

 

 

3.2 Accuracy of smartphone app-based volume and timber assortment estimates 

 

In study II, I focused on the accuracy of smartphone app-based forest inventories. The 

correlation between the harvested and Trestima-estimated volumes was not strong when total 

harvesting removals were examined, but was much stronger for tree species-specific 

removals. The accuracy of the Trestima estimates varied greatly according to the number of 

photographs that had been taken in the forest stand (Figure 7). The RMSE value associated 

with total harvest volume was 55.3% in the ≤ 3 photographs per stand class, 27.7% in the 4–

9 class and 17.7% in the ≥ 10 class (Table 3). The overall RMSE value was 32.2%. Bias 

values also decreased as the number of photographs increased. The Trestima estimates were 

more often underestimates. 
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Figure. 7 Scatterplot of total logging removals between measured removals by a harvester 

and estimated removals by the Trestima app. 

 

 

Table 3 Absolute root mean square error (RMSE) and relative (RMSE%) errors and 

corresponding bias values (Bias, Bias%) for total harvest removals by volume in clear-cutting 

according to the number of Trestima photographs taken per forest stand.  

Number of pictures RMSE  RMSE% Bias Bias% Number of observations 

≤ 3 140.3 55.3 98.8 39.0 6 

4–9 83.7 27.7 12.4 4.1 23 

≥ 10 41.3 17.7 2.5 1.1 6 

 

 

In study II, the dataset was likewise spruce dominated, with spruce accounting for more 

than half the total removals. Results were weaker when tree species-specific removals were 

examined (see Table 4 in II). Even greater scattering was evident with regard to the timber 

assortment data (Figure 8). The RMSE values were also greater than for tree species, and 

ranged from 50.1% to 123% (Table 4). 
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Figure. 8 Tree species-specific scatterplots between timber assortment removals in clear-cut 

forest stands as measured by a harvester and Trestima estimates. 
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Table 4 Root mean square error (RMSE) and bias values in clear-cut areas by timber 

assortment (m³ ha-1). 

Timber assortment/Number 

of photographs RMSE  RMSE% Bias Bias% 

Pine sawlog      

≤ 3 91.9 123.0 66.7 89.2 

4–9 39.9 60.1 8.7 13.1 

≥ 10 57.2 72.6 14.7 18.7 

Spruce sawlog     

≤ 3 78.5 72.7 33.4 30.9 

4–9 79.5 65.2 -9.5 -7.8 

≥ 10 39.3 50.1 -14.9 -19.0 

Birch sawlog      

≤ 3 22.3 687.9 -8.2 -253.3 

4–9 10.7 104.4 2.4 23.6 

≥ 10 7.3 102.2 -2.1 -30.0 

Pine pulpwood      

≤ 3 32.9 121.4 24.1 89.0 

4–9 17.2 56.4 8.2 26.9 

≥ 10 16.4 79.1 -3.3 -16.1 

Spruce pulpwood     

≤ 3 24.9 81.6 -16.3 -53.3 

4–9 29.8 62.6 -4.1 -8.6 

≥ 10 21.9 71.3 1.0 3.4 

Birch pulpwood      

≤ 3 11.2 116.7 -1.2 -12.3 

4–9 21.6 89.0 10.1 41.6 

≥ 10 14.2 86.0 6.8 41.2 

 

 

 

Overall, the accuracy increased as the number of photographs increased. The Error index 

indicated that approximately ten photographs were needed to guarantee Error Index values < 

0.4 (Figure 9). This is the recommended number of photographs as stated by Trestima 

(Trestima 2021). 
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Figure. 9 Error index according to the number of photographs taken per forest stand. A degree 

2 polynomial trendline is fitted to the scatterplot. 

 

 

 

Diameter distributions between harvester and Trestima seemed consistent, when 

sufficient photographs were taken (Figure 10).  
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Figure. 10 Stem distribution from the > 10 photograph per stand class. In this case, 15 

photographs were taken. Stem number as measured by the harvester and the Trestima app 

was 462 and 395, respectively. The Error index was 0.20. 

 

 

                       

3.3 Prediction of timber assortments and sawlog proportions 

 

In study III, a modelling approach was used to include a quality estimation into the remotely-

sensed forest inventory information. Metsään.fi grid cell information was obtained for the 

entire Finnish Forest Centre forest database from 2019. The accuracy of total volume was 

already at a better level before modelling when compared to the study I dataset (RMSE value: 

19.2%) (Figure 11). These data were estimated using low pulse density (1 m-2) ALS data, 

optical aerial images (50 cm resolution) and field plots. 
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Figure. 11 Scatterplot of total logging removals in clear-cut areas between measured 

removals by a harvester and estimated removals with the Metsään.fi data. 

