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Schiestl-Aalto, P. (2017) Modelling intra- and inter-annual growth dynamics of Scots pine in the whole-
tree carbon framework. Dissertationes Forestales 234. 44 p. https://doi.org/10.14214/df.234 
 
Environmental factors have a dual effect on growth as they affect both the momentary growth 
rate (direct effect) and the rate of ontogenetic development (indirect effect). Photosynthesis 
on the other hand is the source of carbon that is needed for growth, respiration and other 
purposes. There are two opposite theories about the factor determining growth rate: 1) the 
availability of carbon for growth (source limitation) and 2) limitation that environmental 
factors cause on tissue ability to grow (sink limitation). Understanding the responses of the 
growth of tree organs (wood, needles, roots) to environmental and other factors is important 
to be able to understand the changes in tree growth and carbon balance in changing climatic 
conditions. 
 
The purpose of this study was to define the effects of temperature on Scots pine growth at 
different temporal scales and to estimate the relative importances of the source and sink 
effects on growth. For that, a dynamic growth model CASSIA (Carbon Allocation Sink 
Source InterAction) was constructed. 
 
CASSIA was able to predict daily primary and secondary wood and needle growth rate 
variation with indirect and direct effects of temperature. In addition, the temperature of warm 
previous late summer was observed to lead to enhanced length of the growth period (in 
temperature accumulation units) of shoots in the following year. Growth onset during spring 
was observed to be a continuous process determined by temperature accumulation, instead 
of momentary temperatures.  
 
Short-term growth variations in normal conditions were concluded to be sink limited because 
CASSIA was able to predict the within year growth with temperature and without direct 
effect of photosynthesis or stored carbon. On the other hand carbon source effect (gross 
primary production) was needed to produce the between year variation in growth.  
According to the results of this study, growth is limited by a complex combination of sink 
and source effects. Furthermore, environmental factors affect growth at different time scales 
varying from instantaneous effects to delayed effects from previous year(s). More research 
is needed to identify the factors determining the carbon flows to different processes. 
 
Keywords: phenology, carbon balance, dynamic modelling, growth variation, sink-source 
dynamics  
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INTRODUCTION 
 
 
Background 
 
Research on tree growth has been extensive and long-term. Woody growth can be divided 
into primary growth and secondary growth, which comprise the lengthening of shoots and 
the growth of a new annual ring, respectively. Woody growth has been of special interest 
from the point of view of production ecology (e.g. Huuskonen and Miina 2007). Previous 
studies have revealed a variety of effects of environmental and other factors on the growth 
of wood (e.g. Babst et al. 2013), leaves (e.g. Norgren and Elfving 1994) and roots (Valdés et 
al. 2006). For example, some important results of the temperature dependence of growth date 
back decades or even centuries (De Réaumur 1735, Sarvas 1972). Another intensively studied 
research field is the carbon exchange of forest stands and individual trees or tree organs. 
Carbon bound into living biomass and released from living biomass determine the carbon 
balance of the forest trees (Kolari et al. 2009). This study combines the growth processes of 
individual tree organs and analyses them from the point of view of whole-tree carbon balance. 

Environmental conditions and carbon availability as alternative factors that determine 
growth timing and intensity are under intense debate (e.g. Körner et al. 2015). The main 
objective of this study was to assess the effects of both fluctuating weather and carbon source 
on the growth of Scots pine (Pinus sylvetrsis L.) organs on different temporal scales. An 
understanding of the functionality of a whole tree that consists of individual, divergent organs 
with different responses to environmental and other factors is needed to be able to predict the 
changes in tree growth and carbon balance that occur under changing climate conditions.  
 
 
Phenology 
 
Plants in the boreal zone have a clear annual rhythm. The dormancy period in winter is 
followed by the onset of development and growth in spring. Growth, reproduction and largely 
photosynthesis occur during the active period, and these functions fall into dormancy in the 
autumn (Fig. 1). Leith (1974) defines: “Phenology is the study of the timing of recurrent 
biological events, the causes of their timing with regard to biotic and abiotic forces, and the 
interrelation among phases of the same or different species.” Timing of individual 
phenological events such as bud burst have been studied widely and for a long time 
(Linkosalo et al. 2008). Phenological events can be momentary such as bud burst or the 
opening of catkins (Sarvas 1972) or it can be continuous such as growth.  

Nowadays phenology has regained increasing interest because climate change will alter 
the driving factors of phenological events and thus the progression of the annual cycle 
(Linkosalo et al. 2000, Caffarra and Donnelly 2011). The timing of growth onset has been 
shown to be strongly temperature determined, thus it has been predicted and already observed 
to occur earlier in the year (Menzel and Fabian 1999, Peñuelas et al. 2002, Linkosalo et al. 
2009). The magnitude of this shift and changes for other phenological events are, however, 
difficult to predict because the joint effects of environmental factors on the progress of the 
annual cycle are poorly known. We must understand the real mechanisms by which 
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environmental factors affect phenology to be able to predict how trees (different species, 
different tree organs) react to the changing environment.  

 
Temperature is the most important driving factor of phenology in the boreal zone (Hari 

1972, Sarvas 1972, Chuine et al. 2010). De Réaumur (1735) observed that plants respond to 
temperatures above a certain threshold value for their development to ensue and he used this 
phenomenon as the basis for creating the temperature sum model (eq. 1), which remains the 
most used means of quantifying the effect of temperature on growth. Temperature sum is 
calculated as: 
 

𝑇𝑇𝑛𝑛𝑆𝑆 =  ∑ 𝛥𝛥𝑖𝑖𝑛𝑛
𝑖𝑖=𝑡𝑡0 ,    where      𝛥𝛥𝑖𝑖 =  � 𝑇𝑇𝑖𝑖 − 𝑇𝑇𝑡𝑡ℎ ,           𝑇𝑇𝑖𝑖 ≥ 𝑇𝑇𝑡𝑡ℎ

0,                        𝑇𝑇𝑖𝑖 < 𝑇𝑇𝑡𝑡ℎ    (1) 

 
where Ti is the temperature at day or hour i, t0 is the starting time of temperature sum 
accumulation (for example the beginning of year or the vernal equinox) and Tth is a threshold 
temperature parameter. Temperature is also the key factor for spring recovery of 
photosynthesis in the boreal zone (Suni et al. 2003), although Böttcher et al. (2014) observed 
that the timing of photosynthetic recovery has a stronger correlation with the timing of snow 
melt than with air temperature alone. However, snow melt is also controlled by temperature.  

In addition to temperature, e.g. light as measured by either day or night length (Koski and 
Sievänen 1985, Caffarra and Donnelly 2011) and water availability (Peñuelas et al. 2002, 
Laube et al. 2014) have been shown to affect the timing of phenological events.  

