Taimikoiksi kutsutaan metsäalueita, joilla kasvaa nuoria, tyypillisesti muutamia vuosia sitten istutettuja tai luontaisen uudistumisen seurauksena syntyneitä puun taimia. Taimikot edustavat metsän kehityksessä tärkeää alkuvaihetta ja niille suunnitelluilla sekä toteutetuilla toimenpiteillä onkin keskeinen merkitys metsien uudistumisen, kasvun ja metsän käytölle asetettujen tavoitteiden toteutumisen kannalta.
Metsien käytön ja hoidon suunnittelua varten tarvittavan metsävaratiedon tuottaminen taimikoista on tyypillisesti perustunut maastotöihin, jotka ovat ajankäytöllisesti työläitä, vaativat runsaasti työvoimaa ja ovat siten kustannuksiltaan korkeita. Koska taimikoiden puut ovat vielä kooltaan pieniä, ja ne kasvavat yleensä tiheästi lähellä toisiaan, yksittäisten taimien havaitseminen ja mittaaminen on haastavaa kaukokartoitusperusteisessa metsävarojen inventoinnissa. Kaukokartoitusmenetelmien kehitys, erityisesti laserkeilaus sekä lennokkien käyttö, voivat mahdollistaa uusien menetelmien kehittämisen taimikoiden oikea-aikaiseen ja spatiaalisesti tarkkaan inventointiin. Uudet menetelmät voisivat korvata maastomittaukset osittain tai jopa täysin.
Väitöskirjan tavoitteena oli kehittää taimikoiden tiheyden, keskipituuden sekä puulajien määrittämiseen käytettäviä kaukokartoitusmenetelmiä suomalaisissa boreaalisissa metsissä. Väitöskirjan osatutkimuksissa hyödynnettiin uusia kaukokartoitustekniikoita kolmella eri tutkimusalueella. Osatutkimuksissa I ja IV käytettiin lennokilla kerättyjä fotogrammetrisia pistepilviä sekä multi- ja hyperspektrikuvia, lisäksi osatutkimuksissa II ja III aineistona hyödynnettiin monikanava- ja yksittäisen fotonin mittaustekniikalla tuotettua lentolaserkeilausaineistoa. Osatutkimuksissa I ja II analysoitiin lehdettömään ja lehdelliseen aikaan lennokista kerätyn hyperspektrikuva-aineiston sekä monikanavatekniikalla tuotetun lentolaserkeilausaineiston soveltuvuutta taimikoista tehtäviin mittauksiin. Osatutkimuksessa II aluskasvillisuuden luokittelun raja-arvoa (Cth) optimoitiin, jotta voitiin minimoida aluskasvillisuuden vaikutus puiden tunnistamiseen sekä niiden pituus- ja puulajiestimointiin. Osatutkimuksessa III arvioitiin yksittäisen fotonin mittaustekniikkaan perustuvan lentolaserkeilausaineiston soveltuvuutta taimikoiden tiheyden ja puiden pituuden ennustamiseen. Tässä tutkimuksessa kehitettiin myös uusi menetelmä (ABAEdgeITD) taimikoiden tiheyden ja puiden pituuden ennustamiseen yhdistämällä yksinpuintulkinnasta saadut ominaisuustiedot ja reunapuiden vaikutuksen korjauksen sisältävä aluepohjainen menetelmä. Osatutkimuksessa IV esitettiin ja arvioitiin uutta menetelmää, jossa konvoluutioneuroverkkojen syötteenä taimikoiden puulajitunnistukseen käytettiin esikäsiteltyjä lennokilla otettuja multispektrikuvia.
