Artikkelin koko teksti on saatavilla vain PDF-formaatissa.
 

Md Parvez Rana

Selection of training areas for remote sensing-based forest above-ground biomass estimation

Rana M. (2016). Selection of training areas for remote sensing-based forest above-ground biomass estimation. https://doi.org/10.14214/df.227

Tiivistelmä

Tämän työn tavoitteena oli arvioida puuston maanpäällistä biomassaa (AGB) – yhtä keskeistä REDD ja REDD+ MRV -mekanismien metsäinventointiin liittyvistä muuttujista. Tämä tutkimus tarkasteli opetusaluekonseptia kaksivaiheisessa AGB-arvioinnissa käyttäen laserkeilausta (ALS) ja RapidEye -satelliittiaineistoa itä-Suomessa (tutkimus I), opetusalueen sijainnin vaikutusta (tutkimus II) ja (tutkimus II) ja maastoaineiston otoskoon vaikutusta (tutkimus III) käyttäen ALS-, RapidEye- ja Landsat-aineistoa etelä-Nepalissa. AGB-malli sovitettiin käyttäen yksinkertaista lineaarista regressiota (tutkimus I) ja ”sparse bayesialaista” menetelmää (tutkimukset II-III). AGB-mallin tehokkuus testattiin käyttämällä riippumatonta validointiaineistoa ja tehokkuus arvioitiin määrittämällä keskineliövirheen neliöjuuri (RMSE) ja keskipoikkeama. Tutkimuksen I tulokset osoittavat, että RapidEye-mallilla oli lupaava tarkkuus 20%:n suhteellisella RMSE:lla suhteessa riippumattomaan validointiaineistoon. Tutkimuksen II tulokset osoittivat, että etäisyydellä tiestä ja opetusalueen kaltevuudella oli huomattava vaikutus AGB-arvion tarkkuuteen, koska metsän rakenne vaihteli saavutettavuuden mukaan. Tutkimuksen II tulokset osoittavat, että riittävä puuston pituuden ja tiheyden vaihtelevuuden kattavuus oli tärkeä edellytys opetusalueiden valitsemisiin. Suhteellisessa RMSE:ssa havaittiin vain vähäistä nousua, kun opetusalueiden kokonaismäärää pienennettiin. ALS-perusteinen ennustaminen vaati pienimmän määrän opetusalueita verrattuna RapidEye- ja Landsat-aineistoon.

Yhteenvetona: (i) ALS-simuloidut opetusalueet voisivat toimia vaihtoehtona kalliille kenttäkoealueille käyttäen kaksivaiheista lähestymistapaa; (ii) opetusalueen pitäisi kattaa laaja vaihtelevuus suhteessa saavutettavuustekijöihin ja metsän rakenteeseen kuten pituus ja tiheys; (iii) ALS-pohjainen ennustaminen onnistui paremmin kuin satelliittimateriaalipohjaiset (RapidEye- ja Landsat) menetelmät. Nämä arvioidut AGB-inventoinnin konseptit ja tekijät ovat hyödyllisiä tukemassa tulevaisuudessa metsävarojen kestävään käyttöön ja REDD-mekanismiin liittyvää metsien monitorointia ja päätöksentekoa.

Avainsanat
trooppinen metsä; Nepal; LiDAR; RapidEye; otoskoko; hiili; REDD ; boreaalinen metsä

Julkaistu 24.8.2016

Saatavilla https://doi.org/10.14214/df.227 | Lataa PDF

Creative Commons -lisenssi

Osajulkaisut

Rana M.P., Tokola T., Korhonen L., Xu Q., Kumpula T., Vihervaara P., Mononen L. (2014). Training area concept in a two-step biomass inventory using airborne laser scanning and RapidEye satellite data. Remote Sensing 6: 285–309.

https://doi.org/10.3390/rs6010285

Rana M.P., Korhonen L., Gautam B., Tokola T. (2014). Effect of field plot location on estimating tropical forest above-ground biomass of Nepal using ALS data. ISPRS Journal of Photogrammetry and Remote Sensing 94: 55–62.

https://doi.org/10.1016/j.isprsjprs.2014.04.012

Rana M.P., Gautam B., Tokola T. (2016). Optimizing the number of training areas for modeling above-ground biomass with ALS and multispectral remote sensing in subtropical Nepal. International Journal of Applied Earth Observation and Geoinformation 49: 52–62.

https://doi.org/10.1016/j.jag.2016.01.006


Rekisteröidy käyttäjäksi
Paina tätä linkkiä Metsätieteen aikakauskirjan käsikirjoituksen tarjoamis- ja seurantajärjestelmään (OJS) kirjautumiseen.
Kirjaudu sisään
Jos olet kirjautunut käyttäjäksi, kirjaudu sisään tallentaaksesi valitsemasi artikkelit myöhempää käyttöä varten.
Ilmoitukset päivityksistä
Kirjautumalla saat tiedotteet uudesta julkaisusta.



Valitsemasi artikkelit
Hakutulokset