Artikkelit jotka sisältää sanan 'lentolaserkeilaus'

Kategoria : Articles

Mohammad Imangholiloo. (2024). Toward an enhanced characterization of seedling stands using remote sensing. https://doi.org/10.14214/df.355
Avainsanat: LiDAR, lennokkikuvaus, lentolaserkeilaus, metsien inventointi, konvoluutioneuroverkot, uudistusalat
Tiivistelmä | Näytä lisätiedot | Artikkeli PDF-muodossa | Tekijä

Taimikoiksi kutsutaan metsäalueita, joilla kasvaa nuoria, tyypillisesti muutamia vuosia sitten istutettuja tai luontaisen uudistumisen seurauksena syntyneitä puun taimia. Taimikot edustavat metsän kehityksessä tärkeää alkuvaihetta ja niille suunnitelluilla sekä toteutetuilla toimenpiteillä onkin keskeinen merkitys metsien uudistumisen, kasvun ja metsän käytölle asetettujen tavoitteiden toteutumisen kannalta.

Metsien käytön ja hoidon suunnittelua varten tarvittavan metsävaratiedon tuottaminen taimikoista on tyypillisesti perustunut maastotöihin, jotka ovat ajankäytöllisesti työläitä, vaativat runsaasti työvoimaa ja ovat siten kustannuksiltaan korkeita. Koska taimikoiden puut ovat vielä kooltaan pieniä, ja ne kasvavat yleensä tiheästi lähellä toisiaan, yksittäisten taimien havaitseminen ja mittaaminen on haastavaa kaukokartoitusperusteisessa metsävarojen inventoinnissa. Kaukokartoitusmenetelmien kehitys, erityisesti laserkeilaus sekä lennokkien käyttö, voivat mahdollistaa uusien menetelmien kehittämisen taimikoiden oikea-aikaiseen ja spatiaalisesti tarkkaan inventointiin. Uudet menetelmät voisivat korvata maastomittaukset osittain tai jopa täysin.

Väitöskirjan tavoitteena oli kehittää taimikoiden tiheyden, keskipituuden sekä puulajien määrittämiseen käytettäviä kaukokartoitusmenetelmiä suomalaisissa boreaalisissa metsissä. Väitöskirjan osatutkimuksissa hyödynnettiin uusia kaukokartoitustekniikoita kolmella eri tutkimusalueella. Osatutkimuksissa I ja IV käytettiin lennokilla kerättyjä fotogrammetrisia pistepilviä sekä multi- ja hyperspektrikuvia, lisäksi osatutkimuksissa II ja III aineistona hyödynnettiin monikanava- ja yksittäisen fotonin mittaustekniikalla tuotettua lentolaserkeilausaineistoa. Osatutkimuksissa I ja II analysoitiin lehdettömään ja lehdelliseen aikaan lennokista kerätyn hyperspektrikuva-aineiston sekä monikanavatekniikalla tuotetun lentolaserkeilausaineiston soveltuvuutta taimikoista tehtäviin mittauksiin. Osatutkimuksessa II aluskasvillisuuden luokittelun raja-arvoa (Cth) optimoitiin, jotta voitiin minimoida aluskasvillisuuden vaikutus puiden tunnistamiseen sekä niiden pituus- ja puulajiestimointiin. Osatutkimuksessa III arvioitiin yksittäisen fotonin mittaustekniikkaan perustuvan lentolaserkeilausaineiston soveltuvuutta taimikoiden tiheyden ja puiden pituuden ennustamiseen. Tässä tutkimuksessa kehitettiin myös uusi menetelmä (ABAEdgeITD) taimikoiden tiheyden ja puiden pituuden ennustamiseen yhdistämällä yksinpuintulkinnasta saadut ominaisuustiedot ja reunapuiden vaikutuksen korjauksen sisältävä aluepohjainen menetelmä. Osatutkimuksessa IV esitettiin ja arvioitiin uutta menetelmää, jossa konvoluutioneuroverkkojen syötteenä taimikoiden puulajitunnistukseen käytettiin esikäsiteltyjä lennokilla otettuja multispektrikuvia.