Tutkimuksen tulokset osoittavat, että lennokeilla otettujen kuva-aineistojen käyttö johti tarkempiin tuloksiin puuston tiheysennusteissa. Tiheäpulssisen monikanavaisen lentolaserkeilausaineiston käyttäminen tuotti parhaat tulokset taimikoiden puiden pituusennusteissa sekä lehdettömään että lehdelliseen aikaan. Yksinpuintulkinnasta saadut ominaisuustiedot ja reunapuiden vaikutuksen korjaaminen paransivat puuston tiheys- ja pituusennusteiden tarkkuutta verrattuna perinteiseen aluepohjaiseen menetelmään, mutta menetelmä oli silti epätarkempi kuin osatutkimuksissa I ja II käytetyt yksinpuintulkintamenetelmät. Varttuneiden taimikoiden ominaisuuksien ennustaminen onnistui tutkimuksissa paremmin kuin alle 1.3 m keskipituudeltaan olevien nuorten taimikoiden ominaisuuksien. Osatutkimuksessa IV käytetty kaukokartoituskuvien esikäsittely yhdistettynä konvoluutioneuroverkkojen käyttöön paransi taimien puulajitulkinnan tarkkuutta. Tutkimus osoittaa, että kaukokartoitusmenetelmiä voidaan hyödyntää operationaalisessa metsävarojen inventoinnissa täydentämään tai korvaamaan maastotöitä. Uudet tekniikat ovatkin tärke osa metsien käytön suunnittelun tehokkuuden lisäämistä.
Ilmastonmuutos ja luonnon monimuotoisuuden hupeneminen ovat synnyttäneet tarpeen tarkalle ja laaja-alaiselle metsävaratiedolle. Lentolaserkeilaus mahdollistaa tällaisen tiedon keräämisen tehokkaasti. Lahopuu on metsäympäristön keskeinen komponentti, sillä se sitoo hiiltä ja toimii elinympäristönä lukuisille eliölajeille. Lahopuukartoituksella kerätään paikkatietoa monimuotoisuuden kannalta merkittävistä kohteista. Tämä tieto on hyödyllistä esimerkiksi suojelu- ja entisöintitoimenpiteiden kohdentamisessa. Tämän väitöskirjan tavoitteena oli kehittää automaattisia menetelmiä yksittäisten maa- ja pystylahopuiden kartoittamiseksi lentolaserkeilausaineistosta.
Osatutkimuksissa I ja II kehitettiin viivojen tunnistukseen perustuva menetelmä kaatuneiden puiden kartoittamiseksi. Tämän menetelmän toimintaa tutkittiin lentolaserkeilausaineistolla, jonka pistetiheys oli noin 15 pistettä/m2 sekä dronella kerätyllä laserkeilausaineistolla, jonka pistetiheys oli noin 285 pistettä/m2. Tämän lisäksi osatutkimuksissa tarkasteltiin menetelmän toimintatarkkuuteen vaikuttavia tekijöitä. Osatutkimukset osoittivat, että kaatuneiden puiden pituus ja läpimitta vaikuttavat niiden tunnistustodennäköisyyteen ja että merkittävä osa suurista lahopuista saadaan kartoitettua kehitetyllä menetelmällä. Tämän lisäksi aluskasvillisuuden määrän ja tyypin sekä kaatuneita puita ympäröivien elävien puiden koon havaittiin vaikuttavan menetelmän toimintatarkkuuteen. Osatutkimus II osoitti myös, että laserkeilausaineiston pistetiheyden kasvattaminen ei automaattisesti paranna menetelmän toimintatarkkuutta, jos menetelmä ei kykene ottamaan huomioon lisääntynyttä kohinan ja yksityiskohtien määrää.
Osatutkimuksessa III tarkasteltiin dronella kerätyn tiheän laserkeilausaineiston soveltuvuutta yksittäisten pystylahopuiden kartoitukseen. Osatutkimuksessa kehitettiin kolmivaiheinen tunnistusmenetelmä, joka koostui yksittäisten puiden segmentoinnista, piirteiden laskennasta ja koneoppimispohjaisesta luokittelusta. Osatutkimus osoitti, että pelkästään puiden geometrisiin piirteisiin pohjautuvan tunnistusmenetelmän toimintatarkkuus on vaatimaton. Kuolleiden pystypuiden kartoittamiseksi laserkeilausaineisto tulisikin yhdistää spektritietoa sisältävien kaukokartoitusaineistojen, kuten ilmakuvien kanssa.
Tämän väitöskirjan tulokset parantavat ymmärrystämme muuttujista, jotka tulisi huomioida laserkeilauspohjaisessa lahopuukartoituksessa. Vaikka kaukokartoituspohjaiseen lahopuukartoitukseen liittyy edelleen merkittäviä haasteita, tämä väitöskirja on askel kohti laajamittaista kaukokartoituspohjaista monimuotoisuuden kartoitusta.
