Detecting individual dead trees using airborne laser scanning
Heinaro E. (2023). Detecting individual dead trees using airborne laser scanning. https://doi.org/10.14214/df.343
Tiivistelmä
Ilmastonmuutos ja luonnon monimuotoisuuden hupeneminen ovat synnyttäneet tarpeen tarkalle ja laaja-alaiselle metsävaratiedolle. Lentolaserkeilaus mahdollistaa tällaisen tiedon keräämisen tehokkaasti. Lahopuu on metsäympäristön keskeinen komponentti, sillä se sitoo hiiltä ja toimii elinympäristönä lukuisille eliölajeille. Lahopuukartoituksella kerätään paikkatietoa monimuotoisuuden kannalta merkittävistä kohteista. Tämä tieto on hyödyllistä esimerkiksi suojelu- ja entisöintitoimenpiteiden kohdentamisessa. Tämän väitöskirjan tavoitteena oli kehittää automaattisia menetelmiä yksittäisten maa- ja pystylahopuiden kartoittamiseksi lentolaserkeilausaineistosta.
Osatutkimuksissa I ja II kehitettiin viivojen tunnistukseen perustuva menetelmä kaatuneiden puiden kartoittamiseksi. Tämän menetelmän toimintaa tutkittiin lentolaserkeilausaineistolla, jonka pistetiheys oli noin 15 pistettä/m2 sekä dronella kerätyllä laserkeilausaineistolla, jonka pistetiheys oli noin 285 pistettä/m2. Tämän lisäksi osatutkimuksissa tarkasteltiin menetelmän toimintatarkkuuteen vaikuttavia tekijöitä. Osatutkimukset osoittivat, että kaatuneiden puiden pituus ja läpimitta vaikuttavat niiden tunnistustodennäköisyyteen ja että merkittävä osa suurista lahopuista saadaan kartoitettua kehitetyllä menetelmällä. Tämän lisäksi aluskasvillisuuden määrän ja tyypin sekä kaatuneita puita ympäröivien elävien puiden koon havaittiin vaikuttavan menetelmän toimintatarkkuuteen. Osatutkimus II osoitti myös, että laserkeilausaineiston pistetiheyden kasvattaminen ei automaattisesti paranna menetelmän toimintatarkkuutta, jos menetelmä ei kykene ottamaan huomioon lisääntynyttä kohinan ja yksityiskohtien määrää.
Osatutkimuksessa III tarkasteltiin dronella kerätyn tiheän laserkeilausaineiston soveltuvuutta yksittäisten pystylahopuiden kartoitukseen. Osatutkimuksessa kehitettiin kolmivaiheinen tunnistusmenetelmä, joka koostui yksittäisten puiden segmentoinnista, piirteiden laskennasta ja koneoppimispohjaisesta luokittelusta. Osatutkimus osoitti, että pelkästään puiden geometrisiin piirteisiin pohjautuvan tunnistusmenetelmän toimintatarkkuus on vaatimaton. Kuolleiden pystypuiden kartoittamiseksi laserkeilausaineisto tulisikin yhdistää spektritietoa sisältävien kaukokartoitusaineistojen, kuten ilmakuvien kanssa.
Tämän väitöskirjan tulokset parantavat ymmärrystämme muuttujista, jotka tulisi huomioida laserkeilauspohjaisessa lahopuukartoituksessa. Vaikka kaukokartoituspohjaiseen lahopuukartoitukseen liittyy edelleen merkittäviä haasteita, tämä väitöskirja on askel kohti laajamittaista kaukokartoituspohjaista monimuotoisuuden kartoitusta.
Avainsanat
lahopuu;
laserkeilaus;
pistepilvien prosessointi;
monimuotoisuuden seuranta
Julkaistu 16.10.2023
Katselukerrat 1993
Saatavilla https://doi.org/10.14214/df.343 | Lataa PDF
Osajulkaisut
Heinaro E, Tanhuanpää T, Yrttimaa T, Holopainen M, Vastaranta M (2021) Airborne laser scanning reveals large tree trunks on forest floor. Forest Ecology and Management 491, article id 119225.
https://doi.org/10.1016/j.foreco.2021.119225
Heinaro E, Tanhuanpää T, Vastaranta M, Yrttimaa T, Kukko A, Hakala T, Mattsson T, Holopainen M (2023) Evaluating factors impacting fallen tree detection from airborne laser scanning point clouds. Remote Sensing 15, article id 382.
https://doi.org/10.3390/rs15020382
Heinaro E, Tanhuanpää T, Kukko A, Hakala T, Holopainen M (2023) Comparing field measurements and annotations as training data for UAV-based detection of standing dead trees in coniferous forest. International Journal of Remote Sensing 44: 5375-5396.