Tutkimuksen tulokset osoittavat, että lennokeilla otettujen kuva-aineistojen käyttö johti tarkempiin tuloksiin puuston tiheysennusteissa. Tiheäpulssisen monikanavaisen lentolaserkeilausaineiston käyttäminen tuotti parhaat tulokset taimikoiden puiden pituusennusteissa sekä lehdettömään että lehdelliseen aikaan. Yksinpuintulkinnasta saadut ominaisuustiedot ja reunapuiden vaikutuksen korjaaminen paransivat puuston tiheys- ja pituusennusteiden tarkkuutta verrattuna perinteiseen aluepohjaiseen menetelmään, mutta menetelmä oli silti epätarkempi kuin osatutkimuksissa I ja II käytetyt yksinpuintulkintamenetelmät. Varttuneiden taimikoiden ominaisuuksien ennustaminen onnistui tutkimuksissa paremmin kuin alle 1.3 m keskipituudeltaan olevien nuorten taimikoiden ominaisuuksien. Osatutkimuksessa IV käytetty kaukokartoituskuvien esikäsittely yhdistettynä konvoluutioneuroverkkojen käyttöön paransi taimien puulajitulkinnan tarkkuutta. Tutkimus osoittaa, että kaukokartoitusmenetelmiä voidaan hyödyntää operationaalisessa metsävarojen inventoinnissa täydentämään tai korvaamaan maastotöitä. Uudet tekniikat ovatkin tärke osa metsien käytön suunnittelun tehokkuuden lisäämistä.

  • Imangholiloo, University of Helsinki, Faculty of Agriculture and Forestry, Department of Forest Sciences ORCID https://orcid.org/0000-0001-6240-077X Sähköposti: mohammad.imangholiloo@helsinki.fi
Syed Adnan. (2020). Improvements in forest structural type assessment using airborne laser scanning. https://doi.org/10.14214/df.306
Avainsanat: Gini-kerroin; neliökeskiläpimitta; metsän rakenne; lentolaserkeilaus; suurempien puiden pohjapinta-ala; rakenteellinen heterogeenisyys; koealan koon optimointi; otoskoon optimointi; laserpistetiheyden vaikutukset; puuston biomassa; kasvillisuusvyöhykkeiden metsien rakenne
Tiivistelmä | Näytä lisätiedot | Artikkeli PDF-muodossa | Tekijä

Metsien rakennetyyppien (FST) arviointi tarjoaa työkaluja erilaisten metsiköiden erotteluun, kestävään metsäsuunnitteluun ja tehokkaaseen päätöksentekoon. Tässä työssä hyödynnettiin neljää aineistoa kolmelta kasvillisuusvyöhykkeeltä, jotka olivat pohjoinen havumetsävyöhyke, lauhkean vyöhykkeen metsä ja välimerellinen metsä. Rakennetyyppien arvioinnissa tarkasteltiin seuraavia menetelmiä. Puiden kokovaihteluun perustuvaa Gini-kerrointa (GC) hyödynnettiin metsän rakenteen määrittelyyn pohjoisen havumetsävyöhykkeen tutkimusaineistossa. Lisäksi tarkasteltiin koealakoon, puuston kasvatustiheyden ja lentolaserkeilauksen (ALS) pistetiheyden vaikutusta ALS pohjaiseen Gini-kertoimen estimointiin. Toisekseen neljää rakennetunnusta, jotka olivat neliökeskiläpimitta (QMD); GC, keskineliöläpimittaa suurempien puiden pohjapinta-ala (BALM) ja puuston runkoluku (N), hyödynnettiin kehitettäessä kasvillisuusvyöhykkeistä riippumatonta metsien rakennetyyppien arviointia. Lopuksi määritettiin maksimaalinen entropia-arvo, joka luokittelee erilaisia pohjoisen havumetsävyöhykkeen metsien rakennetyyppejä suoraan lentolaserkeilauksen korkeustunnusten perusteella. Sen jälkeen puuston biomassaa ennustettiin erikseen rakennetyypeittäin ja koko aineistossa.