 

 

The k-NN model produced the most accurate results for spruce sawlog with a relative 

RMSE value of 40.8% (Figure 12, and see Table 2 in III). Spruce sawlog and pulpwood 

comprised over half of the commercial volume in my dataset. For pine sawlog, the RMSE 

value was 59.5% (Table 2 in III). The model resulted in almost unbiased values for all the 

timber assortments (see III for selected predictors and available predictor candidates).  
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Figure 12. Tree species-specific scatterplots between observed sawlog assortments (as 

measured by a harvester) and estimated sawlog assortments.  

 

 

 

 

In addition, I used RF and k-NN models to predict sawlog proportions (III). Furthermore, 

I used the predicted sawlog proportions from both the k-NN and RF models to calculate 

absolute sawlog volumes (Figure 13). I multiplied the stand-specific total volumes from the 

Metsään.fi grid by the total sawlog proportions obtained from the k-NN and RF models. The 

best result for total sawlog volume were obtained by multiplying the volume in the Metsään.fi 

data with the RF-estimated total sawlog proportions, which yielded a relative RMSE value 

of 25.3% (see Table 4 in III). Compared to the total sawlog volume produced by the k-NN 

model, the RMSE value was 2.3 percentage points smaller (Table 4 in III). When the total 

sawlog proportion predicted by the k-NN model was used instead, the result was slightly less 

accurate than the RF model (RMSE% value: 25.9%). Biases increased slightly when sawlog 

proportions from the models were used to obtain the sawlog volumes.  
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Figure 12. Scatterplots between the observed total sawlog volume (as measured by a 

harvester) and the total sawlog volume estimated from the direct k-NN model, the random 

forest (RF) sawlog percent model and the k-NN sawlog percent model.   

 

 

When the Metsään.fi species-specific volumes were multiplied by the sawlog proportions 

obtained from the k-NN model, the accuracy of the pine sawlog volume improved by 4.7% 

and the resultant RMSE% value was 54.7% (Figure 13, and Table 5 in III). In the case of 

spruce sawlog volume, the relative RMSE value remained basically the same, but the relative 

bias value increased to 11.7% (Table 5 in III). 
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Figure 13. Scatterplot between observed spruce and pine sawlog volumes (as measured by 

a harvester) and the spruce and pine sawlog volumes derived from the k-NN model by 

multiplying the Metsään.fi species specific volumes. 

 
 

4 DISCUSSION 
  

 

4.1 Accuracy of current forest management inventories 

 

The ALS-based removals estimated with the Metsään.fi data satisfactorily predicted total 

volume (I). From my studies, Metsään.fi predicts more sawlogs than are actually harvested. 

In the conventional timber trade, remote sensing-based information still requires on-the-

ground verification but is nevertheless useful for the purposes of timber purchasing. For 

example, when searching for potential stands, Metsään.fi provides reliable assistance and acts 

as a starting point when making a timber trade assessment (Sanz et al. 2021). In addition, a 

field visit can help in checking tree species proportions and detecting, for example, damage 

to trees. Furthermore, field visits can improve the customer relationship, if visiting the forest 

is important for the forest owner.  

  The study materials used in all the studies in this thesis were located in areas where 

different types (and causes) of forest damage are present (Piri et al. 2019). In the wake of 

bark beetle (Ips typographus L.) damage, log-sized spruce trees may have to be used for 

energy purposes or converted to pulpwood. During the course of fieldwork for this thesis, the 

frequency of bark beetle outbreaks increased markedly (Terhonen et al. 2023). Spruce root 

and butt rot (Heterobasidion parviporum) are also prevalent in the study area (Piri et al. 

2019).  

In the case of spruce, the transition from sawlog to pulpwood was substantial, especially 

in study I, but the level varied by region. However, there was also a slight overestimation in 

pine and hardwood sawlog volumes with the Metsään.fi estimate, as well as an 

underestimation in pulpwood removals. In general, field measurements are required to 

determine the quality of the timber (Barth and Holmgren 2013), although more extensive use 

of harvester data could help avoid high-cost field inventories. 
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One factor that hinders the more extensive use of harvester data in research has been the 

inaccuracy of harvester positioning information. However, technology has improved rapidly 

in recent years. For example, Muhojoki et al. (2024) noted that the horizontal and vertical 

errors inherent in mobile positioning systems can be less than 15 cm and 10–30 cm, 

respectively. However, the accuracy of the only commercial GNSS system that is currently 

available to the general public is in the order of several meters. This indicates that more 

accurate positioning systems are still needed for machines that operate inside a dense forest 

canopy. In II and III, stand delineations were based on the automated algorithms presented 

by Melkas et al. (2020).  

