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ABSTRACT 

 

 

The aim of this work was to analyze the responses of temporal and spatial variation in soil 

respiration to biotic and abiotic factors in a desert shrubland in Ningxia, northwest China. 

For this purpose, Rs together with abiotic (soil temperature (Ts), soil water content (SWC), 

precipitation (PPT)) and biotic (root biomass, litter fall, leaf area index, soil nitrogen) 

factors were measured, and plant phenophases were recorded over a typical sand dune in 

2012-2014. The specific aims of this study were to: (1) quantify the diurnal and seasonal 

variation of Rs and its controlling factors, and to understand the influences of SWC on the 

temperature sensitivity of Rs (Paper I); (2) explore the mechanisms controlling the spatial 

heterogeneity in Rs and the plant effects on spatial variation of Rs in different phenophases 

(Paper II); (3) examine the seasonal variation of diel hysteresis in Rs-Ts relationship and its 

controlling factors (SWC and photosynthesis) (Papers I and III); and (4) explore the 

influences of biological soil crusts on Rs and its climatic (Ts, SWC, PPT) responses (Paper 

IV).  

As a result, both diurnal and seasonal variation in Rs were controlled dominantly by Ts, 

but the diurnal and seasonal response of Rs to Ts was modified by SWC and biological soil 

crusts (Papers I, III and IV). At diel scale, Rs was strongly regulated by Ts at moderate and 

high SWC, but decoupled from Ts under low SWC, due to significant diel hysteresis 

between Rs and Ts (Papers I and III). This diel hysteresis varied seasonally with SWC, 

showing increasing lag time with decreasing SWC (Papers I and III). Variation in the diel 

hysteresis with changing SWC was regulated by photosynthesis of the dominant shrub 

species (Paper III). At seasonal scale, Rs significantly correlated with Ts at SWC > 0.08 m3 

m-3 (Paper I). In addition, the temperature sensitivity of Rs increased with increasing of 

SWC (Paper I). The Rs at both non-crusted (NCS) and lichen-crusted (LCS) soils increased 

with increasing Ts, opposite to that on moss-crusted soil (MCS), where Rs declined with 

increasing Ts as Ts > ~ 20 oC (Paper IV). Root biomass of shrubs and grasses, litter fall and 

soil nitrogen affected the topographic variation in Rs (Paper II). During the 

flowering-bearing phase of the dominant shrub, root biomass affected Rs the most, whereas 

during the leaf coloration-defoliation phase, soil nitrogen content affected Rs the most, 

explaining 72 and 56% of the total variation, respectively (Paper II).  

To conclude, SWC, biological soil crusts and shrubs exert strong influences on the 

temporal and spatial responses of Rs to Ts in a desert shrubland. These results highlight the 

necessity to account their interactive effects in estimation of carbon balance for desert 

ecosystems and in modelling of global carbon cycle in order to increase the accuracy of 

model predictions. 

 

Keywords: Soil CO2 flux, phenology, hysteresis, microtopographic variation, Artemisia 

ordosica   
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1. INTRODUCTION 

 

 

1.1 Importance of soil respiration in drylands to global carbon cycle 

 

Arid, semiarid and dry-subhumid ecosystems (drylands), occupying 41% of the earth’s land 

surface (Reynolds, 2001; Safriel and Adel, 2005), are rapidly expanding due to human 

population growth and global climate change (Geist and Lambin, 2004). Based on recent 

studies, the carbon (C) turnover rates are high in drylands and closely coupled to 

variabilities in temperature and precipitation. Thus, C cycle in drylands is sensitive to 

climatic variations and changes, and could affect largely the global C variability and trends 

(Poulter et al., 2014; Ahlström et al., 2015). Global climate change is also associated with 

an increase of temperature and precipitation variability, which may exacerbate aridity in 

some desert ecosystems (Lioubimtseva and Henebry, 2009). Therefore, for accurate 

estimation of the global C balance under changing climate, the climatic control on C cycle 

in drylands should be better understood (Cable et al., 2011). 

Soil respiration (Rs) accounts for about 50-90% of ecosystem respiration (Schimel et al., 

2001; Ryan and Law, 2005; Jassal et al., 2007; Gaumont-Guay et al., 2008), and its global 

integral is an order of magnitude larger than anthropogenic CO2 releases from burning 

fossil fuels and land-use change (Marlan et al., 2008). Even relatively small increases in Rs 

may have a profound impact on atmospheric CO2 concentrations, exerting a positive 

feedback to global warming (Schlesinger and Andrews, 2000; Davidson and Janssens, 2006; 

Luo, 2007). Previous studies have reported that Rs exhibits strong spatiotemporal 

heterogeneities, which makes it difficult to estimate soil C release (Bond-Lamberty and 

Thomson, 2010; Luo et al., 2012; Ja et al., 2013). Furthermore, such heterogeneity in Rs 

depends strongly on biotic factors (e.g., soil organic matter and living biomass, Martin and 

Bolstad, 2009; Geng et al., 2012; Nago et al., 2012) and abiotic factors (e.g. soil 

temperature (Ts) and soil water content (SWC); Marrin and Bolstad, 2009; Ngao et al., 

2012). Thus, to predict in an accurate way the alteration in C balance at both regional and 

global scales under the changing climate, we need to understand in detail the biotic and 

abiotic control on temporal and spatial variation in Rs in drylands (Grote et al., 2010). 