Tulokset osoittivat, että koealan koolla on suurin vaikutus Gini-kertoimen estimointiin ja että 250–450 m2 (ympyräkoealan säde 9–12 m) on optimaalisin koko. Edelleen Gini-kerroin ja keskineliöläpimittaa suurempien puiden pohjapinta-ala ovat luotettavimpia tunnuksia erottelemaan läpimittajakaumaltaan laskevat sekä yksi- ja monihuippuiset metsiköt. Neliökeskiläpimittaa ja runkolukua voidaan puolestaan hyödyntää erotellessa nuoria ja vanhoja sekä tiheitä ja harvoja metsiköitä. Lentolaserkeilaustunnusten perusteella määritettävä maksimaalinen entropia-arvo on 0,33, kun taas hyödynnettäessä puuston pohjapinta-alaa päädytään arvoon 0,5. Jos lentolaserkeilaukseen perustuvaa arvoa hyödynnetään aineiston osittamisessa, johtaa se biomassan ennustamisen vähäiseen tarkentumiseen. Osittamisella päädytään myös erilaisten ALS-piirteiden valintaan eri ositteiden malleissa. Esimerkiksi suuria korkeuskvantiileja käytetään eri-ikäisrakenteisten ja nuorten metsien biomassan ennustamisessa, kun taas latvuspeittoon ja keskimääräisiin korkeuskvantiileihin perustuvia ALS-piirteitä hyödynnetään tasaikäisrakenteisten ja sulkeutuneiden metsiköiden biomassojen ennustamisessa. Tuloksia voidaan hyödyntää lentolaserkeilaukseen perustuvien piirteiden valinnassa erityisesti puustoltaan heterogeenisissä metsissä.

  • Adnan, University of Eastern Finland, Faculty of Science and Forestry, School of Forest Sciences Sähköposti: adnan.adnan@uef.fi (sähköposti)
Mikko Kukkonen. (2020). Single sensor airborne data sources for forest inventories by tree species. https://doi.org/10.14214/df.297
Avainsanat: fotogrammetria; ilmakuva; aluepohjainen menetelmä; monikanavainen lentolaserkeilaus
Tiivistelmä | Näytä lisätiedot | Artikkeli PDF-muodossa | Tekijä

Nykyaikaiset kaukokartoitusperusteiset metsäinventointimenetelmät hyödyntävät laserkeilausta ja ilmakuvia puulajeittaisten puustotunnusten ennustamisessa. Kyseiset menetelmät perustuvat oletukseen, että kolmiulotteista laserkeilausaineistoa voidaan käyttää ennustamaan puuston määrää, kun taas ilmakuvapiirteet ovat hyödyllisiä puulajien erottelussa. Suomessa ilmakuvat ovat osoittautuneet soveltuviksi yleisimpien puulajien, kuten männyn (Pinus sylvestris), kuusen (Picea abies) ja lehtipuiden (pääosin Betula pendula and Betula pubescens) erotteluun. Kahden erilaisen kaukokartoitusaineiston käyttö inventointiprosessissa voi kuitenkin johtaa lukuisiin ongelmiin, kuten virheisiin aineistojen yhdistämisessä sekä korkeisiin kustannuksiin aineiston keruussa ja käsittelyssä.

Instrumenttien ja algoritmien kehityksen tuloksena on noussut esiin kaksi potentiaalista yhden instrumentin aineistolähdettä puulajeittaista metsäinventointia varten: ilmakuvista tuotetut fotogrammetriset pistepilvet ja monikanavainen laserkeilaus. Molempien aineistolähteiden voidaan ajatella soveltuvan puulajeittaiseen ennustamiseen, sillä ne sisältävät sekä kolmiulotteista että optista tietoa. Monikanavaisessa laserkeilauksessa havainnoidaan instrumentin lähettämää säteilyä esimerkiksi kolmelta eri aallonpituusalueelta, kun taas ilmakuvauksessa havainnoidaan kohteesta heijastunutta tai sen lähettämää auringon säteilyä. Optisen tiedon tulkinta ja hyödyllisyys voivat täten olla erilaisia ilmakuvauksen ja monikanavaisen laserkeilauksen välillä. Tällöin keskeinen tutkimusaihe on, kuinka aineistolähteiden ominaispiirteet vaikuttavat puulajeittaisen metsäinventoinnin luotettavuuteen. 

Tämän työn tavoitteena oli arvioida fotogrammetristen pistepilvien ja monikanavaisen laserkeilauksen soveltuvuutta kaukokartoitusperusteiseen puulajeittaiseen metsäinventointiin. Tuloksista nähdään, kuinka nämä uudet yhden sensorin aineistolähteet ovat verrattavissa nykyiseen operationaaliseen menetelmään, jossa käytetään sekä laserkeilausta että ilmakuvausta. Työn tuloksia voidaan hyödyntää tulevien metsäinventointien aineistolähteiden valinnassa. 