During thinning, the correlation between measured removals by the harvester and 

estimated removals with the Metsään.fi was weak (I). The removal of thinnings with the 

Metsään.fi data were mostly between 50 and 100 m3 ha-1 and included both over- and under-

estimates. The poor accuracy observed for the Metsään.fi data might be partly due to the 

thinning models employed. Thus, it is not possible to realistically deduce the amount of 

felling from thinnings based only on the Metsään.fi estimate. In the Metsään.fi data, 

consideration of the main tree species for thinnings is ambiguous, because the tree species 

that is suboptimal for the site may be more likely to be removed during felling. On average, 

thinnings were underestimated slightly more during logging than clear-cuts, although the bias 

was very low. This would also be the case with continuous cover forestry (CCF). As in 

thinning operations, all the trees in CCF are not removed from the target stand. This is 

difficult from the perspective of forest mensuration and planning. As such, forest planning 

systems need to be updated to be able to deal with CCF (Mehtätalo et al. 2024). The Finnish 

Forest Centre plans to bring suggestions with regard to CCF for suitable forest stands to the 

Metsään.fi service by the end of 2025 (Finnish Forest Centre 2025).  

The accuracy of the Trestima smartphone app was found to be sufficient (II). It was 

observed that RMSE values varied significantly depending on the number of photographs 

taken in the targeted forest stands, and the scale of errors could be influenced by the users 

that collected the data. When more than 10 photographs were taken in the forest stand, the 

RMSE value associated with the Trestima estimate was 17.7%, corresponding to an error of 

approximately 71 m³ per hectare. The bias was around 1.1%, which would indicate that 

Trestima slightly underestimated the removed volume. These results were more accurate than 

those obtained for ALS-based stand information in study I. However, my study included 

additional sources of errors, such as clear mismatches between the stand borders described 

in Trestima estimations and the boundaries of the actual harvested stands. Other factors may 

also have contributed to errors, such as the fact that retention trees and waste pieces of 

decayed wood were not included in the harvester data (Kärhä et al., 2019), although they 

were included in the Trestima-based estimates. 

In study II, the RMSE% value was reasonably low when the total harvested volume was 

examined, which would suggest that the Trestima estimates are accurate when an adequate 

number of photographs are taken. The issue appears to lie in the operational use of Trestima, 

as the service pricing of the app is based on the number of photographs taken, potentially 

discouraging users from taking a sufficient number of photographs. In cases of large errors, 

it is possible that photographs were taken merely for documentation purposes, without the 

intent to accurately estimate stand characteristics, such as basal area. Nonetheless, errors 

were significant when only one photograph was taken in the forest stand. In such instances, 

sampling errors could be substantial, given that the entire stand is harvested. In general, 

subjective selection of measurement points is major source of error in this kind of inventories.  
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Study II provided new insights into the accuracy of Trestima data in operational use. The 

primary issue was that the app was not utilised as recommended. Pitkänen et al. (2021) 

concluded that Trestima can offer reasonably good pre-harvest information using simple 

tools, without requiring specific skills in forest mensuration. Their study setup differed from 

this one, as their information was derived from operational forestry use. It was also concluded 

that with an adequate number of photographs, Trestima can provide reasonably good pre-

harvest information. Vastaranta et al. (2015) examined basal area, diameter and height 

measurements with Trestima and achieved excellent results. However, their study setup also 

differed from study II, as they measured at the plot level and compared the results with field 

measurements.  Other smartphone studies have primarily focused on measuring diameter at 

breast height (DBH) (e.g. Fan et al., 2018; Wu et al., 2019; Woo et al., 2021). Singh et al. 

(2024) stated that reliable DBH measurements can be obtained when LiDAR is mounted on 

the newer iPhone models. 