However, currently Rs is not yet well understood for drylands, partly due to their low 

productivity (Chen and Tian, 2005). 

 

 

1.2 Biotic and abiotic control on temporal variation in soil respiration 

 

Temporal variation in Rs and its controlling factors have been widely studied in forest and 

grassland ecosystems. Both Ts and SWC have been considered as the primary abiotic factors 

in controlling the seasonal variation in Rs, due to their strong influences on the 

decomposition of soil organic matter (Jassal et al., 2008; Liu et al., 2009; Moyano et al., 

2012), roots (Palta and Nobel, 1989; Bouma et al., 1997) and microbial activity (Linn and 

Doran 1984; Skopp et al., 1990; Hallett and Yong, 1999; Drenovsky et al., 2004). Generally, 

Ts dominantly controls Rs, because it regulates the kinetics of microbial decomposition, 

diffusion of enzymes and substrates (Jassal et al., 2008). However, different from forest and 

grassland ecosystems, SWC in drylands may have greater influences than Ts in controlling 

the temporal variation in Rs. This is because drylands are characterized with shorter wet 



10 

 

periods and longer intervals of periodic drought. During the drought periods, biological 

activities in drylands are suppressed by the limited soil water (Noy-Meir, 1973), resulting 

restriction of microbe access to C substrate, reduction of C substrates and extracellar 

enzymes diffusion, and limitation of microbial mobility (Yuste et al., 2003). Therefore, 

future studies are needed to clarify the control of Ts and SWC on temporal variation in Rs in 

drylands. 

Beyond the controls of Ts and SWC, biological soil crusts (e.g., mosses, lichens, 

cyanobacteria and algae), which dominate about 40-70% of the interspace between plants in 

drylands (West, 1990; Belnap and Lange, 2003), have also been reported to exert strong 

influences on Rs (Castillo-Monroy et al., 2011; Su et al., 2011; Feng et al., 2014). Biological 

soil crusts switch from inactive during a drought period to active in a wet period, resulting 

in significant CO2 uptake. Such CO2 influxes (Cinf) make the responses of Rs to climatic 

factors (e.g. Ts and SWC) complex. Biological soil crusts are also inactive and exhibit C 

release most (90%) of the year to withstand extreme environment conditions (Miralles et al., 

2012). They are metabolically active and exhibit CO2 uptake within 20 min after moistened 

by dew, fog or rainfall (Lange et al., 2001; Barker et al., 2005; Grote et al., 2010; Su et al., 

2011). Their Cinf could offset CO2 efflux (Ceff) respired by other organisms beneath (e.g., 

microbes and roots), resulting in much lower Rs in the field compared to that predicted by 

the commonly used Ts-Rs models. To well understand the climatic control on Rs in drylands, 

we need to better understand the influences of biological soil crusts on Rs. 

The influences of biological soil crusts on Rs may also vary with crust types. Previous 

studies have reported that biological soil crusts exert strong influences on Ts, SWC, soil 

nitrogen, microbial community and activity underground (Belnap, 2002; Sedia and 

Ehrenfeld, 2005; Castillo-Monroy et al., 2011; Delgado-Baquerizo et al., 2010), and thus 

also on autotrophic and heterotrophic soil respiration. The influences of biological soil 

crusts on these factors differ among crust types. Water infiltration is lower for higher 

successional stage (Zaady et al., 2012). Lichens grow slowly (Rogers, 1990), which 

coupled to low mortality rates and low standing crop biomass (During, 1992), results in low 

organic matter input for lichen-crusted microsites. Lichens inhibit also the microbial 

activity (Sedia and Ehrenfeld, 2005). In contrast, mosses have higher biomass and grow 

faster, resulting in higher inputs of organic matter for moss-crusted microsites (During, 

1992). Mosses also enhance the microbial activity (Sedia and Ehrenfeld, 2005). Moreover, 

studies from recent warming and water regulation experiments suggest that different 

biological soil crusts types respond differently to changing climatic conditions (Reed et al., 

2012; Zelikova et al., 2012; Maestre et al., 2013; Escolar et al., 2014; Escolar et al., 2015). 

Warming substantially decreases lichens cover but slightly increases mosses cover (Escolar 

et al., 2014). Rainfall frequency alterations promote also shifting from mosses to 

cyanobacteria (Reed et al., 2012; Zelikova et al., 2012). The alteration in biological soil 

crusts cover and composition will affect recalcitrant C sources, such as the aromatic 

compounds and the abundance of fungi related to bacteria. Consequently, it may affect the 

C cycle response to climate change in drylands (Maestre et al., 2013). Therefore, we need 

to better understand the influences of different biological soil crust types on Rs in drylands. 