More generally, the concept of “ontogenetic stage of development” is one way to describe 
the occurrence of phenological events and processes. The stage of development describes the 
position of the observation object (e.g. a tree) within the annual cycle (Fig. 1). Temperature 

Figure 1. The annual cycle. Ontogenetic development takes place throughout the year, even 
before visible growth reactions. The red lines in the active period represent the growth periods 
of different organs or active periods of processes the length of which differs from the whole 
active period. The green colour depicts the activity of growth and other processes in the tree. 
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and other environmental factors are the driving factors for the progression of stage of 
development, s. The calculation is initiated at either the beginning of the year or e.g. at vernal 
equinox, after which stage of development proceeds as: 
 

d𝑠𝑠
d𝑡𝑡

= 𝑟𝑟(𝐸𝐸(𝑡𝑡))    (2) 

 
where r is the rate of the progress of the stage of development that depends on environmental 
factors (E(t)). For example, with the temperature sum model 𝑟𝑟(𝐸𝐸(𝑡𝑡)) ∝ 𝛥𝛥𝑖𝑖 (eqs 1 and 2). A 
comprehensive introduction to the different models of ontogenetic stage of development is 
available in Hari and Häkkinen (1991) and Hänninen and Kramer (2007). These models have 
been used in various fields of phenological studies such as spring phenology and bud break, 
shoot growth, leafing-out and autumn dormancy (Chuine et al. 2006, Linkosalo et al. 2008, 
Polgar et al. 2011).  
 
 
Dependence of growth on phenology and environmental factors 
 
Growth occurs during the active period of the annual cycle. However, the growth period does 
not necessarily last for the whole active period and growth can cease significantly earlier than 
e.g. the photosynthetically active period (Fig. 1). The timing and the rates of growth of 
different parts of a tree in relation to each other can also differ under different environmental 
conditions.  An individual active period, “growing season” can be defined for each organ. 
 

The effect of environmental factors (especially temperature) on growth is twofold. First, 
environmental factors drive phenology i.e. the stage of development and thus both the onset 
of the growth period and, in some cases, the duration of the growth period. This is the indirect 
effect of environmental factors on growth. Second, environmental factors have a direct 

Figure 2. Linear, exponential 1 (light red), as suggested for maturation by Hari et al. (1977), 
exponential 2 (dark red), as suggested for growth by Kanninen et al. (1982), and sigmoid 
(Sarvas 1972) temperature response curves of maturation and growth. 
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(instantaneous) effect on growth. Growth rate has been assumed to depend linearly (eq. 1), 
exponentially (Hari et al. 1977) or sigmoidially (Sarvas 1974, Hänninen 1990, Kramer 1994) 
on temperature with a time lag of a few hours (Hari et al. 1977). The responses are similar 
when temperature values are above 10°C, whereas the differences at low temperatures are 
large (Fig. 2). 

Growth typically occurs in such a way that growth is slow at the beginning and at the end 
of the growing period, whereas in the middle of the period, growth is fast. For example shoot 
growth has been noted to follow a sine-shaped growth pattern when temperature is constant 
(Oleksyn et al. 2001, Chuine et al. 2006). The daily variation of environmental factors 
induces variation to this sine-shaped rhythm (Fig. 3).  

Scots pine shoots have been observed to follow a predetermined growth habit, which 
suggests that the final length of yearly shoot growth depends on the environmental factors of 
the preceding year, when the bud that contains all the needle fascicles is formed (Mäkinen 
1998, Salminen and Jalkanen 2005). At high latitudes, the length of the growth period of a 
Scots pine shoot in temperature sum units is rather constant (Salminen and Jalkanen 2007). 
Thus, the length of the growth period in time units depends on temperature in such a way, 
that at high temperature growth ceases earlier than at low temperature. The momentary 
growth rate increases with temperature, therefore the final length of a shoot does not depend 
much on the temperature during the elongation period.  

New xylem is formed as cells of the cambium divide into xylem mother cells, which 
further divide into xylem daughter cells (Plomion et al. 2001). Development of the daughter 
cells includes the phases of cell expansion and growth of secondary wall before maturity. 
The division and cell expansion determine diameter growth, whereas growth of secondary 
wall determines biomass growth (Antonova and Stasova 1993).  

The environmental factors and their combinations that affect growth directly or indirectly 
are species- and organ-specific. For example, contrary to shoot growth ring width is mostly 
affected by the environmental factors of the current growing season (Korpela et al. 2011, 
Babst et al. 2013). The inference of this phenomenon is that the length of this secondary 

Figure 3. Modelled daily shoot growth in relation to stage of development (s) with constant 
temperature (black) and measured (varying) temperature (red, temperature is measured at 
SMEARII station in 2003). 
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growth period of Scots pine in temperature sum units increases with more favourable 
environmental conditions. More generally this can be expressed as the stage of development 
units in which also other environmental factors can also be accounted for. Thus, the effect of 
phenology on secondary growth is divergent from that of shoots. Further, in contrast to Scots 
pine, the cessation of silver birch (Betula pendula Roth) shoot growth has been observed to 
depend on the combination of temperature sum and night length (Koski and Sievänen 1985).   

Usually momentary growth is understood to depend on air temperature, but it is 
noteworthy that growth actually is affected by meristem temperature rather than air 
temperature (James et al. 1994). Correspondingly, Gričar et al. (2007) observed that the rate 
of cell division increased in the cambium of a heated stem and decreased in a cooled stem 
compared to controls.  

Besides temperature, the availability of water is globally a significant factor that affects 
growth (Mina et al. 2016). In the northern humid climate, temperature has been the most 
important factor that restricts growth. However, if summer precipitation does not 
significantly increase simultaneously with higher temperature (IPCC 2013), enhanced 
transpiration induces more frequent and intensive drought periods. Drought affects growth 
indirectly via reduced photosynthetic production due to reduced stomatal opening and thus 
reduced carbon assimilation and also non-stomatal factors such as lower carboxylation 
capacity (Lansberg and Waring 1997, Zhou et al. 2013). Water availability has also a direct 
effect especially on secondary growth via turgor pressure, which drives cell enlargement 
(Hölttä et al. 2010, Nikinmaa et al. 2014) and via cambial activity, which is decreased under 
drought conditions (Deslauriers et al. 2016). Low levels of soil moisture also decrease or 
inhibit root growth (Bowen 1970, Valdés et al. 2006).  
 
 
Carbon balance of a tree  
 
Carbon balance of a tree consists of the following processes: consists of (1) carbon gain in 
photosynthesis, (2) carbon release due to energy expenditure on vital functions or growth 
(respiration), senescence of foliage, branches and roots, as well as for example seed 
production, volatile organic compound (VOC) synthesis and root exudates and (3) bound 
carbon that can be divided into structural carbon (growth) and non-structural carbon storage 
(NSC) that can be used for balancing the short-term differences between carbon assimilation 
and consumption (Fig. 4). The rate of photosynthesis is affected by the amount of 
photosynthetically active radiation, the temperature, carbon dioxide level and water 
availability (moisture in the root zone in addition to the atmosphere vapour pressure deficit) 
(Mäkelä et al. 2008). As noted above, growth is species- and organ specifically affected by a 
variety of environmental factors at different temporal scales. Growth respiration is 
proportional to the rate of growth and thus its timing is concurrent with the timing of growth 
(Penning de Vries 1974). In contrast, metabolism and therefore maintenance respiration are 
active throughout the year. Plant metabolism is highly temperature dependent, which leads 
to a strong short-term correlation between maintenance respiration and air temperature 
(Kolari et al. 2009). The rate of maintenance respiration is thus significantly lower but 
nevertheless positive during winter. Hence, the enhancing and restricting environmental 
factors of photosynthesis and carbon consuming processes are not the same and the carbon 
gain in photosynthesis and carbon loss in consumption differ with respect to timing or rate.  
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Although over short timescales carbon assimilation and consumption as well as growth 

of different tree organs may be decoupled, maintaining on one hand a balance between 
resources and use and on the other hand a functional balance between tree organs is important 
for tree survival and optimal development. The idea of the “pipe model”, was originally 
introduced by Shinozaki et al. (1964a,b) and later used and specified by a multitude of 
researchers (e.g. Mäkelä and Valentine 2006, Schneider et al. 2011, Gehring et al. 2015). The 
pipe model suggests a constant (site-, species- etc. specific) ratio between leaves, sapwood 
and roots. Correspondingly, the ratio between respiration and photosynthesis is found to be 
nearly constant on longer timescales (Gifford 2003). Thus, over a medium time scale (years) 
the carbon fluxes or growth of different organs have to be related to each other and therefore, 
there have to be mechanisms that allow the tree to maintain a balance between these 
components.  