  • Kukkonen, University of Eastern Finland, Faculty of Science and Forestry, School of Forest Sciences Sähköposti: mikko.kukkonen@uef.fi (sähköposti)
Janne Räty. (2020). Prediction of diameter distributions in boreal forests using remotely sensed data. https://doi.org/10.14214/df.294
Avainsanat: puuston läpimittajakauma; lähimmän naapurin menetelmä; aluepohjainen menetelmä; lentolaserkeilaus; monikanavainen lentolaserkeilaus; yksinpuintulkinta
Tiivistelmä | Näytä lisätiedot | Artikkeli PDF-muodossa | Tekijä

Metsikön puuston läpimittajakaumaa kuvataan usein teoreettisten todennäköisyysjakaumien avulla. Tyypillisesti todennäköisyysjakauman parametrit johdetaan joko ennustetuista tai arvioiduista puustotunnuksista. Kaukokartoitukseen perustuvissa metsäinventoinneissa todennäköisyysjakaumien käyttäminen ei ole kuitenkaan välttämätöntä, koska läpimittajakaumat voidaan ennustaa hyödyntämällä mitattua koeala-aineistoa (puulistat) ja epäparametrista lähimmän naapurin (NN) menetelmää. Tämän väitöstutkimuksen tavoitteena oli tarkastella NN-menetelmään ja kaukokartoitusaineistoihin perustuvaa läpimittajakaumien ennustamista boreaalisissa metsissä. Ensimmäisessä osatutkimuksessa tarkasteltiin NN-menetelmässä käytettyjä vastemuuttujakokoonpanoja, kun läpimittajakaumia ennustetaan puulajikohtaisesti. Toisessa osajulkaisussa hyödynnettiin erilaisia kaukokartoitusaineistoja tukkikokoisten puiden läpimittajakaumien ennustamisessa. Esimerkiksi monikanavaisen sekä kahdenaikaisen lentolaserkeilausaineiston käyttökelpoisuuttaa verrattiin operationaaliseen standardiin, jossa lentolaserkeilausaineistoa ja ilmakuvia hyödynnetään yhdenaikaisesti. Kolmannessa osajulkaisussa tarkasteltiin mahdollisuuksia ennustaa läpimittajakaumia yhdistäen aluepohjaista puustotulkintaa ja yksinpuintulkintaa. Tulokset osoittivat, että NN-menetelmän vastemuuttujakokoonpanolla on merkitystä puulajikohtaisten jakaumaennusteiden hyvyyteen. Tulosten perusteella voidaan todeta, että operationaalisesti käytössä oleva vastemuuttujakokoonpano ei ole optimaalisin vaihtoehto läpimittajakaumia ennustettaessa. Toisen osajulkaisun tulokset osoittivat, että puulajikohtaisten tukkitilavuusennusteiden virheet ovat suurempia, kun käytetään monikanavaista lentolaserkeilausaineistoa perinteisen yksikanavaisen lentolaserkeilausaineiston ja ilmakuvien yhdistelmän asemesta. Sen sijaan, kahdenaikaisen lentolaserkeilausaineiston (lehdettömään ja lehdelliseen aikaan kerätty) avulla tuotetut puulajikohtaiset tukkitilavuusennusteet saavuttivat lähes saman virhetason verrattuna perinteiseen lentolaserkeilausaineiston ja ilmakuvien yhdistelmään. Kolmannen osajulkaisun tulokset osoittivat, että aluepohjaisen puustotulkinnan ja yksinpuintulkinnan yhdistäminen on hyödyllistä puuston läpimittajakaumia ennustettaessa. Inventointimenetelmien yhdistelmällä saavutettiin yleisesti pienemmät virhetasot verrattuna siihen, että hyödynnettäisiin ainoastaan joko aluepohjaista puustotulkintaa tai yksinpuintulkintaa. On syytä huomata, että yksinpuintulkinnan havaittiin olevan aluepohjaista puustotulkintaa herkempi virheille metsäkuvioilla, joissa läpimittajakauma on muodoltaan kaksihuippuinen tai laskeva. Muodoltaan normaalijakaumaa muistuttaville läpimittajakaumille yksinpuintulkinta tuotti usein aluepohjaista puustotulkintaa pienemmät jakaumaennusteiden virheet. Metsärakenteen analyysia tiheäpulssisen lentolaserkeilausaineiston avulla voidaan hyödyntää indikaattorina, joka auttaa valitsemaan optimaalisen menetelmän läpimittajakaumaennusteiden tuottamiseksi.