 

 

1.3 Biotic and abiotic control on spatial variation in soil respiration 

Active, semi-active aeolian, and fixed sand dunes are the primary landscape features of 

desert ecosystem. Soil respiration has been reported to exhibit high spatial variation in 

desert ecosystem (Mahall et al., 1992; Gold et al., 1995; Xie et al., 2001). Generally, 
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hydrometeorological factors, especially Ts and SWC (Xu and Wan, 2008; and Liu et al., 

2010), are the primary controls of such high spatial variation in Rs in desert ecosystem. This 

is because Ts and SWC control temporal variation in Rs (Lloyd and Taylor, 1994; Davidson 

et al., 1998; Wang et al., 2014). They both exhibit high spatial variation over sand dunes, 

due to the influence of topography in governing the amount of solar radiation received and 

the re-distribution of surface and shallow subsurface water (Kang et al., 2003; Liu et al., 

2010). However, heterogeneity in micro-hydrometeorological factors affect largely the 

formation and patchy distribution of vegetation growing in an area and C sources (fertility 

islands), respectively (Richerson and Lum, 1980; Parker, 1991). The plant-scale processes, 

such as plant-facilitated entrapment of soil particles and organic matter propelled by wind 

or rain droplets, canopy shading, hydraulic lift, and accumulation and decomposition of 

litterfall, all induce enrichment of water, nutrients, and root biomass in the vicinity of plant 

canopy (Hook et al., 1991; Schlesinger and Raikes, 1996). Such plant effects also constrain 

the spatial variation in soil respiration over sand dunes. Therefore, plant controls on spatial 

variation in soil respiration may nest within micro-hydrometeorological controls. Further 

studies need to clarify the micro-hydrometeorological controls and plant control on spatial 

variation in Rs over sand dunes in drylands.  

Previous studies have reported that both micro-hydrometeorological and plant control 

could vary with plant phenophases (Fu et al., 2002; Dungan et al., 2003; Tang et al., 2005; 

Asaeda and Rashid, 2015; Osono, 2014). This is because current photosynthate supply and 

decomposition and supplementation of litterfall change over time. For example, Fu et al. 

(2002) reported that root activity and rhizosphere processes could vary with plant 

phenophases. Yuste et al. (2004) and DeForest et al. (2006) argued that such changes 

potentially alter the relationship between Rs and Ts. However, further understanding on the 

seasonal effects of plants on the spatial variation in Rs is still needed in drylands. 

 

 

1.4 Diel hysteresis between soil respiration and soil temperature 

 

Diel hysteresis, which appears as an elliptical loop in the relationship between diel Rs and 

Ts, has been widely reported for forests (Tang et al., 2005; Gaumont-Guy et al., 2006; 

Vargas and Allen, 2008), grasslands (Carbone et al., 2008; Barron-Gafford et al., 2011) and 

drylands (Feng et al., 2014). However, theoretical models for Rs (e.g. Lloyd-Taylor, 

Arrhenius, and van) cannot estimate the diel hysteresis, thus resulting in errors in predicted 

hourly Rs and uncertainties on temperature sensitivity in Rs (Gaumont-Guay et al., 2008; 

Phillips et al., 2011; Darenova et al., 2014). Most previous studies have found that the diel 

hysteresis varies seasonally with soil water content (Vargas and Allen, 2008; 

Gaumont-Guay et al., 2008; Phillips et al., 2011; Darenova et al., 2014). Two main lines of 

reasoning have been proposed to explain the causes of diel hysteresis. The first one is based 

on the physical processes of heat and gas transport in soil (Vargas and Allen, 2008; Phillips 

et al., 2011; Zhang et al., 2015) and soil CO2 production is expected to be an integrated 

response to a non-uniform Ts profile. The Ts used in theoretic models is likely different in 

phase from the Ts forcing CO2 production out of soil (Philips et al., 2011), resulting in time 

lag between diel Rs and Ts. High SWC blocks CO2 gas and thermal diffusion through soil, 

resulting in large hysteresis loops (Riveros-Iregui et al., 2007; Zhang et al., 2015). The 

other line is based on biological processes of photosynthate supply (Tang et al., 2005; 

Kuzyakov and Gavrichkova, 2010; Vargas et al., 2011). In this line, aboveground 

photosynthesis supply is expected to be substrate for roots and rhizosphere microbes, 
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resulting in peak Rs at midday (e.g., 11:00-13:00), unlike in Ts which usually peaks in the 

afternoon (e.g., 14:00-16:00). Low SWC and high vapour pressure deficit induces partial 

plant stomata closure, resulting in peak photosynthesis in early morning (e.g., 9:00-11:00) 

and suppressed photosynthesis in mid-afternoon, as a consequence of large hysteresis loops 

(Tang et al., 2005; Vargas and Allen, 2008; Carbone et al., 2008). Currently, our 

understanding on the mechanism of diel hysteresis between Rs and Ts is still limited and 

should be studied more in details in drylands. 

 

 

1.5 Aims of the study 

 

In this work, the main aim was to study the responses of temporal and spatial variation in 

soil respiration to biotic and abiotic factors in a desert shrub ecosystem in northwest China. 