Metsät ovat kokonaisuus, joka on jatkuvan muutoksen alaisena. Keskeisimpiä luonnollisia syitä metsissä tapahtuville muutoksille ovat puiden kasvu, vaurioituminen ja kuolema. Puiden kasvu ilmenee puun eri osien koon muutoksena. Vallalla olevan käsityksen mukaan puiden kasvu noudattaa teoriaa, jossa puu kohdistaa kasvuresurssejaan ensin latvukseen, saavuttaakseen puiden välisessä kilpailussa riittävät valo-olosuhteet, minkä jälkeen resursseja voi kohdistaa myös rungon läpimitan kasvattamiseen. Kasvua voidaan mitata keräämällä toistuvia havaintoja jostain tunnuksesta valitulla ajanjaksolla. Aiemmat tutkimukset ovat jo osoittaneet puiden kasvun vaikuttavan esimerkiksi puun laatuun ja niiden kykyyn sitoa hiiltä, mutta voidaksemme ymmärtää entistä paremmin puiden kasvun syitä ja sen vaikutuksia, tarvitaan uusia menetelmiä puissa ja metsissä tapahtuvien muutosten määrittämiseksi.
Maastolaserkeilauksesta (TLS) on tullut 2000-luvun aikana menetelmä, jolla tuotetuista yksittäisiä puita tai metsiä kuvaavista 3D-pistepilvistä voidaan määrittää tarkasti puun mittoja ja ominaisuuksia. TLS-pistepilviä ei kuitenkaan ole vielä hyödynnetty laajemmin puiden kasvun mittaamisessa. Tämän väitöskirjatyön tavoitteena oli kehittää menetelmiä puiden kasvun mittaamiseksi boreaalisissa metsissä kahden ajankohdan TLS-pistepilviltä. Lisäksi tavoitteena oli tuottaa uutta tietoa puiden kasvusta eri olosuhteissa ja kehitysvaiheissa tutkimalla TLS-pistepilviltä puiden runkomuodon muutosta ja kasvun kohdentumista rungon eri osiin. Väitöskirjatutkimuksessa seurattiin yhteensä 1315 puun kasvua viiden ja yhdeksän vuoden ajanjaksoilla.
Väitöskirjan osajulkaisu I osoitti TLS-pistepilvien käyttökelpoisuuden puiden kasvun mittaamiseen. Osajulkaisuissa II ja III tutkittiin automatisoidun menetelmän soveltuvuutta kasvun mittaukseen. Automaattinen menetelmä onnistui havaitsemaan kahden ajankohdan TLS-pistepilvistä puut, jotka vastasivat pohjapinta-alaltaan 84.5 prosenttia koko tutkimuskohteiden puuston pohjapinta-alasta. Puiden rinnankorkeusläpimitassa, pituudessa sekä runko- ja tukkitilavuudessa havaittiin tilastollisesti merkitseviä muutoksia tarkastelujakson aikana. Puiden kasvu ja tilavuuskasvun kohdentuminen oli samankaltaisempaa rakenteeltaan samanlaisissa metsiköissä.
Tämän väitöskirjatutkimuksen tulokset osoittavat kahden ajankohdan TLS-pistepilvien soveltuvuuden puiden kasvun ja metsien rakenteessa tapahtuvien muutosten seurantaan. TLS-pistepilviä hyödyntämällä voidaan saada lisätietoa puiden kasvusta, mikä on tarpeen, jotta olisi mahdollista ymmärtää entistä paremmin metsissä tapahtuviin muutoksiin vaikuttavia tekijöitä. Parantunut ymmärrys ja lisääntynyt tieto voi olla erityisen arvokasta aloilla, joilla tarvitaan yksityiskohtaista tietoa puiden kasvusta ja metsien rakenteen muutoksista.
Tutkimuksessa kehitettiin lentolaserkeilausperusteisia menetelmiä metsäteiden laadun arviointiin. Harva - ja tiheäpulssisista laserkeilausaineistoista muodostetettiin rasteripohjaisesia pintamalleja eri resoluutioilla (0,2 m – 1 m). Työssä vertailtiin erilaisten interpolointi menetelmien (IDW, NN, Spline ja Kriging) ja niiden avulla laadittujen tunnusten soveltuvuutta pinnan laadun kuvaukseen. Tien laatua kuvattiin pinnan tasaisuudella, pinnoitteen laadulla, rakennetunnuksilla, ojien laadulla, kuivatus ominaisuuksilla, veden kerääntymis potentiaalilla ja tiealueen kasvillisuuden määrällä.