In addition to the above-discussed environmental factors, nutrient availability especially 
that of nitrogen have a great effect on carbon balance (Ryan 2013). Nitrogen enhances both 

Figure 4. Components of carbon balance of a tree. Carbon gain (green arrow) and loss 
(blue arrows) and environmental factors (in Italics). 
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photosynthesis (Roberntz 2001) and growth (Sigurdsson et al. 2013) and is one of the most 
limiting long-scale factors for growth in the boreal zone (Tamm 1991). Optimal nitrogen 
treatment may increase growth many-fold compared to controls (Bergh et al. 1999). 
However, the nitrogen availability is a rather stable variable and thus it does not cause any 
short term changes in the carbon balance.   

 
 

Sink and source theories 
 
A carbon source by definition produces carbon in the phloem and a carbon sink carbon from 
the phloem (Clifford 1992, Lacointe 2000). The flux of carbon from source to sink is 
determined by relative source strength and sink strength and their spatial distance (Sievänen 
et al. 2000). Source limitation theory assumes that tree growth is limited by carbon 
availability and thus the photosynthetic efficiency determines the rate of growth (Wiley and 
Helliker 2012). All carbon produced by photosynthesis is actively used for carbon limited 
processes. The ratio of gross primary production (GPP) to (aboveground) growth has been 
reported to be nearly constant across site types and age classes in boreal forests (Zha et al. 
2013).  An implication of this finding is that most of the terrestrial biosphere models and the 
dynamic global vegetation models are based on source limitation theory (see Leuzinger et al. 
2013, Guillemot et al. 2015). 

Sink limitation theory is based on the assumption that carbon use for growth and other 
purposes is limited by sink strength which describes the ability of a sink to pull carbon from 
the phloem (Marcelis 1996). Sink strength is a combination of the capacity and activity of 
the sink (Clifford 1992), which are determined by environmental factors and the inherent 
state of the plant. Photosynthesis and/or NSC storages are sufficient to cover the demand 
created by the sinks. The significance of storage as a carbon buffer is emphasized in sink 
limitation theory (Hoch and Körner 2012). Thus, carbon availability does not limit growth in 
any situation but growth is limited by shortage of warmth, moisture or nutrients (Körner 
2015).  

The observation that photosynthesis is still active at significantly lower temperatures than 
temperatures required for growth is used as evidence that supports the sink limitation theory 
(Palacio et al. 2014). Delpierre et al. (2016b) observed a growth decrease with high vapour 
pressure deficit (VPD) even though GPP was not decreased. NSC storages are reported to 
increase or to stay at the same level with increasing elevation (decreasing temperature), which 
is assumed to be a consequence of growth limitation by temperature and thus carbon surplus 
(Piper et al. 2006, Hoch and Körner 2012, Simard et al. 2013). Petit et al. (2011) observed 
that heating of Norway spruce (Picea abies (L.) Karst.) buds enhanced the shoot length 
growth at high altitudes but not at low altitudes, which was interpreted as a temperature 
limitation at the colder high altitude site. Increased nutrition has been shown to have a strong 
positive effect on growth (e.g. Susiluoto et al. 2010). Furthermore, photosynthesis has been 
shown to increase with increasing CO2 levels and temperature (Uddling and Wallin 2012, 
Wallin et al. 2013). In spite of increased photosynthesis additional nitrogen is needed to 
achieve a positive response of growth for elevated CO2 and temperature levels (Sigurdsson 
et al. 2013). Leuzinger et al. (2013) succeeded in improving the biomass estimation of a 
dynamic global vegetation model by estimating tree growth with a sink-limited instead of 
source-limited model. These results suggest growth limitation that is not regulated by carbon 
deficiency.  
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The same environmental factors, which according to the sink-limitation theory are 
assumed to limit growth (or other consumption) directly also limit photosynthesis (Guillemot 
et al. 2015). Therefore, separating the effects of source and sink strength is not 
straightforward. Most of the evidence used for supporting either one of the limitation theories 
is equivocal and can also be countered by contradictory interpretations. Wiley and Helliker 
(2012) proposed that large storage by high elevation trees are not necessarily a sign of carbon 
surplus but rather a survival strategy for preventing carbon starvation. Therefore, increasing 
NSC storage could alternatively indicate a scarcity of carbon for growth. Several studies 
propose a combined effect of sink and source limitations or find no clear signs supporting 
only one of the two hypotheses (e.g. Gruber et al. 2011, Guillemot et al. 2015, Takahashi and 
Furuhata 2016).  

 
 

Combining phenology and carbon flows 
 
As stated above, the amount of carbon used for the growth of a tree (per day or per year) is 
defined by either the amount of photosynthetised carbon or the growth sink strenght. 
Allocation patterns determine how assimilated carbon is distributed amongst the tree organs. 
According to Lacointe (2000) carbon partitioning has been defined by the following 
approaches: (1) constant allocation parameters, (2) the maintenance of optimal tree structure, 
(3) transport-resistance models or (4) defining the relative sink strengths of tree organs. The 
assumptions that underlie these approaches vary. The applicability of any one of these 
methods in carbon allocation modelling is, however, questionable in a changing environment 
(Franklin et al. 2012, Mäkelä 2012).  

On short timescales (days) it seems that growth of at least some tree organs of some tree 
species can be adequately described with the effect of temperature only (Hari et al. 1970). 
There are also between-year delays in environmental factors that affect growth such as bud 
development and shoot growth (Salminen and Jalkanen 2007). In addition, we know that a 
sink and source must be balanced over a longer time scale (years) in such a way that the 
carbon storages neither become depleted nor increase infinitely and that there remains a 
functional balance between tree organs (Mäkelä and Valentine 2006). Therefore, we can 
assume that a description of a combination of allocation patterns is needed. We must be able 
to describe the direct and indirect effects of environmental factors both on growth and 
photosynthetic production and determine which one of these limits growth over different 
temporal scales to be able to predict how the timing and amount of carbon production and 
usage respond to changes in environmental factors. Especially if stress conditions, such as 
drought, become more prevalent and severe the relative importance between the sink and 
source limitations as growth limiting factors may change.  