The specific objectives were: 

(i) To quantify the diurnal and seasonal variation in Rs and its controlling factors, and 

to understand the influences of SWC on the temperature sensitivity of Rs (Paper I); 

(ii) To explore the mechanisms controlling the spatial heterogeneity in Rs, and the 

plant effects on Rs in different phenophases (Paper II); 

(iii) To examine the seasonal variation in diel hysteresis in Rs-Ts relationship and its 

controlling factors (SWC and photosynthesis) (Papers I and III); 

(iv) To explore the influences of biological soil crusts on Rs and its climatic (Ts, SWC, 

PPT) responses (Paper IV). 

The hypotheses of this study were: 

(i) The Rs is in a desert shrubland highly limited by SWC but less sensitive to Ts, and 

SWC affects the response of Rs to Ts both seasonally and diurnally (Paper I); 

(ii) Topographic heterogeneity in Rs depends largely on substrate supplied by plant 

photosynthesis and nitrogen compounds during leaf-fall, and the drivers of 

topography heterogeneity vary with plant phenology of the dominant shrub (Paper 

II); 

(iii) Photosynthesis dominantly controls diel hysteresis between Rs and Ts, and SWC 

regulates such control of photosynthesis on hysteresis and its variation over the 

growing season (Paper III); 

(iv) Biological soil crusts change the responses of Rs to climatic factors, and such 

influences differ among crust types (Paper IV). 

To undertake this work, Rs together with different climatic (Ts, SWC) and abiotic (e.g., root 

biomass, litter fall, soil nitrogen content, photosynthesis) factors were continuously 

measured, and phenophases of the dominant shrub species recorded over a typical fixed 

sand dune in a desert shrub ecosystem in 2012-2014 in northwest China. 
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2. MATERIALS AND METHODS 

 

 

2.1 Study site description 

 

The measurements of this study were performed at Yanchi Research Station of Beijing 

Forestry University, Ningxia, northwest China (37.68o - 37.73o N, 107.20o - 107.26o E, 

1550 m a.s.l). The station is located at the southern edge of Mu Us desert in the transition 

between the arid and semi-arid climatic zones. Based on 51 years (1954-2004) data from 

the meteorological station of Yanchi Country, the mean annual precipitation is 292 mm 

(with a range of 250-350 mm), of which 62% falls between July and September. The mean 

annual total potential evaporation is 2024 mm.  

At the experimental site, the soil was of sandy type, with a bulk density of 1.54 ± 0.02 g 

cm-3. The water-filled pore space across all the microsites was 23.42 ± 0.92%. Soil organic 

matter, soil nitrogen and pH were 0.21 - 2.14 g kg-1, 0.08 - 2.10 g kg-1, and 7.76 - 9.08, 

respectively. The vegetation was regenerated from aerial seeding that took place in 1998 

and is currently dominated by a semi-shrub species, Artemisia ordosica, averaging about 50 

cm tall with a canopy size of about 80 cm times 60 cm. The coverage percentage of plants 

ranged from 30 to 60%. The mosses are dominated by Byumargenteum, and the lichens by 

Microcoleus vaginatus, Oscillatoria chlorine and Collema tenax. 

 

 

2.2 Experiment design 

 

Measurements were made over a shrub dominant sand dune (Figure 1a), which was of 

typical size for the study area, (i) 2.9 m high, (ii) 7.6m long leeward slope, (iii) 15.6 m long 

windward slope, (iv) 13.3 m long north-facing slope and (v) 13.4 m long south-facing slope 

(Figure 1; Figure 2). The measurements were taken on windward in the east, leeward in the 

west, and north- and south-facing slopes of the sand dune (Figure 2). On each slope, lower, 

upper and top positions were used for the measurements (Figure 2). The positions of 

measurements were located at about 3 to 5 m apart along the line transects. Besides the 

positions in the line transects, measurements also involved the microsites of lichen-crusted 

soil (LCS, Figure 1b), moss-crusted soil (MCS, Figure 1c) and Artemisia ordosica covered 

soil (Figure 1d) over the sand dune (Figure 2). 
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Figure 1. Layout of measurement chambers over the shrub dominant sand dune. 

 

 

 

 

 

Figure 2. Distribution of soil respiration chambers of Li-8100 measurement system showing 

positioning along the slopes and at different microsites. 
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2.3 Measurements of soil respiration, and biotic and abiotic factors 

 

Permanent collars were installed at approximately 3 m spacing in March 2012, three 

months before the first Rs measurements. The collars were 20.3 cm in diameter and 10 cm 

in height, with 7 cm inserted into the soil. Three transparent chambers (model LI-104C, 

LI-COR, Nebraska, USA) were used to measure CO2 exchange at LSC, MCS and Artemisia 

ordosica covered soil. The rest of the positions were measured by opaque chambers (model 

LI-104, LI-COR, Nebraska, USA). The Rs was measured in situ using a LI-8100A 

automated soil gas flux system (model Li-8100A, equipped with Li-8150 multiplexer, 

LI-COR, Nebraska, USA). Instrument maintenance was carried out bi-weekly during the 

growing season, including removing plant-regrowth in the opaque chambers, and cleaning 

to avoid blackout conditions associated with the transparent chamber. 