Suomen aineistossa käytettiin Metsätehon laatuluokituksen mukaista luokitusta. Kanadan aineistossa ennustettiin metsäteiden käytön ja käyttämättömyyden tilaa. Lineaarisella erotteluanalyysillä ennustettiin teiden
laatuluokkia. Tien pinnan laadun, kosteus indeksin ja maaperäkartan tietojen avulla laatuluokka ennnustettiin 81,6–89.8 % tarkkuudella. Korkealla pulssitiheydellä päästiin hyviin tuloksiin jo pelkällä pintaa kuvaavilla indekseillä. Kasvillisuuteen perustuvilla tuloksilla päästiin 73 % tarkkuuteen, mutta ojien ja tiheä pulssisen tienpintakuvauksen avulla päästiin jopa 92 % tarkkuuteen. Tuloksia voidaan käyttää maastotyön suuntaamiseen ja semi-autimaattisen tienlaadun arviointiin osana laserkeilausperusteisia metsätiedon keruuhankkeita.
Luonnonilmiöiden taustalla olevien prosessien ymmärtämiseksi tarvitaan tarkkoja havaintoja ja mittauksia. Metsäekosysteemin hierarkkisen rakenteen vuoksi sen toiminnalliset ominaisuudet määräytyvät suurelta osin puiden ja puujoukkojen toiminnallisten ominaisuuksien kautta. Siksi metsäekosysteemin toiminnallista rakennetta ja siinä tapahtuvia muutoksia voidaan tarkastella puiden toiminnallisilla ominaisuuksilla ja niissä tapahtuvilla muutoksilla. Kolmiulotteiset lähikartoitusmenetelmät ovat mahdollistaneet puiden yksityiskohtaisen tarkastelun pistepilvien avulla. Tämän tutkielman tavoitteena oli kehittää pistepilvimenetelmiä elävien ja kaatuneiden puiden kartoitukseen sekä testata kehitettyjen menetelmien toimivuutta ja sovellettavuutta metsän rakenteen tarkasteluun boreaalisissa metsissä.
Osajulkaisuissa I–III kehitettiin pistepilvimenetelmiä metsän eri rakenteiden havaitsemiseen ja niiden ominaisuuksien kartoittamiseen. Kaatuneet kuolleet puunrungot pystyttiin erottamaan aluskasvillisuudesta niiden säännöllisen, sylinterimäisen geometrian avulla (I). Tasaiset ja sylinterimäiset pinnat sekä pystysuoruus olivat toisaalta ominaisuuksia, joiden perusteella elävien puiden rungot voitiin erottaa lehdistä ja oksista (II). Näiden menetelmällisten periaatteiden pätevyys sekä niihin perustuvien pistepilvimenetelmien toimivuus testattiin rakenteellisesti vaihtelevissa boreaalisissa metsissä.
Osajulkaisuissa II–V tutkittiin kehitettyjen pistepilvimenetelmien sovellettavuutta puiden ja puujoukkojen tarkasteluun sekä niissä tapahtuvien muutosten havaitsemiseen. Metsikön rakenteellisen monimuotoisuuden havaittiin olevan tärkein puun tarkastelun tarkkuuteen vaikuttavista tekijöistä (II). Väitöskirjassa kehitetyn pistepilvimenetelmän havaittiin toimivan parhaiten tasarakenteisissa metsissä. Puuston rakenteen vaikutusta kyseisen pistepilvimenetelmän tarkkuuteen tutkittiin tarkemmin kontrolloiduissa olosuhteissa harvennuskokeiden avulla (III). Niissä harvennusvoimakkuuden havaittiin olevan merkittävämpi tarkkuuteen vaikuttava tekijä kuin harvennustapa (ts. yläharvennus, alaharvennus ja systemaattinen harvennus). Latvuston yläpuolelta kerätyn ilmakuvapistepilven yhdistäminen maastolaserkeilauspistepilveen paransi puiden ja puujoukkojen pituusominaisuuksien tarkastelun tarkkuutta pelkkään maastolaserkeilauspistepilveen perustuvaan menetelmään verrattuna (IV). Lopuksi havaittiin, että viiden vuoden tarkastelujakson aikana puiden ja puujoukkojen rakenteissa tapahtuneita keskimääräisiä muutoksia pystyttiin mittaamaan kahden eri ajankohdan maastolaserkeilauksella (V).