  • Räty, University of Eastern Finland, School of Forest Sciences Sähköposti: janne.raty@uef.fi (sähköposti)
Joanne C. White. (2019). Improving capacity for large-area monitoring of forest disturbance and recovery. https://doi.org/10.14214/df.272
Avainsanat: kaukokartoitus; aikasarja; Landsat; muutostulkinta; komposiittikuva; lentolaserkeilaus
Tiivistelmä | Näytä lisätiedot | Artikkeli PDF-muodossa | Tekijä

Tietotarpeista metsien seurantaan liittyen on tullut entistä monitahoisempia. Jotta näihin tietotarpeisiin voidaan vastata, aineistojen tulee olla systemaattisesti tuotettuja, spatiaalisesti kattavia ja yksiselitteisiä, sekä niiden avulla tulee olla mahdollista havaita muutokset spatiaalisella ja temporaalisella resoluutiolla, jotka ovat yhteismitallisia sekä luonnon että ihmisen vaikutusten kanssa. Lisäksi raportointivelvollisuudet asettavat edelleen vaatimuksia läpinäkyvyyden, toistettavuuden ja aineistojen alkuperän suhteen. Väitöskirjan tavoitteena oli keskittyä näihin tarpeisiin sekä parantaa metsissä tapahtuvien häiriöiden ja niistä palautumisen seurannan mahdollisuuksia laajoilla alueilla.

Landsat-aikasarja tehostaa metsien seurannan mahdollisuuksia, erityisesti metsissä tapahtuvien häiriöiden jälkeisen palautumisen arviointia, kun taas komposiittikuvien tuottamisen lähestymistapa, jossa hyödynnetään parhaita saatavilla olevia pikseleitä, mahdollistaa Landsat-aikasarjan hyödyntämisen laajoilla metsäalueilla. Osajulkaisuissa I ja IV tunnistettiin metsien seurannan tietotarpeita ja liitettiin niitä komposiittikuvan tuottamisen kriteereihin sekä aineistojen saatavuuteen Kanadassa ja Suomessa. Osajulkaisussa II kehitettiin menetelmiä ja havainnollistettiin niitä tuottamalla laajan alueen yhtenäiset Landsat-komposiittikuvat, joista tunnistettiin muutokset, laskettiin jatkuvat muutospiirteet sekä tuotettiin vuosittaiset tiedot, jotka ovat olennaisen tärkeitä metsien seurannan kannalta. Osajulkaisussa III kansallista seurantamenetelmää testattiin Kanadan yli 650 Mha metsäekosysteemien alueella ja se mahdollisti yksityiskohtaiset analyysit kohteissa, joissa oli tapahtunut metsäpalo tai päätehakkuu edellisen 25 vuoden aikana (1985-2010). Lisäksi metsien lyhyen ja pitkän ajan palautumista pystytiin arvioimaan. Palautumista kuvaavista sävyarvopiirteistä tuotettiin lisätietoa osajulkaisuissa V ja VI. Osajulkaisussa V metsien palautumista kuvaavien sävyarvojen hyödyllisyyttä arvioitiin ja vahvistettiin vertaamalla niitä metsien peitteisyyden ja pituuden kriteereihin, jotka saatiin lentolaserkeilausaineistosta. Osajulkaisussa VI tutkittiin ja määrällistettiin maastossa mitattujen metsän rakenteen ja puulajisuhteiden vaikutusta palautumista kuvaaviin sävyarvoihin.

Keskittymällä metsien seurantajärjestelmien neljään tärkeimpään näkökulmaan, tietotarpeeseen, aineistojen saatavuuteen, menetelmäkehitykseen, ja tuotettuun tietoon, väitöskirjatutkimukset osoittivat, että yhdistämällä lähestymistapa, jossa komposiittikuvat tuotetiin hyödyntämällä parhaita saatavilla olevia pikseleitä, ja Landsat-aikasarja on mahdollista tuottaa sellaista tietoa ja aineistoja, joissa on tarvittavat ominaisuudet laajojen alueiden metsien seurantaa varten, samalla kun mahdollistetaan myös kokonaisvaltaisempi arviointi metsissä tapahtuvista häiriöistä ja metsien palautumisesta niiden jälkeen.


Rekisteröidy
Click this link to register to Dissertationes Forestales.
Kirjaudu sisään
Jos olet rekisteröitynyt käyttäjä, kirjaudu sisään tallentaaksesi valitsemasi artikkelit myöhempää käyttöä varten.
Ilmoitukset päivityksistä
Kirjautumalla saat tiedotteet uudesta julkaisusta
Valitsemasi artikkelit