Biotic factors measured were root biomass (kg m-3), litterfall (kg m-2), total soil nitrogen 

content (g kg-1) within the first 25 cm of the soil and leaf area index (LAI, m3 m-3). Alive 

roots and litterfall samples were analysed after oven dried at 70 oC to a constant weight. 

Total nitrogen in the soil was determined with a Kjeldahl Total Nitrogen Apparatus (FOSS 

2200, Foss, Denmark). LAI was measured near each chamber within one hour immediately 

after sunset using LI-COR 2000 (LI-COR, Nebraska, USA) with a 90o view cap, twice or 

three times every month during the measurement period. In addition, the phenological 

phases of Artemisia ordosica were observed and recorded over the growing season at 

weekly intervals. 

The Ts and SWC at 10 cm soil depth were hourly measured in 10 cm away from each 

chamber using a LI-8150-203 temperature sensor and an ECH2O moisture sensor (LI-COR, 

Nebraska, USA), respectively. The other environmental factors were half-hourly recorded 

using the sensors mounted at 6-meter-tall flux tower 800 m away from our soil CO2 flux 

measurement site. Air temperature (Ta, 
oC) was measured by a thermohygrometer 

(HMP155A, Vaisala, Finland). Soil surface temperature (Tsurf, 
oC) was measured by an 

infrared temperature sensor (model SI-111, Campbell Scientific Inc., USA). Incident 

photosynthetically active radiation (PAR) was measured using a quantum sensor 

(PAR-LITE, Kipp and Zonen, the Netherlands). Precipitation (PPT, mm) was measured by 

three tipping-bucket rain gauges (model TE525MM, Campbell Scientific Inc., USA) 50 m 

around the flux tower (Jia et al., 2014). 

 

 

2.4 Data processing and statistical analysis 

 

The measured Rs data were screened using limit-checking. In order to exclude the influence 

of chamber gas leakage, plant budding, and insects invasion, hourly Rs over the range of -30 

to 30 μmol CO2 m
-2 s-1 were considered to be abnormal and were removed from our data set. 

After limit-checking, for every 3 days, hourly Rs which beyond three times of the standard 

deviation were excluded as outliers. Regression and correlation analyses were used to 

evaluate the relationship between Rs, and biotic and abiotic factors (Papers I - IV). Class 

and regression tree analyses (CART) were used to explore the biotic and abiotic control on 

spatial variation in Rs (Breimain et al., 1984) (Paper II). Cross-correlation analysis was used 

to estimate diel hysteresis between Rs, and temperature and photosynthesis (Papers I and 

III). Akaike information criterion (AIC) (Paper I, Eq 1) was used to evaluate the goodness 

of Rs models (Posada and Buckley, 2004). All statistical analyses were performed in Matlab 

(R2010b, Mathworks Inc., Natick, MA, USA). The significant level of statistical analysis 
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was set at 0.05. 

 

 

3. RESULTS 

 
 
3.1 Diel and seasonal variation in soil respiration and its response to biotic and abiotic 

factors (Papers I, III and IV) 

 

Diel Rs pattern varied corresponding to diel Ts, but Ts lagged behind Rs with 0 - 8 hours 

(Paper I, Figure 3). After synchronizing diel Rs and Ts, diel Rs increased significantly with 

increasing Ts (p < 0.05; Paper I, Figure 4). The Ts alone explained over 95% variation in 

diel Rs. Besides the controls of Ts, SWC modified the diel patterns of Rs. Under high SWC, 

diel Rs varied consistently with soil surface temperature (Tsurf) (Paper I, Figure 2; Paper III, 

Figure 2). Under moderate SWC, Rs followed the variation in photosynthesis, which 

increased in response to increasing Ts in the early morning but then plateaued at high Ts 

during the midday, before declining with declining Ts. Under low SWC, diel Rs varied 

consistently with diel photosynthesis but out of phase of diel Ts. It reached the maximum 

value at the lowest Ts value (Paper I, Figure 2).  

Seasonal pattern of Rs followed the variation in Ts (Paper I, Figure 5; Paper IV, Figure 1). 

Rainfall events caused large pulse of Rs during the growing season. Ts dominantly 

controlled the seasonal variation in Rs, but SWC modified the seasonal response of Rs to Ts. 

During the growing season, daily Rs increased with increasing Ts, when SWC > 0.08 m3 m-3 

(p < 0.05), which alone explained 76% of the seasonal variation in daily Rs (Paper I, Figure 

6, Table 2). In contrast, when SWC < 0.08 m3 m-3, daily Rs decupled from Ts. Besides, 

temperature-normalized respiration increased with increasing SWC (p < 0.05; Paper I, 

Figure 8). Over the growing season, the bivariate models with Ts and VWC as independent 

variables, produced a better fit than the model with Ts only (Paper I, Table 3). The 

temperature sensitivity of Rs (Q10) decreased with increasing Ts, but increased with 

increasing SWC (p < 0.05; Paper I, Figure 8). 