Tämän tutkielman tulokset parantavat tietämystä pistepilvimenetelmien sovellettavuudesta puiden ja puujoukkojen ominaisuuksien sekä niissä tapahtuvien muutosten tarkasteluun. Metsäympäristön yksityiskohtainen kolmiulotteinen mallinnus pistepilvien avulla parantaa puun ominaisuuksien tarkastelua, kun puiden kasvua ja puujoukkojen dynamiikkaa voidaan havainnoida entistä tarkemmin. Tämän tutkielman perusteella metsistä kerättyjen pistepilvien ja niitä hyödyntävien analyysimenetelmien avulla voidaan siis ymmärtää metsäekosysteemejä ja niitä muokkaavia prosesseja paremmin.
Lentolaserkeilausta (Airborne laser scanning, ALS) käytetään monissa maissa metsikkökuvioiden puuston kokonaistilavuuden ennustamiseksi. ALS-aineistosta tuotetut ennusteet ovat usein tarkempia kuin muilla tavoin tuotetut ennusteet. Operatiivisessa metsätaloudessa pelkän kokonaistilavuuden huomioiminen ei kuitenkaan riitä, sillä hakkuiden yhteydessä kokonaistilavuus jakautuu puutavaralajikohtaisiin tilavuuksiin. Puuston laatu vaikuttaa suuresti puutavaralajijakaumaan, joten tarkempi ennakkotieto puuston laadusta helpottaisi muun muassa hakkuiden suunnittelua. Tämän väitöskirjatyön päätavoite oli testata eri metodeja puuston laadun, erityisesti tukkitilavuuden, ennustamiseksi ALS-aineistoa käyttäen.
Kolmessa osatutkimuksessa käytettiin aineistoja Itä-Suomesta (3 aluetta) ja Kaakkois-Norjasta (1 alue). Kaikki tutkimusmetsät olivat joko mänty- (Pinus sylvestris L.) tai kuusivaltaisia (Picea abies (L.) Karst.). Ensimmäinen osatutkimus keskittyi puutason mallien siirrettävyyteen eri ALS-inventointialueiden välillä. Toisessa osatutkimuksessa testattiin lukuisia vaihtoehtoja ennustaa tukkitilavuutta koealatasolla (30 m × 30 m). Kolmannessa tutkimuksessa puolestaan testattiin kuviotason ainespuu- ja tukkitilavuuksien maastokalibrointia pohjapinta-alamittauksiin perustuen. Osatutkimuksissa kaikki ALS-pohjaiset ennusteet tehtiin käyttäen joko lineaarisia sekamalleja tai k:n lähimmän naapurin menetelmää joko puu- tai koealatasolla (15 m × 15 m).
Tulokset osoittivat, että laserkeilausaineiston ja puuston laadun välillä on vain heikkoa korrelaatiota. Siitä huolimatta tukkitilavuusennusteiden suhteellinen keskineliövirheen neliöjuuri (RMSE%) oli 20–30 %, sen jälkeen, kun koealatason ennusteet oli yleistetty 30 m × 30 m tai kuviotasolle. Lisäksi osatutkimuskohtaiset tulokset osoittivat, että puutason mallien ennustustarkkuuden voi odottaa heikentyvän huomattavasti, kun malleja siirretään inventointialueiden välillä, ja että pohjapinta-alainformaatio ei ole yleisesti ottaen hyödyllistä, jos tarkoituksena on kalibroida tukkitilavuusennusteita kuusivaltaisilla metsikkökuvioilla.
Metsien rakennetyyppien (FST) arviointi tarjoaa työkaluja erilaisten metsiköiden erotteluun, kestävään metsäsuunnitteluun ja tehokkaaseen päätöksentekoon. Tässä työssä hyödynnettiin neljää aineistoa kolmelta kasvillisuusvyöhykkeeltä, jotka olivat pohjoinen havumetsävyöhyke, lauhkean vyöhykkeen metsä ja välimerellinen metsä. Rakennetyyppien arvioinnissa tarkasteltiin seuraavia menetelmiä. Puiden kokovaihteluun perustuvaa Gini-kerrointa (GC) hyödynnettiin metsän rakenteen määrittelyyn pohjoisen havumetsävyöhykkeen tutkimusaineistossa. Lisäksi tarkasteltiin koealakoon, puuston kasvatustiheyden ja lentolaserkeilauksen (ALS) pistetiheyden vaikutusta ALS pohjaiseen Gini-kertoimen estimointiin. Toisekseen neljää rakennetunnusta, jotka olivat neliökeskiläpimitta (QMD); GC, keskineliöläpimittaa suurempien puiden pohjapinta-ala (BALM) ja puuston runkoluku (N), hyödynnettiin kehitettäessä kasvillisuusvyöhykkeistä riippumatonta metsien rakennetyyppien arviointia. Lopuksi määritettiin maksimaalinen entropia-arvo, joka luokittelee erilaisia pohjoisen havumetsävyöhykkeen metsien rakennetyyppejä suoraan lentolaserkeilauksen korkeustunnusten perusteella. Sen jälkeen puuston biomassaa ennustettiin erikseen rakennetyypeittäin ja koko aineistossa.