Compared to traditional field measurements, both the Trestima and Metsään.fi results 

show promise (I and II). Haara and Korhonen (2004) found that the RMSE value associated 

with stand volume was 24.8% and 21.4% after a reduction in sampling error. In traditional 

field measurements, stands are measured by tree species and by storey. When total stand 

volumes are predicted, the Trestima app achieved better results when > 10 photographs were 

taken. In traditional field measurements, total volume was underestimated by an average of 

1.6% (Haara and Korhonen, 2004), while in my study, Trestima also slightly underestimated 

harvest removals. In the Metsään.fi ALS-based estimation, the error in total volume (26%) 

was slightly higher, but ALS inventories are continually improving. 

 

 

4.2 Improving the accuracy of sawlog recoveries and timber assortment estimates by 

inclusion of harvester data 

 

In study III, the aim was to integrate in situ harvester measurements of timber assortments 

with various types of open Big Geodata to predict timber assortments in the target stands. 

Existing harvester data can be effectively utilised within this framework to enhance 

predictions of timber assortment yield. Other Big Data sources used in this study included 

ALS-based forest inventory products, Sentinel-2 satellite image mosaic and MS-NFI 

estimates for example. My results were promising when compared to previous studies: 

RMSE values for spruce sawlog volumes ranged from 40.8% to 41.0%, and from 54.7% to 

59.5% for pine sawlog volumes. In contrast, Peuhkurinen et al. (2008), who also used 

harvester data and a stem data bank, reported RMSE values that ranged from 31.8% to 34.8% 

for spruce sawlog volumes and 61.9% to 69.7% for pine sawlog volumes. Thus, my results 

were weaker for spruce sawlog but better for pine sawlog. For total sawlog volumes, obtained 

RMSE values varied from 25.3% to 27.6%, which are substantially more accurate. One issue 

in this study was that the model predicted sawlogs for target stands that did not contain any 

sawlogs. In study III operational harvester database was much larger than that used by 

Peuhkurinen et al. (2008), where all tasks were carried out locally in a small study area. 

Errors in species-specific timber assortments were significantly larger in study I 

compared to III. The stand-level Metsään.fi data used in I included timber assortments 

estimated using general sawlog reduction models (Mehtätalo, 2002). In addition, Karjalainen 

et al. (2019) inspected pine sawlog volumes using the sawlog reduction model by Mehtätalo 

2002 and obtained a RMSE value of 73.6%. Therefore, compared to previous studies, the 
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integration of harvester measurements with forest databases and other sources of Big Geodata 

has the potential to noticeably improve estimates of sawlog removals. 

Study III provided new information on the incorporation of new predictor variables into 

traditional forest resource estimates (Metsään.fi), allowing the integration of stand quality 

assessment into remote sensing-based forest inventories. Despite the extensive survey data 

and the wide range of available predictor variables, most of the selected predictor variables 

were still derived from the Metsään.fi grid data. However, the inclusion of other data sources 

can be promising. The Sentinel-2 satellite image mosaic emerged as the second most common 

source of predictor variables, suggesting that these band combinations could improve ALS-

based tree species estimates. In predicting sawlog proportions from both k-NN and RF 

models, deciduous tree attributes emerged as important predictor variables. This is because 

deciduous trees of similar size tend to have lower sawlog removals as they have larger 

required sawlog dimension limits and are of poorer quality. The Metsään.fi data showed 

significant improvements over stand-level data, with smaller errors for the most accurate 

sawlog volume predictions than for the total volume (I). RMSE values for coniferous sawlogs 

ranged from 41-60% (III), while RMSE values ranged from 50-73% when Trestima was 

used according to the manufacturer's recommendations (II). The application of harvester 

measurements and Open Big Geodata can potentially provide more accurate estimates of 

sawlog removals.  

 

 

4.2 Factors that affect sawlog quality and processing efficiency 

 

Tree species and log quality characteristics are crucial factors influencing the sawlog 

assortment and cross-cutting processes (Barth and Holmgren, 2013). The wood species 

determines the range of products that can be manufactured and the potential buyers of sawn 

timber. In III, all timber was purchased by one company, although the sawlogs ended up in 

different regional sawmills. The sawmill industry generally adheres to strict standards 

regarding the size and quality of the wood it purchases. Size and quality standards vary 

between sawmills and regions, leading to differences in sawlog proportions. For pine, manual 

bucking is often used, where the harvester operator determines the lengths of the pieces, 

resulting in lower sawlog proportions and shorter sawlog lengths (Kärhä et al., 2017). 

Bucking is affected by customer requirements, and poor bucking can significantly reduce 

production value (Kärhä et al., 2017). Each of the big forest companies in Finland has their 

own price matrix, which is based on demand on the market, specific demands from the 

sawmills, processing capabilities as well as regional differences. In this work I have only 

been working with harvester data from one of these companies. Overall sawlogs are 

constantly priced higher than pulpwood, which should result with more precise bucking.   