A further question remains as to how the timings of the growth periods of different organs 
will change. As growth onset occurs earlier, the risk of spring frost damage may increase in 
spite of the higher mean temperatures (Linkosalo et al. 2000). Moreover, the timing of growth 
cessation is determined by different factors than growth onset and thus the change in the 
length of the growth period is not easy to predict (Way 2011). Under current conditions 
growth of most of the tree organs does not occur throughout the entire growing season (e.g. 
Hari et al. 1970, Huang et al. 2014). The mechanisms by which the lengthened period of 
favourable environmental conditions can or cannot be utilized is therefore of great 
significance to the carbon balance of the boreal forests.  
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Objectives 
 
The aim of this study was 1) to assess the influence of temperature on the growth of Scots 
pine and 2) to gain insights into the interaction between the carbon consumption for the 
different growth events and the whole tree carbon balance. The main tasks were: 
 

- Quantifying the effect of temperature on the timing of growth onset, and growth 
cessation and on the rate of growth during the growth period (I-III) 

- Investigating the interrelations of the growth dynamics of different tree organs (II, 
III) 

- Estimating the importance of carbon source and sink effects on growth timing and 
rate and on the carbon balance of a tree (II)  
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MATERIALS AND METHODS 
 
 
Study sites 
 
The measurements were conducted at SMEAR II station (Hari and Kulmala 2005), which is 
a Scots pine stand that was sown in 1962. The site is located in boreal zone, southern Finland 
(61.52 N, 24.17 E), it is medium fertile, and is classified as Vaccinium forest site type 
(Cajander 1926). The dominant tree height was reported as 14.5 m in 2001 and the basal area 
24.3 m2 ha-1 before and 17.9 m2 ha-1 after thinning in 2002. The mean annual temperature is 
+3.5 °C and rainfall is 711 mm (calculated for the 1980-2009 period, Pirinen et al. 2012). 
The monthly mean temperatures vary from -7.7 °C (February) to 16.0 °C (July).  

In order to study the detailed growth dynamics of shoots and needles, measurements were 
conducted nearby SMEAR II –station at Scots pine sapling stands 1 (I and III) and 2 (III), 
with 1400 and 2600 trees ha-1, respectively. The mean ages of the stands were 6 years 
(Sapling 1, I) and 11 years (Saplings 1 and 2, III) and mean heights 2.0 m (Sapling 1, I), 5.0 
m (Sapling 1, III) and 3.6 m (Sapling 2, III) at the beginning of the study periods. 

 
 

Measurements  
 
Environmental factors 
 
Mean daily air temperature (Ta, °C) and total daily precipitation (mm) were calculated from 
values measured every minute at the height of 16.8 m. Soil water content (m3 m-3) was 
measured by time domain reflectometry (Ilvesniemi et al. 2010) and soil temperature (°C) of 
the B horizon (5-23 cm below the soil surface) at 15 minute time resolution.  
 
 
NEE, GPP and respiration 
 
Net ecosystem exchange of carbon (NEE, μmol m-2 s-1) was measured by the closed-path 
eddy-covariance method at one minute intervals after which it was decoupled to gross 
primary production (GPP) and total ecosystem respiration (TER, μmol m-2 s-1). The 
dependency of TER on soil temperature was derived from night time NEE measurements. 
Day-time NEE was partitioned into GPP and TER using the obtained temperature 
dependency. Instrument documentation is described by Vesala et al. (2005) and data 
processing by Kolari et al. (2009). 

 
 

Growth 
 
The length growth of new shoots and needles was measured by digital caliper or later with a 
ruler (for shoots) in order to determine the within-year dynamics of growth and short-term 
responses of growth to environmental factors (I, II, III, Table 1).  
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Table 1. Details of the measurements taken for studies I, II and III. 
  I  II  III 
Years 2002-2009 1997-2012 2012, 2014-

2015 
Study period Growing season Growing season March-June 
Study sites SMEAR II, Sapling 

1 SMEAR II Saplings 1 and 2 

Temperature, ºC x x x 
GPP μmol m-2 s-1,   x  
Soil water content, m3m-3  x  
Shoot length, mm x x (2002-2012) x 
Needle length, mm  x (2003-2012) x 
Xylogenesis, nr cells  x  
Nr of shoots or needles / 
sampling date 13-34 13-33 5 

 
 

 
For measuring the number of cells in each phase of xylem formation, microcore samples 
were taken 1-2 times/week from four trees during growing seasons of the 2007-2010 period. 
For a detailed description of the method and laboratory analyses see Kalliokoski et al. (2012) 
and Jyske et al. (2014).  

The yearly stem elongation of seven trees and the radial increment of 14 trees were 
measured and used for studying the between-year variation in growth. The measurements 
cover years 1997-2012 for stem elongation and 1997-2011 for radial increment (II).  
 
 
Model 
 
Basis 
 
A model called CASSIA (Carbon Allocation Sink Source InterAction, II) was developed for 
examining which environmental or inherent factors affect the carbon balance of a tree at 
different timescales. The model was used especially to determine which one is the main 
driving mechanism for carbon allocation, source or sink. The model consists of different 
pools and fluxes of carbon in a tree. It calculates with a daily time step the amount of carbon 
that is released through respiration, bound to growing tissues or stored as nonstructural 
carbon using air and soil temperature, soil moisture and photosynthesis (Fig. 5). A lighter 
version of the model was used to determine the daily growth rates for shoots (I) and for 
needles (III) without the whole tree carbon balance. 
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Figure 5. Model structure. State variables are shown in green rectangles and carbon flows 
are depicted by black arrows. Environmental factors are depicted by brown circles and 
inherent variables by blue diamonds. The red and blue arrows indicate source and sink effect, 
respectively. Coloured areas with roman numbers refer to contents studied in papers I, II and 
III. 
 
 
Phenology and momentary growth  
 
Modelling the phenology (stage of development, eq. 2) and the short term temperature 
response of organ growth were based on a growth model introduced by Pietarinen et al. 
(1982). Following the method described by Sarvas (1972), the dependence of growth and 
progress of the stage of development on temperature was given by: 
 

d𝑠𝑠
d𝑡𝑡

= 𝑔𝑔(𝑡𝑡) = �
0, 𝑇𝑇𝑎𝑎(𝑡𝑡) < 0

1
1+𝑒𝑒−𝛼𝛼(𝑇𝑇−𝛽𝛽) , 𝑇𝑇𝑎𝑎(𝑡𝑡) ≥ 0   (3) 

 
where 𝑔𝑔(𝑡𝑡)𝜖𝜖[0,1].  

The dependence of growth on phenology, (𝑓𝑓𝑖𝑖𝜖𝜖[0,1]), was described with a sine function 
(Fig. 3) or an asymmetric function depending on organ such that 𝑓𝑓𝑖𝑖 > 0 𝑤𝑤ℎ𝑒𝑒𝑒𝑒 0 < 𝑠𝑠𝑖𝑖 < 𝑠𝑠𝑖𝑖𝑐𝑐 , 
where i is N, S, D, R for needles, primary wood, secondary wood and roots, respectively and 
𝑠𝑠𝑖𝑖𝑐𝑐 is the parameter that determines growth cessation in stage of development units. In the 
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beginning of the year, 𝑠𝑠𝑖𝑖(𝑡𝑡 = 0) = 𝑠𝑠𝑖𝑖0 ≤ 0. Thus growth begins when the stage of 
development (s) has accumulated from 𝑠𝑠𝑖𝑖0 to 0. 