Besides the controls of Ts and SWC, biological soil crusts also exerted strong influences 

on Rs, and such influences varied with crusts types. First, biological soil crusts induced 

significant CO2 uptake and CO2 influx (Cinf) (Paper IV, Figure 1 and Figure 5). Total annual 

Cinf at moss crusted soil (MCS) were the highest, i.e. 58.0 and 62.1 g C m-2 in 2013 and 

2014, respectively (Paper IV, Table 4). Annual Cinf at lichen crusted soil (LCS) were 29.9 

and 24.4 g C m-2 in 2013 and 2014. Annual Cinf at non-crusted soil (NCS) were only 10 and 

15 g C m-2 in 2013 and 2014. Biological soil crusts changed the response of Ceff to Ts and 

SWC. The Ceff at both NCS and LCS increased with increasing Ts (Paper IV, Figure 2). In 

contrast, Ceff at MCS increased with increasing Ts, when Ts < ~ 20 oC, but decreased with 

higher Ts being greater than this turning point. The normalized Ceff at MCS increased with 

increasing SWC, when SWC < 0.15 m3 m-3, but decreased with higher SWC in both 2013 

and 2014. In contrast, the corresponding turning points of SWC were 0.09 - 0.10 m3 m-3 and 

0.11 - 0.13 m3 m-3 at NCS and LCS, respectively. Third, biological soil crusts also changed 

the response of Cinf to SWC and PPT. The Cinf at MCS and LCS was dominantly controlled 

by both SWC and PPT, whereas Cinf at NCS was dominantly controlled by PPT (Paper IV, 

Figure 6). 
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3.2 Spatial variation in soil respiration and its response to biotic and abiotic factors 

(Paper II) 

 

Over the growing season, the coefficient of variation in Rs over the sand dune was 23.5% 

(Paper II, Table 1). Topographic heterogeneity in Rs correlated positively with the 

plant-related factors, like root biomass of the dominant shrub and grasses, litterfall and soil 

nitrogen content, but not with the microhydrometeorological factors (e.g. Ts and SWC) 

(Paper II, Table 3). However, the controls of these plant-related factors on topographic 

heterogeneity in Rs varied with plant phenophases of the dominant shrub. During 

flower-bearing phase, the spatial variation in Rs over the sand dune correlated with the 

spatial variation in root biomass, litter fall and soil nitrogen. Over 61% of the variation in 

Rs over the sand dune was explained by the variation in root biomass, litterfall and soil 

nitrogen content. After using CART analysis to eliminate the co-correlation effects, the 

spatial variation in Rs during flower-bearing phase was affected the most by root biomass, 

which alone explained 72% spatial variation in Rs over the sand dune (Paper II, Figure 7 

and Table 3). In contrast, spatial variation in Rs correlated strongly to the spatial variation in 

root biomass and soil nitrogen content during leaf coloration-defoliation phase (Paper II, 

Table 3). Soil nitrogen content and root biomass explained 56 and 39% of the variation in 

Rs over the sand dune, respectively. The CART analysis showed that the soil nitrogen 

content was the most significant factor affecting the spatial variation in Rs during leaf 

coloration-defoliation phase (Paper II, Figure 7 and Table 3). 

 

 

3.3 Diel hysteresis between soil respiration and soil temperature (Papers I and III) 

 

Diel Rs patterns were out of phase with diel temperature, resulting in significant diel 

hysteresis in Rs-temperature relationship (Paper I, Figure 1; Paper III, Figure 3). Diel Rs 

patterns were highly variable during the growing season, peaking between 10:00 AM - 

16:00 PM (Paper III, Figure 1). In contrast, diel air temperature (Ta), soil surface 

temperature (Tsurf) and Ts patterns remained stable, peaking at ~ 12:00 PM, ~16:00 PM, and 

~17:00 PM, respectively. The hysteresis between diel Rs and Ts influenced the accuracy of 

Rs predicting models. For modelling Rs, R
2 values (12 - 20%) derived from the data set with 

synchronized Rs and Ts, were higher than that without synchronization (Paper I, Table 3). 

Diel photosynthesis patterns of the dominant shrub were similar to diel Rs. Diel 

photosynthesis was also highly variable during the growing season, peaking between 10:00 

AM - 16:00 AM (Paper III, Figure 1). Over the growing season, diel hysteresis in Rs-Tsurf 

relationship was the lowest among the relationships between temperatures measured (Ta, 

Tsurf, Ts) (Paper III, Figure 2). Seasonal variation in the relative importance (RI) between 

photosynthesis and Tsurf in controlling diel Rs, and diel hysteresis between Rs and Tsurf, 

varied with SWC (Paper I, Figure 3; Paper III, Figures 4 and 5). The RI decreased with 

increasing SWC (p < 0.05; Paper III, Figure 4). The diel hysteresis between Rs and Rsurf 

decreased with increasing SWC, when SWC < 0.08 m3 m-3. With SWC > 0.08 m3 m-3, no 

hysteresis was observed (Paper III, Figure 5). 
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4. DISCUSSION 

 

 

4.1 Response of diurnal variation in soil respiration to biotic and abiotic factors 

 

In this study, the variation of diel Rs was out of phase with diel Ts, but highly correlated 

with diel Ts after synchronization (Papers I and III).The predominant control of Ts on diel Rs 

was in line with many previous studies in forest and grassland ecosystems (Tang et al., 

2005; Gaumont-Guay et al., 2006; Vargas and Allen, 2008; Carbone et al., 2008) This was 

due to its strong controls on enzyme activities (Gaumont-Guay et al., 2006; Sotta et al., 

2007; Jassal et al., 2008; Liu et al., 2009), which strongly influenced roots and microbial 

processes in soil. Furthermore, the results of this study showed strong correlations between 

lag hours and SWC. During the growing season, lag hour increased with decreasing of SWC 

(Paper I, Figure 3; Paper III, Figure 5). These results suggested that SWC can modify the 

diel variation in Rs. This result is different from a previous study on a forest ecosystem, 

which reported that SWC had no effects on diel variation in Rs (Tang et al., 2005). 