Tulokset osoittivat, että koealan koolla on suurin vaikutus Gini-kertoimen estimointiin ja että 250–450 m2 (ympyräkoealan säde 9–12 m) on optimaalisin koko. Edelleen Gini-kerroin ja keskineliöläpimittaa suurempien puiden pohjapinta-ala ovat luotettavimpia tunnuksia erottelemaan läpimittajakaumaltaan laskevat sekä yksi- ja monihuippuiset metsiköt. Neliökeskiläpimittaa ja runkolukua voidaan puolestaan hyödyntää erotellessa nuoria ja vanhoja sekä tiheitä ja harvoja metsiköitä. Lentolaserkeilaustunnusten perusteella määritettävä maksimaalinen entropia-arvo on 0,33, kun taas hyödynnettäessä puuston pohjapinta-alaa päädytään arvoon 0,5. Jos lentolaserkeilaukseen perustuvaa arvoa hyödynnetään aineiston osittamisessa, johtaa se biomassan ennustamisen vähäiseen tarkentumiseen. Osittamisella päädytään myös erilaisten ALS-piirteiden valintaan eri ositteiden malleissa. Esimerkiksi suuria korkeuskvantiileja käytetään eri-ikäisrakenteisten ja nuorten metsien biomassan ennustamisessa, kun taas latvuspeittoon ja keskimääräisiin korkeuskvantiileihin perustuvia ALS-piirteitä hyödynnetään tasaikäisrakenteisten ja sulkeutuneiden metsiköiden biomassojen ennustamisessa. Tuloksia voidaan hyödyntää lentolaserkeilaukseen perustuvien piirteiden valinnassa erityisesti puustoltaan heterogeenisissä metsissä.
Maailman metsät altistuvat uudenlaiselle stressille ilmastonmuutoksen myötä. Tuhohyönteiset sekä patogeenit siirtyvät uusille leveysasteille ja kuumuuden aiheuttama stressi lisääntyy, mikä johtaa lisääntyneeseen puiden kuolleisuuteen sekä kasvaneeseen metsäpalojen määrään maailmanlaajuisesti. On vaikeaa arvioida, kuinka voimakasta metsien heikentyminen ilmastonmuutoksen myötä on minkä vuoksi tarvitaan uusia harhattomia menetelmiä metsien kunnon arviointiin. Kaukokartoitusmenetelmillä voidaan mitata useita eri muuttujia metsistä, mutta stressin havaitseminen aikaisessa vaiheessa on ollut haastavaa muutoksien hienovaraisuudesta johtuen. Monikanavalaserkeilausteknologialla on potentiaalia havaita aikaisia puun heikentymisen merkkejä tarjoamalla tarkkaa kolmiulotteista tietoa sekä informaatiota puun heijastuvuudesta useilla eri aallonpituuksilla samanaikaisesti.
Tämän väitöskirjan päätavoitteena oli tutkia monikanavalaserkeilauksen kykyä havaita ja arvioida useiden eri stressitekijöiden aiheuttamaa puun heikentymistä. Tämä tehtiin tutkimalla kaukokartoituksen avulla havaittavaa puiden heikentymisen indikaattoria, lehtien vesipitoisuutta. Väitöskirjassa kehitettiin uusia menetelmiä lehtien vesipitoisuuden arviointiin monikanavalaserkeilauksen avulla useilla eri mittakaavoilla yksittäisistä lehdistä kokonaisiin latvuksiin. Myös lehtien vesipitoisuuden ja erilaisten puun heikentymistä aiheuttavien stressitekijöiden välistä suhdetta tutkittiin, jotta stressin ja vesipitoisuuden välistä riippuvuutta voitaisiin ymmärtää paremmin.