Dimensional growth (mm, i = N, S), the number of new cells (nr, i = D) and mass growth 
of roots (kg C, i = R) was calculated as: 

d𝑥𝑥𝑖𝑖(𝑡𝑡)
d𝑡𝑡

= 𝑔𝑔(𝑡𝑡)𝑓𝑓𝑖𝑖�𝑠𝑠𝑖𝑖(𝑡𝑡)�𝐿𝐿𝑖𝑖    (4) 
where Li is a maximum growth parameter (i = N, S: mm day-1, i = D: nr of cells day-1, i = R: 
kg C day-1) which depends on GPP of the previous (i = N, S) or the ongoing (i = D) year. For 
roots L was assumed to be constant. Maximum growth was then reduced by suboptimal 
temperature or the effect of phenology. 
 
 
Combining growth functions with carbon flows (II) 
 
Carbon that was used for growth of needles was calculated as a constant amount of carbon 
per needle length unit. The number of new needles was assumed to depend on the 
environmental conditions during the period of bud formation (previous July-August). The 
carbon consumption for primary growth was calculated as a function of shoot length growth 
and initial basal area with a form factor and a density parameter.   

In xylogenesis modelling, the new tracheids that are formed go through the phases of cell 
enlargement and cell wall thickening and end in maturity. Xylogenesis of one tracheid row 
was modelled and then generalized for the whole tree by using the mean tracheid size. Carbon 
is used for maintaining turgor pressure that is needed for cell enlargement and for cell wall 
thickening as a constant amount of carbon on each day that the tracheid stays in the cell 
formation phase. The carbon used for cell enlargement is released after the tracheid has 
reached its final size. The duration of the phases were assumed to be constant.  

The above described step of the dimensional growth model is sink-based i.e. source does 
not limit growth. The “potential growth rate” (𝐺𝐺𝑃𝑃𝑃𝑃𝑃𝑃(𝑡𝑡)) is thereafter reduced by the term 𝑘𝑘(𝑡𝑡) 
(𝜖𝜖[0,1]) when the carbon source (stored carbon) falls below a critical level. Thus, the 
actualized growth, G, is: 
 

𝐺𝐺(𝑡𝑡) = 𝑘𝑘(𝑡𝑡)𝐺𝐺𝑃𝑃𝑃𝑃𝑃𝑃(𝑡𝑡)    (5) 

 
The change in the carbon storage was calculated as:  
 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑡𝑡

= 𝑃𝑃(𝑡𝑡) − 𝑅𝑅𝑀𝑀(𝑡𝑡) − 𝐺𝐺(𝑡𝑡) − 𝑅𝑅𝐺𝐺(𝑡𝑡)   (6) 

 
where P(t) is photosynthesis (measured as GPP), RM(t) maintenance respiration and RG(t) 
growth respiration. Growth respiration was assumed to be proportional to growth with organ-
specific parameters (Penning deVries 1974). Maintenance respiration was calculated for each 
fraction i with the biomass of the fraction and temperature as explanatory factors. 
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Use of the measurement data  
 
Model parametrization  
 
The parameters Ls, 𝑠𝑠𝑠𝑠𝑐𝑐 and Hs0 used in the shoot growth study were estimated first for the 
mean shoot length growth of each year as the mean length of all the shoots on each 
measurement day, and second for each shoot separately. 

The parameters of the primary growth model in CASSIA (II) were estimated using the 
data for the year 2008 and parameters of secondary and needle growth model with the data 
obtained for the year 2009. The years were chosen according to the coverage of the 
measurement data. The parameters were estimated using the assumption that there is no short-
term source limitation in growth (i.e., k = 1, eq. 5). Parameters Li (i = N, S, D) were estimated 
using GPP values of either current (i = D) or previous (i = N, S) summer to evaluate the 
limiting effect of source at a longer time-scale.  

In the needle growth study, the needle length model was revised and parameters LN, 𝑠𝑠𝑁𝑁0  
and 𝑠𝑠𝑁𝑁𝑐𝑐  were estimated for the study years separately.  

The parameter estimation was done by using the Excel Solver-tool (GRG Nonlinear 
solving method in SOLVER analysis tool; Microsoft Corporation, Redmond WA, USA) by 
minimizing the sum of squared residuals between the measured and predicted values. 
 
 
Statistical analyses  
 
The goodness of fit used in the shoot growth model (I) was evaluated by calculating the 
degree of determination (R2), the root mean square error (RMSE) and bias for the length 
(total accumulated length on each measurement day) and growth of the shoot. Regression 
models were used for studying: 

1) The relationship between the value of stage of development at growth cessation (𝑠𝑠𝑆𝑆𝑐𝑐) 
and the value of maximum growth rate Ls and 

2) The relationship between 𝑠𝑠𝑆𝑆𝑐𝑐 and the temperature during bud formation (July–
August period of the preceding year) 
 

The calculations were carried out with R (lmer routine, R Development Core Team, 
2013). P-values, deviance and Akaike´s Information Criteria (AIC) were used for evaluation 
and comparisons of the regressions. 

A linear mixed model was formed between the needle and shoot length growth during the 
early growing season for the needle growth model (III). Further, two types of methods were 
used to evaluate the lower threshold of temperature for development progression during 
spring time. First, a method introduced by Rossi et al. (2007) was used whereby the timing 
of growth onset is assumed to follow momentary temperatures. Second, following Sutinen et 
al. (2012) temperature sum accumulation was compared to early growth of needles with 
various combinations of beginning dates, time steps and threshold temperatures of the 
temperature sum calculation. The analyses were carried out using R (R Development Core 
Team, 2015). 
  



21 
 

 
 
RESULTS 
 
 
The effect of temperature on the timing and rate of growth   
 
The timing of growth onset depended on temperature and specifically on temperature 
accumulation (defined e.g. as temperature sum or stage of development) rather than 
momentary temperatures (III). Growth onset was predicted to a satisfying level of accuracy 
for different years with a constant parameter of stage of development (II).  

Growth cessation of shoots similarly followed temperature accumulation. However, 
growth cessation in temperature accumulation (stage of development) units was correlated 
with the temperature of the July – August period of the preceding year, which is the time 
when the new buds that are to grow in the following year are formed (I). If the preceding 
summer was warm the shoots grew for a longer period in the following year than they would 
if there had been a cold time of bud formation (Fig. 6).  

Furthermore, temperature has a direct (instantaneous) effect on growth rate during the 
growing season. The model succeeded in explaining the daily growth variations with the 
direct effect of temperature and stage of development (as depicted in Fig. 3, I, II). The short-
term temperature dependence was especially evident in shoot and needle growth due to more 
frequent measurement intervals compared with secondary growth. Growth was slow at the 
beginning and also at the end of the growth period but fast during the middle (phenology). 
However, the growth curve was uneven rather than smooth due to the day-to-day fluctuations 
of the direct temperature effect (Fig. 3).  

 

 

 

 

 
 

Figure 6. Temperatures during the bud 
formation period of July-August period 
of the preceding year and the values of 
a year effect in a regression between 
the length of the growth period and 
shoot length (regression 1 in I). The 
outlier year (demarked with a red circle) 
is the year 2007 that followed a severe 
drought period in July-August 2006 that 
had probably hindered bud formation. 
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Interrelations of the growth dynamics of different tree organs 
 
Originally needle growth had been defined to begin after shoot growth onset (II). However, 
in the detailed study of the early growth period, needle and shoot growth onset were observed 
to occur almost simultaneously (III, Fig. 7).  