The results of this study also showed that diel Rs followed diel variation in 

photosynthesis under low SWC (< 0.08 m3 m-3), resulting in a large diel hysteresis between 

Rs and Ts (Paper III, Figure 2). However, no diel hysteresis was observed, when SWC > 

0.08 m3 m-3 (Paper III, Figure 5). These results suggested that soil water regulates the 

control of photosynthesis on diel hysteresis between Rs and Ts, and supported the 

assumption that biological processes could regulate such diel hysteresis in drylands. Such 

result is different from forest ecosystems, in which physical processes have dominant roles 

(Riveros-Iregui et al., 2007; Zhang et al., 2015). The contradictory findings may attribute to 

the differences in soil properties. For example, forest soils are dense, therefore diel 

hysteresis can be influenced by the gas transport within soil. High SWC tends to block gas 

transport, leading to larger hysteresis than under low SWC in forest ecosystem 

(Riveros-Iregui et al., 2007; Zhang et al., 2015). In contrast, sandy soils in desert shrubland 

like in this study have much higher soil porosity, which have weak influences on within-soil 

gas transport processes. 

In desert shrublands, soil C pool and microbes often concentrate in the surface soil layer 

(Fisher et al., 1987), and are sensitive to changes in surface SWC. Whereas, roots 

distributed deep in soil, and are less sensitive to changes in surface SWC. Hence, wetting of 

shallow soil (e.g. SWC > 0.08 m3 m-3 in our study) could largely accelerate heterotrophic 

respiration, without significantly affecting autotrophic respiration in the deeper soil. In this 

condition, Rs is dominated by heterotrophic respiration and primarily controlled by soil 

surface temperature (Lloyd and Taylor, 1994; Winkler et al., 1996). In contrast, when soil 

surface dries and SWC decreases, heterotrophic respiration could be largely suppressed 

(Borken et al., 2006), leading to greater contribution from autotrophic respiration to total Rs. 

In this condition, plant photosynthesis, roots activity and respiration could firmly associate 

with each other (Liu et al., 2006; Baldocchi et al., 2006; Högberg and Read, 2006; 

Kuzyakov and Gavrihkova, 2010). In our case, lower photosynthesis at midday (12:00 - 

14:00) than in the morning (9:00 - 11:00) was associated with lower Rs on dry days, leading 

to greater diel hysteresis between Rs and Ts than that on wet days. 
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4.2 Response of seasonal variation in soil respiration to biotic and abiotic factors 

 

In this study, Ts predominantly controlled the seasonal variation in Rs, and SWC modified 

the responses of Rs to Ts. Ts explained 76% of the variations in Rs, when SWC > 0.08 m3 m-3, 

but did not correlate with Rs when SWC < 0.08 m3 m-3 (Paper I, Figure 6). The short-term 

Q10 of Rs decreased with decreasing SWC (Paper I, Figure 8). These results are in line with 

many previous studies in other ecosystems (Chen and Tian, 2005; Palmroth et al., 2005; 

Gaumont-Guay et al., 2006; Jassal et al., 2008; Zhang et al., 2010). As SWC decreased from 

the willing point value of 0.08 m3 m-3, plant and microbe activities were suppressed, 

availability and diffusion of C substrates and extracellular enzymes were reduced, due to 

limited soil water (Gaumont-Guay et al., 2006; Sotta et al., 2007; Jassal et al., 2008; Liu et 

al., 2009). Such changes resulted in the increase of recalcitrant C pool (Reichstein et al., 

2002) and lower Rs. Consequently, Rs and Ts were decoupled and short-term Q10 was lower 

under high Ts and low SWC. 

Besides the abiotic controls, biological soil crusts also exerted large influence on Rs in 

this studied desert shrubland. Biological soil crusts significantly induced Cinf (Paper IV, 

Figure 1). Annual Cinf at MCS (58 - 62 g C m-2 year-1) was up to two times greater than that 

at LCS (24 - 30 g C m-2 year-1), and up to four times greater than that at NCS (10 - 15 g C 

m-2 year-1) (Paper IV, Table 4). Biological soil crusts showed strong influences on Cinf, as 

they are sensitive to rainfall and can photosynthesize once being moistened enough (Lange 

et al., 1998; Tuba et al., 1996; Nash 1996; Belnap et al., 2004). In this study, seasonal 

variation in Cinf at LCS and MCS were strongly related to both SWC and PPT. In contrast, 

Cinf at NCS could be mainly due to the processes of CO2 dissolving and saline/alkaline 

absorption after rainfall (Fa et al., 2015). PPT controlled dominantly the seasonal variation 

in Cinf at NCS. 