Osatutkimukset I-III keskittyivät tutkimaan lehtien vesipitoisuuden sekä laserintensiteetin, eli laserin heijastaman valon, välistä yhteyttä usealla aallonpituudella. Ensin, hyperspektrilaserkeilainta, joka havaitsee kahdeksaa eri aallonpituutta, käytettiin muutosten havaitsemiseen tuoreiden sekä kuivuuskäsiteltyjen mäntyjen sekä kuusten välillä (osatutkimus I). Sitten tehtiin tutkimus yksittäisillä lehdillä sekä neulasryhmillä (osatutkimus II) käyttäen mäntyä, kuusta, metsälehmusta, vaahteraa sekä rauduskoivua ja havaittiin vahva riippuvuus lehtien vesipitoisuuden sekä 1550 nm ja 690 nm aallonpituuksista lasketun indeksin välillä. Tämän jälkeen osatutkimuksessa III tutkittiin neulasten kosteuspitoisuuden arviointia monikanavalaserkeilauksen avulla sekä patogeenin ja kuivuuden aiheuttamaa lehtien vesipitoisuuden vaihtelua kuusen taimilla. Sinistäjäsienellä infektoitujen taimien neulasten vesipitoisuus vähentyi nopeasti, kun taas kuivuuskäsiteltyjen taimien vesipitoisuus pysyi tasaisempana erittäin voimakkaaseen kuivuuteen asti. Neulasten kosteuspitoisuus sekä heikentyneet taimet pystyttiin ennustamaan hyvällä tarkkuudella käyttäen indeksiä, joka oli laskettu 1550 nm ja 905 nm aallonpituuksista.
Kehitettyä menetelmää sekä neulasten kosteuspitoisuuden ja puun heikentymisen välistä yhteyttä tutkittiin osatutkimuksessa IV kirjanpainajan (Ips typographus L.) heikentämässä metsässä. Monikanavalaserkeilauksen avulla pystyttiin erottamaan hyvällä tarkkuudella (90% yleistarkkuus) kirjanpainajan saastuttamat puut jo silloin kun latvus ei vielä osoittanut visuaalisia heikentymisen merkkejä. Laserintensiteetin avulla pystyttiin havainnoimaan pihkavuotoja rungossa, mikä auttoi terveiden puiden luokittelussa. Huomattiin myös, että neulasten kosteuspitoisuus laskee jo pian kirjanpainajan iskeytymisen jälkeen.
Tämä väitöskirja edistää sekä objektiivisen ja automatisoitavan menetelmän kehitystä, jolla voidaan havaita ja mitata puiden heikentymistä, että lehtien vesipitoisuuden ja puiden heikentymisen välisen yhteyden ymmärtämistä. Väitöskirjan tuloksista julkaistaan myös populääri musiikki- ja videoteos nimellä: Idän Proffa feat. Linda Ilves – Keilaa puita. Video julkaistaan täällä: http://bit.ly/keilaapuita.
Metsän kasvu on tärkeimpiä tunnuksia metsävarojen suunnittelussa ja eri käyttötarpeisiin tehdyissä metsäympäristön kehitystä kuvaavissa simulointimalleissa. Perinteisesti puulajeittaiset kasvumallit on tehty laajojen alueiden koeala-aineistosta mallintamalla, jolloin paikallisten olosuhteiden vaihtelu ei tule kovin tarkkaan huomioiduksi. Paikallisen kartta- ja muun paikkatiedon avulla on mahdollista kalibroida ja tarkentaa kasvuennusteita.Tässä tutkimuksessa käytettiin paikkatietopohjaisia maaston pintamallista johdettuja kosteustunnuksia, lentokone gamma-säteilyn mittauksia ja latvuspeiton estimaatteja. Käytetyssä aineistossa oli yhteensä 9987 lukupuuta, 1118 koepuuta ja 197 koealaa. Tilastollisessa analyysissä käytettiin sekamallinnusta ja koneoppimisen menetelmiä. Näiden paikkatieto aineistojen avulla puulajeittaisia paikallisia ennusteita onnistuttiin parantamaan 6-18 % puun läpimitan kasvun ennusteita. Parannus oli suurinta karuilla mailla.