The relative progress of shoot growth was more rapid after onset compared to that of 
needle growth because the growth period of shoots was shorter than that of needles (Fig. 8). 
Secondary growth onset (new tracheids in the enlargement zone) occurred after the onset of 
needle and shoot growth  and the secondary growth continued until September when all cells 
had finalized cell wall formation and become mature cells) (II). Root growth is slow in the 
spring because of low soil temperatures and lasts until late autumn if moisture condition is 
favourable. 

 
 

Source and sink effects on growth timing and intensity and on the carbon balance of a 
tree  
 
The amount of assimilated carbon was 24% higher in the year with the highest GPP (2013) 
than with the lowest GPP (1999). Photosynthesis was higher than the total carbon 
consumption in 10 out of 16 years. On average 48% (42–55%) of the photosynthesis 
production was released by maintenance respiration and 12% (11–14%) for growth 
respiration. Roots and secondary wood were the organs with largest carbon consumption for 
growth (Fig. 9)   

Figure 7. The relationship between the relative length of shoots and needles during the 
early growth period and the regression lines produced in a linear mixed model. 
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Figure 8. Timing of the growth 
periods of secondary wood (D), 
primary wood (S), needles (N) and 
roots (R) according to model 
results for the days of the year of 
2008. Needle growth rhythm is 
modelled as a sine function (see III) 
and other tree parts as in II. DOY 
stands for day of the year. 

 

 

 

Figure 9. The components of carbon balance (II). Photosynthesis (P) is a source of carbon 
whereas RM (maintenance respiration), RG (growth respiration) and the growing organs are 
carbon sinks. 
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The model was able to predict within-year growth by modelling sink strength without 
source limitation (I and II with the assumption that storage parameter k = 1), thus it seems 
that the intra-annual variations in growth timing and intensity were caused by the sink effect 
(Figs 10, 11). On the other hand, a source effect (mainly parameter Li, eq. 4) was needed for 
inducing the observed between-year variations of needle, primary and secondary growth (II, 
Fig. 12). These results indicate a combination effect of sink and source limitations on growth. 

 

 

Figure 10. Measured and predicted shoot length (A) and needle length (B). The black line 
represents 1:1 and the black dots the year used for parameter estimation. 

 

Figure 11. Actual measured (open dots) and predicted (lines) data indicate the numbers of 
enlarging, wall forming and mature tracheids (blue, red and black, respectively). DOY stands 
for day of the year for the years 2007, 2008 and 2010. 
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Figure 12. Measured and modelled inter-annual variation of ring width and shoot and needle 
length during the 1997-2012 period. Model (normal) is as found in model description (CASSIA, 
II). In model (alternative) shoot length depends on temperatures of the preceding year and 
needle length depends on the temperatures of the current year (instead of GPP of the 
preceding year). 

 
 

Carbon assimilation and consumption are not concurrent processes throughout the year. 
Whereas carbon assimilation exceeds the consumption of carbon for growth and respiration 
during early spring and late summer, carbon consumption is larger than its assimilation 
during midsummer’s intense growth period and from late autumn to early spring due to 
restricted photosynthesis (II, Fig. 13). 
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Figure 13. Photosynthesis (P), carbon consumption for growth (G), total carbon consumption 
(tot C) and stored C (storage) in year 2010. DOY stands for day of the year. 
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DISCUSSION 
 
 
The effect of temperature on the timing and rate of growth  
 
The results of this study indicate that lower temperatures than the previously reported 3-10 
ºC range in tissue development generally (Körner 1998) or the 5.6-8.5 ºC range for the 
activity of xylogenesis (Rossi et al. 2007, 2008, Deslauriers et al. 2008) are sufficient for 
development progression to occur (III). Kanninen et al. (1982) used different temperature 
responses for describing ontogenetic development and growth. Their idea is parallel to the 
“chilling days” and “forcing days” concepts that were introduced by Cannel and Smith (1983) 
and used by e.g. Linkosalo et al. (2008) and Viherä-Aarnio et al. (2014). This kind of 
approach could improve the reliability of growth onset prediction in the CASSIA model. The 
results of this present study and the results reported in the studies cited above suggest that 
the onset of growth occurs as a continuous process that is determined by temperature 
accumulation during spring. In regions with highly varying spring temperatures, the onset of 
growth cannot be determined from momentary temperatures (III).  

The predicted responses of growth to temperature differ in different models especially at 
low temperatures (see Fig. 2 and the related references). This may introduce a significant bias 
in modelling the growth onset when temperatures stay low for a long period. Jyske et al. 
(2014) observed that the temperature sum (with threshold temperature +5 °C) needed for 
secondary growth onset varies largely between study sites (environmental conditions) and 
years, which indicates that a temperature sum model alone is too simple a model for 
describing growth onset in different locations or habitats. In this study, however, CASSIA 
predicted the onset of needle, primary, and secondary growth during the measurement years 
to a satisfying level using the simple temperature response model. Day length was implicitly 
taken into account as the calculation of the temperature accumulation (s) was initiated from 
March 20 (DOY = 79) for secondary growth (II).  

The effect of temperature and other environmental factors on growth cessation is even 
more complex and unclear than their effect on the onset of growth (Olsen 2010). In this study, 
the growth of new shoots and also in some years the growth of needles had already ceased  
before the warmest period of the year and  long before low autumn temperatures were 
encountered. The CASSIA model managed to predict shoot growth cessation based on the 
temperature sum (I, II). The cessation of needle and tracheid growth during the measurement 
years was also successfully predicted by the CASSIA model. However, day length and water 
availability have also been reported to affect the timing of growth cessation (Wareing 1956, 
Koski and Sievänen 1985, Hänninen et al. 1990, Ziaco and Biondi 2016) and especially 
autumn senescence and the fall into dormancy (Way 2011). The determination of the 
cessation of growth is species-specific (Koski and Sievänen 1985, Rhode et al. 2011) and 
organ-specific as the driving factors for e.g. shoot growth and root growth as well as the 
length of their growth periods differ significantly (Fig. 8).  

Environmental control of growth is thus complex because 1) the effects are process- and 
organ-specific but the processes and organs are, nevertheless, related to each other as 
discussed above and 2) they exert effects at multiple time scales. First, temperature has an 
instantaneous effect, which produces the day-to-day variation in growth (g(t) in eq. 4, Fig. 
3). Second, environmental factors drive the phenology which can be described as temperature 
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(or other factor) accumulation during the whole non-dormancy period (Sarvas 1972, fi(si(t)) 
in eq. 4). Third, environmental factors have delayed effects at various time scales. The 
delayed effect is most obvious for shoot growth, where the first part of the growth (bud 
formation) occurs in one year and the second (shoot elongation) in the next year, partly 
determined by the first year. Delayed effects have also been reported for secondary growth 
(Vaganov et al. 2009, Korpela et al. 2011, Babst et al. 2013).  

Throughout a year, photosynthetic production and temperature are related to each other 
and therefore it can be stated that GPP could explain the short term growth variations as well 
as temperature. This possibility was considered while structuring the model. The correlation 
between temperature and GPP was, however, rather weak during the growth period and the 
relationship between growth and GPP weak compared to relationship between growth and 
temperature (Fig. 14). 