Different types of biological soil crusts influenced also the response of Ceff to Ts (Paper 

IV, Figure 2). For NCS, plant roots extended to a wide and deep range in soil, resulting a 

good access to water sources. Lichens thallus is also encased in fungal tissue, which 

protects lichens from water loss (Lange, 2003). Thus, Ceff at LCS and NCS increased with 

increasing Ts. In contrast, mosses thallus has a large surface-volume ratio and direct contact 

with air, and thus mosses are more vulnerable to water loss (Lange, 2003). In this study, Ceff 

at MCS decreased, when Ts > ~20 oC, i.e. to decrease water lose during hot and dry periods. 

 

 

4.3 Response of spatial variation in soil respiration to biotic and abiotic factors 

 

This study reported predominant control of abiotic factors (Ts and SWC) on temporal 

variations in Rs (Papers I and III). However, the spatial variations in Rs over the sand dune 

was closer related to  soil nitrogen content, root biomass, and litter fall (Paper II). This 

result was in line with previous studies in desert ecosystems (Sponseller and Fisher, 2008), 

but different from that in forests (Kang et al., 2003; Liu et al., 2010). Desert ecosystems are 

characterized by limited distributions and high spatial heterogeneities of soil C pools, 

microbes and nutrients around shrubs (fertility island effect). Photosynthate of shrubs 

provides C resources for roots and rhizosphere respiration (Högberg et al., 2001; Tang et al., 

2005; Han et al., 2014), and provides litterfalls for heterotrophic respiration (Reichstein et 

al., 2002; Zhou et al., 2013). These processes are influenced by soil nitrogen (Allison et al., 

2008; Deng et al., 2010). Thus, the areas with higher soil nitrogen, root biomass and 

litterfall have higher Rs than that of bareland even it is usually hotter in a desert ecosystem.  
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The effects of plant-related factors change with plant phenophases (Fu et al., 2002; 

Dungan et al., 2003; Kang et al., 2003; Yuste et al., 2004; Tang et al., 2005; Tamai, 2010; 

Asaeda and Rashid, 2014; Osono, 2014). Therefore, their controls on spatial variation in Rs 

in a desert shrubland also change with plant phenophases. In this study, the most important 

factor driving topographic heterogeneity in Rs was root biomass at the flowering and 

bearing phase (phase II), and soil nitrogen content (Paper II) at the leaf coloration and 

defoliation phase (phase III). The influences of plant phenophases on the controlling factors 

of topographic heterogeneity in Rs, may be due to the changes in C substrate supply and the 

relative contribution between autotrophic and heterotrophic respirations to total Rs. During 

phase II, high shrub photosynthesis can result in higher contribution of root respiration to 

total Rs (Lebret et al., 2001; Regina, 2001; Ochieng and Erftemeijer, 2002; Tu et al., 2013; 

Zhou et al., 2014). Root biomass depends also on the topographic heterogeneity in Rs over 

the sand dune in phase II. However, from phase II to phase III, additional liable fresh 

litterfall and suppressed shrub photosynthesis (as declined photosynthetic pigments) results 

in larger contribution of heterotrophic respiration to total Rs (Fu et al., 2002; Sey et al., 2010; 

Mauritz and Lipson, 2013). Also soil nitrogen content contributes strongly to the litterfall 

decomposition process (Yan et al., 2010; Sayer et al., 2011). 

 

 

5. CONCLUSIONS 

 
 

In this study, diel Rs was dominantly controlled by temperature, but the diel hysteresis 

between Rs and temperature were also regulated by SWC and plant photosynthesis. Diel 

hysteresis between Rs and Ts was limited by the relatively small contribution of autotrophic 

respiration to total Rs under high SWC condition. Seasonal Rs was also controlled 

dominantly by temperature, but the response of Rs to temperature was modified by both 

SWC and biological soil crusts. Seasonal Rs was decoupled from Ts under low SWC. 

Temperature sensitivity of Rs increased with increasing SWC. The response of Rs to Ts 

differed also among crust types. These results highlight the importance of biological 

mechanism in diel hysteresis between Rs and temperature, and the importance of SWC in 

soil respiration dynamics in a desert shrubland. The observed influences of SWC on Rs also 

indicate a potentially negative feedback to climate warming along with a decrease of SWC 

in desert shrublands. Topographic heterogeneity in Rs was also largely controlled by plants, 

due to the substrate supply from photosynthesis. Also, several other drivers on topographic 

heterogeneity in Rs, such as root biomass, litterfall and soil nitrogen, varied with plant 

photosynthesis. These results highlighted the importance of plants in controlling spatial 

variation in Rs, and suggested that both the temporal and spatial effects of plants should be 

considered in desert shrublands. To conclude, these results highlight the necessity to 

account the interactive effects of temperature, SWC, biological soil crusts, and shrubs in 

estimation of carbon balance for desert ecosystems and in modelling of global C cycle in 

order to increase the accuracy of model predictions. 
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