Bucking is also affected by wood damage, and healthy spruce trees have less variation in 

quality, making the price of timber more stable. Pine, on the other hand, requires a more 

accurate quality-based bucking (i.e. un-branched stems, dead branches and green branches) 

and is divided into three categories according to branching. Manual bucking is more common 

in thinnings where smaller trees are cut. To maximize the value of sawlog production, Kärhä 

et al. (2017) recommended minimizing manual bucking for spruce and maximizing it for 

pine. 
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4.3 Future research 

 

Future research should concentrate on the refinement and identification of additional 

techniques to accurately predict tree quality using laser scanning data. Leveraging harvester 

data, which was partially incorporated in the studies of this dissertation, could play a 

significant role in addressing this challenge (Barth and Holmgren, 2013). In addition, the use 

of ALS to map biodiversity should receive more investigation. For example, large tree trunks 

on the forest floor, which are ecologically important, can be detected using ALS-data.  

Interesting topics for further research could include, for example, how to obtain more 

accurate information on the quality characteristics of stands by using remote sensing-based 

forest inventory methods. Exploration of how harvester information could be used more 

widely and in collaboration between different actors could be instigated, although it is 

recommended to have a contract between the owner and the user of the harvester data 

(Metsäteho 2020). In addition, the positioning accuracy of the harvester data could be 

improved and should be investigated (Hauglin et al. 2018). More accurate positioning of both 

the harvester and the harvester head will enable new applications, for example the use of ITD 

methods. With ITD methods and tracking, forest products can be followed in smart 

operational forestry from the stump to the mill where the wood is used (Keefe et al. 2022). 

Laser scanning technology is constantly evolving, and its benefits should be explored in 

practice. Higher pulse densities (e.g. 5 m-²) will enable further use of ITD methodologies, 

while drone inventories prior to clear-cutting can be performed even without in-situ field 

measurements (Kotivuori et al. 2020). Furthermore, new sensors placed in forest machines 

can assist the operators in various applications, such as mapping of biodiversity indicators in 

managed forests (Korhonen et al. 2024) or selection of trees to be harvested (Sagar et al. 

2024).  

 

 

5 CONCLUSIONS 
 

 

This dissertation explored advancements in remote sensing and machine vision technologies 

for forest inventories and operational forestry, providing novel information on their accuracy 

in comparison with operational harvester data. The findings from the three scientific articles 

that comprise this dissertation contribute to a broader understanding of how remote sensing-

based methods compare with traditional field-based measurements.  

Study I evaluated the accuracy of Metsään.fi forest inventory data derived from airborne 

laser scanning by comparison with operational harvester data. The study revealed that 

although the determination of the dominant tree species was accurate, the system tended to 

overestimate sawlog removals, particularly for spruce in clear-cut areas. These findings 

highlight the need for continuous refinement of remote sensing-based inventory methods to 

reduce bias and improve precision in the estimation of removals. 

Study II examined the machine vision-based application Trestima in an operational 

context and identified that an insufficient number of photographs leads to weak estimation 

accuracy. However, when the recommended minimum of ten photographs per stand were 

taken, the accuracy improved significantly. While Trestima slightly underestimated the 

volume of harvest removals, particularly for pine, it provided unbiased estimates for spruce. 

The study confirmed that Trestima can be a valuable tool for forest inventories, provided that 

best practices for data collection are closely followed. 
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Study III investigated the use of operational harvester data for the prediction of sawlog 

volumes. The results demonstrated satisfactory accuracy in the estimation of total sawlog 

volumes, particularly for spruce, with refined model-based calculations improving 

predictions for pine. The RF model showed better performance over the k-NN model in 

predicting sawlog proportions, thereby highlighting its potential for operational 

implementation. Improved sawlog assortment predictions will enhance forest management 

efficiency and resource optimisation. 

Overall, this dissertation observed the potential for remote sensing and machine vision-

based methods in modern forest inventories. While challenges remain, the findings indicate 

that novel technologies can significantly reduce reliance on field measurements. Future 

advancements in remote sensing methodologies, machine learning applications and data 

integration strategies will further enhance the accuracy and usability of forest inventory 

systems, thereby contributing to more efficient and sustainable forest management practices. 

Use of operational harvester data also has the potential to play a significant role in this 

development.  
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