Along with climate change, either the timing of growth onset or its cessation or both are 
predicted to move earlier or later (Menzel and Fabian. 1999, Way et al. 2011). Consequently, 
if the change is not similar for both, then the length of the growth period(s) will change. 
Growth cessation of many tree species with a predetermined growing habit occur at a certain 
stage of temperature accumulation (Sarvas 1972, Salminen and Jalkanen 2007), thus 
acclimatization or adaptation is needed to efficiently exploit the longer growing seasons 
(periods with favourable temperatures). In study I, the high temperatures encountered in late 
summer led to later growth cessation of shoot growth (in thermal time units) in the following 
summer, which is one mechanism of utilizing longer growing seasons. Furthermore, high 
autumn temperatures have resulted in later bud burst in the following spring with Betula and 
Alnus species, which could counterbalance the effect of warm springs that hasten bud burst 
(Heide 2003). 

 

 

Figure 14. A) The relationship between daily average temperature and daily GPP during 
the shoot growth period (1.5.-15.6.) of two years. Squares represent year 2002 and circles 
year 2008. R22002 = 0.42. R22008 = 0.22. B) The relationship between measured growth and 
temperature (filled symbols) or GPP (open symbols) during the latter half of May, when 
the effect of phenology on shoot growth can be considered rather stable. Years as in (A). 
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Interrelations of the growth dynamics of different tree organs 
 
Shoot growth phenology is easy to observe, therefore it would be convenient to be able to 
relate the beginning of growth of other tree organs to that of shoot growth. Of course this is 
the case only when there are actual mechanisms and processes that lead to these 
interrelationships and not simply correlations that may change in respect to environmental 
conditions. Such an apparently harmonious effect would be possible, if growth onset depends 
on temperature accumulation (or other factors) in every organ in a similar way. There was a 
relationship found between the onset and early part of needle and shoot growth (III). There 
may, however, not be such a direct relationship between the onset of shoot growth and growth 
of other organs (Steinaker et al. 2010, Delpierre et al. 2016a). Huang et al. (2014) were able 
to model secondary growth onset with observations of cambium activity, bud/shoot 
phenology and needle growth, which is a step forward in combining the growth of different 
organs. However, this also reinforces the statement about the complexity of the whole tree 
modelling. Furthermore, modelling growth cessation of tree organs may even be more 
difficult to combine or not even justified when the driving factors of growth cessation vary 
among organs (see above).  

Primary growth in southern Finland begins in late April to early May depending on spring 
temperatures and typically continues until late June. According to the results of this study, 
needle growth begins almost concurrently with shoot growth (III) although this is not 
measurable from outside the bud until early June. Secondary growth (defined as first new 
enlarging tracheids) begins in late May and lasts until late July (new cell formation) or late 
autumn (cell wall formation) (II, Fig. 11). Measurements of root phenology are limited (Du 
and Fang 2014, Delpierre et al. 2016a) but root growth is strongly affected by soil 
temperature and moisture (Bowen 1970, Valdés et al. 2006) and it continues until autumn if 
conditions are favourable (Puhe 2003, Steinaker et al. 2010). The lengths of the growth 
periods as presented here thus vary from two months (primary growth) to four months 
(secondary growth, root growth) (II, Fig. 8). However, primary growth probably also 
continues as cell wall thickening and lignification for some period after the cessation of 
length growth. That is, among others, a factor that should be quantified in order to model the 
timing of carbon consumption as realistically and accurately as possible. 

 
 

Source and sink effects on growth  
 
Sink-source dynamics are being studied widely (Wiley and Helliker 2012, Palacio et al. 2014, 
Fatichi et al. 2014, Guillemot et al. 2015). A more comprehensive understanding of sink-
source dynamics is important for being able to determine how growth and carbon balance 
and consequent productivity of forests change when the possible limiting factors vary 
(Medlyn et al. 2011). The predictions of changes in carbon balance depend on the underlying 
assumptions of growth restricting factors.  

The activity of both the photosynthetic production and the growth sink (described by 
using some kind of a model) depend on direct and indirect effects of environmental factors. 
Whether the limiting environmental factors exert their effects via sink or source is in many 
cases difficult to ascertain, because many of the factors that restrict the growth sink also 
decrease photosynthesis (Tardieu et al. 2011, Wiley and Helliker 2012, Körner 2015). 
However, the response of on one hand photosynthesis and on the other hand growth to 
environmental factors differ especially at low temperature or moisture conditions (Palacio et 
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al. 2014, Delpierre et al. 2016b). The effect may also vary according to e.g. the phenological 
state of the tree or stress conditions. An example of the stress conditions was described by 
Handa et al. (2005) when they observed that CO2 addition to healthy evergreen trees did not 
increase growth although photosynthesis was enhanced, whereas partly defoliated trees 
showed a positive growth response to CO2 increment.  

Source limitation in CASSIA occurs in two ways. First, the direct short-term effect of 
storage (variable k, eq. 5) reduces growth when the storage level decreases below a threshold 
level. This effect was minor during the study period. The only years the value of k was below 
0.95 for more than 20 days were years 2006 and 2010, when prolonged rainless periods 
combined with high evaporation demands reduced photosynthesis. However, even in those 
“drought” years the daily value of k stayed over 0.91 at all times). Second, maximum growth 
(parameter L, eq. 4) depends on carbon source (GPP) of the previous year (primary growth 
and needles) or ongoing year (secondary growth). These assumptions caused between-year 
variation to the modelled growth that was close to the measured variation (Fig. 12). This is 
also in accordance with the finding that a current year’s carbon availability affects the new 
ring width and the number of produced tracheids (Babst et al. 2014, Deslauriers et al. 2016).  

The results reported by Junttila and Heide (1981) indicate that in the most northern parts 
of Finland and Norway the temperature of previous and current growing season for shoots 
and needles, respectively, would be the factors determining total dimensional growth instead 
of GPP. The alternative determination of the shoot or needle length maximum growth with 
temperature in this study did not, however, lead to satisfying results of between year variation 
(Fig. 12, alternative model). This could indicate that in the northernmost regions temperature 
becomes even more limiting than at the site used for this study.    

Our results indicate that the combined effects of source and sink limitations determine 
the growth (II) instead of separate source or sink limitation. A simplified assumption would 
be that growth is sink limited on short time scales (days) under normal conditions but would 
be source limited on longer timescales (years). The sink limitation on short timescales is 
supported by the success in modelling the daily growth variation solely based on temperature, 
whereas over longer time scales growth was enhanced or restricted by actualized 
photosynthetic production. The assumption of complex sink–source interactions is also 
supported by the results reported by Sveinbjörnsson et al. (2010), Guillemot et al. (2015) and 
Deslauriers et al. (2016). 

Different types of sink limitation may occur on different temporal scales. One such 
limitation could function in such a way that temperature determines the momentary growth 
rate in relation to maximum growth rate. This in turn, would be determined by other factors 
such as the availability of nutrients or assimilated carbon. The environmental factors that 
produce sink limitation are temperature and water, nutrient and light availability (see Fatichi 
et al. 2014). Of these factors, the effects of temperature are mainly considered in the CASSIA 
model, although the effect of light on growth onset and the effect soil moisture on root growth 
are also included in the model. There are three reasons for mainly focusing on temperature 
rather than the other factors in our model: 1) Temperature is the most important 
environmental factor in boreal forests. 2) Droughts have been extremely rare at our study 
site. 3) Nutrient availability can be considered relatively constant at a single site over the 
study period. However, the other factors do and will become highly important when 
predicting growth on other site types or simulating future climate conditions. Thus, the effect 
of water limitation should be added to CASSIA as a factor that imposes a direct limitation on 
growth sink strength even before it affects growth indirectly via photosynthesis (Hölttä et al. 
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2010, Deslauriers et al. 2016). Nutrient effect on growth could be included in maximum daily 
growth (L) (Bergh et al. 1999) and possibly phenology (Sigurdsson 2001).  

