Assessing the structural biodiversity of forests with airborne laser scanning and optical data
Toivonen J. (2025). Assessing the structural biodiversity of forests with airborne laser scanning and optical data. https://doi.org/10.14214/df.365
Tiivistelmä
Metsillä on erityinen rooli luonnon monimuotoisuuteen liittyvässä päätöksenteossa, sillä ne kattavat noin 80 % maaekosysteemien monimuotoisuudesta maailmanlaajuisesti. Metsäkasvillisuuden rakenne ja sen moninaisuus vaikuttavat paikalliseen monimuotoisuuteen muokkaamalla mikroilmastollisia olosuhteita, tarjoamalla suojaa ja lisääntymispaikkoja, sekä vaikuttamalla resurssien ja ekologisten lokeroiden jakautumiseen ja saatavuuteen. Metsien kasvillisuuden rakenteen arvioinnissa kaukokartoitusdataa, kuten lentolaserkeilausdataa (ALS; Airborne Laser Scanning) ja optista dataa (esim. ilma- ja satelliittikuvat), hyödynnetään laajalti. Tämän väitöskirjan tavoitteena oli tarkastella ALS-datan käyttömahdollisuuksia metsien biologisen ja rakenteellisen monimuotoisuuden arvioinnissa.
Ensiksi tehtiin katsaus ALS-datan hyödyntämisestä metsien biologisen ja rakenteellisen monimuotoisuuden arvioinnissa. Katsauksessa raportoitiin yleisimmin tutkitut aiheet ja yleisimmät tutkimusalueiden maantieteelliset sijainnit, sekä listattiin kaikista eniten käytetyt ja hyödyllisimmät ALS-metriikat. Toiseksi arvioitiin ALS-datan ja ilmakuvien yhteiskäyttöä ekologisesti arvokkaiden metsähaapojen tunnistuksessa. Haavan ekologista tärkeyttä alleviivaa se, että lukuisat haavasta riippuvat lajit ovat Punaisen listan lajeja. Kaukokartoitukseen perustuva haavan kartoitus on tunnetusti haastavaa, sillä haavat sekoittuvat eniten muiden lehtipuiden kanssa, mutta myös siksi, että haapoja esiintyy vain harvakseltaan. Haapojen harvalukuisuus otettiin huomioon tasapainottamalla opetusaineistoa niin kutsutulla SMOTE-menetelmällä (Synthetic Minority Oversampling TEchnique). Kolmanneksi arvioitiin ALS-datan ja Sentinel 2-satelliittikuvien yhteiskäyttöä metsikkökoealojen iän ennustamisessa. Kaukokartoitusmuuttujien lisäksi laskettiin maastoaineistosta kategorisia selittäjiä, joilla kuvattiin koealan kasvuolosuhteista. Koealojen iän ennustamisessa verrattiin lineaarista sekamallia (LME) ja tehostettua päätöspuumenetelmää, joka hyödyntää satunnaisvaikutuksia (GPBoost). Joillakin koealoilla oli edellisen puusukupolven niin kutsuttuja ylispuita (siemen- ja jättöpuita), jotka vaikeuttivat iän ennustamista näillä koealoilla. Ylispuut otettiin huomioon testaamalla vaihtoehtoista ennustusmenetelmää, joka sisälsi ylispuukoealojen luokituksen ennen iän ennustamista.
Tulokset osoittivat, että suurin osa ALS-perustaisesta metsien biologisen ja rakenteellisen monimuotisuuden tutkimisesta on tähän saakka tapahtunut Euroopassa ja Pohjois-Amerikassa. Eläinekologia, kuollut puusto ja puulajien monimuotoisuusindeksit olivat eniten tutkittuja aihealueita. ALS-dataa käytettiin usein yhdessä muiden kaukokartoitusaineistojen, kuten ilma- ja satelliittikuvien kanssa, mikä oli erityisen hyödyllistä, kun puulajeja käsiteltiin suorasti tai epäsuorasti. Katsauksen perusteella ei löydetty yhtä selvää ALS-selittäjää, joka olisi hyödyllinen kaikenlaisessa metsien biologisen ja rakenteellisen monimuotoisuuden arvioinnissa. Kasvillisuuden korkeuden keskihajonta, keskiarvo ja variaatiokerroin olivat eniten hyödynnettyjä ja useimmiten hyödyllisiksi osoittautuneita ALS-selittäjiä.
Kookkaiden haapojen puu- ja koealatasojen luokittelutarkkuus parani, kun SMOTE-menetelmää hyödynnettiin harvinaisten haapahavaintojen augmentoinnissa. Ilmakuvaselittäjät osoittautuivat ALS-selittäjiä tärkeämmiksi kookkaiden haapojen tunnistamisessa. Eritoten lähi-infrakanava ja sen suhteet muiden ilmakuvakanavien kanssa olivat tärkeitä selittäjiä. Tulokset osoittavat, että kookkaiden haapojen tunnistaminen aidoissa populaatioissa on edelleen haasteellista.
Koealatason iän ennustamisessa GPBoost-menetelmä oli LME-menetelmää parempi, ja luokka-asteikollisten selittäjien mukaan ottaminen satunnaisvaikutuksina johti selvään ennustevirheen pienentymiseen. Ennustevirheen pieneneminen oli LME-malleissa suurempaa kuin GPBoost-malleissa. Kaikista parhaat tulokset saatiin, kun ylispuukoealojen luokitus tehtiin ennen iän ennustamista.
Tämä väitöskirja osoitti, että ALS-data tarjoaa arvokasta informaatiota metsäluonnon monimuotoisuuden arviointiin niin pienessä kuin suuressakin mittakaavassa. Se myös osoitti, että on tärkeää arvioida menetelmän tehokkuutta aineistolla, joka antaa realistisimman kuvan tarkasteltavasta populaatiosta. Tulevaisuudessa tarvitaan enemmän tutkimusta vähemmän tutkituista aiheista, kuten funktionaalisesta monimuotoisuudesta. Lisäksi GPBoost-menetelmää tulisi testata myös muiden metsää kuvaavien ominaisuuksien kuin iän ennustamisessa.
Avainsanat
biodiversiteetti;
kaukokartoitus;
laserkeilaus;
metsän rakenne;
metsähaapa;
metsän ikä
Julkaistu 1.4.2025
Katselukerrat 59
Saatavilla https://doi.org/10.14214/df.365 | Lataa PDF
Osajulkaisut
Toivonen J, Kangas A, Maltamo M, Kukkonen M, Packalen P (2023) Assessing biodiversity using forest structure indicators based on airborne laser scanning data. Forest Ecology and Management 546, article id 121376.
https://doi.org/10.1016/j.foreco.2023.121376
Toivonen J, Kangas A, Maltamo M, Kukkonen M, Packalen P (2024) Mapping large European aspen (Populus tremula L.) in Finland using airborne lidar and image data. Canadian Journal of Forest Research 54(7): 762–773.
https://doi.org/10.1139/cjfr-2023-0271
Toivonen J, Kangas A, Pitkänen TP, Myllymäki M, Maltamo M, Kukkonen M, Packalen P (2025) Tree Boosting with Linear Forest-Type Effects Improves the Performance of Forest Age Predictions Using Airborne Laser Scanning and Satellite Data. Manuscript.