The NSC storages of starch and soluble sugars level-off the short-term differences 
between carbon assimilation and consumption (Palacio et al. 2014). The sink–source status 
of storages is dual: during abundant carbon assimilation the storage acts as a carbon sink but 
will become a carbon source later (Clifford 1992). Furthermore, the functionality of the 
storage is still a matter of discussion (Sala et al. 2012, Dietze et al. 2014). Currently, the role 
of storage in CASSIA is nearly passive, i.e. storage limits growth only when the amount of 
stored carbon falls below a certain threshold level. However, a storage of adequate size is 
important for providing a tree with a buffer against carbon starvation caused by stress 
conditions such as drought or pest attack. This could imply that storages act as equal sinks to 
those of growing organs (Sala et al. 2012). Thus, in carbon limited conditions carbon would 
be directed to storage to prevent the storage from depleting. As a consequence, growth would 
be reduced via reduced relative sink strengths even if the level of storage didn´t reduce. In 
addition, high NSC levels in leaves due to restricted transport of sugars, have been shown to 
down-regulate photosynthesis (Nikinmaa et al. 2012). To what extent the NSC storages are 
passive (purely balancing the discrepancies between assimilation and consumption) or active 
(equal allocation target of carbon with growth etc.) remains an open question. Therefore, the 
activity/passivity of the storages and the factors driving carbon fluxes to or from the storages 
have to be studied further (Delpierre et al. 2016a). 

 
 

Future improvements and possibilities of CASSIA  
 
In addition to those mentioned in the previous sections there are aspects in the model that can 
and should be improved in the future or adapted when used for other species or purposes.  

Two of the four organs were studied in detail in this research (shoots (I), needles (III)). 
The need for and the difficulties of using a more accurate root growth model were discussed 
in the previous sections. However, with the method introduced by Nakano et al. (2012) where 
root growth is scanned at regular intervals with a scanner installed into the soil, we will 
hopefully be able to quantify the effects of environmental effects on root phenology and 
growth in the near future. More complex and sophisticated models have been introduced to 
describe secondary growth (Hölttä et al. 2010), which will serve more detailed purposes. A 
more mechanistic approach to the complex processes of growth would, however, improve 
the reliability of this model in different conditions and the inclusion of e.g. the variations in 
tracheid dimensions as a factor would help in interpreting the effects environmental factors.  

At this stage of the model’s development only one year at a time has been considered and 
the only lagging effects are the influences of previous summer GPP on LS and LN). This means 
setting the storage to the initial value at the beginning of each year. Doing so avoids errors in 
the interpretation of the results of source and sink factors on growth, which could otherwise 
be caused by inaccuracies in the storage compound or other parts of the carbon balance. 
Furthermore, no senescence processes were included into the CASSIA model. This was 
suitable for studying the intra- and inter-annual effects of source and sink limitations on 
growth. However, when studying for a longer period, the following aspects must be 
considered:  

1) The storage compound must be continuous. This implies verifying the model 
predictions of seasonal change with direct measurements of stored carbon and also 
reconsidering the way in which carbon is directed to storage or translocated from 
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storage for other purposes (active vs. passive storage). There may also be differences 
in the amounts of carbon used from different storage organs e.g. NSC in shoots vs. 
roots (Mei et al. 2015).  

2) The functional structure of the tree must be maintained during a long period (Mäkelä 
and Valentine 2006).  

3) The needle and fine root senescence variables must be added to the model.  
4) Age related trends related to e.g. length growth must be considered.  
5) Possible changes in forest nutrition, such as nitrogen deposition or mineralization 

(see Eastaugh et al. (2011) for effects of increased nitrogen deposition), or structures 
that enhance or decrease growth and photosynthesis should be taken into account. 
Duran et al. (2016) predicted decreasing nitrogen mineralization with climate change 
in cold areas, even though generally increased temperature actually enhances 
mineralization of nitrogen (Bagerzadeh et al. 2008).  

 
The dynamic structure and inherent flexibility of CASSIA enable it to be adapted for 

modelling growth of different tree species after adequate modification to species-specific 
parameters and/or functions. There are fundamental differences in the growing habits of 
different tree species and thus, their response to environmental factors (see above) and 
source–sink limitation strategies differ (Handa et al. 2005, Huang et al. 2014, Guillemot et 
al. 2015). Therefore studying how different conditions limit or enhance the rates of carbon 
assimilation and consumption and affect their timing within a year would be of interest and 
relevance. For example, a linear time or a combined linear and temperature time approach 
can be considered, instead of the thermal time approach for regulating the onset and cessation 
of growth in trees with free (instead of predominant) shoot growing habit (Koski and 
Sievänen 1985).  
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CONCLUDING REMARKS 
 
 

The aim of this study was to define the effects of temperature on the phenology and growth 
rate of Scots pine organs and further to examine carbon source and sink effects on growth 
from the point of view of carbon balance. It was shown that the within year growth variation 
of shoots and needles in addition to the formation of new secondary cells could be explained 
by short term and long term changes in temperature, which indicates a sink limitation of 
growth. On the other hand, carbon source (photosynthesis) in certain time periods explained 
the between years growth variation of the same tree organs. The study was conducted at only 
one site in Finland but the results give insights into the possible general mechanisms 
regarding the determination of growth and carbon use. With adequate modifications, the 
CASSIA model is also applicable to other tree species and areas due to its dynamic structure.  

Although the issue has been studied intensively, a multitude of open questions remain 
regarding the processes of carbon consumption and assimilation. Hadden and Grelle (2016) 
observed that the temperature responses of respiration at low temperatures in northern 
Sweden have increased from years 1997-2009 to years 2010-2013, which has led to increased 
total ecosystem respiration whereas GPP did not change during the years 1997-2013. In turn, 
Atkin and Tjoelker (2003) and Drake et al. (2016) showed that the long term respiration of 
trees acclimatizes to increasing temperatures but the extent of this is unknown. Similar 
uncertainties can also be related to photosynthesis (Luo 2007). Although the uncertainties 
concerning growth determination are even larger, the analysis conducted in study II provides 
tools for comparing the source and sink limitations of growth. This is of considerable 
importance for understanding the tree functionality and carbon balance as well as predicting 
their alteration in the future. Studies I and III revealed temperature effects that are important 
for understanding the phenology of different organs, which is also of increasing interest 
(Linkosalo et al. 2000, Caffarra and Donnelly 2011) as growth timing acts as a notable part 
of carbon balance.   

Schwalm and Ek (2001) compiled general requirements for models in order for them to 
be applicable for use in a changing environment. Those authors stated that we need 
comprehensive modelling work to identify the study areas where more knowledge is 
required. Growth of a tree is affected by a complex combination of environmental factors 
and source and sink processes, which act on different temporal scales. We need to be able to 
describe fully the real causalities behind these processes instead of barely describing 
correlations to attain justified predictions over a long time scale (Delpierre et al. 2012, Fatichi 
et al. 2014). In conclusion, the question of determining the limiting factor of growth remains 
unanswered. However, a step forward has been taken both in identifying gaps of knowledge 
and in revealing connections between the environmental and other factors and growth 
processes. 
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